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Outline

1. Motivation: Europa
• Structure, orbital & interior dynamics, surface composition &

age
• Surface geology
• Shallow liquid water, melting processes

2. Two-phase flow model + extensions

3. Numerical simulations

• Sensitivity study (1d)
• Fully temperate case (2d)
• Europa: Water transport by two-phase flow (1d)
• Europa: Impermeable limit - water transport by ice advection
(2d)

4. Conclusions and perspectives
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Europa: Interior structure

• Smallest of the Galilean satellites of Jupiter (R = 0.243REarth)
• Gravity data → metal core, silicate mantle, outer water-ice layer

(Anderson et al., 1998)
• Magnetic data → global subsurface ocean (∼ 100km) + thin ice shell

(Kivelson et al., 2000)
• Ice shell thickness from ≤10 km to ≥40 km (Billings & Kattenhorn, 2005)

Courtesy NASA/JPL-Caltech



Motivation: Europa Two-phase model + extensions Numerical simulations Conclusions & Perspectives

Europa: Interior structure
• Smallest of the Galilean satellites of Jupiter (R = 0.243REarth)
• Gravity data → metal core, silicate mantle, outer water-ice layer

(Anderson et al., 1998)
• Magnetic data → global subsurface ocean (∼ 100km) + thin ice shell

(Kivelson et al., 2000)
• Ice shell thickness from ≤10 km to ≥40 km (Billings & Kattenhorn, 2005)

Courtesy NASA/JPL-Caltech



Motivation: Europa Two-phase model + extensions Numerical simulations Conclusions & Perspectives

Europa: Dynamics, Surface composition & Age

• In Laplace resonance with Io and Ganymede → non-zero eccentricity
• Eccentric orbit → significant tidal deformations (Showman &

Malhotra, 1997) and heating (Tobie et al., 2003), possibly several
times larger than radiogenic heating in the rocky core (Sotin et al.,
2009)

• Dearth of impact craters → Very young surface ∼40−90 Myr
(Bierhaus et al., 2009) → Ongoing geological activity?

• Water vapor plumes above Europa’s south pole (Roth et al., 2014)
→ Liquid water at shallow depth? Ongoing interior activity?
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Europa: Surface geology - abundance of unique features

Tectonic features, Chaotic Terrain,...:

Courtesy NASA/JPL-Caltech



Motivation: Europa Two-phase model + extensions Numerical simulations Conclusions & Perspectives

Europa: Melting processes
• In hot plumes (Sotin et al., 2002)
- melting is a result of tidal heating enhanced due to thermally-reduced
viscosity

• At strike-slip faults (Nimmo & Gaidos, 2002)
- melting as shallow as few km can initiate for shear velocities
appropriate for Europa’s diurnal tides
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Water transport mechanisms in Europa’s ice shell

• Crevasse hydrofracturing:
- crack propagation promoted by meltwater supply
- dominant on the Earth, rapid water drainage
(Krawczynski et al., 2009)

• Rayleigh-Taylor instability
- if no cracks/pores (impermeable ice) → collapse of
gravitationally unstable partially molten ice

• Two-phase flow:
- if no fractures → meltwater flow through the shell
compensated by the ice flow → mechanical coupling
between the phases

∼ silicate magma generation + transport through the
Earth’s mantle
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Two-phase flow: multi-phase theory

• Single-component balances on
meso-scopic subdomains

• Transition conditions at interfaces
• Averaging over representative

meso-scale volume → continuum
description formally similar to mixture
theory

from Bercovici et al., 2001
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Binary mixture - balance laws
Traditional terms component-wise + novel (interaction) terms
• Balances of mass (for individual components)

∂(φ%f)

∂t
+ div (φ%fv f) = rf︸︷︷︸

melt rate

,

∂((1−φ)%m)

∂t
+ div ((1−φ)%mvm) = −rf ,

• Linear momenta balances (for individual components)

∂(φ%fv f)

∂t
+ div (φ%fv f ⊗ v f) = −φ∇Pf + div (φSf) + rfvS︸︷︷︸

mass-mom. transfer

+ ( PS︸︷︷︸
surf. pressure

−Pf)∇φ+ %fφg + hf︸︷︷︸
gen. drag

,

∂((1−φ)%mvm)

∂t
+ div ((1−φ)%mvm ⊗ vm) = −(1−φ)∇Pm + div ((1−φ)Sm)− rfvS

− (PS−Pm)∇φ+ %m(1−φ)g + hm ,
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Binary mixture - balance laws
• Energy balance (for the mixture as a whole)

∂

∂t

φ%f(ef+
1
2
|v f |2) + (1−φ)%m(em+

1
2
|vm|2) + φSeS︸ ︷︷ ︸

s. energy d.


+ div

(
φ%f(ef+

1
2
|v f |2)v f + (1−φ)%m(em+

1
2
|vm|2)vm + φSeSvS

)

= Q − div q + div

−φPfv f − (1−φ)Pmvm + φSfv f + (1−φ)Smvm + φSσvS︸ ︷︷ ︸
s. mech. power


+ φ%fv f · g + (1−φ)%mvm · g ,

• Entropy balance (for the mixture as a whole)

∂

∂t

φ%fηf + (1−φ)%mηm + φSηS︸ ︷︷ ︸
s. entropy d.


+ div (φ%fηfv f + (1−φ)%mηmvm + φSeSvS ) = div J + ξ
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Binary mixture - Constitutive theory - Incompressible case

• Existing theory: Bercovici, Ricard, Šrámek (Bercovici et al. (2001), Šrámek et al.
(2007))

• Independent dissipation mechanisms (Šrámek et al., 2007)

ϑζ = −q ·
∇ϑ
ϑ

heat flow

+ c(φ)|v f − vm|2 drag diss.
+ φSf : Dd (v f) + (1−φ)Sm : Dd (vm) viscous shear diss.

−
(

(Pm−Pf) + σ
dφS

dφ

)
((1− ω)(1−φ) div vm + φω div v f) compaction

+ rf

(
(µm − µf)−

%S

%f%m

(
(Pm−Pf) + σ

dφS

dφ

)
+

1− 2ω
2
|v r |2

)
melting

• Rate of entropy production in the form of product of thermodynamic fluxes and
affinities

ξ = J · A

• Linear relations proposed between Ji and Ai (i.e. no cross-effects considered)
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Binary mixture - Constitutive theory - Incompressible case

• Generalized Clausius-Clapeyron relation

(µm−µf)︸ ︷︷ ︸
chem. pot. diff.

− %S
%f%m

(
(Pm−Pf) + σ

dφS

dφ

)
︸ ︷︷ ︸

dyn. press. diff.

+
1−2ω
2
|v f−vm|2 = 0 ,

• Stress relations (viscous fluid model)

Sf = 2νfDd(v f), Sm = 2νmDd(vm)

• Fourier law

q = −κ(φ)∇ϑ

• Dynamic pressure-difference

Pm −Pf + σ
dφS

dφ︸ ︷︷ ︸
Laplace-Young

= −µ0
µf+µm

φ(1−φ) ((1−ω)(1−φ)div vm − φω div v f)︸ ︷︷ ︸
compaction rate
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Scaling → Model reduction → Stokes-"Darcy"-Fourier
• Balances of mass

∂φ

∂t
+ div (φv f) =

rf

%f
,

div ((1−φ)vm) + div (φv f) = rf

(
%m − %f
%m%f

)
,

• Linear momenta balances (Π = Pf−Pref
m )

c(φ)(v f−vm) = −φ (∇Π + (%m−%f)g)

∇Π = −φ(%m−%f)g +∇(φS(φ)σ)︸ ︷︷ ︸
surface tension

+ div
(
2(1−φ)νmDd (vm)

)︸ ︷︷ ︸
matrix visc. def.

+ ∇
(

(1−φ)

(
σ
dφS(φ)

dφ
−
µ0νm

φ
div vm

))
︸ ︷︷ ︸

dyn. pressure difference

• Energy balance

φρfcf

(
∂ϑ

∂t
+v f · ∇ϑ

)
+ (1−φ)ρmcm

(
∂ϑ

∂t
+ vm · ∇ϑ

)
− ϑ

∂

∂t

(
φS(φ)

dσ

dϑ

)
+ Lrf = Q + div

(
κ(φ)∇ϑ

)
+ c(φ)|v r|2 ,
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Reduced model - qualitative behavior of solutions

• Strong mechanical matrix-fluid coupling due to viscous deformation
of the matrix

• Wave-trains, solitary waves - experimentally observed

K. Kalousová
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Extensions: Viscous compressible case
• Assumption of incompressibility of the pure substances (%f= const., %m=

const.) may be too restrictive (planetary interiors)
• Generalization of the Ricard - Bercovici - Šrámek model
• We assume compressible fluids with only shear viscosities

Tf = −Pf(%f , ϑ)I + 2νfDd (v f)

Tm = −Pm(%m, ϑ)I + 2νmDd (vm)

• Starting point - macroscopic equilibrium Gibbs relation:

ϑdSf = dUf + P̃fdVf − µ̃fdmf

ϑdSm = dUm + P̃mdVm − µ̃mdmm

where equilibrium pressures P̃f , P̃m are identified as:

P̃f =

(
Pf + ω(Pm −Pf + σ

dφS

dφ
)

)
P̃m =

(
Pm − (1−ω)(Pm −Pf + σ

dφS

dφ
)

)
and associated chemical potentials:

µ̃f = ef−ϑηf+
P̃f

%f
µ̃m = em−ϑηm+

P̃m

%m
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Extensions: Viscous compressible case - Scaling → Model reduction

• Balances of mass

∂φ

∂t
+ div (φv f) =

rf

%f
−
φ

%f

Df%f

Dt
,

div ((1−φ)vm) + div (φv f) = rf

(
%m − %f
%m%f

)
−
φ

%f

Df%f

Dt
−

1−φ
%m

Dm%m

Dt
,

• Linear momenta balances (Π = Pf−Pref
m )

c(φ)v r = −φ (∇Π + (%m−%f)g)

∇Π = −φ(%m−%f)g +∇(φS(φ)σ) + div
(
2(1−φ)νmDd (vm)

)
+ ∇

(
(1−φ)

(
σ
dφS(φ)

dφ
−
µ0νm

φ
div vm

))
• Energy balance

φ%fcf

(
∂ϑ

∂t
+v f · ∇ϑ

)
+ (1−φ)ρmcm

(
∂ϑ

∂t
+ vm · ∇ϑ

)
− ϑ

∂

∂t

(
φS(φ)

dσ

dϑ

)
+ Lrf = Q + div

(
κ(φ)∇ϑ

)
+ c(φ)|v r|2 ,
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Extensions: Realistic ice viscosity
• Most two-phase models simplify the matrix and fluid rheologies by constant

viscosities - very non-realistic approximation for ice
• Four deformational mechanisms: diffusion creep (diff), dislocation creep (disl),

grain boundary sliding (gbs) and basal slip (bs), depending on: temperature,
grain size d , pressure P, and the second stress invariant σII

Sα = 2ναDd α

να =
1
2

dmα

Aασnα−1
II

exp
(
Eα∗ + PVα∗

Rϑ

)
,

• Combined rheology (IMPLICIT
S-Dd relation):

Dd = Dddiff + Dddisl + Ddaux

S = (Abs)
− 1

nbs d
m
bs

nbs (Dd aux
II )

1−n
bs

nbs Dd aux

+ (Agbs)
− 1

ngbs d
m
gbs

ngbs (Dd aux
II )

1−n
gbs

ngbs Dd aux

• Porosity weakening (lubrication)

ν(φ)
.

= νpure exp(−45φ)

• Plastic-like stress-limiter
1
ν̃

=
1
ν

+
2‖D‖
σYield
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Numerical implementation

K. Kalousová (Ph.D.)

• Fortran90 (1d)

- Allows zero compaction length regime - shocks
- space: FV+ENO & FEM
- time: RK schemes
- tests: shock velocity (Rankine-Hugoniot condition), wavetrain
propagation (Spiegelman, 1993), phase velocity (Rabinowicz et
al., 2002)

• FEniCS (http://fenicsproject.org) (1d, 2d)

- space: FEM (CG Taylor-Hood), SUPG stabilization
- time: Crank-Nicolson (semi-implicit, 2nd order) +
predictor-corrector Stokes-Darcy – Heat eq.

- tests: comparison with 1d Fortran90, convection benchmark
(Blankenbach et al., 1989)
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Numerical experiments - Sensitivity study (1d)
• Parametric study (spatial 1D) of rheology-related effects never studied in

the given two-phase flow context (S. et al., 2014)
• Effects of ice deformation mechanisms, temperature, porosity-weakening

effects
• Possibility by a parametrization by constant ice viscosity?
• Moderate or small effects on global scale (effective permeability of the

whole ice layer)
• Possibly very large effects at local scale
• Example (composite rheology effects):

K. Kalousová
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Numerical experiments: 2D temperate case

• %f , %m constant
• νf , νm constant
• Flow localization, channeling

K. Kalousová K. Kalousová
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Europa: Ice melting and water transport in the ice shell (1d)

Kalousová et al., 2014:

• hot plume model

- tidal heating (Tobie et al., 2003):
Ht=

2Hmax
t

µm/µmax
m +µmax

m /µm

- convective cooling:
Qt=Ht−Hcool=xHt

• strike-slip fault model

- tidal heating, no convection (x=1):
Qt=Ht=

2Hmax
t

µm/µmax
m +µmax

m /µm

- shear heating:
Qs(z)=Hs exp(−γsφ) z≥zs
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Europa: Ice melting and water transport in the ice shell (1d)
Kalousová et al., 2014:

• Hot plume model

- accumulation of liquid water not
possible within hot plumes

• Strike-slip fault model

- accumulation of liquid water possible
at strike-slip faults
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Europa: Ice melting and water transport in the ice shell (2d)
• Impermeable case (vf=vm), Thermal convection + melting +

compaction
• Hot plume model

Hmax
t =3×10−6 W m−3, d=0.7 mm

K. Kalousová
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Ice melting and water transport in Europa’s ice shell (2d)
• Impermeable case (vf=vm), Thermal convection + melting +

compaction
• Strike-slip fault model

Hmax=5×10−6 W m−3, Hs=2×10−4 W m−3, d=0.7 mm,
γm=γs=45

K. Kalousová
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Europa: Summary

• Hot plumes:
- Melting possible for Hmax

t &3×10−6 W m−3 and d∼0.5–1 mm

- Meltwater quickly (. few 100 of kyr) transported downwards

→ Accumulation of liquid water at shallow depths unlikely

• Strike-slip faults:
- Melting possible ∼3 km below surface for Hs&2×10−4 W m−3

- Reservoir of φ∼10% stable for at least 1000 kyr

→ Liquid water below strike-slip faults possibly stable for several
100 of kyr if the ice below is free of fractures & sufficiently cold



Motivation: Europa Two-phase model + extensions Numerical simulations Conclusions & Perspectives

Search for liquid water at Europa
What would be the best candidates to search for liquid
water on Europa with a radar instrument?
• recently active strike-slip faults
• late stage of fracturing + reactivation of many lineaments as

strike-slip faults: Agenor Linea is a good candidate for recent or even
current activity (Prockter et al., 2000; Hoyer et al., 2014)
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Perspectives

• Further model development
- Liquid water transport by micropores through temperate parts
of the shell → two-phase thermal convection

- Brittle rheology (visco-plastic)
- Grain-size evolution
- Free surface evolution
- Salinity evolution and effect of salt on TM and buoyancy →
two-phase thermo-chemical convection

- Study of water transport by hydrofracturing + its
implementation if significant

- Improvement of the tidal heating models - (3d) viscoelastic
model diurnal response model for plume/strike slip domain

• Possible applications
- Enceladus - possibility to form regional ocean; shallow melting
potentially connected with erupting jets

- Ganymede, Titan - adaptation of developed formalism for deep
layers of HP ices → chemical transport between rocky interior
and internal ocean
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Thank you for your attention!
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