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Abstract

We present in parallel an abstract method of Γ-convergence of gradient
flows, designed to pass to the limit in PDEs which are steepest-descent for
functionals which have an asymptotic Γ-limit energy; together with the
application to the Ginzburg-Landau energy. We give schematic proofs of
the Γ-convergence results for Ginzburg-Landau and of the derivation of
the dynamical law of vortices through the abstract method.

I Introduction

I.1 Presentation of the Ginzburg-Landau model

The Ginzburg-Landau energy was introduced by Ginzburg and Landau in the
50s as a model for superconductivity. It was first a phenomenological theory,
but it was later derived (in a certain limit) from the microscopic (quantic)
theory of Bardeen-Cooper-Schrieffer. It is now a widely accepted model, which
has earned its inventors the Physics Nobel Prize (to Ginzburg, Abrikosov, and
in 2003 Ginzburg). Another motivation is the modelling of superfluidity (a
phenomenon very close to superfluidity, both mathematically and physically,
with a joint Nobel Prize for Legett in 2003) and of Bose-Einstein condensates
in rotation (Bose-Enstein condensates were predicted by Bose and Einstein in
the early 20th century, and only first realized experimentally in the 90’s (it was
worth another Nobel Prize...). All these physical phenomena have in common
the appearance of topological vortices, which are the main object of our study.

Superconductors have this striking feature that “they repel an applied mag-
netic field” (this is called the Meissner effect). This is true at least when the
intensity of the applied field hex is not too large; when it becomes larger than
a first critical field Hc1 , then the first vortices appear and the magnetic field
penetrates through them; when the applied field is further raised, there are more
and more vortices, until superconductivity is totally destroyed and the magnetic
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field completely penetrates the sample. For further reference, we refer to the
physics literature, e.g. [24, 7].

The samples are 3D, however, we will consider only the 2D model for sim-
plicity (it already contains most of the important features). The 2D Ginzurg-
Landau energy in non-dimensional form is

Gε(u,A) =
1
2

∫
Ω

|∇Au|2 + |curl A− hex|2 +
1

2ε2

(
1− |u|2

)2
. (1)

Here Ω denotes a smooth bounded and simply connected domain corresponding
to the cross-section of the sample (assuming everything is translation-invariant
in the third direction). The function u : Ω → C is called the order parameter,
|u(x)|2 ≤ 1 indicates the local (normalized) density of superconducting electrons
(the “Cooper pairs”). Where |u(x)| ∼ 1 it is the superconducting phase, where
|u(x)| ∼ 0, it is the normal phase. This order parameter is coupled, in a gauge-
invariant fashion, to a magnetic potential A : Ω → R2 , and the function
h = curlA = ∂2A1−∂1A2 is the induced magnetic field in the sample. The real
parameter hex is the intensity of the external applied magnetic field.

The parameter 1/ε is called the Ginzburg-Landau parameter, it is a di-
mensionless parameter depending on the material (ratio of two characteristic
lengthes). When 1/ε is large enough, we are in the category of “type-II” su-
perconductors, when ε → 0, they are sometimes called “extreme type-II” (or
this is also called the “London limit”). This is the asymptotic regime we will
be interested in.

I.1.1 Vortices

Vortices are objects centered at zeros of the order parameter u which carry a
nonzero topological degree. Typically, around a vortex centered at a point x0,
u “looks like” u = ρeiϕ with ρ(x0) = 0 and ρ = f( |x−x0|

ε ) where f(0) = 0 and f
tends to 1 as r → +∞, i.e. its characteristic core size is ε, and

1
2π

∫
∂ϕ

∂τ
= d ∈ Z

is an integer, called the degree of the vortex. For example ϕ = dθ where θ is the
polar angle centered at x0 yields a vortex of degree d. We have the important
relation

curl∇ϕ = 2π
∑
i

diδai

where the ai’s are the centers of the vortices and the di their degrees.

I.1.2 Simplified model (no magnetic coupling)

A simplified model consists in taking A = 0 and hex = 0, then the energy
reduces to

Eε(u) =
1
2

∫
Ω

|∇u|2 +
(1− |u|2)2

2ε2
(2)
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with still u : Ω→ C. Critical points of this energy are solutions of

−∆u =
u

ε2
(1− |u|2). (3)

The first main study of this functional was done by Bethuel-Brezis-Hélein in the
book [2]. Since then, a large literature on it has developed. In these notes, for
simplicity, we will focus only on this energy (2), however all our results can be
extended to the case of (1).

For more reference on (1), and results on its minimizers, their vortices, crit-
ical fields, etc, we refer to the monograph [20] and the references therein. In
what follows we will often be a little imprecise in the statements for the sake of
simplicity, however exact and rigorous corresponding statements can easily be
found in the references.

I.2 Gamma-convergence

Let us now present the totally independent concept of Γ-convergence. It was in-
troduced by DeGiorgi in the 70s, it served to unify various notions of variational
convergence.

The idea is dimension-reduction: when there is a small parameter ε → 0,
reduce the minimization of some original functionals Eε to that of a limiting
energy F , defined on a lower-dimensional space.

A celebrated example of Γ-convergence was the case of the energy of the
“gradient theory of phase-transitions” studied in the 80’s by Modica and Mortola
(see also Sternberg):

Mε(u) = ε

∫
Ω

|∇u|2 +
1
ε

∫
Ω

(1− u2)2 u : Ω→ R (4)

that is the same as (2) but for real-valued functions. It was established that if for
a family uε, Mε(uε) ≤ C, then, up to extraction of a subsequence, uε → u0 in
BV (Ω) (the space of functions of bounded variation), with u0 valued in {1,−1}
and

Mε
Γ−→ 8

3
per γ =

8
3

per (∂{u0 = 1}) =
4
3

∫
|Du0| =

4
3
‖u0‖BV

where γ (typically a codimension 1 object), is the interface between {u0 = 1}
and {u0 = −1}.

A trick that was used was to write a2 + b2 ≥ 2ab (with equality if a = b)
hence

ε

∫
Ω

|∇uε|2 +
1
ε

∫
Ω

(1− u2
ε)

2 ≥ 2
∫
|∇uε||1− u2

ε| ≥ 2
∫

Ω

∣∣∣∣∇(uε − u3
ε

3

)∣∣∣∣
and thus passing to the limit,

lim
ε→0

Mε(uε) ≥
8
3

per γ.
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Conversely, given an interface γ (a curve if Ω ⊂ R2), one can construct uε
such that Mε(uε) → 8

3per(γ). This necessitates to paste transversally to γ the
optimal profile such that a = b above i.e.

√
ε|∇u| = 1√

ε

∣∣1− u2
∣∣, that is

uε(x1, x2) ' tanh
(x1

ε

)
where x1 is the coordinate in the direction normal to γ.

Definition 1 (Γ-convergence) A family of functionals Eε (defined on Mε)
Γ-converges to a functional F (defined on N ) if

1. If Eε(uε) ≤ C then up to extraction of a subsequence, uε
S
⇀ u ∈ N , and

for every uε
S
⇀ u ∈ N we have

lim
ε→0

Eε(uε) ≥ F (u)

2. For every u ∈ N , there exists uε ∈Mε
S
⇀ u ∈ N such that

lim
ε→0

Eε(uε) ≤ F (u)

The sense of convergence S is to be specified beforehand. It can be a weak or
strong convergence of uε, it can also be a convergence of a nonlinear function
of uε.

In the case of the functional Mε, one should take uε
S
⇀ γ ⇐⇒ uε → u0

in L1(Ω) with Du0 = 4
3H

n−1bγ where γ denotes a codimension one rectifiable
current, and H the Hausdorff measure.

Γ-convergence thus requires two conditions: a lower bound, usually obtained
via abstract arguments (together with a compactness result), and an upper
bound, usually obtained via explicit constructions.

Proposition 1 If Eε Γ-converges to F and uε minimizes Eε with Eε(uε) ≤ C,
then, up to extraction uε

S
⇀ u and u minimizes F .

By 1) of the definition, after extraction, uε
S
⇀ u and limε→0Eε(uε) ≥ F (u).

Let us assume that there exists u0 ∈ N such that F (u0) < F (u), then by 2)
of the definition, there exists vε such that limε→0Eε(vε) ≤ F (u0) < F (u) ≤
limε→0Eε(uε). Thus for ε small enough, we find Eε(vε) < Eε(uε) contradicting
the minimality of uε. Hence u must minimize F .

In other words “minimizers converge to minimizers”. Minimizing Mε defined
over H1(Ω,R) for example reduces to minimizing F (γ) = per(γ) defined over
finite-perimeter sets. It thus achieves a dimension-reduction (since the set of
finite-perimeter objects has, somewhat, a lower dimension than H1(Ω,R)). In
general, not much more can be said. For example uε local minimizer of Eε does
not imply uε

S
⇀ u local minimizer; or uε critical point of Eε does not imply

uε
S
⇀ u critical point of F . It is easy to construct finite-dimensional counter-

examples.
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I.3 Γ-convergence of Ginzburg-Landau

I.3.1 Energy lower bound

To obtain a lower bound (and thus a Γ-convergence result) for the Ginzburg-
Landau functional (2) is more difficult than for Mε (the a2 + b2 ≥ 2ab trick
doesn’t work).

Let us present (formally) some essential ingredients of the analysis of [2].
What is the cost of a radial vortex of degree d of the form f

(
r
ε

)
ei dθ? First,

formally

1
2

∫
BR

|∇u|2 ≥ 1
2

∫
R≥|x|≥ε

|f |2 d
2

r2
r dr dθ = πd2

∫ R

ε

dr

r
= πd2 log

R

ε
(5)

where we have assumed that f is close to 1 for |x| ≥ ε. In fact this bound is
optimal, at least in the case d = ±1 as can be seen: if u ∈ S1, u = eiϕ, and
|∇u| = |∇ϕ|, so

1
2

∫
R≥|x|≥ε

|∇u|2 ≥ 1
2

∫ R

ε

(∫
∂Br

∣∣∣∣∂ϕ∂τ
∣∣∣∣2
)
dr

≥ 1
2

∫ R

ε

((∫
∂ Br

∂ϕ

∂τ

)2 1
2πr

)
dr (by Cauchy-Schwarz)

≥ 1
2

4π2

2π

∫ R

ε

dr

r
= π log

R

ε

valid for any degree ±1 vortex (not necessarily radial). Vortices of degree > 1
cost more energy than several vortices of degree 1 and are in fact unstable. The
cost of f

(
r
ε

)
imposes the lengthscale ε, and costs only O(1), which is negligible

compared to log 1
ε .

If uε has vortices at points aε1, · · · , aεn, of degrees d1, · · · , dn, one expects
that

Eε(uε) ≥ π

(∑
i

|di|

)
log

1
ε
.

In fact, this estimate has been made rigorous under certain conditions in [2],
and more generally with the “ball construction method” of Sandier/Jerrard (see
[17, 11, 20]).

How to trace the vortices? The easiest way is to use the current 〈iu,∇u〉
(or the “superconducting current” 〈iu,∇Au〉 for the case with magnetic field)
where 〈., .〉 denotes the scalar product in C as identified with R2, i.e. 〈iu,∇u〉 =
(u× ∂1u, u× ∂2u) with × the vector product in R2. Writing u = ρeiϕ we have
(at least formally)

〈iu,∇u〉 = ρ2∇φ

6



and since ρ is close to 1 on lengthscales ε, the quantity

curl 〈iu,∇u〉 = curl (ρ2∇ϕ) ' curl∇ϕ = 2π
∑
i

diδai (6)

can be used to trace the vortices.
This is also called the Jacobian determinant if written (with differential

forms) Ju = 1
2d〈iu, du〉 = 1

2 〈idu, du〉 = ux1×ux2 . The approximation is justified
as a limit as ε→ 0:

Theorem 1 (see [13, 20]) Assume Eε(u) ≤ C| log ε|, then there exists a fam-
ily of disjoint closed balls Bi = B(ai, ri) with |log ε|−2 ≤

∑
ri ≤ o(1) as ε→ 0,

such that{
|u| ≤ 1

2

}
⊂ ∪iBi (the Bi’s cover the zeroes of uε)

1
2

∫
∪iBi
|∇uε|2 ≥ π

∑
i

|di|
(

log
∑
i ri

ε
∑
i |di|

− C
)

di = deg (u, ∂Bi) (7)

‖curl 〈iuε,∇uε〉 − 2π
∑
i

di δai‖(C0,γ
0 (Ω))∗ ≤ o(1) as ε→ 0 (8)

Combining the upper bound Eε(u) ≤ C|log ε| and the lower bound (7), we
deduce that

∑
i |di| ≤ C for a constant C independent of ε and thus the number

of vortices of nonzero degree remains bounded independently of ε. Thus, if
uε is a family of such configurations, once the aεi ’s are found, we may extract
a subsequence such that

∑
i diδaεi →

∑
i diδai in the weak sense of measures.

These fixed points a1, · · · , an are the limiting vortices. We will sometimes write
u = (ai, di) for the limiting points+degrees configurations in (Ω× Z)n.

Then the Γ-convergence result can simply be written

Theorem 2 1) Assume uε is such that Eε(uε)
|log ε| ≤ C, then up to extraction

uε
s
⇀ u = (ai, di) in the sense curl 〈iuε,∇uε〉⇀ 2π

n∑
i=1

di δai = 2J

and

lim
ε→0

Eε(uε)
|log ε|

≥ π
n∑
i=1

|di| = ‖J‖

2) Conversely given any (ai, di) ∈ (Ω×Z)n, there exists uε such that limε→0
Eε(uε)
|log ε| ≤

π
∑n
i=1 |di| = ‖J‖.

This result is not very interesting since it reduces minimizing Eε to minimizing
the number of points!... It is mostly interesting in higher dimensions. Then, in
3D for example, vortices are not points but vortex-lines, and the Jacobian Juε =
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1
2d(iuε, duε) can be seen as a current carried by the vortex-line, converging to
a π times integer-multiplicity dimension 1 rectifiable current (i.e. line) J and

Eε
|log ε|

Γ−→ ‖J‖ = length of line (or surface...)

is the lower bound of Γ-convergence (see [13] and Section ??). Thus, Γ-convergence
reduces to minimizing the length of the line, leading to straight lines, a nontriv-
ial problem. In higher dimensions, it leads to codimension 2 minimal currents
similarly to Mε (see [16, 3]).

In fact, in order for the problem to become interesting in 2D, we need to
impose some boundary conditions, for example uε = g ∂Ω with deg g 6= 0 so
that there have to be vortices, and to look at the next order of the energy in
the expansion. This rather arbitrary boundary requirement is in contrast with
the case of the full functional (1), for which the natural boundary condition is
Neumann, and vortices appear due to the applied magnetic field.

I.3.2 Renormalized energy

Let us return to lower bounds in order to look for the next order term in the
energy (still with formal arguments). Cutting out holes ∪iB(ai, ρ) of fixed size ρ
around the limiting vortices ai, we may assume that |u| ∼ 1 in Ω\ ∪iB(ai, ρ) =
Ωρ, and that u = eiϕ, with ϕ a real-valued function, not single-valued though
(i.e. only defined modulo 2π). Minimizing the energy outside of the holes
amounts to solving

min
u:Ωρ→S1

u=g on ∂Ω
deg(u,∂B(ai,ρ))=di

1
2

∫
Ωρ

|∇u|2.

This is a harmonic map problem, whose solution is given in terms of ϕ by
∆ϕ = 0 in Ωρ
∂ϕ
∂τ given on ∂Ω∫
∂B(ai,ρ)

∂ϕ
∂τ = 2πdi.

and in terms of the harmonic conjuguate Φ such that ∇ϕ = ∇⊥Φ, by

∆Φ = 0 in Ωρ
∂Φ
∂n

given on ∂Ω or φ = 0 on ∂Ω for Neumann b.c.∫
∂B(ai,ρ)

∂Φ
∂n

= 2πdi.

As ρ→ 0, Φ behaves like the solution of{
∆Φ0 = 2π

∑
i diδai Ω

∂Φ0

∂n
given or Φ0 = 0 on ∂Ω for Neumann b.c.
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Introducing the Green’s kernel associated to Ω (with the right boundary
condition), which has a log |x−y| type singularity, and its regular part S(x, y) =
2πG(x, y)− log |x− y|, we have

Φ0(x) = 2π
∑
j

djG(x, aj).

With this relation,
∫

Ω
|∇Φ0|2 is infinite but would write formally like∫

Ω

|∇Φ0|2 = −2π
∑
i

diΦ0(ai) = −4π2
∑
i,j

didjG(ai, aj).

Now we wish to estimate 1
2

∫
Ωρ
|∇ϕ|2 = 1

2

∫
Ωρ
|∇Φ|2 and it is approximately

equal to

1
2

∫
Ωρ

|∇Φ0|2 ' π
∑
i

d2
i log

1
ρ

+Wd(a1, · · · , an) + o(1) as ρ→ 0 (9)

where

Wd(a1, · · · , an) = −π
∑
i 6=j

didj log |ai − aj | − π
∑
i,j

S(ai, aj). (10)

The function W was called the renormalized energy in [2]. It contains the
(logarithmic) interaction energy between the vortices: we see that vortices with
degrees of same sign repel each other while vortices with degrees of opposite
signs attract. The d2 log 1

ρ term corresponds to the self-interaction, or cost of
the vortex of core of size ρ, it is what replaces the infinite term in the formal
calculation.

Now (9) is a good estimate for the optimal energy outside of the holes,
while the energy in holes of size ρ was estimated through (5). Combining these
estimates, we are led to the major result of [2]:

Theorem 3 ([2]) Assume Eε(uε) ≤ C|log ε| and uε = g on ∂Ω, with deg
g 6= 0. Then, up to extraction,

curl 〈iuε,∇uε〉⇀ 2π
n∑
i=1

diδai di ∈ Z

and

Eε(uε) ≥ π
n∑
i=1

|di| log
1
ε

+Wd(a1, . . . , an) + o(1) as ε→ 0

So for a given degree d > 0 on the boundary, in order to minimize the energy,
one needs to choose d vortices of degree +1, and then to minimize the remaining
interaction term W which is independent of ε and governs the locations of the
limiting vortices.

From now on, we will reduce to the case di = ±1 and will use
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Theorem 4 1. Assume Eε(uε) ≤ C|log ε| and uε = g on ∂Ω or ∂uε
∂n = 0 on

∂Ω, then, up to extraction,

curl 〈iuε,∇uε〉⇀ 2π
n∑
i=1

diδai

and if ∀i, di = ±1,

lim
ε→0

Eε(uε)− πn|log ε| ≥Wd(a1, · · · , an).

2. For all (ai, di), di = ±1, there exists uε such that

lim
ε→0

Eε(uε)− πn|log ε| ≤Wd(a1, · · · , an).

Phrased this way, it is a result of Γ-convergence of Eε − πn|log ε|, and the Γ-
limit, Wd is nontrivial. We thus reduce minimizing Eε to minimizing Wd which
is a finite-dimensional problem (interaction of point charges). Thus we see why
it is interesting to study this asymptotic limit ε → 0 because the vortices be-
come point-like and the problem reduces to a finite-dimensional one.

II The abstract result for Γ-convergence of gradient-
flows

II.1 The abstract situation

Let Eε be again a family of functionals defined on Mε (see [19] for an idea
of what kind of space Mε should be...) and F be a functional defined on N
such that Eε Γ-converges to F for the sense of convergence S (in the sense of
Definition 1). If we consider a solution of the gradient-flow (or steepest descent)
of Eε on Mε i.e.

∂tuε = −∇Eε(uε),

does uε(t)
S
⇀ u(t) for some u(t) and more importantly, does u(t) satisfy ∂tu =

−∇F (u)? An example with a positive answer is that of the functional Mε whose
L2 gradient-flow is the Allen-Cahn equation

∂tu = ∆u+
u

ε2
(1− |u|2) (11)

We saw that Mε
Γ→ F = 8

3per (γ). In fact it is true that solutions of the Allen-
Cahn equation converge to interfaces which evolve according to the gradient
flow of that perimeter functional F , which is mean-curvature flow. This result
is a delicate one, which has been proved with PDE methods (see [8, 6, 9, 10]).

Let us point out that the answer is in general negative without further as-
sumptions. Indeed, a necessary condition is that critical points of Eε should
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converge to critical points of F , but we already mentioned that when Eε Γ-
converges to F , this is not necessarily true.

We are searching for
- an abstract result
- an energy-based method
- new extra conditions for convergence to occur.
Observe that these have to involve the C1 (or tangent) structure of the energy
landscape, i.e. be conditions on the derivatives of the energy and not only of
the energies themselves (otherwise it is easy to perturb the energy by a small
perturbation in C0 which adds new critical points which do not converge to
critical points).

We have been sloppy until now, by writing ∂tuε = −∇Eε(uε) and calling
this the gradient-flow of Eε. Since we are in infinite dimensions (in general),
we need to specify what we mean by gradient, i.e. gradient with respect to
which structure. There are many possible choices, each leading to a different
gradient-flow. For example, the Allen-Cahn equation (11) above is the gradient
flow for Mε for the L2 structure. We could consider other structures, such
as the gradient-flow with respect to the H−1 structure, it is then a totally
different dynamics, called the Cahn-Hilliard equation. So, when looking for a
result of convergence, we need to specify what the structure for the limiting
flow should be (recall that the limiting flow is not taken in the same space,
uε ∈ Mε

S
⇀ u ∈ N 6= Mε.) Another element that should come into play is

possible time-rescalings as we pass to the limit ε→ 0.

II.2 The result

For simplicity we will reduce to the following case: Eε is family of C1 functionals
defined over M, an open subset of a Banach space B continuously embedded
into a Hilbert space Xε (or of an affine space associated to a Banach). We
assume Eε

Γ−→ F , with F a C1 functional defined over N , open set of a finite-
dimensional vector space B′ embedded into a finite-dimensional Hilbert space
Y .

Definition 2 Eε Γ-converges along the trajectory uε(t) (t ∈ [0, T )) in the sense
S to F if there exists u(t) ∈ N and a subsequence (still denoted uε) such that
∀t ∈ [0, T ), uε(t)

S
⇀ u(t) and

∀t ∈ [0, T ) lim
ε→0

Eε(uε(t)) ≥ F (u(t)).

Definition 3 If dEε(u), differential of Eε at u, is linear continuous on Xε, it
is uniquely represented by a vector in Xε, denote it by ∇XεEε(u) (gradient for
the structure Xε), characterized by

∀φ ∈ Xε
d

dt |t=0
Eε(u+ tφ) = dEε(u) · φ = 〈∇XεEε(u), φ〉Xε .

If this gradient does not exist, we use the convention ‖∇XεEε(u)‖Xε = +∞
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For example, for the dynamics of Ginzburg-Landau, we wish to study the
equation

∂tu

|log ε|
= ∆u+

u

ε2
(1− |u|2). (12)

Let us see how to fit into the previous framework. Eε is defined on H1(Ω,C),
we take B = H1(Ω,C) ⊂ L2(Ω) and we define the Xε structure by

‖ · ‖2Xε =
1

|log ε|

∫
Ω

| · |2 =
1

|log ε|
‖ · ‖2L2(Ω),

i.e. a rescaled version of L2. Then B embeds continuously into Xε, and the
gradient for the structure Xε is

∇XεEε(u) = −|log ε|
(

∆u+
u

ε2
(1− |u|2)

)
.

Indeed

dEε(u) · φ =
∫

Ω

φ
(
−∆u− u

ε2
(1− |u|2)

)
=

1
|log ε|

∫
Ω

φ
(
−| log ε|

(
∆u+

u

ε2
(1− |u|2)

))
= 〈φ,∇XεEε(u)〉Xε .

Then the PDE (12) is indeed exactly ∂tu = −∇XεEε(u) i.e. the gradient-
flow for the structure Xε.

Recall that if a solution of

∂tuε = −∇XεEε(uε), (13)

is smooth enough, we have

〈∂tuε, ∂tuε〉Xε = −〈∇XεEε(uε), ∂tuε〉Xε
= −∂tEε(uε(t))∫ T

0

‖∂tuε‖2Xε dt = Eε (uε(0))− Eε(uε(T )).

Definition 4 A solution of the gradient-flow for Eε with respect to the structure
Xε on [0, T ) is a map uε ∈ H1([0, T ), Xε) such that

∂tuε = −∇XεEε(uε) ∈ Xε for a.e. t ∈ [0, T ).

Such a solution is conservative if ∀t ∈ [0, T )

Eε(uε(0))− Eε(uε(t)) =
∫ t

0

‖∂tuε(s)‖2Xε ds

(this is true if uε is smooth enough). If uε is such a family of solutions on [0, T )
and Eε Γ-converges to F along uε(t) (in the sense of Definition 2), we define
the energy-excess D(t) by Dε(t) = Eε(uε(t))− F (u(t)) ≥ o(1) and

D(t) = lim
ε→0

Dε(t) ≥ 0.

12



A family of solutions of the gradient flow is said to be well-prepared initially if
D(0) = 0.

Recall that F is always a lower bound for Eε. Also, it is always possible to
have well-prepared initial data from assertion 2) (the construction part) of the
Γ-convergence definition, Definition 1.

We define similarly the gradient-flow for F for the structure Y . We can now
state the abstract result.

Theorem 5 ([19]) Let Eε and F be C1 functionals overM and N respectively,
Eε

Γ−→ F , and let uε be a family of conservative solutions of the flow of Eε

∂tuε = −∇XεEε(uε) on [0, T ) (14)

with uε(0) S
⇀ u0, along which Eε Γ-converges to F in the sense of Definition 2.

Assume moreover that 1) and either 2) or 2’) below are satisfied:

1) (lower bound) For a subsequence such that uε(t)
S
⇀ u(t), we have u ∈

H1((0, T ), Y ) and ∀s ∈ [0, T )

lim
ε→0

∫ s

0

‖∂tuε‖2Xε(t) dt ≥
∫ s

0

‖∂tu‖2Y (t) dt. (15)

2) For any t ∈ [0, T )

lim
ε→0
‖∇XεEε(uε(t)‖2Xε ≥ ‖∇Y F (u(t))‖2Y . (16)

2 ′) (construction) If uε
S
⇀ u, for any V ∈ Y , any v defined in a neighborhood

of 0 satisfying {
v(0) = u
∂tv(0) = V

there exists vε(t) such that vε(0) = uε

lim
ε→0
‖∂tvε(0)‖2Xε ≤ ‖∂tv(0)‖2Y = ‖V ‖2Y

lim
ε→0
− d

dt |t=0
Eε(vε) ≥ −

d

dt |t=0
F (v) = −〈∇Y F (u), V 〉Y

Then if D(0) = 0 (i.e. the solution is well-prepared initially) we have D(t) =
0 ∀t ∈ [0, T ), all inequalities above are equalities and ∀t ∈ [0, T ), uε(t)

S
⇀ u(t)

where {
∂tu = −∇Y F (u)
u(0) = u0

i.e. u is a solution of the gradient flow for F for the structure Y .

13



II.3 Interpretation

This theorem means that under conditions 1) and 2), or 1) and 2’) (since 2’)
implies 2)), solutions of the gradient flow of Eε for the structure Xε converge
to solutions of limiting gradient-flow (for the structure Y ) if well-prepared. Let
us make a few additional comments:

1. The limiting structure Y is somehow embedded in the conditions 1) and
2). The time rescalings are embedded in Xε.

2. In general we expect 1) and 2) to be satisfied for any uε
S
⇀ u or uε(t)

S
⇀

u(t) not necessarily solutions (here we required it only for solutions)

3. 1) and 2) do provide the extra C1 order conditions on Γ-convergence. 2)
in particular implies that critical points converge to critical points.

4. The difficulty is not in proving this theorem but in proving that in specific
cases the conditions hold.

II.4 Idea of the proof

Let us see how 1) and 2) imply the result. We assume

∂tuε = −∇XεEε(uε)

limε→0

∫ s

0

‖∂tuε‖2Xε dt ≥
∫ s

0

‖∂tu‖2Y
limε→0 ‖∇XεEε(uε)‖2Xε ≥ ‖∇Y F (u)‖2Y

uε(0) S
⇀ u0, limEε(uε(0)) = F (u0)

Then, for all t < T we may write

Eε(uε(0))− Eε(uε(t)) = −
∫ t

0

〈∇XεEε(uε(s)), ∂tuε(s)〉Xε ds

=
1
2

∫ t

0

‖∇XεEε(uε)‖2Xε + ‖∂tuε‖2Xε ds

≥ 1
2

∫ t

0

‖∇Y F (u)‖2Y |‖∂tu‖2Y ds− o(1)

≥
∫ t

0

−〈∇Y F (u(s)), ∂tu(s)〉Y ds− o(1) (17)

= F (u(0))− F (u(t))− o(1)

hence
F (u(0))− F (u(t)) ≤ Eε(uε(0))− Eε(uε(t)) + o(1)

But by well-preparedness Eε(uε(0)) = F (u(0)) + o(1) thus

Eε(uε(t)) ≤ F (u(t)) + o(1).

14



But, Eε
Γ−→ F implies limε→0Eε(uε(t)) ≥ F (u(t)) therefore we must have

equality everywhere and in particular equality in (17), that is

1
2

∫ t

0

‖∇Y F (u)‖2Y + ‖∂tu‖2Y ds =
∫ t

0

〈−∇Y F (u(s)), ∂tu(s)〉Y

or ∫ t

0

‖∇Y F (u) + ∂tu‖2Y ds = 0.

Hence, we conclude that ∂tu = −∇Y F (u), ∀t.
The idea is thus to show that the energy decreases at least of the amount ex-

pected (i.e. the amount of decrease of F ), on the other hand it cannot decrease
more because of the Γ-convergence, hence it decreases exactly of the amount
expected, all along the trajectory.

Proof of 2’) =⇒ 2) (2’) is a constructive proof of 2)). Observe that here uε
does not depend on time.

For every V ∈ Y we may pick v(t) such that{
v(0) = u
∂tv(0) = V

i.e. pick a tangent curve to V at u. We assume there exists (we can construct)
vε(t) such that

vε(0) = uε

limε→0 ‖∂tvε(0)‖2Xε ≤ ‖V ‖
2
Y

limε→0− d
dt |t=0

Eε(vε) ≥ − d
dt |t=0

F (v) = −〈∇Y F (u), V 〉Y

that is a curve vε(t) along which the energy decreases of at least the desired
amount. Then, choosing V = −∇Y F (u), we have

〈−∇XεEε(uε), ∂tvε〉Xε = − d

dt |t=0
Eε(vε) ≥ −〈∇Y F (u), V 〉Y = ‖∇Y F (u)‖2Y

thus

‖∇Y F (u)‖2Y ≤ 〈−∇XεEε(uε), ∂tvε(0))〉Xε
≤ ‖∇XεEε(uε)‖Xε‖∂tvε(0)‖Xε
≤ ‖∇XεEε(uε)‖Xε(‖V ‖Y + o(1))

Recalling that V = −∇Y F (u), we conclude that

‖∇XεEε(uε)‖Xε ≥ ‖∇Y F (u)‖Y + o(1).

The idea was to rely on the fact that steepest descent is characterized as
the evolution which maximizes the energy-decrease for a given ‖∂tuε‖2. We

15



compare it to a test-evolution obtained by “pushing” uε in the direction V (and
in fact choose the steepest descent direction V = −∇F (u)), i.e. find a curve
v(t) and “lift it” to a curve vε that pushes uε in direction −∇Y F (u) with a
decrease of energy of at least the expected one, and a cost ‖∂tvε‖2 which is at
most the expected one. We can in fact achieve this in such a way that ∂tuε(0)
depends linearly on V . In “pedantic” terms, we show that there exists a linear
embedding

Iε : TuN −→ TuεM
V 7→ ∂tvε(0)

which is an “almost-isometry” in the sense :

lim
ε→0
‖Iε(V )‖Xε = ‖V ‖Y and lim

ε→0
I∗ε∇XεEε(uε) = ∇Y F (u).

II.5 Application to Ginzburg-Landau

In order to retrieve the dynamical law for vortices, we need to prove that con-
ditions 1) and 2’) of Theorem 5 can be proved for Ginzburg-Landau. As seen
in Theorem 4, we need to consider the energies

Fε(u) = Eε(u)− πn|log ε| = 1
2

∫
|∇u|2 +

1
2ε2

(1− |u|2)2 − πn| log ε| (18)

and F = W (the renormalized energy) so that Fε
Γ−→ F . The structures we

need are

‖ · ‖2Xε =
1

| log ε|
‖ · ‖2L2(Ω)

N = Ωn\diagonals (19)

‖ · ‖2Y =
1
π
‖ · ‖2(R2)n (20)

and a prescribed number of vortices of a priori fixed degrees ±1. Applying Theo-
rem 5, we retrieve the dynamical law (first established by Lin and Jerrard-Soner)
that the vortices flow according to a rescaled gradient-flow of the renormalized
energy:

Theorem 6 ([15, 12, 19]) Let uε be a family of solutions of

∂tu

|log ε|
= ∆u+

u

ε2
(1− |u|2)

with either ∣∣∣∣ uε = g on ∂Ω
∂uε
∂n = 0 on ∂Ω

such that

curl 〈iuε,∇uε〉(0) ⇀ 2π
n∑
i=1

diδa0
i

as ε→ 0
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with a0
i distinct points in Ω, di = ±1, and

Eε(uε)(0)− πn|log ε| ≤Wd(a0
i ) + o(1). (21)

Then there exists T ∗ > 0 such that ∀t ∈ [0, T ∗),

curl 〈iu,∇u〉(t) ⇀ 2π
n∑
i=1

diδai(t)

as ε→ 0, with 
dai
dt

= − 1
π
∇iWd(a1(t), · · · , an(t))

ai(0) = a0
i

(22)

where T ∗ is the minimum of the collision time and exit time (from Ω) of the
vortices under this law. Moreover D(t) = 0 for every t < T ∗.

Thus, as expected, vortices move along the gradient flow for their interaction
W , and this reduces the PDE to a finite dimensional evolution (a system of
ODE’s). Thus result was obtained in [15, 12] (also in [23] for a certain regime
with magnetic field), but with PDE methods, it is reproven in [19] with the
Γ-convergence energetic method exposed here.

II.6 Remarks

1. The result holds as long as the number of vortices remains the initial
one (so that the limiting configuration u = (a1, · · · , an) belongs to the
same space N ). It ceases to apply when there are vortex-collisions or
some vortex exits the domain under the law (22), even though these can
happen. Then a further analysis is required, see Section IV.1 below.

2. Under the same hypotheses, if uε is a solution of the time-rescaled gradient
flow ∂tuε = −λε∇XεEε(uε) with D(0) = 0 then if λε � 1, uε(t)

S
⇀ u0,∀t

i.e. there is no motion; while if λε � 1, uε(t)
S
⇀ u,∀t with ∇Y F (u) = 0

i.e. there is instantaneous motion to a critical point. Thus, we see that
the structure Xε and the relation 1) in Theorem 5 contain the right time-
rescaling to see finite-time motion in the limit. For Ginzburg-Landau
without magnetic field, it is necessary to accelerate the time by a |log ε|
factor in order to see motion of the vortices (this is due to the fact that
the renormalized energy W which drives the motion is a lower order term
in the energy).

3. We can weaken conditions 1) and 2) to

lim
ε→0

∫ t

0

‖∂tuε‖2 ≥
∫ t

0

‖∂tu‖2 −O(D(t))

lim
ε→0
‖∇XεEε(uε)‖2Xε ≥ ‖∇F (u)‖2Y −O(D(t))
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where D(t) is the energy-excess, and handle the terms in D(t) in the proof
via a Gronwall’s lemma (finally obtaining that D(t) ≡ 0 if D(0) = 0).

4. The method should and can be extended to infinite-dimensional limiting
spaces and to the case where the Hilbert structuresXε and Y (in particular
Y ) depend on the point, such as Yu = L2

u, forming a sort of Hilbert man-
ifold structure. It is thus interesting to see how, through Γ-convergence,
the structures underlying the gradient-flows can become “curved” at the
limit, even though they are not curved originally at the ε level, and also
become possibly nonsmooth and nondifferentiable. In fact we can write
down an analogue abstract result using the theory of “minimizing move-
ments” of De Giorgi formalized by Ambrosio-Gigli-Savarè [1], a notion of
gradient flows on structures which are not differentiable but simply metric
structures.

5. The method works for Ginzburg-Landau with or without magnetic field
as long as the number of vortices remains bounded. It is more difficult
to apply it to other models such as Allen-Cahn, or 3D Ginzburg-Landau,
because what misses is a more precise result and understanding on the
profile of the defect during the dynamics. For example, for Allen-Cahn, we
need to know that the energy-density remains proportional to the length
of the underlying limiting curve during the dynamics (which is true a
posteriori). It is also an open problem to apply it when the number of
vortices is unbounded as ε→ 0.

III Proof of the additional conditions for Ginzburg-
Landau

III.1 A product-estimate for Ginzburg-Landau

The relation 1) which relates the velocity of underlying vortices to ∂tuε can be
read

lim
ε→0

1
|log ε|

∫
[0,t]×Ω

|∂tuε|2 ds ≥ π
∑
i

∫ t

0

|dt ai|2 ds (23)

assuming curl 〈iuε,∇uε〉(t) ⇀ 2π
∑
i diδai(t), as ε → 0, ∀t. This turns out

to hold as a general relation, without asking the configurations to solve any
particular equation. It is related to the topological nature of the vortices.

It can be embedded into the more general class of results of lower-bounds
for Ginzburg-Landau functionals. The setting is now Ω a bounded domain of
Rn (n ≥ 2) (we will need n = 3) and still Eε(u) = 1

2

∫
Ω
|∇u|2 + 1

2ε2 (1 − |u|2)2.
We define the “current” ju associated to u as the 1-form ju = 〈iu, du〉 =∑
k〈iu, ∂k u〉dxk. Then the Jacobian Ju is the 2-form

Ju =
1
2
d(ju) =

1
2
d〈iu, du〉
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It can be identified to an (n− 2)-dimensional current through

Ju(φ) =
1
2

∫
Ju ∧ φdx

for φ an (n− 2)-form. This current corresponds to the vorticity lines in 3D. For
example if u = eiφ with singular set γ straight line parallel to the z axis and a
degree D around γ, then Ju = πD(dx ∧ dy) bγ i.e. given test vector-fields X
and Y ,

Ju(X,Y ) = D

∫
γ

π

(
X1Y2 −X2Y1

2

)
The total variation of Ju is then |Ju| = π|D|H1(γ), multiple of the length of
the line.

Theorem 7 ([18]) Let uε be a family of H1(Ω,C) such that

Eε(uε) ≤ C|log ε|

then up to extraction, ∀β > 0, Juε ⇀ J in (C0,β
C (Ω))∗, with J

π an (n − 2)-
dimensional rectifiable integer-multiplicity current (see [13]) and for every X,Y
continuous compactly supported vector fields, we have

lim
ε→0

1
|log ε|

√∫
Ω

|X · ∇uε|2
∫

Ω

|Y · ∇uε|2 ≥
∣∣∣∣∫

Ω

J(X,Y )
∣∣∣∣ . (24)

As a first corollary, in 2D, taking X = e1, Y = e2 an orthonormal basis, we find

lim
ε→0

1
|log ε|

√∫
Ω

|∂1uε|2
∫

Ω

|∂2uε|2 ≥ π
∑
i

|di|

This estimate implies the estimate limε→0
1

|log ε|
∫

Ω
|∇uε|2

2 ≥ π
∑
i |di| but is

sharper. It implies in particular that if 1
2

∫
Ω
|∇uε|2 ≤ π

∑
i |di||log ε| and di =

±1, then

∀X, lim
ε→0

1
|log ε|

∫
Ω

|∇uε ·X|2 = π
∑
i

|X(ai)|2 (25)

i.e. there is isotropy in the repartition of the energy along different directions.
In 3D, taking X ⊥ Y and maximizing the right-hand side of (24) over

|X|, |Y | ≤ 1 we find

lim
ε→0

1
|log ε|

∫
Ω

|∇uε|2

2
≥ |J |(Ω),

an estimate that was previously proved in [13].
Remark: Our result extends to higher energies Eε(uε) ≤ Nε| log ε| with Nε

unbounded, in that case we just need to rescale by Nε and replace J by the
limit of Juε

Nε
.
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III.2 Idea of the proof

The method consists in reducing to two dimensions. By using partitions of
unity, we can assume that X and Y are locally constant. We may then work in
an open set U where X and Y are constant. If they are not parallel, they define
a planar direction (if they are then J(X,Y ) = 0 and there is nothing to prove).
We then slice U into planes parallel to that plane. Assume X = e1 and Y = e2

orthonormal vectors. In each plane we have the known 2D lower bounds of the
type

1
2

∫
plane∩U

|∇uε|2 ≥ π
∑
|di||log ε|

where di is the degree of the boundary of the balls, constructed with the ball-
construction method (see [17, 11, 20]). This is possible as long as there is a
good bound on the energy on that planar slice, and the number of balls can be
unbounded.

The main trick is to observe that this is true for any metric in the plane,
and use the metric λdx+ 1

λdy, leading to

1
2λ

∫
plane∩U

|∂1uε|2 +
λ

2

∫
plane∩U

|∂2uε|2 ≥ π
∑
|di|| log ε|

Integrating with respect to the slices yields

1
2λ

∫
U

|∇uε ·X|2 +
λ

2

∫
U

|∇uε · Y |2 ≥
∣∣∣∣∫
U

J(X,Y )
∣∣∣∣ |log ε|.

Optimizing with respect to λ, we conclude that

lim
ε→0

1
|log ε|

∫
U

|∇uε ·X|2
∫
U

|∇uε · Y |2 ≥
∣∣∣∣∫
U

J(X,Y )
∣∣∣∣

and we may finish by adding these estimates thanks to the partitions of unity.

III.3 Application to the dynamics

In order to deduce a result for the dynamics in 2D, the idea is to use this theorem
in dimension n = 3 with 2 coordinates corresponding to space coordinates and
1 coordinate corresponding to the time coordinate (this can be done in any
dimension, but we restrict to 2D here for the sake of simplicity). The vortex-
lines in 3D are then the trajectories in time of the vortex-points in 2D, and
clearly the length of these lines is somehow related to the velocity of these
points. Splitting the coordinates, we write

ju = 〈iu, ∂tu〉 dt+ 〈iu, dspace u〉

Juε =
2∑
i=1

Vi dt ∧ dxi︸ ︷︷ ︸
Vε

+
1
2
dspace〈iu, dspaceu〉︸ ︷︷ ︸
µε→π

P
diδai(t)
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Theorem 8 ([18]) Let uε(t, x) be defined over [0, T ]×Ω (Ω ⊂ Rn, here n = 2)
and such that 

∀t Eε(uε(t)) ≤ C|log ε|∫
[0,T ]×Ω

|∂tuε|2 ≤ C|log ε|

then

µε ⇀ µ in (C0,γ
C )∗, µ ∈ L∞([0, T ], C0

0 (Ω)∗), µ = π
∑
i

di δai(t)

Vε ⇀ V, V ∈ L∞([0, T ], C0
0 (Ω)∗)

with
dtµ+ div V = 0.

Moreover, ∀X ∈ C0
C([0, T ]× Ω,Rn), and f ∈ C0

C([0, T ]× Ω),

lim
ε→0

1
|log ε|

√∫
[0,T ]×Ω

|X · ∇uε|2
∫

[0,T ]×Ω

f2|∂tuε|2 ≥

∣∣∣∣∣
∫

[0,T ]×Ω

V · fX

∣∣∣∣∣
In 2D, the vector V = (V1, V2) really is π

∑
i di(∂tai)δai(t), such that

∂t

(
π
∑
i

di δai(t)

)
+ div V = 0

Corollary 1 If in addition di = ±1 and ∀t, 1
2

∫
Ω
|∇uε|2 ≤ π (

∑
i |di|) |log ε|(1+

o(1)), then for all intervals [t1, t2) on which the ai’s remain distinct, we have

lim
ε→0

1
|log ε|

∫
Ω×[t1,t2]

|∂tuε|2 ≥ π
∑
i

∫ t2

t1

|∂tai|2 dt

This is the desired estimate 1) in Theorem 5. To prove this corollary, recall that
from (25), if Eε(uε) ' πn|log ε| then 1

|log ε|
∫

Ω
|X · ∇uε|2 ' π

∑
i |X(ai)|2 and

optimizing over X and f gives the L2 bound on V .

III.4 Proof of the construction 2′)

We wish to prove that 2’) holds for Ginzburg-Landau so that we deduce 2) i.e.
if uε

S
⇀ u then limε→0 ‖∇XεEε(uε)‖Xε ≥ ‖∇W (u)‖Y .

Observe that this is a static result. We thus assume that curl 〈iuε,∇uε〉 ⇀
2π
∑
i diδai , where u = ((a1, d1), · · · , (an, dn)) and may consider disjoint balls

B(ai, ρ) of fixed radius ρ. If ‖∇XεE(uε)‖Xε → +∞ there is nothing to prove. If
‖∇XεEε(uε)‖Xε = O(1) then we can prove that Dε = o(1) where Dε = Eε(uε)−
πn|log ε| −W (u) is the “energy-excess”. The proof of this result (see [22, 21])
relies on the fact that ‖∇XεEε(u)‖Xε ≤ C means

∫
Ω

∣∣∆u+ u
ε2

(
1− |u|2

)∣∣2 ≤
21



C
|log ε| = o(1) and one can take advantage of the fact that uε is thus an “almost-
solution”.

Once this is proved, we may deduce

1
2

∫
B(ai,ρ)

|∇uε|2 = π|log ε|+O(1)

1
2

∫
Ω\∪iB(ai,ρ)

|∇|uε||2 +
1

2ε2
(1− |uε|2)2 ≤ Dε = o(1) (26)

1
2

∫
Ω\∪iB(ai,ρ)

∣∣∇uε − iuε∇⊥Φ0

∣∣2 ≤ Dε = o(1) (27)

where
∆Φ0 = 2π

∑
i

diδai in Ω

with the appropriate boundary conditions. The rough idea is that ∇ϕε ' ∇⊥Φ0

outside of the vortex balls. Through these relations, everything is well-controlled
outside the balls and inside the balls we shall only perform a pure translation.

Given V = (V1, . . . , Vn), we want to push each ai in the direction Vi. For
that purpose, define χt(x) = x+ tVi in each Bi, and extend it in a smooth way
outside of the Bi’s into a family of smooth diffeomorphisms that keep ∂Ω fixed
and are independent of ε. Choosing the deformation

vε(x, t) = uε(χ−1
t (x))

does the job of pushing the vortices ai along the direction Vi. However it is not
enough, and we need to add a phase correction ψt:

vε (χt(u), t) = uε(x) eiψt(x) (28)

so that for every t, the phase of vε is approximately the optimal one, that is the
harmonic conjugate of

∆Φt = 2π
∑
i

di δai(t) ai(t) = ai + tVi.

It is possible to construct ψt single-valued, independent of ε, so that

∇⊥Φ0 +∇ψt ' ∇⊥ (Φt ◦ χt) .

We will now check that the vε constructed this way works. First,

1
|log ε|

∫
Ω

|∂tvε|2 (0) ' 1
|log ε|

∑
i

∫
Bi

|Vi · ∇uε|2 + o(1)

' π
∑
i

|Vi|2 + o(1)
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because χt achieves a translation of vector Vi in the Bi’s while the contribution
outside of the Bi’s is negligible; and from the relation (25). The first requirement
for 2’) is thus fulfilled. Let us check the second requirement, i.e. the energy-
decrease rate, by evaluating d

dt |t=0
Eε (vε(t)). With a change of variables,

Eε (vε(t)) =
1
2

∫
Ω

|∇vε|2 +
1

2ε2

(
1− |vε|2

)2
=

1
2

∫
Ω

(∣∣Dχ−1
t ∇(vε ◦ χt)

∣∣2 +
1

2ε2

(
1− |u|2

)2) |Jac χt|.
Now, recall that χt is a translation in ∪iBi hence |Jac χt| = cst there, while
outside of ∪iBi there is almost no energy, hence

d

dt |t=0
Eε(vε(t)) =

d

dt |t=0

∫
Ω

∣∣Dχ−1
t ∇

(
uε e

iψt
)∣∣2 |Jac χt|+ o(1).

Next, we expand ∇
(
uε e

iψt
)

as ∇uεeiψt + iuε∇ψt, expand the squares, and
apply d

dt |t=0
. The crucial fact is that the terms which get differentiated do not

depend on ε. For the other terms, we use (27), so that there remains

d

dt |t=0
Eε(vε(t)) =

∫
Ω\∪iBi

(
d

dt |t=0
Dχ−1

t

)
∇⊥Φ0 · ∇⊥Φ0

+
∫

Ω\∪iBi

d

dt |t=0
∇ψt · ∇⊥Φ0 +

1
2
|∇Φ0|2

d

dt |t=0
|Jac χt|+ o(1)

=
d

dt |t=0

1
2

∫
Ω\∪iBi

|Dχ−1
t (∇⊥Φ0 +∇ψt)|2|Jac χt|+ o(1)

But observing that ψt was constructed in such a way that ∇⊥Φ0 + ∇ψt =
∇⊥(Φt ◦ χt), and doing a change of variables again, we find

d

dt |t=0
Eε(vε(t)) =

d

dt |t=0

1
2

∫
Ω\∪iBi

|∇Φt|2 + o(1)

=
d

dt |t=0
Wd(a1(t), · · · , an(t)) + o(1)

i.e. the desired result.

IV Extensions of the method

IV.1 Collisions

When there are some positive as well as some negative vortices, the limiting
dynamics (22) induces collisions between vortices of opposite signs which at-
tract each other. One expects that those vortices annihilate and the dynamics
continues with the remaining ones. This has been treated recently in the papers
[4, 5, 21].
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One of the things done in [21] was to extend the method presented here to
treat the case of collisions. If two vortices of opposite degrees get at a distance
lε = o(1) of each other, then it is possible to rescale space in order to have
two vortices at distance 1. As long as | log lε| � |log ε| the same method we
presented above carries through, i.e. we can prove the analogues of conditions
1) and 2), and yields that the dynamics continues with the same type of law
(22) but in space-time rescaled coordinates.

When vortices become too close to apply this, we focused on evaluating
energy dissipation rates, through the study of the perturbed Ginzburg-Landau
equation

∆u+
1
ε2
u(1− |u|2) = fε in Ω, (29)

with Dirichlet or Neumann boundary data, where fε is given in L2(Ω) (recall the
instantaneous energy-dissipation rate in the dynamics is exactly |log ε|‖fε‖2L2(Ω)).
We prove that the energy-excess (still meaning the difference between Eε −
πn|log ε| and the renormalized energy W of the underlying vortices) is essen-
tially controlled by C‖fε‖2L2 . We then show that when u solves (29) and has
vortices which become very close, forming what we call an “unbalanced clus-
ter” in the sense that

∑
i d

2
i 6= (

∑
i di)

2 in the cluster (see [21] for a precise
definition), then the lower bound

‖fε‖2L2(Ω) ≥ min
(

C

l2|log ε|
,

C

l2 log2 l

)
(30)

holds. In particular, when vortices get close to each other, say two vortices of
opposite degrees for example, then they form an unbalanced cluster of vortices
at scale l = their distance, and the relation (30) gives a large energy-dissipation
rate (scaling like 1/l2). This serves to show that such a situation cannot persist
for a long time and we are able to prove that the vortices collide and disappear
in time Cl2 + o(1), with all energy-excess dissipating in that time. Thus after
this time o(1), the configuration is again “well-prepared” and Theorem 6 can
be applied again, yielding the dynamical law with the remaining vortices, until
the next collision, etc...

IV.2 Second order questions - stability issues

We extended the “Γ-convergence” method to second order in order to treat
stability questions for this 2D Ginzburg-Landau equation. Here is the abstract
result, pushing the method of condition 2’) to second order. The setting is as
in Section II.1. By stable critical point, we mean nonnegative Hessian.

Theorem 9 ([22]) Let uε be a family of critical points of Eε with uε ⇀
S u ∈

N , such that the following holds: for any V ∈ B′, we can find vε(t) ∈ M
defined in a neighborhood of t = 0, such that ∂tvε(0) depends on V in a linear
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and one-to-one manner, and

vε(0) = uε(0) (31)

limε→0
d
dt |t=0

Eε(vε(t)) = d
dt |t=0

F (u+ tV ) = dF (u).V (32)

limε→0
d2

dt2 |t=0
Eε(vε(t)) = d2

dt2 |t=0
F (u+ tV ) = Q(u)(V ). (33)

Then
- if (31)-(32) are satisfied, then u is a critical point of F
- if (31)-(32)-(33) are satisfied, then if uε are stable critical points of Eε, u
is a stable critical point of F . More generally, denoting by n+

ε the dimension
(possibly infinite) of the space spanned by eigenvectors of D2Eε(uε) associated to
positive eigenvalues, and n+ the dimension of the space spanned by eigenvectors
of D2F (u) associated to positive eigenvalues (resp. n−ε and n− for negative
eigenvalues); for ε small enough we have

n+
ε ≥ n+ n−ε ≥ n−.

Thus, we reobtain that critical points converge to critical points of the limiting
energy F (proved in [2] for Ginzburg-Landau), but in addition we obtain that
under certain conditions, stability/instability of the critical point also passes to
the limit. The previous result (Theorem 1), was an analysis of the C1 structure
of the energy landscape, thus suited to give convergence of gradient-flow and
critical points; while this is the C2 analysis of the energy landscape around a
critical point.

For the Ginzburg-Landau energy, the construction done in Section III.4 can
be pushed to second order, yielding condition (33). Thus we deduce the corre-
sponding theorem for solutions of (3), (see [22]). An interesting application is
for Neumann boundary condition, for which it is known that the correspond-
ing renormalized energy W has no stable critical point. Hence from Theorem 9
there can be no stable critical points of Eε with vortices (in contrast with the
case of Gε with nonzero applied magnetic field).

Theorem 10 ([22]) Let uε be a family of nonconstant solutions of{
−∆u = u

ε2 (1− |u|2) in Ω
∂u
∂n = 0 on ∂Ω

(on Ω ⊂ R2 simply connected) such that Eε(uε) ≤ C|log ε|; then, for ε small
enough, uε is unstable.

This is an extension of a result of Jimbo and Sternberg [14] for convex domains.
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