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Cornelius Lanczos, March 9, 1947

“The reason why I am strongly drawn to such
approximation mathematics problems is not
the practical applicability of the solution,
but rather the fact that a very “economical”
solution is possible only when it is very “adequate”.
To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.”
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Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”
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Algebraic iterative computations

● In iterative methods applied to linear algebraic problems, computational
cost of finding sufficiently accurate approximation to the exact solution
heavily depends on the particular data, i.e.,

❋ on the underlying real world problem,
❋ on the mathematical model,
❋ on its discretisation.

● Any evaluation of cost in iterative computations must take into account
effects of rounding errors.

● In mathematical modeling of real world phenomena, the accuracy
of the computed approximation must be related to the underlying
phenomena. Its evaluation can not be restricted to algebra.



Z. Strakoš 5

Is there any algebraic error worth consideration?

Knupp and Salari, 2003:

“There may be incomplete iterative convergence (IICE) or round-off-error
that is polluting the results. If the code uses an iterative solver, then one
must be sure that the iterative stopping criteria is sufficiently tight so that
the numerical and discrete solutions are close to one another. Usually in
order-verification tests, one sets the iterative stopping criterion to just
above the level of machine precision to circumvent this possibility.”

Why do we care? Is not all these algebraic stuff linear and simple?
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Conjugate Gradients: A HPD, x0, r0, p0 = r0

‖x− xn‖A = min
u∈x0+Kn(A,r0)

‖x− u‖A

Kn(A, r0) ≡ span {r0, Ar0, · · · , A
n−1r0}

γn−1 = (rn−1, rn−1)/(pn−1, Apn−1)

xn = xn−1 + γn−1 pn−1

rn = rn−1 − γn−1 Apn−1

δn = (rn, rn)/(rn−1, rn−1)

pn = rn + δn pn−1.

Hestenes and Stiefel (1952), Lanczos (1950, 1952)

This algebraic stuff is nothing but linear!
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CG is the Gauss-Christoffel Quadrature

Ax = b , x0 ←→ ω(λ),

∫ ξ

ζ

f(λ) dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→ ω(n)(λ),
n∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

xn = x0 + Wn yn

ω(n)(λ) −→ ω(λ)
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Distribution function ω(λ)

λi, si are the eigenpairs of A , ωi = |(si, w1)|
2 , w1 = r0/‖r0‖

...

0

1

ω1

ω2

ω3

ω4

ωN

L λ1 λ2 λ3
. . . . . . λN U

Hestenes and Stiefel (1952), Lanczos (1952, almost unknown)
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CG does model reduction matching 2n moments

∫ U

L

λ−1 dω(λ) =
n∑

i=1

ω
(n)
i

(

θ
(n)
i

)−1

+ Rn(f)

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x− xn‖
2
A

‖r0‖2

With x0 = 0, b∗A−1b =
n−1∑

j=0

γj‖rj‖
2 + r∗nA−1rn .

Golub, Meurant, Reichel, Boley, Gutknecht, Saylor, Smolarski, ......... ,
Meurant and S (2006), Golub and Meurant (2010), S and Tichý (2011),

Liesen, S, Krylov subspace methods, OUP (2012)
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Outline

1. CG convergence bounds based on Chebyshev polynomials

2. Sensitivity of the Gauss-Christoffel quadrature

3. PDE discretizations and matrix computations
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1 Linear bounds for the nonlinear method?

‖x− xn‖A = min
p(0)=1

deg(p)≤n

‖A1/2p(A)(x− x0)‖

= min
p(0)=1

deg(p)≤n

‖Y p(Λ)Y ∗A1/2(x− x0)‖

≤

(

min
p(0)=1

deg(p)≤n

max
1≤j≤N

|p(λj)|

)

‖x− x0‖A

Using the shifted Chebyshev polynomials on the interval [λ1, λN ] ,

‖x− xn‖A ≤ 2

(√

κ(A)− 1
√

κ(A) + 1

)n

‖x− x0‖A .
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1 Minimization property and the bound

This bound has a remarkably wiggling history:

● Markov (1890)
● Flanders and Shortley (1950)
● Lanczos (1953), Kincaid (1947), Young (1954, ... )
● Stiefel (1958), Rutishauser (1959)
● Meinardus (1963), Kaniel (1966)
● Daniel (1967a, 1967b)
● Luenberger (1969)

It is relevant to the Chebyshev method!
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1 Composite bounds considering large outliers?

This bound should not be used in connection with the behaviour of CG
unless κ(A) = λN/λ1 is really small or unless the (very special)
distribution of eigenvalues makes it relevant.

In particular, one should be very careful while using it as a part of a
composite bound in the presence of the large outlying eigenvalues

min
p(0)=1

deg(p)≤n−s

max
1≤j≤N

| qs(λj) p(λj) | ≤ max
1≤j≤N

|qs(λj)|

∣
∣
∣
∣

Tn−s(λj)|

Tn−s(0)

∣
∣
∣
∣

< max
1≤j≤N−s

∣
∣
∣
∣

Tn−s(λj)

Tn−s(0)

∣
∣
∣
∣

.

This Chebyshev method bound on the interval [λ1, λN−s]
is then valid after s initial steps.



Z. Strakoš 14

1 Quote (2009, ... ): the desired accuracy ǫ

Theorem. After

k = s +

⌈

ln(2/ǫ)

2

√

λN−s

λ1

⌉

iteration steps the CG will produce the approximate solution xn

satisfying

‖x− xn‖A ≤ ǫ ‖x− x0‖A .

This recently republished and used statement is in finite precision
arithmetic not true at all.
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1 Axelsson (1976), Jennings (1977)

p. 72: ... it may be inferred that rounding errors ... affects the convergence
rate when large outlying eigenvalues are present.
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1 The composite bounds completely fail
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Composite bounds with varying number of outliers:
Exact CG (left) and FP CG (right),

Gergelits (2011).
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2 CG and Gauss-Christoffel quadrature errors

∫ U

L

λ−1 dω(λ) =
n∑

i=1

ω
(n)
i

(

θ
(n)
i

)−1

+ Rn(f)

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x− xn‖
2
A

‖r0‖2

Consider two slightly different distribution functions with

Iω =

∫ U

L

λ−1 dω(λ) ≈ In
ω

Iω̃ =

∫ U

L

λ−1 dω̃(λ) ≈ In
ω̃
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2 Sensitivity of the Gauss-Christoffel Q.
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2 The point goes back to 1814

1. Gauss-Christoffel quadrature for a small number of quadrature nodes
can be highly sensitive to small changes in the distribution function
that enlarge its support.

In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be
many orders of magnitude larger than the difference between the
integrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the
distribution functions, with no singularity close to the interval of
integration.
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2 Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(λ) and ω̃(λ) on [L, U ] . Let
pn(λ) = (λ− λ1) . . . (λ− λn) and p̃n(λ) = (λ− λ̃1) . . . (λ− λ̃n) be the
nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with p̂s(λ) = (λ− ξ1) . . . (λ− ξs) their least common multiple.
If f ′′ is continuous on [L, U ] , then the difference ∆n

ω,ω̃ between
the approximation In

ω to Iω and the approximation In
ω̃ to Iω̃ ,

obtained from the n-point Gauss-Christoffel quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣
∣
∣
∣
∣

∫ U

L

p̂s(λ)f [ξ1, . . . , ξs, λ] dω(λ) −

∫ U

L

p̂s(λ)f [ξ1, . . . , ξs, λ] dω̃(λ)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ U

L

f(λ) dω(λ) −

∫ U

L

f(λ) dω̃(λ)

∣
∣
∣
∣
∣

.
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3 Take very simple model boundary value problem

−∆u = 16η1η2(1− η1)(1− η2)

on the unit square with zero Dirichlet boundary conditions. Galerkin finite
element method (FEM) discretization with linear basis functions on the
regular triangular grid with the mesh size h = 1/(m + 1), where m is the
number of inner nodes in each direction. Discrete (piecewise linear)
solution

uh =
N∑

j=1

ζj φj(η1, η2) .

Computational error

u− u
(n)
h

︸ ︷︷ ︸

total error

= u− uh
︸ ︷︷ ︸

discretisation error

+ uh − u
(n)
h

︸ ︷︷ ︸

algebraic error

.
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3 Local discretization and global computation

Discrete (piecewise linear) solution

uh =
N∑

j=1

ζj φj(η1, η2) .

● If ζj is known exactly, then u
(n)
h = uh , and the global information is

approximated as the linear combination of the local basis functions.

● Apart from trivial cases, ζj , which supplies the global information,
is not known exactly.
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3 Local discretisation and global computation
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3 Energy norm of the error

Theorem

Up to a small inaccuracy proportional to machine precision,

‖∇(u− u
(n)
h )‖2 = ‖∇(u− uh)‖2 + ‖∇(uh − u

(n)
h )‖2

= ‖∇(u− uh)‖2 + ‖x− xn‖
2
A .

Using zero Dirichlet boundary conditions,

‖∇(u− uh)‖2 = ‖∇u‖2 − ‖∇uh‖
2 .
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3 Solution and the discretization error
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Exact solution u of the Poisson model problem (left)
and the MATLAB trisurf plot of the discretization error u− uh (right).



Z. Strakoš 26

3 Algebraic and total errors
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Algebraic error uh − u
(n)
h (left) and the MATLAB trisurf plot of the total

error u− u
(n)
h (right)

‖∇(u− u
(n)
h )‖2 = ‖∇(u− uh)‖2 + ‖x− xn‖

2
A

= 5.8444e− 03 + 1.4503e− 05 .
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3 Algebraic and total errors
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3 One can see 1D analogy
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Papež (2011).
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3 Why?

Krylov subspace methods represent matching moments model reduction!
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3 Adaptivity?

We need a-posteriori error bounds which are:

● Locally efficient,

● fully computable (no hidden constants),

● and allow to compare the contribution of the discretization error and the
algebraic error to the total error.
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Conclusions

Patrick J. Roache’s book Validation and Verification in Computational
Science, 2006, p. 387:

“With the often noted tremendous increases in computer speed and
memory, and with the less often acknowledged but equally powerful
increases in algorithmic accuracy and efficiency, a natural question
suggest itself. What are we doing with the new computer power? with
the new GUI and other set-up advances? with the new algorithms?
What should we do? ... Get the right answer.”
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Thank you for your work, help and friendship!
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