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1 System of equations in the steady regime

• Balance of mass
div (ρu) = 0 (1)

ρ(x): Ω 7→ R . . . density of the fluid
u(x): Ω 7→ R3 . . . velocity field

• Balance of momentum

div (ρu⊗ u)− div S +∇p = ρf (2)

S . . . viscous part of the stress tensor (symmetric tensor)
f(x): Ω 7→ R3 . . . specific volume force
p. . . pressure (scalar quantity)



• Balance of total energy

div
(
ρEu

)
+ div (q + pu) = ρf · u + div

(
Su
)

(3)

E = 1
2|u|

2 + e. . . specific total energy
e . . . specific internal energy (scalar quantity)
q . . . heat flux (vector field)
(no energy sources assumed)



2 Thermodynamics

We will work with basic quantities: density ρ and temperature ϑ

We assume: e = e(ρ, ϑ), p = p(ρ, ϑ)

• Gibbs’ relation

1

ϑ

(
De(ρ, ϑ) + p(ρ, ϑ)D

(1

ρ

))
= Ds(ρ, ϑ) (4)

with s(ρ, ϑ) the specific entropy.



The entropy fulfills

• Entropy balance

div (ρsu) + div
(q
ϑ

)
= σ =

S : ∇u
ϑ

− q · ∇ϑ
ϑ2

(5)

• Second law of thermodynamics

σ =
S : ∇u
ϑ

− q · ∇ϑ
ϑ2

≥ 0 (6)



3 Constitutive relations

• Newtonian fluid

S = S(ϑ,∇u) = µ
[
∇u + (∇u)T − 2

3divuI
]

+ ξdivuI

(7)

µ, ξ: viscosity coefficients

• Fourier’s law
q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ (8)

κ(·): R+ 7→ R+. . . heat conductivity



• Pressure law

p = p(ρ, ϑ) = ργ + ρϑ

or = (γ − 1)ρe(ρ, ϑ)
(9)

(we will not consider the latter, due to additional technicalities)

• Internal energy

e(ρ, ϑ) = cvϑ+
ργ−1

γ − 1
(10)



• Heat conductivity
κ(ϑ) ∼ (1 + ϑm) (11)

0 < m ∈ R

• Viscosity coefficients

C1(1 + ϑ)α ≤ µ(ϑ) ≤ C2(1 + ϑ)α

0 ≤ ξ(ϑ) ≤ C2(1 + ϑ)α
(12)

0 ≤ α ≤ 1



4 Classical formulation of the problem

We consider steady solutions in a bounded domain Ω ⊂ R3:

Steady compressible Navier–Stokes–Fourier system

div (ρu) = 0

div (ρu⊗ u)− div S(ϑ,∇u) +∇p(ρ, ϑ) = ρf

div
(
ρ
(1
2
|u|2 + e(ρ, ϑ)

)
u
)
− div (κ(ϑ)∇ϑ)

= div
(
− p(ρ, ϑ)divu + S(ϑ,∇u)u

)
+ ρf · u

(13)



Boundary conditions at ∂Ω: velocity

u = 0

or
u · n = 0

(I− n⊗ n)(S(ϑ,∇u)n + λu) = 0

(14)

Boundary conditions at ∂Ω: temperature

κ(ϑ)
∂ϑ

∂n
+ L(ϑ)(ϑ−Θ0) = 0 (15)



Total mass ∫
Ω

ρ dx = M > 0 (16)

Instead of total energy balance we can consider the entropy balance

Entropy balance

div (ρs(ρ, ϑ)u)− div
(
κ(ϑ)
∇ϑ
ϑ

)
= σ

=
S(ϑ,∇u) : ∇u

ϑ
+
κ(ϑ)|∇ϑ|2

ϑ2

(17)



5 Weak solution to our problem

• Weak formulation of the continuity equation∫
Ω

%u · ∇ψ dx = 0 ∀ψ ∈ C1(Ω) (18)

• Renormalized continuity equation

(%,u) extended by zero outside Ω

∫
Ω

b(%)u·∇ψ dx+

∫
Ω

(
ub′(ρ)−b(ρ)

)
divudx = 0∀ψ ∈ C1

0(R3)

(19)
for all b ∈ C1([0,∞))∩W 1,∞(0,∞) with zb′(z) ∈ L∞(0,∞)



• Weak formulation of the momentum equation

∫
Ω

(
− ρ(u⊗ u) : ∇ϕϕϕ− p(ρ, ϑ)divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

=

∫
Ω

ρf ·ϕϕϕdx ∀ϕϕϕ ∈ C1
0(Ω;R3)

(20)

∫
Ω

(
− ρ(u⊗ u) : ∇ϕϕϕ− p(ρ, ϑ)divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

+λ

∫
∂Ω

u ·ϕϕϕdσ =

∫
Ω

ρf ·ϕϕϕdx

∀ϕϕϕ ∈ C1
n(Ω;R3)

(21)



• Weak formulation of the total energy balance

∫
Ω

−
(1

2
ρ|u|2 + ρe(ρ, ϑ)

)
u · ∇ψ dx

=

∫
Ω

(
ρf · uψ + p(ρ, ϑ)u · ∇ψ

)
dx

−
∫

Ω

((
S(ϑ,u)u

)
· ∇ψ + κ(ϑ)∇ϑ · ∇ψ

)
dx

−
∫
∂Ω

L(ϑ−Θ0)ψ + λ|u|2ψ dσ

∀ψ ∈ C1(Ω)

(22)

Definition 1. The triple (ρ,u, ϑ) is called a renormalized weak
solution to our system (13)–(16) if

∫
Ω
ρ dx = M , (18), (19),

(20) (or (21)) and (22) hold true.



6 Entropy variational solution to our problem

• Weak formulation of the entropy inequality

∫
Ω

(S(ϑ,∇u) : ∇u
ϑ

+ κ(ϑ)
|∇ϑ|2

ϑ2

)
ψ dx+

∫
∂Ω

L

ϑ
Θ0ψ dσ

≤
∫
∂Ω

Lψ dσ +

∫
Ω

(
κ(ϑ)
∇ϑ : ∇ψ

ϑ
− ρs(ρ, ϑ)u · ∇ψ

)
dx

∀ nonnegative ψ ∈ C1(Ω)
(23)



• Global total energy balance∫
∂Ω

L(ϑ−Θ0) + λ|u|2 dσ =

∫
Ω

ρf · udx (24)

Definition 2. The triple (ρ,u, ϑ) is called a renormalized
variational entropy solution to our system (13)–(16), if

∫
Ω
ρ dx =

M (18), (19) and (20) or (21) are satisfied in the same sense as
in Definition 1, and we have the entropy inequality (23) together
with the global total energy balance (24).

Both type of solutions are reasonable in the sense that any smooth
weak or entropy variational solution is actually a classical solution to
(13)–(16).



7 Mathematical results

Until 2009, in the literature there was no existence results except
for small data results or one result by P.L. Lions, where, however, the
fixed mass was replaced by the finite Lp norm of the density for p
sufficiently large.



Mucha, M.P.: Commun. Math. Phys. (2009)

Assumptions: constant viscosity, slip boundary conditions for the
velocity, in the boundary conditions for the temperature L(ϑ) ∼
(1 + ϑ)l:

Aim: to find solutions with maximal possible regularity, i.e.
bounded density and gradient of temperature and velocity in any
Lq(Ω), q <∞

Approximate scheme: special approximation which gives bounded
density solutions with uniform control (goes back to our papers in
Nonlinearity (2006) and DCDS: Series S (2007) for the compressible
Navier–Stokes equations).



A priori estimates:

a) Global energy balance∫
∂Ω

L(ϑ)(ϑ−Θ0) dσ ≤ C
(

1 +

∫
Ω

|%u · f |dx
)
. (25)

b) Entropy inequality

∫
Ω

S(∇u) : ∇u
ϑ

dx+

∫
Ω

1 + ϑm

ϑ2
|∇ϑ|2 dx

+

∫
∂Ω

L(ϑ)Θ0

ϑ
dσ ≤ C

∫
∂Ω

L(ϑ) dσ.
(26)



c) Take m = l + 1. Then

‖ϑ‖3m ≤ C
(

1 +

∫
Ω

|ρf · u|dx
)1/m

. (27)

d) Multiply the momentum equation by the solution to

divH = %γ − 1

|Ω|

∫
Ω

%γ dx

with H = 0 at ∂Ω such that

‖H‖1,q ≤ C‖%γ‖q, 1 < q <∞.



This gives control of density by velocity and temperature∫
Ω

%2γ dx ≤ RHS.

e) Finally, test the momentum equation by the velocity. This gives
the control of velocity by temperature and density∫

Ω

S(∇u) : ∇udx ≤ RHS.

This procedure can be closed, i.e. we get the estimates, if γ > 3,
m = l + 1 > 3γ−1

3γ−7.



Higher regularity: We cut off the continuity equation in the
approximate scheme for large %:

div (K(%)%u) = l.o.t.

Thus the density is bounded uniformly throughout the approximation
procedure. The slip boundary condition and constant viscosity
allow to write a nice elliptic problem for the vorticity, which leads
finally to higher regularity for the velocity, consequently also for the
temperature.

Limit passage: We use a version of the effective viscous flux
identity, but due to high regularity of the density we have no problems
with renormalized continuity equation and we even do not use it. The
solution even fulfills the internal energy balance.



Mucha, M.P.: M3AS (2010)

Assumptions: constant viscosity, slip or homogeneous Dirichlet
boundary conditions for the velocity, in the boundary conditions for
the temperature L(ϑ) ∼ (1 + ϑ)l:

Aim: to extend the results from the previous paper to situations
with lower γ

Approximate scheme: Since we do not expect anymore solutions
with bounded density (reasons: either γ < 3 or Dirichlet boundary
condition), we use standard elliptic regularization of the continuity
equations.



A priori estimates: The only difference is the fact that we allow
weaker estimates for the density. In d) we test by

divH = %s(γ) − 1

|Ω|

∫
Ω

%s(γ) dx.

We can close the estimates for γ > 7
3, the bound for m and l is the

same.

Limit passage: We use the effective viscous flux identity as well as
the renormalized continuity equation. Due to high γ our limit fulfills
the renormalized continuity equation directly. The solution fulfills
only the total energy balance.



Novotný, M.P.: J. Differential Equations (2011)

Assumptions: viscosity dependent on temperature:

µ(ϑ), ξ(ϑ) ∼ (1 + ϑ)

(α = 1), L ∼ const (l = 0) homogeneous Dirichlet condition for
the velocity. (But slip b.c. can be treated via the same method.)

Aim: to extend the interval for γ to include also some physically
interesting cases as e.g. γ = 5

3 or γ = 4
3. Another goal was to

present in details construction of approximation if the viscosity is
temperature dependent.

Approximate scheme: elliptic regularization of the continuity
equation, more steps than in the previous case with constant viscosity.



A priori estimates:

a) Global energy balance∫
∂Ω

L(ϑ−Θ0) dσ ≤ C
(

1 +

∫
Ω

|%u · f |dx
)
. (28)

b) Entropy inequality

∫
Ω

S(ϑ,∇u) : ∇u
ϑ

dx+

∫
Ω

1 + ϑm

ϑ2
|∇ϑ|2 dx

+

∫
∂Ω

LΘ0

ϑ
dσ ≤ C

∫
∂Ω

Ldσ.
(29)



c) Main difference: due to Korn’s inequality we immediately have

‖u‖1,2 ≤ C

while for the temperature we get again

‖ϑ‖3m ≤ C
(

1 +

∫
Ω

|ρf · u|dx
)
. (30)

d) Multiply the momentum equation by the solution to

divH = %s(γ) − 1

|Ω|

∫
Ω

%s(γ) dx



with H = 0 at ∂Ω such that

‖H‖1,q ≤ C‖ρs(γ)‖q, 1 < q <∞.

These estimates imply the restriction: γ > 3
2! Under additional

assumptions on m we get a solution for any γ > 3
2.

Limit passage: We use a version of the effective viscous flux
identity, and the renormalized continuity equation to get the strong
convergence of the velocity. But for small γ we do not have for
free the renormalized continuity equation for the limit functions. We
use the technique of E. Feireisl developed for the evolutionary case:
the control of oscillation defect measure implies the renormalized
continuity equation. For γ > 5

3 and sufficiently large m we get the
total energy balance, in the other case only entropy inequality and
global total energy balance — the variational entropy solution.



Novotný, M.P.: SIAM J. Math. Anal. (2011)

Assumptions: the same as in the previous case.

Aim: to extend the interval for γ.

Approximate scheme: the same as before

A priori estimates: The main difference is that, following the
idea of Frehse, Steinhauer, Weigant (used for the Navier–Stokes
equations), we are able to get additional estimates for the density of
the form

sup
y∈Ω

∫
Ω

p(%, ϑ)

|x− y|α
dx < +∞



with α = α(m). This gives the a priori estimates for any γ > 1,
with some additional bounds on m.

Limit passage: More or less the same as above. But due to not
the best possible choice of carrying out this limit passage in the
convective term we got additional restriction γ > 3+

√
41

8 .

We improved the interval for weak solution: for γ > 4
3 and

sufficiently large m we get the total energy balance, in the other
cases only the entropy inequality and global total energy balance —
the variational entropy solution.



Kreml, Nečasová, M.P.: submitted

Assumptions: involve also a model for radiation, more complex
than just adding ϑ4 to the pressure. We consider also viscosity of
the type µ(ϑ), ξ(ϑ) ∼ (1 + ϑ)α, 0 < α ≤ 1.

Aim: to include also the physically relevant case α = 1
2.

Approximate scheme: the same as before.

A priori estimates: We use only estimates based on Bogovskii
operator estimates; hence we must restrict ourselves to γ > 3

2. We
are now working with O. Kreml how to combine the local pressure
estimates with α < 1.

Limit passage: More or less the same as above.



Novotný, M.P.: under construction

Assumptions: The case of temperature dependent viscosity with
α = 1, with slip boundary condition.

Aim: to extend the interval for γ.

Approximate scheme: the same as before

A priori estimates: Based on the ideas from Jiang, Zhou and Jesslé,
Novotný for Navier–Stokes system, we are able to get additional
estimates for the density of the form,

sup
y∈Ω

∫
Ω

p(%, ϑ) + %|u|2

|x− y|α
dx < +∞



with α = α(m), bigger than in the previous paper. This gives the a
priori estimates for any γ > 1, with some additional bounds on m.

Limit passage: More or less the same as above. We may get the
existence of variational entropy solutions for γ > 1. We also improve
the interval for weak solution: for γ > 5

4 and sufficiently large m we
get the total energy balance, hence existence of weak solutions.



T H A N K Y O U

F O R Y O U R

A T T E N T I O N !


