Regularity for systems of PDEs arising in continuum thermodynamics

Miroslav Buliček

Mathematical Institute of the Charles University Sokolovská 83, 18675 Prague 8, Czech Republic

Challenges in analysis and modeling - K. R. Rajagopal

March 31, 2012

Why to study regularity of PDEs

- to have fun
- to learn something from physics
- what kind of regularity? weak \& strong \& classical solution
- to justify the model (in case regularity holds)
- to justify the numerical scheme and the error estimate (in case regularity holds)
- to show that the model is wrong

Why to study regularity of PDEs

- to have fun
- to learn something from physics
- what kind of regularity? weak \& strong \& classical solution
- to justify the model (in case regularity holds)
- to justify the numerical scheme and the error estimate (in case regularity holds)
- to show that the model is wrong

Why to study regularity of PDEs

- to have fun
- to learn something from physics
- what kind of regularity? weak \& strong \& classical solution
- to justify the model (in case regularity holds)
- to justify the numerical scheme and the error estimate (in case regularity holds)
- to show that the model is wrong

Why to study regularity of PDEs

- to have fun
- to learn something from physics
- what kind of regularity? weak \& strong \& classical solution
- to justify the model (in case regularity holds)
- to justify the numerical scheme and the error estimate (in case regularity holds)
- to show that the model is wrong

Why to study regularity of PDEs

- to have fun
- to learn something from physics
- what kind of regularity? weak \& strong \& classical solution
- to justify the model (in case regularity holds)
- to justify the numerical scheme and the error estimate (in case regularity holds)
- to show that the model is wrong

Outline

We demonstrate all results and open problems on the prototype:

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =0 \\
\mathbf{v}_{t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{T} & =\mathbf{f}, \\
\cdots & =\cdots
\end{aligned}
$$

- Navier-Stokes equations (neglect coupling)
- full problem unsteadv vs. steadv
- neglect inertia \Longrightarrow full regularity
- power-law like models \& more general situation (neglect coupling)
- neglect inertia vs full system
- regularity of stress vs. velocity (displacement gradient)
- coupled problems (only with the equation for temperature/internal energy)
- Newtonian fluid (with and without inertia) -
- non-Newtonian models -nonlinearity may help

Outline

We demonstrate all results and open problems on the prototype:

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =0 \\
\mathbf{v}_{t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{T} & =\mathbf{f}
\end{aligned}
$$

$$
\cdots=\cdots
$$

- Navier-Stokes equations (neglect coupling)
- full problem unsteady vs. steady
- neglect inertia \Longrightarrow full regularity
- power-law like models \& more general situation (neglect coupling)
- neglect inertia vs. full system
- regularity of stress vs. velocity (displacement gradient)
- coupled problems (only with the equation for temperature/internal energy)
- Newtonian fluid (with and without inertia) -
- non-Newtonian models -nonlinearity may help

Navier-Stokes equations

- $\mathbf{T}:=-\mathbf{p}+2 \nu_{0} \mathbf{D}(\mathbf{v})$, where $\mathbf{D}(\mathbf{v})$ is the symmetric part of $\nabla \mathbf{v}$
- Navier-Stokes equations

$d=2$ - regularity,
$d=3, \ldots$ - regularity partial \& conditional \& special geometries \& small data \& short time
- Stokes equations

Navier-Stokes equations

- $\mathbf{T}:=-\mathbf{p} \mathbf{I}+2 \nu_{0} \mathbf{D}(\mathbf{v})$, where $\mathbf{D}(\mathbf{v})$ is the symmetric part of $\nabla \mathbf{v}$
- Navier-Stokes equations

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \triangle \mathbf{v} & =-\nabla p+\mathbf{f} \tag{NoS}\\
\operatorname{div} \mathbf{v} & =0
\end{align*}
$$

$d=2$ - regularity,
$d=3, \ldots$ - regularity partial \& conditional \& special geometries \& small data \& short time

- Stokes equations

Navier-Stokes equations

- $\mathbf{T}:=-\mathbf{p} \mathbf{I}+2 \nu_{0} \mathbf{D}(\mathbf{v})$, where $\mathbf{D}(\mathbf{v})$ is the symmetric part of $\nabla \mathbf{v}$
- Navier-Stokes equations

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \triangle \mathbf{v} & =-\nabla p+\mathbf{f} \tag{N-S}\\
\operatorname{div} \mathbf{v} & =0 .
\end{align*}
$$

$d=2$ - regularity,
$d=3, \ldots$ - regularity partial \& conditional \& special geometries \& small data \& short time

- Stokes equations

$$
\begin{align*}
\mathbf{v}_{t}-\nu_{0} \triangle \mathbf{v} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{S}
\end{align*}
$$

maximal regularity in any d

Navier-Stokes equations - steady case

- steady Navier-Stokes equations

$$
\begin{aligned}
-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \triangle \mathbf{v} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0
\end{aligned}
$$

$d=2,3,4$ - regularity,
$d=5$ - the same scaling as for $(N-S)$ in $d=3$ - maybe a hint to
(N-S)

- J. Frehse \& coauthors - existence of a regular solution for
$d=5, \ldots, 10$
but no hint to solve 3d (N-S)

Navier-Stokes equations - steady case

- steady Navier-Stokes equations

$$
\begin{aligned}
-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \triangle \mathbf{v} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 .
\end{aligned}
$$

$d=2,3,4$ - regularity,
$d=5$ - the same scaling as for (N-S) in $d=3$ - maybe a hint to (N-S)

- J. Frehse \& coauthors - existence of a regular solution for
$d=5, \ldots, 10$
but no hint to solve 3d (N-S)

Navier-Stokes equations - steady case

- steady Navier-Stokes equations

$$
\begin{aligned}
-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \triangle \mathbf{v} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 .
\end{aligned}
$$

$d=2,3,4$ - regularity,
$d=5$ - the same scaling as for (N-S) in $d=3$ - maybe a hint to ($\mathrm{N}-\mathrm{S}$)

- J. Frehse \& coauthors - existence of a regular solution for $d=5, \ldots, 10$

Navier-Stokes equations - steady case

- steady Navier-Stokes equations

$$
\begin{aligned}
-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \triangle \mathbf{v} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 .
\end{aligned}
$$

$d=2,3,4$ - regularity,
$d=5$ - the same scaling as for (N-S) in $d=3$ - maybe a hint to (N-S)

- J. Frehse \& coauthors - existence of a regular solution for $d=5, \ldots, 10$ but no hint to solve 3d (N-S)

Challenge

```
Challenge
If data are smooth, is there a smooth solution to (N-S)?
```


Power-law like models

- $\mathbf{T}:=-p \mathbf{l}+\mathbf{S}$, where

$$
\begin{align*}
& \mathbf{G (S}(\mathbf{D}(\mathbf{v}))=\mathbf{0} \quad \text { prototype: } \mathbf{S} \sim \nu_{0}\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v}) \\
& \mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \operatorname{div}\left(\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})\right)=-\nabla p+\mathbf{f} \tag{r}\\
& \operatorname{div} \mathbf{v}=0 .
\end{align*}
$$

- Stokes equations

for all $r \in(1, \infty)$ the same as for $\left(\mathrm{N}_{r}\right)$, i.e., NO higher regularity for $d=3$,

Power-law like models

- $\mathbf{T}:=-p \mathbf{l}+\mathbf{S}$, where

$$
\begin{array}{r}
\hline \mathbf{G}(\mathbf{S}, \mathbf{D}(\mathbf{v}))=\mathbf{0} \quad \text { prototype: } \mathbf{S} \sim \nu_{0}\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v}) \\
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \operatorname{div}\left(\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})\right)=-\nabla p+\mathbf{f} \tag{r}\\
\operatorname{div} \mathbf{v}=0
\end{array}
$$

$r \geq \frac{3 d+2}{d+2}$ - strong solution \& uniqueness (for smooth data)
$d=2$ - full regularity

- Stokes equations

Power-law like models

- T := $\mathbf{p l} \mathbf{I} \mathbf{S}$, where

$$
\begin{array}{r}
\hline \mathbf{G}(\mathbf{S}, \mathbf{D}(\mathbf{v}))=\mathbf{0} \quad \text { prototype: } \mathbf{S} \sim \nu_{0}\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v}) \\
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \operatorname{div}\left(\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})\right)=-\nabla p+\mathbf{f} \tag{r}\\
\operatorname{div} \mathbf{v}=0
\end{array}
$$

$r \geq \frac{3 d+2}{d+2}$ - strong solution \& uniqueness (for smooth data)
$d=2$ - full regularity

- Stokes equations

$$
\begin{align*}
\mathbf{v}_{t}-\nu_{0} \operatorname{div}\left(\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})\right) & =-\nabla p+\mathbf{f} \tag{r}\\
\operatorname{div} \mathbf{v} & =0
\end{align*}
$$

Power-law like models

- T := $\mathbf{p} \mathbf{l}+\mathbf{S}$, where

$$
\mathbf{G}(\mathbf{S}, \mathbf{D}(\mathbf{v}))=\mathbf{0} \quad \text { prototype: } \mathbf{S} \sim \nu_{0}\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})
$$

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\nu_{0} \operatorname{div}\left(\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})\right) & =-\nabla p+\mathbf{f} \tag{r}\\
\operatorname{div} \mathbf{v} & =0
\end{align*}
$$

$r \geq \frac{3 d+2}{d+2}$ - strong solution \& uniqueness (for smooth data)
$d=2$ - full regularity

- Stokes equations

$$
\begin{align*}
\mathbf{v}_{t}-\nu_{0} \operatorname{div}\left(\left(1+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})\right) & =-\nabla p+\mathbf{f} \tag{r}\\
\operatorname{div} \mathbf{v} & =0
\end{align*}
$$

for all $r \in(1, \infty)$ the same as for $\left(N_{r}\right)$, i.e., NO higher regularity for $d=3, \ldots$

Power-law like implicit

- T := $\mathbf{p} \mathbf{I}+\mathbf{S}$, where

$$
\mathbf{G}(\mathbf{S}, \mathrm{D}(\mathrm{v}))=\mathbf{0}
$$

- prototype I

$$
\mathbf{S}=\frac{\mathbf{D}}{|\mathbf{D}|}+\nu(|\mathbf{D}|) \mathbf{D}
$$

- prototype II

$$
\mathbf{D}=\frac{\mathbf{S}}{|\mathbf{S}|}+\tilde{\nu}(|\mathbf{S}|) \mathbf{S}
$$

- prototype I: higher regularity of $\nabla \mathbf{v}$
- prototype II. higher regularity of S

Power-law like implicit

- T := $\mathbf{p} \mathbf{I}+\mathbf{S}$, where

$$
\mathrm{G}(\mathrm{~S}, \mathrm{D}(\mathrm{v}))=\mathbf{0}
$$

- prototype I

$$
\mathbf{S}=\frac{\mathbf{D}}{|\mathbf{D}|}+\nu(|\mathbf{D}|) \mathbf{D}
$$

- prototype II

$$
\mathbf{D}=\frac{\mathbf{S}}{|\mathbf{S}|}+\tilde{\nu}(|\mathbf{S}|) \mathbf{S}
$$

- prototype I: higher regularity of $\nabla \mathbf{v}$
- prototype II: higher regularity of \mathbf{S}

No pressure - "no" advantage

- Consider "nonlinear linearized elasticity", very simplified i.e.

$$
\mathbf{T}=\nu(|\varepsilon|) \varepsilon \quad \varepsilon:=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)
$$

- the resulting equations are similar

$$
-\operatorname{div}(\nu(|\varepsilon|) \varepsilon)=\mathbf{f}
$$

- no regularity for $d \geq 3$
- $|\nabla \mathbf{u}| \leq \varepsilon_{1} \Longrightarrow$ regularity
- $\varepsilon_{0} \leq \varepsilon_{1} \Longrightarrow$ perfect model:)
- $\varepsilon_{1} \ll \varepsilon_{0}$ singularity maybe be there, the model is incorrect

No pressure - "no" advantage

- Consider "nonlinear linearized elasticity", very simplified i.e.

$$
\mathbf{T}=\nu(|\varepsilon|) \varepsilon \quad \varepsilon:=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)
$$

- the resulting equations are similar

$$
-\operatorname{div}(\nu(|\varepsilon|) \varepsilon)=\mathbf{f}
$$

- $|\nabla \mathbf{u}| \leq \varepsilon_{0}$, one can justify such a "model" - due to the work of prof. Rajagopal
- no regularity for $d \geq 3$
- $|\nabla \mathbf{u}| \leq \varepsilon_{1} \Longrightarrow$ regularity
- $\varepsilon_{0} \leq \varepsilon_{1} \Longrightarrow$ perfect model:)
- $\varepsilon_{1} \ll \varepsilon_{0}$ singularity maybe be there, the model is incorrect

No pressure - "no" advantage

- Consider "nonlinear linearized elasticity", very simplified i.e.

$$
\mathbf{T}=\nu(|\varepsilon|) \varepsilon \quad \varepsilon:=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)
$$

- the resulting equations are similar

$$
-\operatorname{div}(\nu(|\varepsilon|) \varepsilon)=\mathbf{f}
$$

- $|\nabla \mathbf{u}| \leq \varepsilon_{0}$, one can justify such a "model" - due to the work of prof. Rajagopal
- no regularity for $d \geq 3$
- $|\nabla \mathbf{u}| \leq \varepsilon_{1} \Longrightarrow$ regularity
- $\varepsilon_{0} \leq \varepsilon_{1} \Longrightarrow$ perfect model:)
- $\varepsilon_{1} \ll \varepsilon_{0}$ singularity maybe be there, the model is incorrect

No pressure - "no" advantage

- Consider "nonlinear linearized elasticity", very simplified i.e.

$$
\mathbf{T}=\nu(|\varepsilon|) \varepsilon \quad \varepsilon:=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)
$$

- the resulting equations are similar

$$
-\operatorname{div}(\nu(|\varepsilon|) \varepsilon)=\mathbf{f}
$$

- $|\nabla \mathbf{u}| \leq \varepsilon_{0}$, one can justify such a "model" - due to the work of prof. Rajagopal
- no regularity for $d \geq 3$
- $|\nabla \mathbf{u}| \leq \varepsilon_{1} \Longrightarrow$ regularity
- $\varepsilon_{0} \leq \varepsilon_{1} \Longrightarrow$ perfect model:)
- $\varepsilon_{1} \ll \varepsilon_{0}$ singularity maybe be there, the model is incorrect

Challenge

Challenge
Are the solutions to $\left(\mathrm{S}_{r}\right)$ smooth (or at least $\mathcal{C}^{1, \alpha}$)?

Nightmare

If $\mathbf{S}=\nu(\mid \nabla \mathbf{v}) \nabla \mathbf{v}$ then the solution is regular.

- $|\nabla \mathbf{v}|$ is sub-solution to an elliptic problem

Challenge
Is $|\mathbf{D}(\mathbf{v})|$ or any other relevant quantity a sub- or super-solution to something? Is there something behind the structure?

Challenge

Challenge
Are the solutions to $\left(\mathrm{S}_{r}\right)$ smooth (or at least $\mathcal{C}^{1, \alpha}$)?

Nightmare
If $\mathbf{S}=\nu(|\nabla \mathbf{v}|) \nabla \mathbf{v}$ then the solution is regular.

- $|\nabla \mathbf{v}|$ is sub-solution to an elliptic problem

Challenge
Is $|\mathbf{D}(\mathbf{v})|$ or any other relevant quantity a sub- or super-solution to something? Is there something behind the structure?

Challenge

Challenge
Are the solutions to $\left(\mathrm{S}_{r}\right)$ smooth (or at least $\mathcal{C}^{1, \alpha}$)?

Nightmare
If $\mathbf{S}=\nu(|\nabla \mathbf{v}|) \nabla \mathbf{v}$ then the solution is regular.

- $|\nabla \mathbf{v}|$ is sub-solution to an elliptic problem

Challenge
Is $|\mathbf{D}(\mathbf{v})|$ or any other relevant quantity a sub- or super-solution to something? Is there something behind the structure?

Challenge

Challenge
Are the solutions to $\left(\mathrm{S}_{r}\right)$ smooth (or at least $\mathcal{C}^{1, \alpha}$)?

Nightmare

If $\mathbf{S}=\nu(|\nabla \mathbf{v}|) \nabla \mathbf{v}$ then the solution is regular.

- $|\nabla \mathbf{v}|$ is sub-solution to an elliptic problem

Challenge

Is $|\mathbf{D}(\mathbf{v})|$ or any other relevant quantity a sub- or super-solution to something? Is there something behind the structure?

Coupled systems - basic framework

- T := $\mathbf{p} \mathbf{l}+\mathbf{S}$, where

$$
\mathbf{G}(e, \mathbf{S}, \mathbf{D}(\mathbf{v}))=\mathbf{0}
$$

- standard sets of equations (equation for internal energy e)

- "better" sets of equations (equation for global energy $E:=\frac{1}{2}|\mathbf{v}|^{2}+e$)

Coupled systems - basic framework

- T := $\mathbf{p} \mathbf{I}+\mathbf{S}$, where

$$
\mathbf{G}(e, \mathbf{S}, \mathbf{D}(\mathbf{v}))=\mathbf{0}
$$

- standard sets of equations (equation for internal energy e)

$$
\begin{aligned}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \\
e_{t}-\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) & =\mathbf{S} \cdot \mathbf{D}(\mathbf{v})
\end{aligned}
$$

- "better" sets of equations (equation for global energy $E:=\frac{1}{2}|\mathbf{v}|^{2}+e$)
\square

Coupled systems - basic framework

- $\mathbf{T}:=-p \mathbf{I}+\mathbf{S}$, where

$$
\mathbf{G}(e, \mathbf{S}, \mathbf{D}(\mathbf{v}))=\mathbf{0}
$$

- standard sets of equations (equation for internal energy e)

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{e}\\
e_{t}-\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) & =\mathbf{S} \cdot \mathbf{D}(\mathbf{v})
\end{align*}
$$

- "better" sets of equations (equation for global energy $E:=\frac{1}{2}|\mathbf{v}|^{2}+e$)

$$
\begin{aligned}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S} & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \\
E_{t}-\operatorname{div}(\mathbf{v}(E+p))-\operatorname{div}(\kappa(e) \nabla e+\operatorname{Sv}) & =\mathbf{f} \cdot \mathbf{v}
\end{aligned}
$$

(N-S-F ${ }_{E}$)

Coupled systems - Newtonian models

- $\mathbf{S}=\nu(e) \mathbf{D}(\mathbf{v})$
- Navier-Stokes-Fourier

$$
\begin{aligned}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \\
e_{t}-\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{aligned}
$$

no regularity known in any d; convective term, presence of $\mathbf{D}(\mathbf{v})$, no-Hölder continuity of e, quadratic term on the right hand side

- Stokes-Fourier

$$
\begin{aligned}
\mathbf{v}_{t}-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \\
e_{t}-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{aligned}
$$

no regularity known in general; quadratic term on the right hand side
Lemma ('M.B \& Kaplický \& Málek)
For very special ν, for solution to $(S-F)$ we know that $\nabla^{2} \mathbf{v} \in L^{2}$ in any d; for $d=2$ existence of classical solution.

Coupled systems - Newtonian models

- $\mathbf{S}=\nu(e) \mathbf{D}(\mathbf{v})$
- Navier-Stokes-Fourier

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{N-S-F}\\
e_{t}-\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{align*}
$$

no regularity known in any d; convective term, presence of $\mathrm{D}(\mathrm{v})$, no-Hölder continuity of e, quadratic term on the right hand side

- Stokes-Fourier

no regularity known in general; quadratic term on the right hand side

Coupled systems - Newtonian models

- $\mathbf{S}=\nu(e) \mathbf{D}(\mathbf{v})$
- Navier-Stokes-Fourier

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{N-S-F}\\
e_{t}-\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{align*}
$$

no regularity known in any d; convective term, presence of $\mathbf{D}(\mathbf{v})$, no-Hölder continuity of e, quadratic term on the right hand side

- Stokes-Fourier

no regularity known in general; quadratic term on the right hand side

Coupled systems - Newtonian models

- $\mathbf{S}=\nu(e) \mathbf{D}(\mathbf{v})$
- Navier-Stokes-Fourier

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{N-S-F}\\
e_{t}-\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{align*}
$$

no regularity known in any d; convective term, presence of $\mathbf{D}(\mathbf{v})$, no-Hölder continuity of e, quadratic term on the right hand side

- Stokes-Fourier

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{S-F}\\
e_{t}-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{align*}
$$

no regularity known in general; quadratic term on the right hand side

Coupled systems - Newtonian models

- $\mathbf{S}=\nu(e) \mathbf{D}(\mathbf{v})$
- Navier-Stokes-Fourier

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{N-S-F}\\
e_{t}-\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{align*}
$$

no regularity known in any d; convective term, presence of $\mathbf{D}(\mathbf{v})$, no-Hölder continuity of e, quadratic term on the right hand side

- Stokes-Fourier

$$
\begin{align*}
\mathbf{v}_{t}-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v})) & =-\nabla p+\mathbf{f} \\
\operatorname{div} \mathbf{v} & =0 \tag{S-F}\\
e_{t}-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{align*}
$$

no regularity known in general; quadratic term on the right hand side Lemma (M.B \& Kaplický \& Málek)

For very special ν, for solution to (S-F) we know that $\nabla^{2} \mathbf{v} \in L^{2}$ in any d; for $d=2$ existence of classical solution.

Navier-Stokes-Fourier

```
Challenge
Are solution to (S-F) regular for more general \(\nu\) 's? What with (N-S-F)?
```


Eddy viscosity - turbulence model - hope for regularity?

- $\nu(e)=\kappa(e) \sim \nu_{0} e^{\alpha}$ with some $\alpha \geq 0$
- fluid dynamics - nonsense; \qquad
- different scaling than in Navier-Stokes

Conjecture

There exists $\varepsilon_{0}>$ such that any solution to ($\mathrm{N}-\mathrm{S}-\mathrm{F}$) satisfying

is regular in $\left(\frac{1}{2}, 1\right) \times B_{\frac{1}{2}}(0)$.

Lemma (M.B., Lewandowski, Málek)
Lei the conjecture ho'd. Then for any $\alpha \geq \frac{1}{2}$ the solution to ($\mathrm{N}-\mathrm{S}-\mathrm{F}$) is regular.

Eddy viscosity - turbulence model - hope for regularity?

- $\nu(e)=\kappa(e) \sim \nu_{0} e^{\alpha}$ with some $\alpha \geq 0$
- fluid dynamics - nonsense; TKE-models (simplified Kolmogorov model) with $\alpha=\frac{1}{2}$
- different scaling than in Navier-Stokes

Conjecture
There exists $\varepsilon_{0}>$ such that any solution to (N-S-F) satisfying

is regular in $\left(\frac{1}{2}, 1\right) \times B_{\frac{1}{2}}(0)$.

Lemma (M.B., Lewandowski, Málek)
Let the conjecture hold. Then for any $a \geq \frac{1}{2}$ the solution to (N-S-F) is regular.

Eddy viscosity - turbulence model - hope for regularity?

- $\nu(e)=\kappa(e) \sim \nu_{0} e^{\alpha}$ with some $\alpha \geq 0$
- fluid dynamics - nonsense; TKE-models (simplified Kolmogorov model) with $\alpha=\frac{1}{2}$
- different scaling than in Navier-Stokes

```
Conjecture
There exists E0 > such that any solution to (N-S-F) satisfying
\(\int_{0}^{1} \int_{B_{1}(0)} \nu(e)|\mathbf{D}(\mathbf{v})|^{2} \leq \varepsilon_{0}\)
```

\square
is regular in $\left(\frac{1}{2}, 1\right) \times B_{\frac{1}{2}}(0)$.
\square
Lemma (M.B., Lewandowski, Málek)
Let the conjecture ho'd. Then for any $\alpha \geq \frac{1}{2}$ the solution to ($\mathrm{N}-\mathrm{S}-\mathrm{F}$) is regular.

Eddy viscosity - turbulence model - hope for regularity?

- $\nu(e)=\kappa(e) \sim \nu_{0} e^{\alpha}$ with some $\alpha \geq 0$
- fluid dynamics - nonsense; TKE-models (simplified Kolmogorov model) with $\alpha=\frac{1}{2}$
- different scaling than in Navier-Stokes

Conjecture

There exists $\varepsilon_{0}>$ such that any solution to (N-S-F) satisfying

$$
\int_{0}^{1} \int_{B_{1}(0)} \nu(e)|\mathbf{D}(\mathbf{v})|^{2} \leq \varepsilon_{0}
$$

is regular in $\left(\frac{1}{2}, 1\right) \times B_{\frac{1}{2}}(0)$.

Lemma (M.B., Lewandowski, Málek)
Let the conjecture hold. Then for any $\alpha \geq \frac{1}{2}$ the solution to ($\mathrm{N}-\mathrm{S}-\mathrm{F}$) is regular.

Eddy viscosity - turbulence model - hope for regularity?

- $\nu(e)=\kappa(e) \sim \nu_{0} e^{\alpha}$ with some $\alpha \geq 0$
- fluid dynamics - nonsense; TKE-models (simplified Kolmogorov model) with $\alpha=\frac{1}{2}$
- different scaling than in Navier-Stokes

Conjecture

There exists $\varepsilon_{0}>$ such that any solution to (N-S-F) satisfying

$$
\int_{0}^{1} \int_{B_{1}(0)} \nu(e)|\mathbf{D}(\mathbf{v})|^{2} \leq \varepsilon_{0}
$$

is regular in $\left(\frac{1}{2}, 1\right) \times B_{\frac{1}{2}}(0)$.

Lemma (M.B., Lewandowski, Málek)
Let the conjecture hold. Then for any $\alpha \geq \frac{1}{2}$ the solution to (N-S-F) is regular.

Coupled system - nonlinearity helps

- $\mathbf{S} \sim\left(\nu(e)+|\mathbf{D}(\mathbf{v})|^{2}\right)^{\frac{r-2}{2}} \mathbf{D}(\mathbf{v})$

Lemma (M.B., Málek, Shilkin)
Let $d=2$ then the solution to (N-S-F) are regular.
Let $d \geq 3$ and $r \geq \frac{3 d+2}{d+2}$ then there exists a strong solution to (N-S-F).

