
Regularity for systems of PDEs arising in continuum
thermodynamics

Miroslav Buĺıček
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Outline

Why to study regularity of PDEs

to have fun

to learn something from physics

what kind of regularity? weak & strong & classical solution

to justify the model (in case regularity holds)

to justify the numerical scheme and the error estimate (in case
regularity holds)

to show that the model is wrong
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Outline

Outline

We demonstrate all results and open problems on the prototype:

div v = 0

vt + div(v ⊗ v)− divTTT = f,

· · · = · · · .

Navier-Stokes equations (neglect coupling)

full problem unsteady vs. steady
neglect inertia =⇒ full regularity

power-law like models & more general situation (neglect coupling)

neglect inertia vs. full system
regularity of stress vs. velocity (displacement gradient)

coupled problems (only with the equation for temperature/internal energy)

Newtonian fluid (with and without inertia) -
non-Newtonian models -nonlinearity may help
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Navier-Stokes equations

Navier-Stokes equations

TTT := −pIII + 2ν0DDD(v), where DDD(v) is the symmetric part of ∇v

Navier-Stokes equations

vt − div(v ⊗ v)− ν04v = −∇p + f

div v = 0.
(N-S)

d = 2 - regularity,
d = 3, . . . - regularity partial & conditional & special geometries & small data &
short time

Stokes equations

vt − ν04v = −∇p + f

div v = 0.
(S)

maximal regularity in any d
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Navier-Stokes equations

Navier-Stokes equations - steady case

steady Navier-Stokes equations

−div(v ⊗ v)− ν04v = −∇p + f

div v = 0.

d = 2, 3, 4 - regularity,
d = 5 - the same scaling as for (N-S) in d = 3 - maybe a hint to
(N-S)

J. Frehse & coauthors - existence of a regular solution for
d = 5, . . . , 10
but no hint to solve 3d (N-S)
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Navier-Stokes equations

Challenge

Challenge

If data are smooth, is there a smooth solution to (N-S)?
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Power-law like & implicit models

Power-law like models

TTT := −pIII + SSS, where

GGG(SSS,DDD(v)) = 0 prototype: SSS ∼ ν0(1 + |DDD(v)|2)
r−2

2 DDD(v)

vt − div(v ⊗ v)− ν0 div
(

(1 + |DDD(v)|2)
r−2

2 DDD(v)
)

= −∇p + f

div v = 0.
(Nr )

r ≥ 3d+2
d+2

- strong solution & uniqueness (for smooth data)
d = 2 - full regularity

Stokes equations

vt − ν0 div
(

(1 + |DDD(v)|2)
r−2

2 DDD(v)
)

= −∇p + f

div v = 0.
(Sr )

for all r ∈ (1,∞) the same as for (Nr ), i.e., NO higher regularity for d = 3, . . .
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Power-law like & implicit models

Power-law like implicit

TTT := −pIII + SSS, where

GGG(SSS,DDD(v)) = 0

prototype I

SSS =
DDD

|DDD| + ν(|DDD|)DDD

prototype II

DDD =
SSS

|SSS| + ν̃(|SSS|)SSS

prototype I: higher regularity of ∇v
prototype II: higher regularity of SSS
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Power-law like & implicit models

No pressure - “no” advantage

Consider “nonlinear linearized elasticity”, very simplified i.e.

TTT = ν(|ε|)ε ε :=
1

2
(∇u + (∇u)T )

the resulting equations are similar

− div(ν(|ε|)ε) = f

|∇u| ≤ ε0, one can justify such a “model” - due to the work of prof.
Rajagopal

no regularity for d ≥ 3

|∇u| ≤ ε1 =⇒ regularity

ε0 ≤ ε1 =⇒ perfect model:)

ε1 � ε0 singularity maybe be there, the model is incorrect

Buĺıček (Charles University in Prague) Regularity for systems of PDEs March 31, 2012 9 / 15



Power-law like & implicit models

No pressure - “no” advantage

Consider “nonlinear linearized elasticity”, very simplified i.e.

TTT = ν(|ε|)ε ε :=
1

2
(∇u + (∇u)T )

the resulting equations are similar

− div(ν(|ε|)ε) = f

|∇u| ≤ ε0, one can justify such a “model” - due to the work of prof.
Rajagopal

no regularity for d ≥ 3

|∇u| ≤ ε1 =⇒ regularity

ε0 ≤ ε1 =⇒ perfect model:)

ε1 � ε0 singularity maybe be there, the model is incorrect
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Power-law like & implicit models

Challenge

Challenge

Are the solutions to (Sr ) smooth (or at least C1,α)?

Nightmare

If SSS = ν(|∇v|)∇v then the solution is regular.

|∇v| is sub-solution to an elliptic problem

Challenge

Is |DDD(v)| or any other relevant quantity a sub- or super-solution to
something? Is there something behind the structure?
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Coupling with internal energy

Coupled systems - basic framework

TTT := −pIII + SSS, where

GGG(e,SSS,DDD(v)) = 0

standard sets of equations (equation for internal energy e)

vt − div(v ⊗ v)− divSSS = −∇p + f

div v = 0

et − div(ev)− div(κ(e)∇e) = SSS ·DDD(v)

(N-S-Fe)

“better” sets of equations (equation for global energy E := 1
2
|v|2 + e)

vt − div(v ⊗ v)− divSSS = −∇p + f

div v = 0

Et − div(v(E + p))− div(κ(e)∇e + SSSv) = f · v
(N-S-FE )
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Coupling with internal energy

Coupled systems - Newtonian models

SSS = ν(e)DDD(v)

Navier-Stokes-Fourier

vt − div(v ⊗ v)− div(ν(e)DDD(v)) = −∇p + f

div v = 0

et − div(ev)− div(κ(e)∇e) = ν(e)|DDD(v)|2
(N-S-F)

no regularity known in any d ; convective term, presence of DDD(v), no-Hölder
continuity of e, quadratic term on the right hand side

Stokes-Fourier

vt − div(ν(e)DDD(v)) = −∇p + f

div v = 0

et − div(κ(e)∇e) = ν(e)|DDD(v)|2
(S-F)

no regularity known in general; quadratic term on the right hand side

Lemma (M.B & Kaplický & Málek)

For very special ν, for solution to (S-F) we know that ∇2v ∈ L2 in any d; for d = 2
existence of classical solution.

Buĺıček (Charles University in Prague) Regularity for systems of PDEs March 31, 2012 12 / 15



Coupling with internal energy

Coupled systems - Newtonian models

SSS = ν(e)DDD(v)

Navier-Stokes-Fourier

vt − div(v ⊗ v)− div(ν(e)DDD(v)) = −∇p + f

div v = 0

et − div(ev)− div(κ(e)∇e) = ν(e)|DDD(v)|2
(N-S-F)

no regularity known in any d ; convective term, presence of DDD(v), no-Hölder
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Coupling with internal energy

Navier-Stokes-Fourier

Challenge

Are solution to (S-F) regular for more general ν’s? What with (N-S-F)?
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Coupling with internal energy

Eddy viscosity - turbulence model - hope for regularity?

ν(e) = κ(e) ∼ ν0e
α with some α ≥ 0

fluid dynamics - nonsense; TKE-models (simplified Kolmogorov model) with α = 1
2

different scaling than in Navier-Stokes

Conjecture

There exists ε0 > such that any solution to (N-S-F) satisfying

� 1

0

�
B1(0)

ν(e)|DDD(v)|2 ≤ ε0

is regular in ( 1
2
, 1)× B 1

2
(0).

Lemma (M.B., Lewandowski, Málek)

Let the conjecture hold. Then for any α ≥ 1
2
the solution to (N-S-F) is regular.
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Coupling with internal energy

Coupled system - nonlinearity helps

SSS ∼ (ν(e) + |DDD(v)|2)
r−2

2 DDD(v)

Lemma (M.B., Málek, Shilkin)

Let d = 2 then the solution to (N-S-F) are regular.
Let d ≥ 3 and r ≥ 3d+2

d+2 then there exists a strong solution to (N-S-F).
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