Ex 6.1. Consider space ℓ^2 of sequences $\{u_j\}$ with the norm $\left(\sum_j u_j^2\right)^{1/2}$. Let λ_j be real numbers. Define operator $A : \mathcal{D}(A) \subset \ell^2 \to \ell^2$ as

$$A: \{u_j\} \mapsto \{\lambda_j u_j\}, \qquad \mathcal{D}(A) = \left\{\{u_j\} \in \ell^2; \sum_j \lambda_j^2 u_j^2 < \infty\right\}$$

- 1. Observe that $\mathcal{D}(A) = \ell^2$ and $A \in \mathcal{L}(\ell^2) \iff$ the sequence $\{\lambda_j\}$ is bounded.
- 2. Show that $(A, \mathcal{D}(A))$ is closed, and $\mathcal{D}(A)$ is dense in ℓ^2 .
- 3. Assume that $\lambda_j \leq \omega$ for all j. Deduce that any $\lambda > \omega$ belongs to the resolvent set $\rho(A)$. Write an explicit formula for the resolvent $R(\lambda, A)$.
- 4. By Hille-Yosida theorem, A is a generator of a c_0 -semigroup in ℓ^2 , which satisfies $||S(t)||_{\mathcal{L}(\ell^2)} \leq e^{\omega t}, t \geq 0$. Compute S(t) explicitely.

Ex 6.2. Let S(t) be a c_0 -semigroup in X, satisfying $||S(t)||_{\mathcal{L}(X)} \leq Me^{\omega t}$, $t \geq 0$. Let $\tilde{S}(t) = e^{-\omega t}S(t)$. Prove that:

- 1. $\tilde{S}(t)$ is also a c_0 -semigroup, and $\|\tilde{S}(t)\|_{\mathcal{L}(X)} \leq M, t \geq 0$.
- 2. Let $(A, \mathcal{D}(A))$, $\tilde{A}, \mathcal{D}(\tilde{A})$ be the generators of S(t), $\tilde{S}(t)$, respectively. Show that $\mathcal{D}(A) = \mathcal{D}(\tilde{A})$ and $\tilde{A} = A \omega I$.

* Ex. 6.3. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary. Let λ_j , w_j be the eigenvalues and eigenfunctions of the Dirichlet laplacian, with $||w_j||_2 = 1$. By Parseval's theorem, we have $u_0 = \sum_j u_j w_j$, where $u_j = (u, w_j)$ and the sum converges in L^2 .

- 1. Show that $u(t) = \sum_{j} e^{-\lambda_{j}t} u_{j} w_{j}$ is a weak solution to the heat equation $\frac{d}{dt}u \Delta u = 0$, $u(0) = u_{0}$.
- 2. Show that $\sum_j \lambda_j u_j^2 < \infty$ if and only if $u_0 \in W_0^{1,2}$. Show that $\sum_j \lambda_j^2 u_j^2 < \infty$ if and only if $u_0 \in W_0^{1,2} \cap W^{2,2}$.
- 3. Observe that the "heat semigroup" (see Exercise 5.2) can thus be identified with a multiplicative semigroup (as in Exercise 6.1). It follows that the generator of heat semigroup is the operator $\Delta = \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2}$, with derivatives understood weakly on the domain of definition $\mathcal{D}(\Delta) = W_0^{1,2} \cap W^{2,2}$.

6.4. Let S(t) be a c_0 -semigroup on X.

- 1. Show that the map $(t, x) \mapsto S(t)x$ is jointly continuous $[0, \infty) \times X \to X$.
- 2. Assuming that $\tilde{S}(t)$ is another c_0 -semigroup, show that $y(t) = S(T-t)\tilde{S}(t)x$ is continuous $[0,T] \to X$, where T > 0 and $x \in X$ are fixed.
- 3. Assuming finally that S(t) and $\tilde{S}(t)$ have the same generator, show that y'(t) = 0 for any $t \in (0,T)$ if $x \in \mathcal{D}(A)$.
- 4. Deduce that $S(t) = \tilde{S}(t)$ for all $t \ge 0$, thus establishing Lemma 4.2.

HINTS.

6.1. 2. for density, consider $C \subset \mathcal{D}(A)$ consisting of $\{u_j\}$ with only finitely many nonzero u_j ; 3. $R(\lambda, A) : \{v_j\} \mapsto \{\frac{1}{\lambda - \lambda_j}v_j\}$; 4. Use Yosida approximation. — Alternatively, one can guess that the answer $S(t) : \{u_j\} \mapsto \{e^{\lambda_j t}u_j\}$ and then verify that S(t) is a c_0 -semigroup on ℓ^2 and A is its generator. So S(t) must be the sought-for semigroup by Lemma 4.2. For taking limits in ℓ^2 , you can use the following version of Lebesgue's theorem (where sum is seen as an integral): if $\sum_j |a_j| < \infty$ and $b_j(t)$ are bounded independently of j and t, and $b_j(t) \to \beta_j$, then $\sum_j b_j(t)a_j \to \sum_j \beta_j a_j$.

6.4. 1. use part 1 of Lemma 4.1; in writing y(t+h) - y(t), add $\pm S(T - (t+h))\tilde{S}(t)x$ and use joint continuity and definition of the generator, and Theorem 4.1; 4. $S(T)x = \tilde{S}(T)x$ if $x \in \mathcal{D}(A)$ and use density