* Ex 5.1. Let $S(t)$ be a c_{0}-semigroup in X. Show that the following are equivalent:
(1) $S(t)=e^{t A}$ for some $A \in \mathcal{L}(X)$
(2) $S(t)$ is uniformly continuous, i.e. $S(t) \rightarrow I$ in $\mathcal{L}(X)$ for $t \rightarrow 0+$

Ex 5.2. Let $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right) \cap C\left(I ; L^{2}\right)$ be the (unique) weak solution to the heat equation

$$
\frac{d}{d t} u-\Delta u=0, \quad u(0)=u_{0}
$$

Verify that the solution operators $S(t): u_{0} \mapsto u(t)$ form a c_{0}-semigroup in L^{2}.
Ex 5.3. Let $(A, \mathcal{D}(A))$ be an unbounded operator in X, which is closed, and let $\mathcal{D}(A)$ be dense in X.

1. Let $v^{\prime}(t)=\lim _{h \rightarrow 0} \frac{1}{h}(v(t+h)-v(t)$ be the classical derivative in X. Assuming that $u^{\prime}(t)$ and $(A u)^{\prime}(t)$ exist, show that $u^{\prime}(t) \in \mathcal{D}(A)$ and $A\left(u^{\prime}(t)\right)=(A u)^{\prime}(t)$.
2. Assume that $u(t): I \rightarrow \mathcal{D}(A)$ be Bochner integrable, where $\mathcal{D}(A)$ is equipped with the graph-norm $\|u\|_{X}+\|A u\|_{X}$.
Show that both $u(t): I \rightarrow X$ and $A u(t): I \rightarrow X$ are Bochner integrable, and $A\left(\int_{I} u(t) d t\right)=\int_{I} A u(t) d t$.

Ex 5.4. Let $X=L^{2}(\mathbb{R})$ and define the "shift" operators $S(t): X \rightarrow X$ by $S(t): f(x) \mapsto$ $f(x+t)$.

1. Verify that $S(t)$ form a c_{0}-semigroup
2. Show that $\|S(t)-I\|_{\mathcal{L}(X)}=2$ for any $t>0$, hence the semigroup is not uniformly continuous
3. Prove that if $f(x) \in W^{1,2}(\mathbb{R})$, then $\frac{1}{h}(S(h) f(x)-f(x)) \rightarrow \frac{d}{d x} f(x)$ in $L^{2}(\mathbb{R})$, as $h \rightarrow 0+$.
4. Prove conversely that if $f(x), g(x) \in L^{2}(\mathbb{R})$ are such that $\frac{1}{h}(S(h) f(x)-f(x)) \rightarrow g(x)$ in $L^{2}(\mathbb{R})$, as $h \rightarrow 0+$, then $f(x) \in W^{1,2}(\mathbb{R})$ and $\frac{d}{d x} f(x)=g(x)$
5. Observe that the above assertions imply that the generator of $S(t)$ is the operator $A: f(x) \mapsto \frac{d}{d x} f(x)$ with the domain of definition $\mathcal{D}(A)=W^{1,2}(\mathbb{R})$.

Ex. 5.3.2. Let $u_{n}(t)$ be simple functions and $u_{n}(t) \rightarrow u(t)$ in the norm of $\mathcal{D}(A)$ for a.e. $t \in I, \ldots$

Ex. 5.4.

2. Consider suitable $f(x) \in L^{2}(\mathbb{R})$ with compact support.
3. Working with AC representative, we have $f(x+h)-f(x)=\int_{0}^{h} g(x+s) d s$, where $g=\frac{d}{d x} f$. Deduce that $\frac{1}{h}(f(x+h)-f(x))$ can be written as convolution of g with suitable kernels, and use Lemma 1.1, part 4.
4. Let $\varphi(x) \in C_{c}^{\infty}(\mathbb{R})$ be given test function and $h>0$ be fixed. Prove that

$$
\int_{\mathbb{R}} \frac{f(x+h)-f(x)}{h} \varphi(x) d x=\int_{\mathbb{R}} f(x) \frac{\varphi(x-h)-\varphi(x)}{h} d x
$$

Using the assumptions, show that you can take the limit $h \rightarrow 0+$ on both sides, to obtain that $\frac{d}{d x} f(x)=g(x)$ in the sense of weak derivative.

