## NMMA406 – Exercises 5

- \* Ex 5.1. Let S(t) be a  $c_0$ -semigroup in X. Show that the following are equivalent:
  - (1)  $S(t) = e^{tA}$  for some  $A \in \mathcal{L}(X)$
  - (2) S(t) is uniformly continuous, i.e.  $S(t) \to I$  in  $\mathcal{L}(X)$  for  $t \to 0+$

**Ex 5.2.** Let  $u(t) \in L^2(I; W_0^{1,2}) \cap C(I; L^2)$  be the (unique) weak solution to the heat equation

$$\frac{d}{dt}u - \Delta u = 0, \qquad u(0) = u_0$$

Verify that the solution operators  $S(t) : u_0 \mapsto u(t)$  form a  $c_0$ -semigroup in  $L^2$ .

**Ex 5.3.** Let  $(A, \mathcal{D}(A))$  be an unbounded operator in X, which is closed, and let  $\mathcal{D}(A)$  be dense in X.

- 1. Let  $v'(t) = \lim_{h \to 0} \frac{1}{h} (v(t+h) v(t))$  be the classical derivative in X. Assuming that u'(t) and (Au)'(t) exist, show that  $u'(t) \in \mathcal{D}(A)$  and A(u'(t)) = (Au)'(t).
- 2. Assume that  $u(t) : I \to \mathcal{D}(A)$  be Bochner integrable, where  $\mathcal{D}(A)$  is equipped with the graph-norm  $||u||_X + ||Au||_X$ . Show that both  $u(t) : I \to X$  and  $Au(t) : I \to X$  are Bochner integrable, and  $A(\int_I u(t) dt) = \int_I Au(t) dt$ .

**Ex 5.4.** Let  $X = L^2(\mathbb{R})$  and define the "shift" operators  $S(t) : X \to X$  by  $S(t) : f(x) \mapsto f(x+t)$ .

- 1. Verify that S(t) form a  $c_0$ -semigroup
- 2. Show that  $||S(t) I||_{\mathcal{L}(X)} = 2$  for any t > 0, hence the semigroup is not uniformly continuous
- 3. Prove that if  $f(x) \in W^{1,2}(\mathbb{R})$ , then  $\frac{1}{h}(S(h)f(x) f(x)) \to \frac{d}{dx}f(x)$  in  $L^2(\mathbb{R})$ , as  $h \to 0+$ .
- 4. Prove conversely that if  $f(x), g(x) \in L^2(\mathbb{R})$  are such that  $\frac{1}{h}(S(h)f(x) f(x)) \to g(x)$ in  $L^2(\mathbb{R})$ , as  $h \to 0+$ , then  $f(x) \in W^{1,2}(\mathbb{R})$  and  $\frac{d}{dx}f(x) = g(x)$
- 5. Observe that the above assertions imply that the generator of S(t) is the operator  $A: f(x) \mapsto \frac{d}{dx} f(x)$  with the domain of definition  $\mathcal{D}(A) = W^{1,2}(\mathbb{R})$ .

## HINTS.

**Ex. 5.3.2.** Let  $u_n(t)$  be simple functions and  $u_n(t) \to u(t)$  in the norm of  $\mathcal{D}(A)$  for a.e.  $t \in I, \ldots$ 

## Ex. 5.4.

- 2. Consider suitable  $f(x) \in L^2(\mathbb{R})$  with compact support.
- 3. Working with AC representative, we have  $f(x+h) f(x) = \int_0^h g(x+s) \, ds$ , where  $g = \frac{d}{dx} f$ . Deduce that  $\frac{1}{h} (f(x+h) f(x))$  can be written as convolution of g with suitable kernels, and use Lemma 1.1, part 4.
- 4. Let  $\varphi(x) \in C_c^{\infty}(\mathbb{R})$  be given test function and h > 0 be fixed. Prove that

$$\int_{\mathbb{R}} \frac{f(x+h) - f(x)}{h} \varphi(x) \, dx = \int_{\mathbb{R}} f(x) \frac{\varphi(x-h) - \varphi(x)}{h} \, dx$$

Using the assumptions, show that you can take the limit  $h \to 0+$  on both sides, to obtain that  $\frac{d}{dx}f(x) = g(x)$  in the sense of weak derivative.