Ex 4.1. Let X be reflexive, separable, $X \hookrightarrow Z$, and let $u(t) \in L^{\infty}(I ; X) \cap C(I ; Z)$. Show that $u(t) \in X$ for all $t \in I$ and moreover, $t \mapsto u(t) \in X$ is weakly continuous.

Ex 4.2. Let w_{j} be the eigenfunctions of $-\Delta u=\lambda u$ with zero Dirichlet b.c. Let P_{N} be the ON projection (in L^{2}) on the space span $\left\{w_{1}, \ldots, w_{N}\right\}$. Clearly P_{N} is continuous $L^{2} \rightarrow L^{2}$ with norm 1 .

1. Show that P_{N} is also continuous $W_{0}^{1,2} \rightarrow W_{0}^{1,2}$ with norm 1 , if $W_{0}^{1,2}$ is taken as a Hilbert space with scalar product $((u, v))=(\nabla u, \nabla v)$.
2. Show that $\left\|P_{N} u\right\|_{2,2} \leq c\|u\|_{2,2}$ for any $u \in W_{0}^{1,2} \cap W^{2,2}$ (assume $\partial \Omega$ sufficiently regular).

Ex 4.3. Let $\psi(z): \mathbb{R} \rightarrow \mathbb{R}$ be smooth function with a bounded derivative. Show that $u_{n} \rightarrow u$ in $W^{1,2}$ implies $\psi\left(u_{n}\right) \rightarrow \psi(u)$ in $W^{1,2}$.
Ex 4.4. [d'Alembert's transform]. Let $u(t): I \rightarrow X, g(t): I \rightarrow X$ be integrable functions. Then the following assertions are equivalent:
(i) $\frac{d^{2}}{d t^{2}} u(t)=g(t)$ weakly, i.e.

$$
\int_{I} u(t) \varphi^{\prime \prime}(t) d t=\int_{I} g(t) \varphi(t) d t \quad \forall \varphi(t) \in C_{c}^{\infty}(I)
$$

(ii) there is $v(t): I \rightarrow X$ integrable such that $\frac{d}{d t} u(t)=v(t)$ and $\frac{d}{d t} v(t)=g(t)$ weakly in I.

Ex 4.1. $\exists K>0, N \subset I$ s.t. $\lambda(N)=0$ and $\|u(t)\|_{X} \leq K$ for all $t \in I \backslash N$. Approximate $t_{0} \in N$ with $t_{n} \rightarrow t_{0}, t_{n} \in I \backslash N$ to show that $\left\|u\left(t_{0}\right)\right\|_{X} \leq K$. Prove continuity by contradiction, using uniqueness of limits in Z.
Ex 4.2. (i) Rewrite P_{N} as ON (in $W_{0}^{1,2}$ w.r. to $\left.((\cdot, \cdot))\right)$ projection (ii) Show that $P_{N}(-\Delta u)=$ $-\Delta P_{N} u$; use elliptic regularity for the laplacian

Ex 4.3. In view of Lemma 2.4, it is enough to show that $u_{n} \rightarrow u, \nabla u_{n} \rightarrow \nabla u$ in L^{2} implies $\psi^{\prime}\left(u_{n}\right) \nabla u_{n} \rightarrow \psi^{\prime}(u) \nabla u$ in L^{2}. By taking a subsequence we can in the first step assume $u_{n} \rightarrow u$ a.e. Show further by contradiction (and step one) that convergence takes place even without taking a subsequence.

