NMMA406 – Exercises 2

Ex 2.1. Let X be reflexive, separable.

- 1. Let $p \in (1, \infty)$. Show that any $u(t) \in W^{1,p}(I; X)$ has a α -Hölder continuous representative, with $\alpha = 1 1/p$.
- 2. Show that $W^{1,\infty}(I;X) = C^{0,1}(I;X)$ (the space of Lipschitz functions), in the sense of representative.
- 3. Let $u_n(t)$ be weakly differentiable, and let $u_n(t) \rightarrow u(t)$, $\frac{d}{dt}u_n(t) \rightarrow g(t)$ (weakly) in $L^1(I; X)$. Then u(t) is weakly differentiable, with $\frac{d}{dt}u(t) = g(t)$.
- 4. Let $u_n(t)$ are bounded in $L^p(I;Y)$, $\frac{d}{dt}u_n(t)$ are bounded in $L^q(I;Z)$, where $p, q \in (1,\infty)$ and Y, Z are reflexive, separable. Then there is a subsequence so that $\tilde{u}_n(t) \rightharpoonup u(t)$, $\frac{d}{dt}\tilde{u}_n(t) \rightharpoonup g(t)$ in the respective spaces, and $\frac{d}{dt}u(t) = g(t)$.

* Ex 2.2.

- 1. Prove that $L^p(I; L^p(\Omega)) = L^p(I \times \Omega)$ if $p \in [1, \infty)$, but $L^{\infty}(I; L^{\infty}(\Omega)) \subsetneq L^{\infty}(I \times \Omega)$.
- 2. Prove that if $u_n \rightharpoonup u$ in $L^p(I; L^q(\Omega))$, and $\Omega \subset \mathbb{R}^n$ is open, bounded, then

$$\int_{I\times\Omega} u_n(t,x)\psi(t,x)\,dtdx \to \int_{I\times\Omega} u(t,x)\psi(t,x)\,dtdx$$

for any (say) bounded, measurable function $\psi(t, x)$.

Ex 2.3. Let *H* be a Hilbert space. Show that *H* is uniformly convex. Show directly that if $u_n \rightharpoonup u$ and $||u_n||_H \rightarrow ||u||_H$, then $u_n \rightarrow u$.

* Ex 2.4. Let $u_n(t)$ be bounded in $L^p(I; X)$, where $p \in (1, \infty]$, and X be reflexive, separable. Prove that there is a weakly convergent (*-weak if $p = \infty$) subsequence, using only Theorem 1.9 and separability of $L^{p'}(I; X^*)$.

Ex 2.5. Let $u_n(t) \to u(t)$ in $L^p(I; X)$, $v_n(t) \to v(t)$ in $L^{p'}(I; X^*)$, where p, p' are Hölder conjugate. Prove that $\int_I \langle u_n(t), v_n(t) \rangle_{X,X^*} dt \to \int_I \langle u(t), v(t) \rangle_{X,X^*} dt$.

Ex 2.1.

- 1. By Lemma 1.5, there is a continuous representative $\tilde{u}(t)$ such that $\tilde{u}(t_1) \tilde{u}(t_2) = \int_{t_1}^{t_2} \frac{d}{dt} u(s) \, ds$. Estimate the integral using the Hölder inequality.
- 2. Inclusion \subset is as above. For the converse, note that Lipschitz function is absolutely continuous, and its derivative is L^{∞} , cf. Theorem 1.5.
- 3. Explain (in detail), that weak convergence is enough to pass in the definition of the weak derivative.
- 4. Use Eberlein-Šmulian and the previous problem.

Ex 2.3.

- 1. Use $\|\frac{x+y}{2}\|_{H}^{2} + \|\frac{x-y}{2}\|_{H}^{2} = \|x\|_{H}^{2} + \|y\|_{H}^{2}$.
- 2. Write $||u u_n||_H^2 = ||u||_H^2 2(u, u_n)_H + ||u_n||_H^2$.
- **Ex 2.4.** Let $v_n(t)$ be a countable dense set in $L^{p'}(I; X^*) \ldots$
- **Ex 2.5.** Add and subtract $\langle u_n(t), v(t) \rangle$.