Ex 1.1 Assume that $u(t) \in C(I, X)$ (always I = [0, T]) and prove the following propositions:

- 1. $u(I) \subset X$ is compact, and $u(t) : I \to X$ is uniformly continuous.
- 2. Prove that $u(t): I \to X$ is strongly measurable (a) using the Pettis theorem and (b) directly from the definition
- 3. Prove that $u(t) : I \to X$ is Bochner integrable (a) using the Bochner theorem and (b) directly from the definition
- 4. Show that $\int_I u(t) dt = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n u(jT/n)$

Ex 1.2

1. Let $u(t): I \to X$ be Bochner integrable, let $F: X \to Y$ be linear, continuous. Then $Fu(t): I \to Y$ is Bochner integrable, and

$$F\left(\int_{I} u(t) dt\right) = \int_{I} F(u(t)) dt$$

In particular: $\langle x^*, \int_I u(t) dt \rangle = \int_I \langle x^*, u(t) \rangle dt$ for any $x^* \in X^*$.

2. Prove the following version of Fatou's lemma: let $u_n(t) : I \to X$ are (strongly) measurable, and $u_n(t)$ converge weakly to u(t) for a.e. $t \in I$. Then u(t) is measurable and $\int_I ||u(t)|| dt \leq \liminf_{n\to\infty} \int_I ||u_n(t)|| dt$. In particular, if $\int_I ||u_n(t)|| dt$ are bounded, then u(t) is integrable.

Ex 1.3 Let $\psi_0(t) : \mathbb{R} \to \mathbb{R}$ be convolution kernel, i.e. $\psi_0(t)$ is bounded, zero outside [-1, 1]and $\int_{-1}^1 \psi_0(t) dt = 1$. Let $u(t) : I \to X$ be given, and assume that u(t) is extended by zero outside of I. Let $\psi_n(t) = n\psi_0(nt)$ and finally let $u_n(t) = u * \psi_n(t) = \int_{\mathbb{R}} u(t-s)\psi_n(s) ds$.

- 1. Show that $u_n(t) \in C(I, X)$ and if $\psi_0 \in C^1$, then also $u_n(t) \in C^1(I, X)$ and $u'_n(t) = u * \psi'_n(t)$.
- 2. Show that norm of $u_n(t)$ is not larger than the norm of u(t) in the spaces C(I, X), $L^p(I, X)$.
- 3. Show that if $u(t) \in C(J, X)$ for some J strictly larger than I, then $u_n(t) \rightrightarrows u(t)$ in C(I, X), for $n \to \infty$.

Ex 1.4

- 1. Prove the following Convergence Principle: Let $F_n : X \to X$ be a sequence of linear operators such that the norms $||F_n||$ are bounded independently of n. Let there be a dense $S \subset X$ such that $F_n v \to v$ as $n \to \infty$ for any $v \in S$. Then $F_n u \to u$ as $n \to \infty$ for any $u \in X$.
- 2. Apply the Convergence Principle to prove part 4 of Lemma 1.1.

Ex 1.1

- 1. Follows from compactness of I just as in the scalar case $X = \mathbb{R}$.
- 2. (a) compact implies separable, and continuous scalar is measurable; (b) set $u_n(t) = u(jT/n)$ for $t \in [(j-1)T/n, jT/n]$ these are simple functions and $u_n(t) \Rightarrow u(t)$ thanks to uniform continuity

parts 3 and 4 use very similar ideas

Ex 1.2

1. Let $u_n(t)$ be simple functions from the definition of $\int_I u(t) dt$. Then $Fu_n(t)$ are simple ... In particular: set $Y = \mathbb{R}$.

2. Use the fact that a separable set can be enlarged to a closed and convex (hence weakly closed) set. Use weak lower semicontinuity of the norm and scalar version of Fatou's lemma. $Ex \ 1.3$

1. Rewrite $u_n(t) = \int_{\mathbb{R}} u(s)\psi_n(t-s) ds$ and show that usual theorems about dependence of integral on parameter apply. (In fact for ψ_0 smooth enough, the dependence on t is uniform, so the exchange of integral and limit is trivial.)

2. For p = 1, this follows by Fubini's theorem.

3. Use uniform continuity of u(t) on the neighborhood of I. Ex 1.4

1. Fix $u \in X$, and let $\varepsilon > 0$ arbitrary be given. Pick $v \in S$ such that $||u - v|| < \varepsilon$. Write $F_n u - u = F_n(u - v) + (F_n v - v) + (v - u)$ and show that each term is estimated by (a multiple of) ε if n is large enough.

2. Set $X = L^p(I; X)$, $F_n u = u * \psi_n$ and $S = C_c(I; X)$. Use the results of Ex 1.3.2 and 1.3.3.