1. Vector-valued functions

Notation. We consider $u(t): I \rightarrow X$, where $I=[0, T]$ is time interval, X is Banach space with norm $\|u\|_{X}, X^{*}$ is dual of $X,\left\langle x^{*}, x\right\rangle_{X^{*}, X}$ is the duality between $x^{*} \in X^{*}$ and $x \in X$. We usually omit the subscripts.

1.1. Vector-valued integrable functions - Bochner integral

Definition. Function $u(t): I \rightarrow X$ is called

1. simple, if $u(t)=\sum_{j=1}^{N} \chi_{A_{j}}(t) x_{j}$, where $A_{j} \subset I$ are (Lebesgue) measurable, and $x_{j} \in X$
2. measurable (strongly measurable), if there are $u_{n}(t)$ simple such that $u_{n}(t) \rightarrow u(t)$ (strongly in $X)$ for a.e. $t \in I$
3. weakly measurable, if the (scalar) function $t \mapsto\left\langle x^{*}, u(t)\right\rangle$ is (Lebesgue) measurable for any $x^{*} \in X^{*}$ fixed

Remarks.

- (strongly) measurable \Longrightarrow weakly measurable
- $u(t)$ is simple $\Longleftrightarrow u(t)$ is measurable and $u(I) \subset X$ finite

Theorem 1.1.* ${ }^{1}$ [Pettis] Function $u(t): I \rightarrow X$ is measurable iff $u(t)$ is weakly measurable and there is $N \subset I$ of measure zero such that $u(I \backslash N) \subset X$ is separable ("essentially separably-valued").

Corollaries. (1) For X separable weak measurability implies measurability.
(2) $u_{n}(t)$ measurable, $u_{n}(t) \rightarrow u(t)$ a.e. $\Longrightarrow u(t)$ measurable
(3) Continuity implies measurability.

Definition. Function $u(t): I \rightarrow X$ is called (Bochner) integrable, provided there exist $u_{n}(t)$ simple such that $\int_{I}\left\|u(t)-u_{n}(t)\right\|_{X} d t \rightarrow 0$ for $n \rightarrow \infty$. The (Bochner) integral of $u(t): I \rightarrow X$ is defined as follows:

1. $\int_{I} u(t) d t=\sum_{j=1}^{N} x_{j} \lambda\left(A_{j}\right)$, if $u(t)$ is simple
2. $\int_{I} u(t) d t=\lim _{n \rightarrow \infty} \int_{I} u_{n}(t) d t$, if $u(t)$ is (Bochner) integrable

Remark. One has to check these definitions is correct (i.e. independent of x_{j}, A_{j} in the first part, and of $u_{n}(t)$ in the second part).
One also proves that $\left\|\int_{I} u(t) d t\right\|_{X} \leq \int_{I}\|u(t)\|_{X} d t$ for any $u(t)$ integrable.
Theorem 1.2.* [Bochner] Function $u(t): I \rightarrow X$ is Bochner integrable iff $u(t)$ is measurable and $\int_{I}\|u(t)\|_{X} d t<\infty$.

[^0]Theorem 1.3.* [Lebesgue] Let $u_{n}(t): I \rightarrow X$ be measurable, $u_{n}(t) \rightarrow u(t)$ for a.e. $t \in I$, and let there exist $g(t): I \rightarrow \mathbb{R}$ integrable such that $\left\|u_{n}(t)\right\| \leq g(t)$ for a.e. t and all n. Then $u(t)$ is Bochner integrable and $\int_{I} u_{n}(t) d t \rightarrow \int_{I} u(t) d t$; in fact one even has $\int_{I}\left\|u_{n}(t)-u(t)\right\| d t \rightarrow 0, n \rightarrow \infty$.

Recall. For a scalar $x(t): I \rightarrow \mathbb{R}$ we say that t is a Lebesgue point, if $\lim _{h \rightarrow 0} \frac{1}{2 h} \int_{-h}^{h}|x(t+s)-x(t)| d s=0$. Lebesgue's theorem: if $x(t): I \rightarrow \mathbb{R}$ is (locally) integrable, then a.e. $t \in I$ is a Lebesgue point.
Definition. We say that $t \in I$ is a Lebesgue point of a function $u(t): I \rightarrow X$, provided that $\lim _{h \rightarrow 0} \frac{1}{2 h} \int_{-h}^{h}\|u(t+s)-u(t)\|_{X} d s=0$.
Theorem 1.4. [Lebesgue] If $u(t): I \rightarrow X$ is Bochner integrable, then a.e. $t_{0} \in I$ is a Lebesgue point. Remarks. Let $u(t): I \rightarrow X$ be Bochner integrable.

- Fix $t_{0} \in I$ and set $U(t)=\int_{t_{0}}^{t} u(s) d s$. Then $U^{\prime}(t)=u(t)$ in each Lebesgue point of $u(t)$, in particular a.e. in I.
- Let $\psi_{0}(t): \mathbb{R} \rightarrow \mathbb{R}$ be convolution kernel, i.e. a bounded measurable function supported in $[-1,1]$ such that $\int_{-1}^{1} \psi(s) d s=1$ (and possibly with additional regularity and symmetries).
Define $\psi_{n}(t)=n \psi_{0}(n t)$, and $u * \psi_{n}(t)=\int_{\mathbb{R}} u(t-s) \psi_{n}(s) d s$. (Note that this only makes sense for $t \in[1 / n, T-1 / n]$, or one has to define $u(t)$ outside of I e.g. by zero).
Then $u * \psi_{n}(t) \rightarrow u(t)$ at each Lebesgue point of $u(t)$, in particular a.e. in I.
Definition. For $p \in[1, \infty)$ we set

$$
L^{p}(I ; X)=\left\{u(t): I \rightarrow X ; u(t) \text { is measurable and } \int_{I}\|u(t)\|_{X}^{p} d t<\infty\right\}
$$

For $p=\infty$ we set

$$
L^{\infty}(I, X)=\left\{u(t): I \rightarrow X ; u(t) \text { is measurable and } t \mapsto\|u(t)\|_{X} \text { is essentially bounded }\right\}
$$

Essential boundedness means: there is $c>0$ such that $\|u(t)\|_{X} \leq c$ pro a.e. $t \in I$.
Remarks. These are Banach spaces - with the usual norm, and the convention that $u(t), v(t)$ are considered identical whenever $u(t)=v(t)$ a.e. This is proved just as in the scalar case.
If X is a Hilbert space with scalar product $(\cdot, \cdot)_{X}$, then $L^{2}(I ; X)$ is Hilbert space with scalar product $\int_{I}(u(t), v(t))_{X} d t$.
Note that $L^{1}(I ; X)$ is just the space of integrable functions, and $L^{p}(I ; X) \subset L^{q}(I ; X)$ if $p \geq q$ thanks to the boundedness of I.
Lemma 1.1. [Approximation and density.] Let $p \in[1, \infty)$. Then:

1. Simple functions are dense in $L^{p}(I ; X)$.
2. Functions of the from $u(t)=\sum_{j=1}^{N} \varphi_{j}(t) x_{j}$, where $\varphi_{j}(t) \in C_{c}^{\infty}(I ; \mathbb{R})$, are dense in $L^{p}(I ; X)$.
3. If the space Y is dense in X, then the space $C_{c}^{\infty}(I ; Y)$ is dense in $L^{p}(I ; X)$.
4. Let $\psi_{n}(t)$ be a sequence of regularizing kernels, and let $u(t)$ be extended by 0 outside of I. Then $u * \psi_{n}(t) \rightarrow u(t)$ in $L^{p}(I ; X)$, for $n \rightarrow \infty$.

Remarks. It follows that if X is separable, then also $L^{p}(I ; X)$ is separable for $p<\infty$. But none of these holds for $p=\infty$. We will talk on these spaces (duality, geometry) a little bit later.

Recall. Function $x(t): I \rightarrow \mathbb{R}$ is called absolutely continuous, provided that for any $\varepsilon>0$ there exists $\delta>0$ such that for any disjoint, finite collection of intervals $\left(\alpha_{j}, \beta_{j}\right) \subset I$, if $\sum_{j}\left(\beta_{j}-\alpha_{j}\right)<\delta$ then $\sum_{j}\left|x\left(\beta_{j}\right)-x\left(\alpha_{j}\right)\right|<\varepsilon$.
Proposition 1: If $x(t) \in A C(I ; \mathbb{R})$, then $x^{\prime}(t)$ exists finite a.e. in $I, x^{\prime}(t) \in L^{1}(I ; \mathbb{R})$ and $x\left(t_{2}\right)-x\left(t_{1}\right)=$ $\int_{t_{1}}^{t_{2}} x^{\prime}(s) d s$ for any $t_{1}, t_{2} \in I$.
Proposition 2: Let $g(t) \in L^{1}(I ; \mathbb{R})$. Fix $t_{0} \in I$ and set $x(t)=\int_{t_{0}}^{t} g(s) d s$ for $t \in I$. Then $x(t)$ is AC and $x^{\prime}(t)=g(t)$ a.e. in I.
We want to generalize this to vector-valued case. In fact Proposition 2 follows quite easily from the above (cf. Remark after Theorem 1.4). Proposition 1 is generalized in Theorem 1.5 below.
Definition. Function $u(t): I \rightarrow X$, is called absolutely continuous, writing $u(t) \in A C(I ; X)$, provided that for any $\varepsilon>0$ there exists $\delta>0$ such that for any disjoint, finite collection of intervals $\left(\alpha_{j}, \beta_{j}\right) \subset I$, if $\sum_{j}\left(\beta_{j}-\alpha_{j}\right)<\delta$ then $\sum_{j}\left\|u\left(\beta_{j}\right)-x\left(\alpha_{j}\right)\right\|_{X}<\varepsilon$.
Theorem 1.5. Let $u(t): I \rightarrow X$ be absolutely continuous, let X be reflexive and separable space. Then $u^{\prime}(t)$ (strong derivative) exists for a.e. $t \in I$. Moreover, $u^{\prime}(t)$ is (Bochner) integrable and $u\left(t_{2}\right)-u\left(t_{1}\right)=$ $\int_{t_{1}}^{t_{2}} u^{\prime}(s) d s$ for any $t_{1}, t_{2} \in I$.
Notation. Let $\mathcal{D}(I)=C_{c}^{\infty}(I ; \mathbb{R})$ be the space of test functions, i.e. infinitely smooth functions with support strictly inside of I.
Lemma 1.2. Let $u(t) \in L^{1}(I ; X)$.

1. If $\int_{I} u(t) \varphi(t) d t=0$ for all $\varphi(t) \in \mathcal{D}(I)$, then $u(t)=0$ a.e. in I.
2. If $\int_{I} u(t) \varphi^{\prime}(t) d t=0$ for all $\varphi(t) \in \mathcal{D}(I)$, then there is $x_{0} \in X$ such that $u(t)=x_{0}$ a.e. in I.

Lemma 1.3. Let $u(t), g(t) \in L^{1}(I ; X)$. Then the following are equivalent:

1. There exist $x_{0} \in X$ such that $u(t)=x_{0}+\int_{0}^{t} g(s) d s$ for a.e. $t \in I$.
2. $\int_{I} u(t) \varphi^{\prime}(t) d t=-\int_{I} g(t) \varphi(t) d t$ for all $\varphi(t) \in \mathcal{D}(I)$.
3. $\frac{d}{d t}\left\langle x^{*}, u(t)\right\rangle=\left\langle x^{*}, g(t)\right\rangle$ in the sense of distributions on $(0, T)$, for every $x^{*} \in X^{*}$ fixed.

Definition. Let $u(t), g(t) \in L^{1}(I ; X)$. We say that $g(t)$ is a weak derivative of $u(t)$, if one (hence all) of the assertions of Lemma 1.3 hold. We write $\frac{d}{d t} u(t)=g(t)$. We further define the space

$$
W^{1, p}(I ; X)=\left\{u(t) \in L^{p}(I ; X) ; \frac{d}{d t} u(t) \in L^{p}(I ; X)\right\}
$$

Remarks. By Lemma 1.3 part 1, weakly differentiable functions are just AC functions; equivalently, primitive functions to integrable functions (up to a modification a.e.).
In applications we often have $u(t) \in L^{p}(I ; Y)$ with $\frac{d}{d t} u(t) \in L^{q}(I ; Z)$ with some spaces Y, Z. This requires there is some space X such that $Y \subset X, Z \subset X$ (often simply $Y \subset Z=X$), so that $u(t)$ is weakly differentiable as a function $I \rightarrow X$, and moreover $u(t), \frac{d}{d t} u(t)$ have the above-mentioned higher integrability.

1.3. Geometry and duality of $L^{p}(I ; X)$ spaces

Recall. X is called reflexive, if the canonical embedding $J: X \rightarrow X^{* *}$ is isometrically onto. The sequence u_{n} converges weakly to u in X , if $\left\langle x^{*}, u_{n}\right\rangle \rightarrow\left\langle x^{*}, u\right\rangle$ for any $x^{*} \in X^{*}$ fixed. We denote weak convergence by $u_{n} \rightharpoonup u$.
The key application (as far as the PDE theory goes) of these concepts is the Eberlein-Šmulian theorem: if X is reflexive, and $u_{n} \subset X$ is a bounded sequence, then there is a subsequence \tilde{u}_{n} and $u \in X$ such that $\tilde{u}_{n} \rightharpoonup u$.

Definition. Space X is called strictly convex, if $\|x\|,\|y\| \leq 1$ and $x \neq y$ implies $\left\|\frac{x+y}{2}\right\|<1$. It is called uniformly convex, if for any $\varepsilon>0$ there is $\delta>0$ such that $\|x\|,\|y\| \leq 1$ and $\|x-y\| \geq \varepsilon$ implies $\left\|\frac{x+y}{2}\right\| \leq 1-\delta$.

Theorem 1.6. Let X be uniformly convex, let $x_{n} \rightharpoonup x$, and let $\left\|x_{n}\right\| \rightarrow\|x\|$. Then $x_{n} \rightarrow x$.
Remark. It is easy to verify that Hilbert space is uniformly convex, and it is elementary to prove Theorem 1.6 if X is Hilbert. Uniformly convex spaces have a number of good properties (e.g. they are always reflexive).
As a typical example, spaces $L^{p}(\Omega)$ are uniformly convex for $p \in(1, \infty)$. An obvious generalization is
Theorem 1.7.* Let X be uniformly convex, let $p \in(1, \infty)$. Then $L^{p}(I ; X)$ is uniformly convex.
Recall. We call $p, p^{\prime} \in[1, \infty]$ Hölder conjugate, if $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. By Hölder's inequality we have

$$
\int_{\Omega}|u(x) v(x)| d x \leq\left(\int_{\Omega}|u(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\Omega}|v(x)|^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}}
$$

It follows that any $v(x) \in L^{p^{\prime}}(\Omega)$ fixed defines an element $F \in\left(L^{p}(\Omega)\right)^{*}$ by the formula $F: u(\cdot) \mapsto$ $\int_{\Omega} u(x) v(x)$. Conversely, for $p \in[1, \infty)$, any element of $\left(L^{p}(\Omega)\right)^{*}$ has such a representation, and in this sense $\left(L^{p}(\Omega)\right)^{*}=L^{p^{\prime}}(\Omega)$.
Consequently, $L^{p}(\Omega)$ are reflexive if $p \in(1, \infty)$. But $L^{1}(\Omega), L^{\infty}(\Omega)$ are not reflexive, and $\left(L^{\infty}(\Omega)\right)^{*}$ contains elements that cannot be represented by functions from $L^{1}(\Omega)$.
Once again, we have a vector-valued version of these results.
Theorem 1.8. [Hölder's inequality.] Let $u(t) \in L^{p}(I ; X), v(t) \in L^{p^{\prime}}\left(I ; X^{*}\right)$, where p, p^{\prime} are Hölder conjugate. Then $t \mapsto\langle v(t), u(t)\rangle$ is measurable and

$$
\int_{I}|\langle v(t), u(t)\rangle| \leq\left(\int_{I}\|u(t)\|_{X}^{p} d t\right)^{\frac{1}{p}}\left(\int_{I}\|v(t)\|_{X^{*}}^{p^{\prime}} d t\right)^{\frac{1}{p^{\prime}}}
$$

Theorem 1.9.* [Dual space to $L^{p}(I ; X)$.] Let X be reflexive, separable and $p \in[1, \infty)$. Denote $\mathscr{X}=$ $L^{p}(I ; X)$. Then for any $F \in \mathscr{X}^{*}$ there is $v(t) \in L^{p^{\prime}}\left(I, X^{*}\right)$ such that

$$
\langle F, u(\cdot)\rangle_{\mathscr{X}^{*}, \mathscr{X}}=\int_{I}\langle v(t), u(t)\rangle_{X^{*}, X} d t \quad \forall u(t) \in \mathscr{X} .
$$

Moreover, $v(t)$ is uniquely defined, and its norm in $L^{p^{\prime}}\left(I ; X^{*}\right)$ equals to the norm of F in \mathscr{X}^{*}.
Corollaries. If X is reflexive, separable, and $p \in(1, \infty)$, then $L^{p}(I ; X)$ is also reflexive, separable. Any sequence bounded in $L^{p}(I ; X)$ has a weakly convergent subsequence.

Lemma 1.4. Let $u(t): I \rightarrow X$ be weakly differentiable.

1. If $\eta(t): I \rightarrow \mathbb{R}$ is Lipschitz, then $u(t) \eta(t): I \rightarrow X$ is weakly differentiable, and $\frac{d}{d t}(u(t) \eta(t))=$ $\frac{d}{d t} u(t) \eta(t)+u(t) \eta^{\prime}(t)$ a.e. in I.
2. If $\psi(t) \in \mathcal{D}(I)$, then $u * \psi(t)$ is smooth and moreover, $(u * \psi)^{\prime}(t)=\frac{d}{d t} u * \psi(t)$ whenever $t-\operatorname{supp} \psi \subset$ $(0, T)$.

Theorem 1.10. [Extension operator.] Let $u(t) \in L^{p}(I ; Y)$ with $\frac{d}{d t} u(t) \in L^{q}(I ; Z)$, where $I=[0, T]$. Denote $I_{\Delta}=[-\Delta, T+\Delta]$ for some $\Delta>0$.
Then there is a function $E u(t) \in L^{p}\left(I_{\Delta} ; Y\right)$ with $\frac{d}{d t} E u(t) \in L^{q}\left(I_{\Delta} ; Z\right)$ such that $E u(t)=u(t)$ and $\frac{d}{d t} E u(t)=\frac{d}{d t} u(t)$ a.e. in I.
Remarks. It also follows from the proof that the norms of $E u, \frac{d}{d t} E u$ are estimated by the corresponding norms of $u, \frac{d}{d t} u$, the mapping $u \mapsto E u$ is linear and we can also have $E u=0$ outside (say) $I_{\Delta / 2}$ by multiplication of some cut-off function.
Theorem 1.11. [Smooth approximation.] Let $u(t) \in L^{p}(I ; Y)$ with $\frac{d}{d t} u(t) \in L^{q}(I ; Z)$. Then there exist functions $u_{n}(t) \in C^{1}(I ; Y)$ such that $u_{n}(t) \rightarrow u(t)$ in $L^{p}(I ; Y)$ and $u_{n}^{\prime}(t) \rightarrow \frac{d}{d t} u(t)$ in $L^{q}(I ; Z)$.
Notation. Symbol $X \hookrightarrow Y$ means embedding: $X \subset Y$ and there is $c>0$ such that $\|u\|_{Y} \leq c\|u\|_{X}$ for all $u \in X$. Symbol $X \hookrightarrow \hookrightarrow Y$ means compact embedding: $X \hookrightarrow Y$ and any sequence bounded in X has a subsequence converging strongly in Y.
Definition. Let X be separable, reflexive, densely embedded into a Hilbert space H. By Gelfand triple we mean $X \hookrightarrow H \cong H^{*} \hookrightarrow X^{*}$.
Note that $X \hookrightarrow H$ implies $H^{*} \hookrightarrow X^{*}$. Thanks to identification of H with H^{*} (via Riesz theorem), we have also "embedding" $\iota: X \rightarrow X^{*}$ is defined by

$$
\langle\iota u, v\rangle_{X^{*}, X}=(u, v)_{H} \quad u, v \in X
$$

where $(\cdot, \cdot)_{H}$ is the scalar product in H. In this sense, duality $\langle\cdot, \cdot\rangle_{X, X^{*}}$ can be seen as a generalization of $(\cdot, \cdot)_{H}$.
Lemma 1.5. $W^{1, p}(I ; X) \hookrightarrow C(I ; X)$ in the sense of representative: for any $u(t) \in W^{1, p}(I ; X)$ there is $\tilde{u}(t) \in C(I ; X)$ such that

$$
\|\tilde{u}\|_{C(I ; X)} \leq c\|u\|_{W^{1, p}(I ; X)}
$$

and $u(t)=\tilde{u}(t)$ a.e. in I.
Remark. It can be shown that even $W^{1, p}(I ; X) \hookrightarrow C^{0, \alpha}(I ; X)$, the space of α-Hölder functions with $\alpha=1-1 / p$. Also $W^{1, \infty}(I ; X)=C^{0,1}(I ; X)$, the space of Lipschitz functions.
Theorem 1.12. [Continuous representative.] Let $X \hookrightarrow H \cong H^{*} \hookrightarrow X^{*}$ be Gelfand triple, let $u(t) \in$ $L^{p}(I ; X), \frac{d}{d t} u(t) \in L^{p^{\prime}}\left(I ; X^{*}\right)$, where p, p^{\prime} are Hölder conjugate. Then:

1. $u(t) \in C(I ; H)$ in the sense of representative; more precisely, there is $\tilde{u}(t)$ such that

$$
\|\tilde{u}\|_{C(I ; H)} \leq C\left(\|u(t)\|_{L^{p}(I ; X)}+\left\|\frac{d}{d t} u(t)\right\|_{L^{p^{\prime}\left(I ; X^{*}\right)}}\right)
$$

and $u(t)=\tilde{u}(t)$ a.e. in I.
2. function $t \mapsto\|u(t)\|_{H}^{2}$ is weakly differentiable with $\frac{d}{d t}\|u(t)\|_{H}^{2}=2\left\langle\frac{d}{d t} u(t), u(t)\right\rangle_{X^{*}, X}$ a.e. In particular

$$
\left\|\tilde{u}\left(t_{2}\right)\right\|_{H}^{2}=\left\|\tilde{u}\left(t_{1}\right)\right\|_{H}^{2}+2 \int_{t_{1}}^{t_{2}}\left\langle\frac{d}{d t} u(t), u(t)\right\rangle_{X^{*}, X} d t
$$

for any $t_{1}, t_{2} \in I$, where $\tilde{u}(t)$ is the continuous representative.
Remarks. In other words, there is an embedding (in the sense of representative)

$$
\left\{u(t) \in L^{p}(I ; X), \quad \frac{d}{d t} u(t) \in L^{p^{\prime}}\left(I ; X^{*}\right)\right\} \hookrightarrow C(I ; X)
$$

In view of Theorem 1.9, note $u(t)$ and $\frac{d}{d t} u(t)$ belong to mutually dual spaces.
Lemma 1.6. [Ehrling.] Let $Y \hookrightarrow \hookrightarrow X \hookrightarrow Z$. Then for any $a>0$ there is $C>0$ such that

$$
\|u\|_{X} \leq a\|u\|_{Y}+C\|u\|_{Z} \quad \forall u \in Y
$$

Theorem 1.13. [Aubin-Lions lemma.] Let $Y \hookrightarrow \hookrightarrow X \hookrightarrow Z$, where Y, Z are reflexive, separable. Let p, $q \in(1, \infty)$. Then for any sequence $u_{n}(t)$ bounded in $L^{p}(I ; Y)$, with $\frac{d}{d t} u_{n}(t)$ bounded in $L^{q}(I ; Z)$, there is a subsequence converging strongly in $L^{p}(I ; X)$.
Remark. In other words, under the above assumptions, there is a compact embedding

$$
\left\{u(t) \in L^{p}(I ; Y), \quad \frac{d}{d t} u(t) \in L^{q}(I ; Z)\right\} \hookrightarrow \hookrightarrow L^{p}(I ; X)
$$

2. Parabolic 2nd order equation

In this chapter we will consider a nonlinear second order parabolic equation

$$
\begin{align*}
\partial_{t} u-\operatorname{div} a(\nabla u)+f(u) & =h(t, x) \quad(t, x) \in I \times \Omega \tag{P1}\\
u & =u_{0} \quad t=0, x \in \Omega \tag{P2}\\
u & =0 \quad t \in I, x \in \partial \Omega \tag{P3}
\end{align*}
$$

Here $u=u(t, x)$ is the unknown solution. The right-hand side $h=h(t, x)$ and initial condition u_{0} in (P2) are given data, and (P3) is the so-called Dirichlet boundary condition.
Assumptions. Throughout this chapter, we assume that:
(A0) $\Omega \subset \mathbb{R}^{n}$ is bounded regular (Lipschitz) boundary $\partial \Omega$
(A1) $a(\xi): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $a(0)=0$ and for $\forall \xi_{1}, \xi_{2} \in \mathbb{R}^{n}$

$$
\begin{align*}
\left|a\left(\xi_{1}\right)-a\left(\xi_{2}\right)\right| & \leq \alpha_{1}\left|\xi_{1}-\xi_{2}\right| \tag{2.1}\\
\left(a\left(\xi_{1}\right)-a\left(\xi_{2}\right)\right) \cdot\left(\xi_{1}-\xi_{2}\right) & \geq \alpha_{0}\left|\xi_{1}-\xi_{2}\right|^{2} \tag{2.2}
\end{align*}
$$

(A2) $f(z): \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\forall z_{1}, z_{2} \in \mathbb{R}$

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq \ell\left|z_{1}-z_{2}\right|
$$

Remark. Here $-\operatorname{div} a(\nabla u)$ is a nonlinear 2 nd order elliptic operator. For $a(\xi)=\xi$ and $f \equiv 0$ we have a heat equation $\partial_{t} u-\Delta u=h(t, x)$ as a special case.
Recall. The spaces $W^{1,2}(\Omega), W_{0}^{1,2}(\Omega)$ and $W^{-1,2}=\left(W_{0}^{1,2}\right)^{*}$ are reflexive, separable; $W^{1,2}(\Omega) \hookrightarrow \hookrightarrow$ $L^{2}(\Omega)$. Poincaré inequality:

$$
\|u\|_{L^{2}(\Omega)} \leq c_{p}\|\nabla u\|_{L^{2}(\Omega)} \quad \forall u \in W_{0}^{1,2}(\Omega)
$$

implies that $\|\nabla u\|_{L^{2}(\Omega)}$ is an equivalent norm in $W_{0}^{1,2}(\Omega)$.
Notation. We will write $L^{2}, W^{1,2}$ instead of $L^{2}(\Omega), W^{1,2}(\Omega)$, etc, and $\|u\|_{2},\|u\|_{1,2}$ will denote the norms in these spaces. Symbol (\cdot, \cdot) is the scalar product in L^{2}

$$
(f, g)=\int_{\Omega} f(x) \cdot g(x) d x
$$

and $\langle\cdot, \cdot\rangle$ the duality of $W_{0}^{1,2}$ and $W^{-1,2}$.
We will work with the Gelfand triple $W_{0}^{1,2} \hookrightarrow L^{2} \cong\left(L^{2}\right)^{*} \hookrightarrow W^{-1,2}$, and $\iota: W_{0}^{1,2} \rightarrow W^{-1,2}$ is the corresponding embedding, i.e., $\langle\iota u, v\rangle=(u, v)$ for all $u, v \in W_{0}^{1,2}$.
Recall. Let $h \in W^{-1,2}$. The function $u \in W_{0}^{1,2}$ is called weak solution of

$$
\begin{aligned}
-\operatorname{div} a(\nabla u) & =h & & x \in \Omega \\
u & =0 & & x \in \partial \Omega
\end{aligned}
$$

provided that

$$
(a(\nabla u), \nabla v)=\langle h, v\rangle \quad \forall v \in W_{0}^{1,2}
$$

Expanding the left-hand side this means

$$
\int_{\Omega} a(\nabla u(x)) \cdot \nabla v(x) d x=\langle h, v\rangle \quad \forall v \in W_{0}^{1,2}
$$

By the (nonlinear) Lax-Milgram theorem, there exists unique such solution u. It is convenient to introduce the (nonlinear) operator $\mathcal{A}: W_{0}^{1,2} \rightarrow W^{-1,2}$, by the relation

$$
\langle\mathcal{A}(u), v\rangle=(a(\nabla u), \nabla v)
$$

Then the above problem is written simply as $\mathcal{A}(u)=h$, with $\mathcal{A}: W_{0}^{1,2} \rightarrow W^{-1,2}$ one-to-one continuous. Assumption on the data. We will assume that the right-hand side of (P1) satisfies $h(t) \in L^{2}\left(I ; W^{-1,2}\right)$ and the initial condition $u_{0} \in L^{2}$.
Definition. Function $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$ is called weak solution to (P1), provided that

$$
\frac{d}{d t}(u(t), v)+(a(\nabla u(t)), \nabla v)+(f(u(t)), v)=\langle h(t), v\rangle
$$

in the sense of distributions on $(0, T)$, for any $v \in W_{0}^{1,2}$ fixed.
Remarks. Expanding the definition of weak derivative $\frac{d}{d t}$, this means

$$
-\int_{I}(u(t), v) \varphi^{\prime}(t) d t+\int_{I}(a(\nabla u(t)), \nabla v) \varphi(t) d t+\int_{I}(f(u(t)), v) \varphi(t) d t=\int_{I}\langle h(t), v\rangle \varphi(t) d t
$$

for any $v \in W_{0}^{1,2}, \varphi(t) \in \mathcal{D}(I)$. Expanding further the definition of (\cdot, \cdot) yields

$$
-\int_{I \times \Omega} u(t, x) v(x) \varphi^{\prime}(t) d t d x+\int_{I \times \Omega} a(\nabla u(t)) \cdot \nabla v(x) \varphi(t) d t d x+\int_{I \times \Omega} f(u(t, x)) v(t, x) d t d x=\int_{I}\langle h(t), v\rangle d t
$$

The definition makes sense: the integrals converge due to assumptions (A1), (A2).
Lemma 2.1. Let $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$ be a weak solution. Then

1. $u(t)$ is weakly differentiable with

$$
\frac{d}{d t} u(t)+\mathcal{A}(u(t))+f(u(t))=h(t)
$$

in particular $\frac{d}{d t} u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$.
2. $u(t) \in C\left(I ; L^{2}\right)$ in the sense of representative
3. $t \mapsto\|u(t)\|_{2}^{2}$ is weakly differentiable, with

$$
\frac{1}{2} \frac{d}{d t}\|u(t)\|_{2}^{2}+\langle\mathcal{A}(u(t)), u(t)\rangle+(f(u(t)), u(t))=\langle h(t), u(t)\rangle
$$

for a.e. $t \in I$.

Remark. We agree to always use the continuous representative. (Hence, $t \mapsto\|u(t)\|_{2}^{2}$ is AC function.) Now it makes sense to speak of the value $u(t)$ for all $t \in I$, in particular, the initial condition $u(0)$.

Lemma 2.2. [Gronwall lemma.] Let $y(t), g(t)$ be nonnegative (scalar) functions, $y(t)$ continuous and $g(t)$ integrable, such that

$$
y(t) \leq K+\int_{0}^{t} g(s) y(s) d s \quad \forall t \in I
$$

Then

$$
y(t) \leq K \exp \left(\int_{0}^{t} g(s) d s\right) \quad \forall t \in I
$$

Theorem 2.1. Weak solution is unique.
Recall. Let \mathscr{X} be a Banach space. Operator $\mathcal{A}: \mathscr{X} \rightarrow \mathscr{X}^{*}$ is monotone, if $\langle\mathcal{A}(u)-\mathcal{A}(v), u-v\rangle_{\mathscr{X}^{*}, \mathscr{X}} \geq$ 0 for all $u, v \in \mathscr{X}$. It is hemicontinuous, if the function $t \mapsto \mathcal{A}(u+t v)$ is continuous (from \mathbb{R} to \mathscr{X}^{*}) for any $u, v \in \mathscr{X}$ fixed.
Lemma 2.3. [Minty's trick.] Let \mathscr{X} be reflexive, let $\mathcal{A}: \mathscr{X} \rightarrow \mathscr{X}^{*}$ be monotone, hemicontinuous. Let $u_{n} \rightharpoonup u$ in $\mathscr{X}, A\left(u_{n}\right) \rightharpoonup \alpha$ in \mathscr{X}^{*}, and let moreover

$$
\limsup _{n \rightarrow \infty}\left\langle\mathcal{A}\left(u_{n}\right), u_{n}\right\rangle_{\mathscr{X}^{*}, \mathscr{X}} \leq\langle\alpha, u\rangle_{\mathscr{X}^{*}, \mathscr{X}}
$$

Then $\mathcal{A}(u)=\alpha$, i.e. $A\left(u_{n}\right) \rightharpoonup A(u)$.
Theorem 2.2. [Compactness of w.s.] Let $u_{n}(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$ be weak solutions such that $u_{n}(0) \rightarrow u_{0}$ in L^{2}. Then there is a subsequence $\tilde{u}_{n}(t)$ converging weakly to some $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$, where $u(t)$ is again a weak solution, and $u(0)=u_{0}$.

Recall. The Dirichlet laplacian eigenvalue problem

$$
\begin{aligned}
-\Delta u & =\lambda u \quad x \in \Omega \\
u & =0 \quad x \in \partial \Omega
\end{aligned}
$$

has a sequence $\left(w_{j}, \lambda_{j}\right) \in W_{0}^{1,2} \times(0,+\infty)$ of eigenfunctions and eigenvalues such that $0<\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{j} \rightarrow+\infty$, and w_{j} form a complete ON basis of L^{2}, but also a complete OG basis of $W_{0}^{1,2}$, where the latter space is equipped with the scalar product $((u, v))=\int_{\Omega} \nabla u \cdot \nabla v$. The above problem in the weak form can thus be written as

$$
((u, v))=\lambda(u, v) \quad \forall v \in W_{0}^{1,2}
$$

By P_{n} we will denote a projection of L^{2} onto the finite-dimensional space $\operatorname{span}\left\{w_{1}, \ldots, w_{n}\right\}$. Clearly $\left\|P_{n}\right\|=1$. But an important fact is that P_{n} is also an ON projection w.r.t. $W_{0}^{1,2}$ with the above scalar product $((\cdot, \cdot))$, and $\left\|P_{n}\right\|=1$ also in this space.
Theorem 2.3. [Existence of w.s.] Let $u_{0} \in L^{2}$ and $h(t) \in L^{2}\left(I ; W^{-1,2}\right)$ be given. Then there exists $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$ a weak solution to $(\mathrm{P} 1)-(\mathrm{P} 3)$ such that $u(0)=u_{0}$.
Lemma 2.4. [Chain rule for weak derivative.] Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth function with ψ^{\prime} and $\psi^{\prime \prime}$ bounded. Then:

1. If $u \in W_{0}^{1,2}$, then $\psi(u) \in W_{0}^{1,2}$, with $\nabla \psi(u)=\psi^{\prime}(u) \nabla u$ in the weak sense. Moreover, the operator $u \mapsto \psi(u)$ is continuous $W_{0}^{1,2} \rightarrow W_{0}^{1,2}$.
2. If $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$ with $\frac{d}{d t} u(t) \in L^{2}\left(I ; W^{-1,2}\right)$, then $t \mapsto \int_{\Omega} \psi(u(t)) d x$ is weakly differentiable with

$$
\frac{d}{d t} \int_{\Omega} \psi(u(t)) d x=\left\langle\frac{d}{d t} u(t), \psi^{\prime}(u(t))\right\rangle
$$

for a.e. $t \in I$.

Definition. If $v \in L^{2}$ or $W^{1,2}$, then $v \geq 0$ (resp. $v \leq 0$) means: $v(x) \geq 0$ (resp. $v(x) \leq 0$) for a.e. $x \in \Omega$. If $f \in W^{-1,2}$, then $f \geq 0$ (resp. $f \leq 0$) means: $\langle f, v\rangle \geq 0$ (resp. $\langle f, v\rangle \leq 0$) for all $v \in W_{0}^{1,2}$ such that $v \geq 0$.
Theorem 2.4. [Maximum principle for w.s.] Let $u(t)$ be a weak solution. Let $f(\cdot) \geq 0, u(0) \leq 0$ and $h(t) \leq 0$ for a.e. $t \in I$. Then $u(t) \leq 0$ for a.e. $t \in I$.

Remarks. Minimum principle: if $f(\cdot) \leq 0, u(0) \geq 0$ and $h(t) \geq 0$ for a.e. $t \in I$, then $u(t) \geq 0$ for a.e. $t \in I$. Generalization: if $u(0) \leq M$ and $u \leq M$ on $\partial \Omega$ (in the sense of traces), and $f(\cdot) \geq 0, h(t) \leq 0$, then $u(t) \leq M$ for a.e. $t \in I$.
Recall. Regularity of the laplace equation: if $u \in W_{0}^{1,2}$ is a weak solution to $-\Delta u=\iota h$, where $h \in L^{2}$ and we moreover have $\partial \Omega \in C^{2}$, then $u \in W^{2,2}$ and there holds $\|u\|_{2,2} \leq c_{R}\|f\|_{2}$, where c_{R} only depends on Ω.
Theorem 2.5. [Strong solution.] Let $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$ be a weak solution of the heat equation

$$
\partial_{t} u-\Delta u+f(u)=h(t, x)
$$

and let $u_{0} \in W_{0}^{1,2}, h(t) \in L^{2}\left(I ; L^{2}\right)$ and $\partial \Omega \in C^{2}$. Then

$$
\begin{aligned}
u(t) & \in L^{\infty}\left(I ; W_{0}^{1,2}\right) \cap L^{2}\left(I ; W^{2,2}\right) \\
\frac{d}{d t} u(t) & \in L^{2}\left(I ; L^{2}\right)
\end{aligned}
$$

Remarks. The equation now holds a.e. in $I \times \Omega$. Note that $u(t) \in L^{2}\left(I ; W^{1,2}\right)$ and $\frac{d}{d t} u(t) \in L^{2}\left(I ; L^{2}\right)$ implies (in fact is equivalent to) $u(t, x) \in W^{1,2}(I \times \Omega)$.
Note also that even if $u(0) \in L^{2}$ only, we have $u(t) \in W_{0}^{1,2}$ for a.e. $t \in I$, hence the regularity of Theorem 2.5 holds at least locally, i.e. on $[\tau, T]$ for arbitrary $\tau>0$. This is a general principle: parabolic equations regularize in time.
The regularity can be further improved - as far as the data permit.

3. Hyperbolic 2nd order equation

In this chapter we will consider a semilinear second order hyperbolic equation

$$
\begin{align*}
\partial_{t t} u-\Delta u+\alpha u_{t}+f(u) & =h(t, x) \quad(t, x) \in I \times \Omega \tag{H1}\\
u & =u_{0} \quad t=0, x \in \Omega \tag{H2}\\
\partial_{t} u & =u_{1} \quad t=0, x \in \Omega \tag{H3}\\
u & =0 \quad t \in I, x \in \partial \Omega \tag{H4}
\end{align*}
$$

Again, $u=u(t, x)$ is the unknown solution. The right-hand side $h=h(t, x)$ and initial conditions u_{0}, u_{1} in (H2), (H3) are given. Dirichlet boundary condition is imposed in (H4).

Assumptions. We will assume that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with Lipschitz boundary, $f(z): \mathbb{R} \rightarrow$ \mathbb{R} is globally Lipschitz, and $\alpha \in \mathbb{R}$. Concerning the data, we assume $h(t) \in L^{2}\left(I ; L^{2}\right), u_{0} \in W_{0}^{1,2}$ and $u_{1} \in L^{2}$.
Definition. Function $u(t) \in L^{\infty}\left(I ; W_{0}^{1,2}\right)$ with $\frac{d}{d t} u(t) \in L^{\infty}\left(I ; L^{2}\right)$ is called weak solution to (H1), provided that

$$
\frac{d^{2}}{d t^{2}}(u(t), v)+(\nabla u(t), \nabla v)+\alpha\left(\frac{d}{d t} u(t), v\right)+(f(u(t)), v)=(h(t), v)
$$

in the sense of distributions on $(0, T)$, for any $v \in W_{0}^{1,2}$ fixed.
Remarks. Expanding the definition, weak solution means that

$$
\begin{gathered}
\int_{I}(u(t), w) \varphi^{\prime \prime}(t) d t+\int_{I}(\nabla u(t), \nabla w) \varphi(t) d t+\alpha \int_{I}\left(\frac{d}{d t} u(t), w\right) \varphi(t) d t \\
+\int_{I}(f(u(t)), w) \varphi(t) d t=\int_{I}(h(t), w) \varphi(t) d t
\end{gathered}
$$

for any $v \in W_{0}^{1,2}, \varphi(t) \in \mathcal{D}(I)$. On the other hand, if define $A: W_{0}^{1,2} \rightarrow W^{-1,2}$ as $\langle A u, v\rangle=(\nabla u, \nabla v)$ for $v \in W_{0}^{1,2}$ (so essentially $A=-\Delta$ weakly), then the weak formulation can be written more succintly as

$$
\frac{d^{2}}{d t^{2}} \iota u(t)+A u(t)+\alpha \iota \frac{d}{d t} u(t)+\iota f(u(t))=\iota h(t)
$$

as equation in $W^{-1,2}$. Or equivalently, denoting $v(t)=\frac{d}{d t} u(t)$

$$
\frac{d}{d t} \iota v(t)+A u(t)+\alpha \iota v(t)+\iota f(u(t))=\iota h(t)
$$

It can be shown that if $u(t)$ is weak solution, then $u(t): I \rightarrow W_{0}^{1,2}$ and $\frac{d}{d t} u(t): I \rightarrow L^{2}$ are weakly continuous (in the sense of representative). Hence the initial conditions (H2), (H3) are meaningful.
Theorem 3.1. Weak solution is unique.
Notation. The energy is defined

$$
E[u]=\frac{1}{2}\left(\left\|\frac{d}{d t} u\right\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right)
$$

Multiplying (H1) with $\partial_{t} u$ and integrating over Ω, the first two terms give $\frac{d}{d t} E[u]$; unfortunately, this is not justified in the class of weak solutions. We however have the following:
Lemma 3.1. Let $u(t) \in L^{2}\left(I ; W_{0}^{1,2}\right)$ with $\frac{d}{d t} u(t) \in L^{2}\left(I ; L^{2}\right)$ be such that $\frac{d}{d t} \iota u(t)+A u(t)=\iota H(t)$ weakly in I, where $H(t) \in L^{2}\left(I ; L^{2}\right)$. Then $t \mapsto E[u(t)]$ is weakly differentiable and

$$
\frac{d}{d t} E[u(t)]=\left(H(t), \frac{d}{d t} u(t)\right)
$$

for a.e. $t \in I$.
Theorem 3.2. Let $h(t) \in L^{2}\left(I ; L^{2}\right), u_{0} \in W_{0}^{1,2}$ and $u_{1} \in L^{2}$ be given. Then there exists $u(t) \in$ $L^{\infty}\left(I ; W_{0}^{1,2}\right)$ with $\frac{d}{d t} u(t) \in L^{\infty}\left(I ; L^{2}\right)$ a weak solution to (H1)-(H4) such that $u(0)=u_{0}, \frac{d}{d t} u(0)=u_{1}$ in the sense of representatives.
Theorem 3.3. [Strong solution.] Let $u(t) \in L^{\infty}\left(I ; W_{0}^{1,2}\right)$ with $\frac{d}{d t} u(t) \in L^{\infty}\left(I ; L^{2}\right)$ be a weak solution to the wave equation

$$
\frac{d^{2}}{d t^{2}} u-\Delta u+\alpha \frac{d}{d t} u=h(t)
$$

Let the data satisfy $h(t) \in W^{1,2}\left(I ; L^{2}\right), u_{1} \in W_{0}^{1,2}, u_{0} \in W_{0}^{1,2}, h(0)+\Delta u_{0} \in L^{2}$ and let $\partial \Omega$ be C^{2}. Then

$$
\begin{aligned}
u(t) & \in L^{\infty}\left(I ; W^{2,2}\right), \quad \frac{d}{d t} u(t) \in L^{\infty}\left(I ; W_{0}^{1,2}\right) \\
\frac{d^{2}}{d t^{2}} u(t) & \in L^{\infty}\left(I ; L^{2}\right)
\end{aligned}
$$

Remark. For parabolic equation, we have seen that any weak solution immediately becomes more regular (i.e. strong) even if $u(0) \in L^{2}$ only.
For the wave equation this cannot be true: note that if we reverse time, only the sign of α is changed.
Notation. For any weak solution $u=u(t, x)$ we define

$$
e(t, x)=\frac{1}{2}\left|\frac{d}{d t} u(t, x)\right|^{2}+\frac{1}{2}|\nabla u(t, x)|^{2}
$$

Note that $e(t, x) \in L^{1}(I \times \Omega)$ at least, and is related to the energy via

$$
E[u(t)]=\int_{\Omega} e(t, x) d x
$$

We will also write $B\left(x_{0}, r\right)=\left\{x \in \mathbb{R}^{n} ;\left|x-x_{0}\right| \leq r\right\}$.
Theorem 3.4. [Wave principle.] Let $u(t)$ be weak solution to the damped wave equation

$$
\frac{d^{2}}{d t^{2}} u-\Delta u+\alpha \frac{d}{d t} u=0
$$

where $\alpha \geq 0$. Let $x_{0} \in \Omega, \tau \in I$ be such that $B\left(x_{0}, \tau\right) \subset \Omega$. Then

$$
\int_{B\left(x_{0}, \tau-t\right)} e(t, x) d x \leq \int_{B\left(x_{0}, \tau\right)} e(0, x) d x
$$

for all $t \in[0, \tau]$.
Remark. The above theorem uses a formula, which holds for any smooth $e=e(t, x)$:

$$
\frac{d}{d t} \int_{B\left(x_{0}, \tau-t\right)} e(t, x) d x=\int_{B\left(x_{0}, \tau-t\right)} \partial_{t} e(t, x) d x-\int_{\partial B\left(x_{0}, \tau-t\right)} e(t, x) d S(x)
$$

Corollary. [Finite speed of propagation.] Let $u(t)$ be weak solution to damped wave equation; let $u(0)=0, \frac{d}{d t} u(0)=0$ in some $B\left(x_{0}, \tau\right) \subset \Omega$. Then $u \equiv 0$ a.e. in the cone

$$
\left\{(t, x) ;\left|x-x_{0}\right| \leq \tau-t\right\}
$$

4. Theory of semigroups

4.1. Homogeneous problem

Our first aim in this chapter is to develop a theory of abstract equations of the form

$$
\begin{equation*}
\frac{d}{d t} x=A x \tag{4.1}
\end{equation*}
$$

where $x(t): I \rightarrow X$ and $A: X \rightarrow X$ is linear, but not necessarily bounded operator. In other words, we will want to define $e^{t A}$ in some generalized sense.
Notation. In this chapter X is a Banach space with norm $\|\cdot\|, \mathcal{L}(X)$ is the space of linear continuous operators $L: X \rightarrow X$ with the usual norm. By unbounded operator we mean a couple $(A, \mathcal{D}(A))$, where $\mathcal{D}(A) \subset X$ is a linear subspace and $A: \mathcal{D}(A) \rightarrow X$ is linear (but not necessarily bounded) operator.

Definition. Function $S(t):[0, \infty) \rightarrow \mathcal{L}(X)$ is called a semigroup of operators in X, if
(i) $S(0)=I$
(ii) $S(t) S(s)=S(t+s)$ for all $t, s \geq 0$

If moreover
(iii) $S(t) x \rightarrow x$ as $t \rightarrow 0+$ for any $x \in X$ fixed, we say that $S(t)$ form a c_{0}-semigroup in X.

Remarks. Replacing (iii) by a stronger condition (iii)' $S(t) \rightarrow I$ in $\mathcal{L}(X)$ for $t \rightarrow 0+$, we obtain the so-called uniformly continuous semigroup. In such a case one already has $S(t)=e^{t A}$ for some $A \in \mathcal{L}(X)$.

Lemma 4.1. Let $S(t)$ be a c_{0}-semigroup in X. Then

1. $\exists M \geq 1, \omega \geq 0$ such that $\|S(t)\|_{\mathcal{L}(X)} \leq M e^{\omega t}$ for all $t \geq 0$
2. the map $t \mapsto S(t) x$ is continuous $[0, \infty) \rightarrow X$ for any $x \in X$ fixed

Definition. By a generator of semigroup $S(t)$ we mean an unbounded operator $(A, \mathcal{D}(A))$, defined by

$$
A x=\lim _{h \rightarrow 0+} \frac{1}{h}(S(h) x-x) \quad \text { for } x \in \mathcal{D}(A)
$$

where we set

$$
\mathcal{D}(A)=\left\{x \in X ; \lim _{h \rightarrow 0+} \frac{1}{h}(S(h) x-x) \text { exists in } X\right\}
$$

Remark. It is easy to verify that in the above definition $\mathcal{D}(A) \subset X$ is a linear subspace, and A : $\mathcal{D}(A) \rightarrow X$ is a linear operator.
Theorem 4.1. [Basic properties of generator.] Let $S(t)$ be a c_{0}-semigroup in X, let $(A, \mathcal{D}(A))$ be its generator. Then

1. $x \in \mathcal{D}(A) \Longrightarrow S(t) x \in \mathcal{D}(A)$ for all $t \geq 0$
2. $x \in \mathcal{D}(A) \Longrightarrow A S(t) x=S(t) A x=\frac{d}{d t} S(t) x$ for any $t \geq 0$ (derivative at $t=0$ is only from the right)
3. for any $x \in X$ and $t \geq 0$, one has $\int_{0}^{t} S(s) x d s \in \mathcal{D}(A)$ and $A\left(\int_{0}^{t} S(s) x d s\right)=S(t) x-x$

Remark. The above theorem says that $\mathcal{D}(A)$ is invariant w.r.t. $S(t)$, that A and $S(t)$ commute on $\mathcal{D}(A)$ and most importantly, if $x_{0} \in \mathcal{D}(A)$, then $x(t)=S(t) x_{0}$ is a classical solution to (4.1) with initial condition $x(0)=x_{0}$.

Definition. We say that the unbounded operator $(A, \mathcal{D}(A))$ is closed, if $u_{n} \in \mathcal{D}(A), u_{n} \rightarrow u$ and $A u_{n} \rightarrow v$ imply $u \in \mathcal{D}(A)$ and $A u=v$.

Remark. It can be shown that $(A, \mathcal{D}(A))$ is closed if and only if $\mathcal{D}(A)$ is complete (i.e. Banach) space w.r.t. the norm $\|u\|+\|A u\|$. In this situation $A: \mathcal{D}(A) \rightarrow X$ is continuous.

Theorem 4.2. Let $(A, \mathcal{D}(A))$ be a generator of some c_{0}-semigroup in X. Then $\mathcal{D}(A)$ is dense in X and $(A, \mathcal{D}(A))$ is closed.

Lemma 4.2. [Unicity of semigroup.] Let $S(t), \tilde{S}(t)$ be c_{0}-semigroups that have the same generator. Then $S(t)=\tilde{S}(t)$ for all $t \geq 0$.
Definition. Let $(A, \mathcal{D}(A))$ be an unbounded operator in X. We define

- the resolvent set $\rho(A)=\{\lambda \in \mathbb{C}, \lambda I-A: \mathcal{D}(A) \rightarrow X$ is one-to-one $\}$
- the resolvent $R(\lambda, A)=(\lambda I-A)_{-1}: X \rightarrow \mathcal{D}(A)$, defined if $\lambda \in \rho(A)$
- the spectrum $\sigma(A)=\mathbb{C} \backslash \rho(A)$

Remarks. The following are easy to show:

- if $(A, \mathcal{D}(A))$ is closed, then $R(\lambda, A)$, once it is defined, must be already continuous, i.e. $R(\lambda, A) \in$ $\mathcal{L}(X) ;$ moreover $\rho(A) \subset \mathbb{C}$ is open, and the mapping $\lambda \mapsto R(\lambda, A)$ is analytic $\mathbb{C} \rightarrow \mathcal{L}(X)$
- one has the resolvent indentity:

$$
R(\lambda, A)-R(\mu, A)=(\mu-\lambda) R(\lambda, A) R(\mu, A), \quad \text { for any } \lambda, \mu \in \rho(A)
$$

- one also has

$$
\begin{array}{ll}
A R(\lambda, A) x=\lambda R(\lambda, A) x-x, & x \in X, \\
R(\lambda, A) A x=\lambda R(\lambda, A) x-x, & x \in \mathcal{D}(A) ;
\end{array}
$$

in particular

$$
A R(\lambda, A)=R(\lambda, A) A \quad \text { on } \mathcal{D}(A)
$$

Lemma 4.3. Let $(A, \mathcal{D}(A))$ be a generator of c_{0}-semigroup $S(t)$ on X; and let $\|S(t)\|_{\mathcal{L}(X)} \leq M e^{\omega t}$ for all $t \geq 0$. Then for every $\lambda>\omega$ one has $\lambda \in \rho(A)$, the resolvent can be computed as

$$
R(\lambda, A) x=\int_{0}^{\infty} e^{-\lambda t} S(t) x d t
$$

and moreover, $\|R(\lambda, A)\|_{\mathcal{L}(X)} \leq \frac{M}{\lambda-\omega}$.
Remark. If $S(t)$ is a c_{0}-semigroup with generator $(A, \mathcal{D}(A))$, then $\tilde{S}(t)=e^{-\omega t} S(t)$ is a c_{0}-semigroup with generator $\tilde{A}=A-\omega I$, and $\mathcal{D}(\tilde{A})=\mathcal{D}(A)$. Clearly also $\lambda \in \rho(\tilde{A})$ if and only if $\lambda+\omega \in \rho(A)$, and $R(\lambda, \tilde{A})=R(\lambda+\omega, A)$.
Definition. We call $S(t)$ a contraction c_{0}-semigroup, provided that $\|S(t)\|_{\mathcal{L}(X)} \leq 1$ for all $t \geq 0$.
Theorem 4.3. [Hille-Yosida.] Let $(A, \mathcal{D}(A))$ be an unbounded operator on X. Then the following are equivalent:

1. there exists a c_{0}-semigroup $S(t)$ of contractions on X such that $(A, \mathcal{D}(A))$ is its generator
2. $(A, \mathcal{D}(A))$ is closed, $\mathcal{D}(A)$ is dense in X and for every $\lambda>0$ one has $\lambda \in \rho(A),\|R(\lambda, A)\|_{\mathcal{L}(X)} \leq \frac{1}{\lambda}$

Remarks. The proof $2 \Longrightarrow 1$ uses the so-called Yosida approximation $A_{n} x \rightarrow A x$, where $A_{n}=$ $n^{2} R(n, A)-n I$ are bounded. Other possible ,,exponential formula" reads

$$
S(t) x=\lim _{n \rightarrow \infty}\left(I-\frac{t A}{n}\right)^{-n} x
$$

where $\left(I-\frac{t A}{n}\right)^{-1}=\frac{n}{t} R\left(\frac{n}{t}, A\right)$. Cf. the well-known formula $e^{a}=\lim _{n \rightarrow \infty}(1-a / n)^{-n}$.
A general version of Hille-Yosida theorem says: $(A, \mathcal{D}(A))$ is a generator of c_{0}-semigroup satisfying $\|S(t)\|_{\mathcal{L}(X)} \leq M e^{t \omega}$, if and only if $(A, \mathcal{D}(A))$ is closed, $\mathcal{D}(A)$ is dense in X and for every $\lambda>\omega$ one has $\lambda \in \rho(A)$ and $\|R(\lambda, A)\|_{\mathcal{L}(X)} \leq \frac{M}{\lambda-\omega}$.
A somewhat related is the Lumer-Phillips theorem: $(A, \mathcal{D}(A))$ is a generator of c_{0}-semigroup of contractions, if and only if it is closed, densely defined, and for every $\lambda>0$ one has $\|\lambda x-A x\|_{X} \geq \lambda\|x\|_{X}$, $x \in \mathcal{D}(A)$ and moreover, $\lambda_{0} I-A: \mathcal{D}(A) \rightarrow X$ is onto for some $\lambda_{0}>0$.

We will now consider a general (nonhomogeneous) Cauchy problem

$$
\begin{equation*}
\frac{d}{d t} u=A u+f(t), \quad u(0)=u_{0} \tag{4.2}
\end{equation*}
$$

where $u_{0} \in X$ and $f(t): I \rightarrow X$ are given, $I=[0, T]$. We will assume that $(A, \mathcal{D}(A))$ is an unbounded operator, which generates a c_{0}-semigroup $S(t)$, and that $f(t) \in L^{1}(I ; X)$ at least.
Definition. Function $u(t)$ is called classical solution to (4.2), if $u(t) \in C^{1}(I ; X) \cap C(I ; \mathcal{D}(A))$, and (4.2) holds for every $t \in I$.
Function $u(t)$ is called strong solution to (4.2), provided that $u(t) \in W^{1,1}(I ; X) \cap L^{1}(I ; \mathcal{D}(A))$ and (4.2) holds for a.e. $t \in I$.

Remarks. Classical implies strong, and strong (in view of Lemma 1.3) is equivalent to

$$
u(t)=u_{0}+\int_{0}^{t} A u(s)+f(s) d s
$$

for a.e. $t \in I$, where the right-hand side is the absolutely continuous representative of $u(t)$.
Note that $u(t) \in C(I ; \mathcal{D}(A))$ (where $\mathcal{D}(A)$ is considered with the graph norm) is equivalent to: $u(t) \in$ $C(I ; X), u(t) \in \mathcal{D}(A)$ for every $t \in I$ and moreover, $t \mapsto A u(t)$ is continuous $I \rightarrow X$.
Analogous assertion is concerning integrability is:
Lemma 4.4. [Hille's theorem.] Let $(A, \mathcal{D}(A))$ be closed operator. Then $u(t) \in L^{1}(I ; \mathcal{D}(A))$ if and only if $u(t) \in L^{1}(I ; X), u(t) \in \mathcal{D}(A)$ for a.e. $t \in I$ and $A u(t) \in L^{1}(I ; X)$.
In this situation one also has $\int_{I} u(t) d t \in \mathcal{D}(A)$ and

$$
A\left(\int_{I} u(t) d t\right)=\int_{I} A u(t) d t
$$

Definition. Function $u(t): I \rightarrow X$ is called mild solution to (4.2), provided that

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) f(s) d s, \quad t \in I
$$

Remarks. Recalling that $S(t)$ is a semigroup generated by A, hence,,$S(t)=e^{t A}$ ", the definition is motivated by the ,,variation of constants" formula. The integral is finite in fact, $u(t) \in C(I ; X)$, see lemma below.
Note that trivially, one has existence and uniqueness of mild solution.
Lemma 4.5. [Abstract convolution.] Let $S(t)$ be a c_{0}-semigroup on X, let $v(t)=\int_{0}^{t} S(t-s) f(s) d s$, $t \in I$. Then

1. $f(t) \in L^{1}(I ; X) \Longrightarrow v(t) \in C(I ; X)$
2. $f(t) \in C^{0,1}(I ; X) \Longrightarrow v(t) \in C^{0,1}(I ; X)$
3. $f(t) \in C^{1}(I ; X) \Longrightarrow v(t) \in C^{1}(I ; X)$, and $v^{\prime}(t)=S(t) f(0)+\int_{0}^{t} S(t-s) f^{\prime}(s) d s, t \in X$.

Lemma 4.6. Function $u(t)$ is mild solution to (4.2), if and only if $u(t) \in C(I ; X)$, for every $t \in I$ one has $\int_{0}^{t} u(s) d s \in \mathcal{D}(A)$ and

$$
u(t)=u_{0}+A\left(\int_{0}^{t} u(s) d s\right)+\int_{0}^{t} f(s) d s \quad \forall t \in I
$$

Corollary. Strong solution is also mild. Classical and strong solutions, whenever they exist, are unique. Remark. Mild solution, in general, is not strong: assume that $x \in X$ is such that $S(t) x \notin \mathcal{D}(A)$ for any $t \geq 0$. Then $u(t)=t S(t) x$ is mild solution of (4.2) with $f(t)=S(t) x, u_{0}=0$, but $u(t) \notin \mathcal{D}(A)$ for any $t>0$.
However, every mild solution is a uniform limit of classical solutions. For $h>0$, we set $u_{h}(t)=$ $1 / h \int_{t}^{t+h} u(s) d s$ and verify (with help of Lemma 4.6.) that $u_{h}(t)$ is classical solution of (4.2) with initial condition $u_{h}(0) \in \mathcal{D}(A)$, and right-hand side $f_{h}(t)$. Clearly $u_{h}(t) \rightrightarrows u(t)$ thanks to properties of convolution.

Theorem 4.4. [Regularity of mild solution.]

1. Let $u_{0} \in \mathcal{D}(A)$ and $f(t) \in C^{1}(I ; X)$. Then mild solution is classical.
2. Let $u_{0} \in \mathcal{D}(A)$ and $f(t) \in C^{0,1}(I ; X)$; let moreover X be reflexive. Then mild solution is strong.

[^0]: ${ }^{1}$ Theorems marked with \star were not proven in this class.

