for the Hausdorff semidistance between A and B. Note that if B is closed then $\operatorname{dist}(A, B)=0$ implies that $A \subseteq B$.

Theorem 1.5 Let $I_{2}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{2} \subset \mathbb{R}^{2}$. Then $\operatorname{dim}\left(I_{2}\right) \geq 2$.
Proof We want to show that any covering α of I_{2} with sufficiently small mesh size contains at least three sets with nonempty intersection. To this end, take a covering α with mesh size <1 so that no element of the covering contains points of opposite faces.

The first step is to construct a refinement $\tilde{\alpha}$ of α consisting of closed, rather than open, sets. To do this, observe that every $x \in I_{2}$ is contained in some $U_{x} \in \alpha$, and we can find an open set V_{x} such that $x \in V_{x} \subset \bar{V}_{x} \subset U_{x}$. Since I_{2} is compact and $\left\{V_{x}: x \in I_{2}\right\}$ is an open cover of I_{2}, there is a finite subcover $\left\{V_{x_{j}}\right\}$. We take $\tilde{\alpha}$ to be the collection of all the closed sets $\left\{\bar{V}_{x_{j}}\right\}$. By construction this is a refinement of α consisting of closed sets.

We now show that $\tilde{\alpha}$ contains at least three sets with nonempty intersection, from which it is immediate (since $\tilde{\alpha}$ is a refinement of α) that α contains at least three sets with nonempty intersection.

Let Γ_{1} denote the side of I_{2} with $x=-\frac{1}{2}, \Gamma_{1}^{\prime}$ the side with $x=\frac{1}{2}, \Gamma_{2}$ the side with $y=-\frac{1}{2}$, and Γ_{2}^{\prime} the side with $y=\frac{1}{2}$. Let L_{1} denote the union of those elements of $\tilde{\alpha}$ that intersect $\Gamma_{1} ; L_{2}$ the union of those elements of $\tilde{\alpha}$ that are not in L_{1} and intersect Γ_{2}; and let L_{3} be the union of all the other elements of $\tilde{\alpha}$ (those that intersect neither Γ_{1} nor Γ_{2}). See Figure 1.1(a).

If we define $K_{1}=L_{1} \cap L_{3}$ then K_{1} separates Γ_{1} and Γ_{1}^{\prime} in I_{2}, i.e. there exist open sets U_{1} and U_{1}^{\prime} such

$$
I_{2} \backslash K_{1}=U_{1} \cup U_{1}^{\prime}, \quad U_{1} \cap U_{1}^{\prime}=\emptyset
$$

and $\Gamma_{1} \subset U_{1}, \Gamma_{1}^{\prime} \subset U_{1}^{\prime}$. The set $K_{2}^{\prime}=L_{1} \cap L_{2} \cap L_{3}$ separates $\Gamma_{2} \cap K_{1}$ from $\Gamma_{2}^{\prime} \cap K_{1}$ in K_{1}. One can then find a new closed set K_{2}, with $K_{2} \cap K_{1} \subseteq K_{2}^{\prime}$, that separates Γ_{2} and Γ_{2}^{\prime} in I_{2}, i.e. such that there exist open sets U_{2} and U_{2}^{\prime} such that

$$
I_{2} \backslash K_{2}=U_{2} \cup U_{2}^{\prime}, \quad U_{2} \cap U_{2}^{\prime}=\emptyset
$$

and $\Gamma_{2} \subset U_{2}, \Gamma_{2}^{\prime} \subset U_{2}^{\prime}$. These constructions are illustrated in Figure 1.1(b). (If the 'proof by diagram' of this last step is unconvincing, see IV. 3 A) in Hurewicz \& Wallman (1941), or Exercise 1.3.)

Now for each $x \in I_{2}$, let $v(x)$ be the 2 -vector with components

$$
v_{i}(x)= \begin{cases}\operatorname{dist}\left(x, K_{i}\right) & x \in U_{i} \\ 0 & x \in K_{i} \\ -\operatorname{dist}\left(x, K_{i}\right) & x \in U_{i}^{\prime}\end{cases}
$$

Figure 1.1 (a) A covering of I_{2}, divided into sets L_{1} (lightly shaded), L_{2} (more heavily shaded), and L_{3} (not shaded). (b) K_{1} (lightly shaded) separates Γ_{1} and Γ_{1}^{\prime} in $I_{2} ; K_{2}^{\prime}$ (a subset of K_{1}, shaded more heavily) separates $K_{1} \cap \Gamma_{2}$ and $K_{1} \cap \Gamma_{2}^{\prime}$ in $K_{1} ; K_{2}$ (the dark line) separates Γ_{2} and Γ_{2}^{\prime} in I_{2}, with $K_{2} \cap K_{1} \subseteq K_{2}^{\prime}$.
and set $f(x)=x+v(x)$; note that $f(x) \in I_{2}$, and that f is continuous. It follows from the Brouwer Fixed Point Theorem (Theorem 1.4) that f has a fixed point, i.e. there exists an $x_{0} \in I_{2}$ such that $f\left(x_{0}\right)=x_{0}$. In particular, this implies that $\operatorname{dist}\left(x_{0}, K_{1}\right)=\operatorname{dist}\left(x_{0}, K_{2}\right)=0$, i.e. that $K_{1} \cap K_{2} \subset K_{2}^{\prime}=$ $L_{1} \cap L_{2} \cap L_{3}$ is nonempty. Since each of the original elements of $\tilde{\alpha}$ is contained in only one of the $L_{j} \mathrm{~s}$, there are three elements of $\tilde{\alpha}$ that contain a common point.

1.3 Embedding sets with finite covering dimension

We now prove the fundamental embedding result that any space with covering dimension n can be topologically embedded into $\mathbb{R}^{2 n+1}$; note that this characterises sets of finite covering dimension as homeomorphic images of subsets of finite-dimensional Euclidean spaces. The embedding result in the compact case (which we treat here) is due to Menger (1926) and Nöbeling (1931); we follow the presentation of Hurewicz \& Wallman (1941, Theorem V.2) and Munkres (2000, Theorem 50.5). A similar result is possible in the general (non compact) case, see Theorem V. 3 in Hurewicz \& Wallman (1941).

The proof uses the Baire Category Theorem, which we state here for convenience. For a proof see Munkres (2000, Theorem 48.2), for example.

