
1.2 The covering dimension of In 11

for the Hausdorff semidistance between A and B. Note that if B is closed then
dist(A,B) = 0 implies that A ⊆ B.

Theorem 1.5 Let I2 = [− 1
2 , 1

2 ]2 ⊂ R
2. Then dim(I2) ≥ 2.

Proof We want to show that any covering α of I2 with sufficiently small mesh
size contains at least three sets with nonempty intersection. To this end, take
a covering α with mesh size < 1 so that no element of the covering contains
points of opposite faces.

The first step is to construct a refinement α̃ of α consisting of closed, rather
than open, sets. To do this, observe that every x ∈ I2 is contained in some
Ux ∈ α, and we can find an open set Vx such that x ∈ Vx ⊂ V̄x ⊂ Ux . Since I2

is compact and {Vx : x ∈ I2} is an open cover of I2, there is a finite subcover
{Vxj

}. We take α̃ to be the collection of all the closed sets {V̄xj
}. By construction

this is a refinement of α consisting of closed sets.
We now show that α̃ contains at least three sets with nonempty intersection,

from which it is immediate (since α̃ is a refinement of α) that α contains at
least three sets with nonempty intersection.

Let �1 denote the side of I2 with x = − 1
2 , �′

1 the side with x = 1
2 , �2 the

side with y = − 1
2 , and �′

2 the side with y = 1
2 . Let L1 denote the union of

those elements of α̃ that intersect �1; L2 the union of those elements of α̃ that
are not in L1 and intersect �2; and let L3 be the union of all the other elements
of α̃ (those that intersect neither �1 nor �2). See Figure 1.1(a).

If we define K1 = L1 ∩ L3 then K1 separates �1 and �′
1 in I2, i.e. there exist

open sets U1 and U ′
1 such

I2 \ K1 = U1 ∪ U ′
1, U1 ∩ U ′

1 = ∅
and �1 ⊂ U1, �′

1 ⊂ U ′
1. The set K ′

2 = L1 ∩ L2 ∩ L3 separates �2 ∩ K1 from
�′

2 ∩ K1 in K1. One can then find a new closed set K2, with K2 ∩ K1 ⊆ K ′
2,

that separates �2 and �′
2 in I2, i.e. such that there exist open sets U2 and U ′

2

such that

I2 \ K2 = U2 ∪ U ′
2, U2 ∩ U ′

2 = ∅
and �2 ⊂ U2, �′

2 ⊂ U ′
2. These constructions are illustrated in Figure 1.1(b). (If

the ‘proof by diagram’ of this last step is unconvincing, see IV.3 A) in Hurewicz
& Wallman (1941), or Exercise 1.3.)

Now for each x ∈ I2, let v(x) be the 2-vector with components

vi(x) =

⎧⎪⎪⎨
⎪⎪⎩

dist(x,Ki) x ∈ Ui,

0 x ∈ Ki,

−dist(x,Ki) x ∈ U ′
i ,
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Figure 1.1 (a) A covering of I2, divided into sets L1 (lightly shaded), L2 (more
heavily shaded), and L3 (not shaded). (b) K1 (lightly shaded) separates �1 and �′

1
in I2; K ′

2 (a subset of K1, shaded more heavily) separates K1 ∩ �2 and K1 ∩ �′
2 in

K1; K2 (the dark line) separates �2 and �′
2 in I2, with K2 ∩ K1 ⊆ K ′

2.

and set f (x) = x + v(x); note that f (x) ∈ I2, and that f is continuous. It
follows from the Brouwer Fixed Point Theorem (Theorem 1.4) that f has
a fixed point, i.e. there exists an x0 ∈ I2 such that f (x0) = x0. In particu-
lar, this implies that dist(x0,K1) = dist(x0,K2) = 0, i.e. that K1 ∩ K2 ⊂ K ′

2 =
L1 ∩ L2 ∩ L3 is nonempty. Since each of the original elements of α̃ is contained
in only one of the Lj s, there are three elements of α̃ that contain a common
point. �

1.3 Embedding sets with finite covering dimension

We now prove the fundamental embedding result that any space with covering
dimension n can be topologically embedded into R

2n+1; note that this charac-
terises sets of finite covering dimension as homeomorphic images of subsets of
finite-dimensional Euclidean spaces. The embedding result in the compact case
(which we treat here) is due to Menger (1926) and Nöbeling (1931); we follow
the presentation of Hurewicz & Wallman (1941, Theorem V.2) and Munkres
(2000, Theorem 50.5). A similar result is possible in the general (non compact)
case, see Theorem V.3 in Hurewicz & Wallman (1941).

The proof uses the Baire Category Theorem, which we state here for con-
venience. For a proof see Munkres (2000, Theorem 48.2), for example.


