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1

Infinite-dimensional dynamical systems

1.1 Semigroups

Our abstract ‘infinite-dimensional dynamical systems’ are semigroups de-
fined on Banach spaces; more usually Hilbert spaces.

Given a Banach space B, a semigroup on B is a family {S(t) : t ≥ 0} of
mappings from B into itself with the properties:

S(0) = idB (1.1)

S(t+ s) = S(t)S(s) = S(s)S(t) for all t, s ≥ 0 (1.2)

S(t)u0 is continuous in both t and u0. (1.3)

Despite the notation this semigroup need not be linear (and in all interesting
examples will be nonlinear).

Usually, our semigroups will be generated by the solutions of some partial
differential equation. If u(x, t) is the solution at time t corresponding to the
initial condition u(x, 0) = u0(x) for any u0(·) ∈ B, provided that u(·, t) ∈ B
we can define S(t) : B → B by

S(t)u0(·) = u(·, t).

To make the notation more manageable, we consistently suppress the de-
pendence on x, and so write u(t) = S(t)u0. After all, the x dependence is
implicit in the fact that u0 ∈ B (if B is a function space).

1



2 1 Infinite-dimensional dynamical systems

1.2 Examples

1.2.1 ODEs

If f : Rn → Rn is locally Lipschitz,

|f(x)− f(y)| ≤ L(R)|x− y| for all |x|, |y| ≤ R

then solutions of

ẋ = f(x) with x(0) = x0

exist locally on some time interval [0, T (|x0|)). Solutions exist for all time
provided that they do not blow up.

In this case we can take B = Rn and let S(t)x0 = x(t;x0), where x(t;x0)
is the solution of the equation at time t when the initial condition is x0.

1.2.2 Reaction-diffusion equations

Consider the following scalar reaction-diffusion equation on a smooth bounded
domain Ω ⊂ Rm,

ut −∆u = f(u),

subject to Dirichlet boundary conditions (u|∂Ω = 0). Recall that for func-
tions in H1

0 (Ω) (essentially ‘u ∈ H1(Ω) with u|∂Ω = 0’) we have the Poincaré
inequality

‖u‖ ≤ c‖∇u‖ for all u ∈ H1
0 (Ω),

which means in particular that ‖∇u‖ gives a norm on H1
0 (Ω) which is equiv-

alent to the standard H1 norm.

We impose the following conditions on f :

− k − α1|s|p ≤ f(s)s ≤ k − α2|s|p (1.4)

f ′(s) ≤ l, (1.5)

where α1, α2, k > 0 and p ≥ 2.

Under these conditions, the equations define a semigroup on L2(Ω). A for-
mal proof of existence and uniqueness of solutions would involve the method
of Galerkin approximations (the lower bound in (1.4) is important in en-
abling the technical steps of the Galerkin procedure to be justified), but at
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its heart is the following (‘formal’) estimate, showing that if u0 ∈ L2(Ω)
then u(t) ∈ L2(Ω) for any t > 0. Taking the inner product of the equation
with u and integrating over Ω we have

1
2

d
dt
‖u‖2 + ‖Du‖2 =

∫
Ω
f(u)u dx

≤
∫

Ω
k − α2|u|p dx.

Integrating both sides between 0 and t gives

1
2
‖u(t)‖2 +

∫ t

0
‖Du(s)‖2 ds+ α2

∫ t

0

∫
Ω
|u|p dxdt ≤ kt|Ω|+ 1

2
‖u(0)‖2,

showing that an initial condition in L2(Ω) leads to a solution in L∞(0, T ;L2)∩
L2(0, T ;H1

0 ) ∩ Lp((0, T ) × Ω) for any T > 0. Combined with estimates on
du/dt one can in fact show that u ∈ C0([0, T ];L2(Ω). These estimates form
the basis of an existence proof, but do not guarantee uniqueness.

We get uniqueness and continuous dependence on initial conditions from
the same argument: consider the difference of two solutions, u and v, with
initial conditions u0 and v0 respectively, so that

d
dt

(u− v)−∆(u− v) = f(u)− f(v).

Taking the inner product with u− v and integrating over Ω gives

1
2

d
dt
‖u− v‖2 + ‖D(u− v)‖2 =

∫
Ω
(f(u(x))− f(v(x)))(u(x)− v(x)) dx.

Now, if u(x) > v(x) then

(f(u(x))− f(v(x)))(u(x)− v(x)) =

(∫ u(x)

v(x)
f ′(s) ds

)
(u(x)− v(x))

≤ l|u(x)− v(x)|2,

with a similar argument giving the same bound if v(x) > u(x). So

1
2

d
dt
‖u− v‖2 + ‖D(u− v)‖2 ≤ l

∫
Ω
|u(x)− v(x)|2 dx,

from which it follows that
1
2

d
dt
‖u− v‖2 ≤ l‖u− v‖2

and so

‖u(t)− v(t)‖ ≤ elt‖u0 − v0‖.
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We can therefore use this equation to define a semigroup on L2(Ω).

With some further restrictions we could use the equation to define a semi-
group on H1

0 (Ω), e.g. take n = 1, 2, f(0) = 0, and |f ′(s)| ≤ C(1 + |s|γ) for
some γ ≥ 0. But although the analysis most naturally employed to obtain
a semigroup on L2(Ω) is more cumbersome than the contraction mapping
possibilities in H1

0 (Ω), the semigroup on L2(Ω) is easier to analyse.

1.2.3 Navier-Stokes equations

The Navier-Stokes equations:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = g and ∇ · u = 0.

We will take x ∈ Q = [0, L]d with d = 2, 3 with periodic boundary condi-
tions. The function u is the d-component velocity, u(x) = (u1(x), u2(x)) or
(u1(x), u2(x), u3(x)), p is the scalar pressure, and g is a body force.

Define

V = {C∞ functions u that are periodic on Q with ∇·u = 0 and
∫

Q
u = 0}

and let H and V be the closure of V in [L2(Q)]d and [H1(Q)]d respectively.
Heuristically, H and V are ‘functions in L2 or H1 that are divergence free’
(and have zero average on Q). From now on we drop the ·d in the notation
for Sobolev spaces of vector-valued functions on Q.

The assumption that our functions have zero average on Q gives us a
Poincaré inequality,

‖u‖ ≤ c‖Du‖ for all u ∈ Ḣ1(Q), (1.6)

where Ḣ1(Q) denotes H1 functions that are periodic on Q and have zero
average.

It is easy to give a formal proof of existence of weak solutions (initial
conditions in H, i.e. finite kinetic energy) in 2d and 3d. As before, we will
just give formal estimates showing that u0 ∈ L2 implies that u(t) ∈ L2 for
all t ≥ 0 (and some additional estimates too).
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Simply take the inner product with u to obtain

1
2

d
dt
‖u‖2−ν

∫
Q
(∂i∂iuj)uj dx+

∫
Q
[(ui∂i)uj ]uj dx+

∫
Q
(∂ip)ui dx =

∫
Q
fu dx.

Now, an integration by parts gives

−
∫

Q
(∂i∂iuj)uj dx =

∑
i,j

∫
Q
(∂iuj)2 dx := ‖Du‖2;

for the nonlinear term note that∫
Q
[(vi∂i)uj ]uj dx = −

∫
Q
[∂i(viuj)]uj dx = −

∫
Q
(∂ivi)|u|2−

∫
Q
[(vi∂i)uj ]uj dx,

which implies, since ∇ · v = ∂ivi = 0 that∫
Q
[(vi∂i)uj ]uj dx = −

∫
Q
[(vi∂i)uj ]uj dx,

i.e. that ∫
Q
[(v · ∇)u] · u dx = 0 (1.7)

and so the nonlinear term vanishes, as does the final term on the left-hand
side since ∫

Q
(∂ip)ui,dx = −

∫
Q
p(∂iui) dx = 0 (1.8)

since ∇ · u = 0.

So in fact we have

1
2

d
dt
‖u‖2 + ν‖Du‖2 = (f, u) ≤ ‖f‖‖u‖ ≤ ν

2c2
‖u‖2 +

c2‖f‖2

2ν
,

where c is the constant in (1.6), so that

d
dt
‖u‖2 + ν‖Du‖2 ≤ c2‖f‖2

ν
.

Integrating from 0 to t it follows that

‖u(t)‖2 + ν

∫ t

0
‖Du(s)‖2 ds ≤ ‖u0‖2 + c2t

‖f‖2

ν
.

So the solution satisfies u ∈ L∞(0, T ;H)∩L2(0, T ;V ). In the two-dimensional
case there are sufficiently nice bounds on du/dt to guarantee that in fact
u ∈ C0([0, T ];H).
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In 2d we can also obtain uniqueness (and continuous dependence) if we
use Ladyzhenskaya’s inequality

‖u‖L4 ≤ c‖u‖1/2‖Du‖1/2 (1.9)

to obtain an appropriate bound on the nonlinear term. If we use Hölder’s
inequality then∣∣∣∣∫

Q
[(u · ∇)v] · w dx

∣∣∣∣ =∑
i,j

∣∣∣∣∫
Q
[uj(∂jvi)wi dx

∣∣∣∣
≤
∑
i,j

‖uj‖L4‖∂jvi‖‖wi‖L4 ,

≤
∑
i,j

‖uj‖1/2‖Duj‖1/2‖∂jvi‖‖wi‖1/2‖Dwi‖1/2

using (1.9). Now use Hölder’s inequality again:

· · · ≤

∑
i,j

‖uj‖2‖Duj‖2

1/4∑
i,j

‖∂jvi‖2

1/2∑
i,j

‖wi‖2‖Dwi‖2

1/4

≤ ‖u‖1/2‖Du‖1/2‖Dv‖‖w‖1/2‖Dw‖1/2,

since if ak, bk ≥ 0,
∑

k akbk ≤ (
∑

k ak)(
∑

k bk). So∣∣∣∣∫
Q
[(u · ∇)v] · w dx

∣∣∣∣ ≤ c‖u‖1/2‖Du‖1/2‖Dv‖‖w‖1/2‖Dw‖1/2. (1.10)

If we consider w = u − v, the difference of two solutions u and v, then we
have

wt−ν∆w+(u·∇u)−(v·∇v)+∇(pu−pv) = wt−ν∆w+(u·∇w)+(w·∇)v+∇ψ = 0.

Taking the inner product with w and using both (1.7) and (1.8) we obtain

1
2

d
dt
‖w‖2 + ν‖Dw‖2 = −

∫
Q
(w · ∇v) · w dx

≤ ‖w‖‖Dw‖‖Dv‖

≤ ν‖Dw‖2 +
1
4ν
‖w‖2‖Dv‖2,

with the new inequality (1.10) used in the final line.

From this its follows that,

1
2

d
dt
‖w‖2 ≤ 1

4ν
‖Dv‖2‖w‖2,
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and integrating this between zero and t gives

‖u(t)− v(t)‖2 ≤ exp
(

1
2ν

∫ t

0
‖Dv(s)‖2 ds

)
‖u0 − v0‖2.

Since v ∈ L2(0, T ;H1), the integral expression on the right-hand side is
finite, which implies both continuous dependence on initial conditions and
uniqueness.

The three-dimensional version of (1.10) is∣∣∣∣∫
Q
[(u · ∇)v] · w dx

∣∣∣∣ ≤ c‖u‖1/4‖Du‖3/4‖Dv‖‖w‖1/4‖Dw‖3/4 (1.11)

which accounts for the fact that similar methods to do not suffice to prove
the uniqueness of weak solutions of the three-dimensional equations.

To show the existence of strong solutions in 2d, in the periodic case we
can make use of the useful orthogonality relation∫

Q
[(u · ∇)u] · [∆u] dx = 0 (1.12)

for u divergence-free. The proof of this is based on component-wise cancel-
lation and is tedious, not instructive, and does not work either for Dirichlet
boundary conditions in 2d, nor for periodic boundary conditions in 3d.

Given (1.12) we take the inner product of the equations with −∆u and
obtain

1
2

d
dt
‖Du‖2 + ν‖∆u‖2 = (f,∆u) ≤ 1

2ν
‖f‖2 +

ν

2
‖∆u‖2,

and so
d
dt
‖Du‖2 + ν‖∆u‖2 ≤ ‖f‖2

ν
.

An integration shows that

‖Du(t)‖2 +
∫ t

0
‖∆u(s)‖2 ds ≤ ‖Du0‖2 + t

‖f‖2

ν
.

Giving a solution in L∞(0, T ;V ) ∩ L2(0, T ;H2). Uniqueness follows in a
similar way to before, using further estimates on the nonlinear term.

These results also enable one to define a semigroup on V in this case.

In the 3d case strong solutions (which are unique in the class of weak
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solutions) are known to exist on some finite time interval [0, T ), where T
depends on ‖Du0‖. Given the topical interest of this problem, we remark
here that rather than

∫
[(u · ∇)u] ·∆u vanishing, we can only appeal to the

bound ∣∣∣∣∫ [(u · ∇)u] ·∆u dx
∣∣∣∣ ≤ c‖Du‖3/2‖∆u‖3/2.

Suppose for simplicity that f = 0. Then following the analysis above we
obtain

1
2

d
dt
‖Du‖2 + ν‖∆u‖2 ≤ c‖Du‖3/2‖∆u‖3/2.

Using Hölder’s inequality with p = 4 and q = 4/3 results in

d
dt
‖Du‖2 + ν‖∆u‖2 ≤ c2

ν3
‖Du‖6.

One can drop the ν‖∆u‖2 term and integrating the resulting differential
inequality to yield

‖Du(t)‖2 ≤ ‖Du0‖2√
1− ct‖Du0‖4/ν3

.

So one can only guarantee that ‖Du(t)‖ remains finite while ct‖Du0‖4 < ν3.



2

The global attractor I
Existence

If (B, S(t)) is an infinite-dimensional dynamical system, a set X ⊂ B is
said to be invariant if S(t)X = X for all t ≥ 0.

A set X ⊂ B is said to attract B ⊂ B if

dist(S(t)B,X) → 0 as t→∞,

where

dist(A,B) = sup
a∈A

inf
b∈B

|a− b|.

A set X ⊂ B is said to be attracting if it attracts all bounded subsets of
B.

A set A ⊂ B is said to be the global attractor if it is compact, invariant,
and attracts all bounded subsets of B.

Lemma 2.1 The global attractor is unique.

Proof Let A1 and A2 be two global attractors. Then, since A2 is bounded,
it is attracted by A1,

dist(S(t)A2,A1) → 0 as t→∞.

But A2 is invariant, so S(t)A2 = A2, from which it follows that dist(A2,A1) =
0. The argument is symmetric, so dist(A1,A2) = 0, from which it follows
that A1 = A2.

9
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Lemma 2.2 Let K be a compact subset of a Banach space B, and xn ∈
B a sequence with limn→∞ dist(xn,K) = 0. Then (xn) has a convergent
subsequence, whose limit lies in K.

Proof Write xn = kn + zn, where kn ∈ K and |zn| → 0 as n → ∞. Then
there is a subsequence such that knj → k∗ ∈ K, so xnj → k∗ too.

We now prove some properties of the omega limit set of a bounded set B,
ω(B):

Proposition 2.3 Suppose that there exists a compact attracting set K. Then
for any bounded set B, the set

ω(B) =
⋂
t≥0

⋃
s≥t

S(s)B (2.1)

= {x ∈ B : x = lim
n→∞

S(tn)bn for some tn →∞, bn ∈ B} (2.2)

is compact, invariant, and attracts B. Furthermore, ω(B) ⊆ ω(K).

Proof Suppose that wn ∈ ω(B). Then there exist sequences {t(n)
k } with

t
(n)
k →∞ as k →∞ and {b(n)

k } with b(n)
k ∈ B such that

wn = lim
k→∞

S(t(n)
k )b(n)

k .

It follows in particular that there exists a sequence {tj} with tj → ∞ and
bj ∈ B such that

|wj − S(tj)bj | < 1/j.

Since K must attract B by assumption, it follows from Lemma 2.2 that
there is a subsequence such that S(tj)bj converges. This limit must belong
to ω(B). It follows that there is a subsequence of {wj} that converges to an
element of ω(B), so ω(B) is (sequentially) compact.

Now suppose that x ∈ ω(B). Then there exist sequences {tn} with tn →
∞ and {bn} with bn ∈ B such that x = limn→∞ S(tn)bn. Then, since S(t)
is continuous,

S(t)x = S(t)
(

lim
n→∞

S(tn)bn
)

= lim
n→∞

S(t+ tn)bn,

and so S(t)x ∈ ω(B), i.e. S(t)ω(B) ⊆ ω(B).
Now, if y ∈ ω(B) then y = limn→∞ S(tn)bn. For any fixed t, once tn ≥ t,

we can write S(tn)bn = S(t)[S(tn − t)bn]. Using Lemma 2.2, we know that
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S(tn−t)bn has a convergent subsequence, which converges to some β ∈ ω(B).
Taking the limit through this subsequence, it follows that y = S(t)β with
β ∈ ω(B), so ω(B) ⊆ S(t)ω(B). It follows that S(t)ω(B) = ω(B).

We now show that ω(B) attracts B. If not, then there exists a δ > 0, and
tn →∞, bn ∈ B such that

dist(S(tn)bn, ω(B)) > δ.

But (by Lemma 2.2) {S(tn)bn} has a convergent subsequence, whose limit
must lie in ω(B), a contradiction.

Finally, to show that ω(B) ⊆ ω(K), notice that for each n, there exists a
δn such that

|x− k| < δn ⇒ |S(n)x− S(n)k| < 1/n

for any k ∈ K. Now, if β ∈ ω(B) then β = limj→∞ S(tj)bj . For each n,
consider the sequence S(tj − n)bj . Since K is attracting, there exists a jn
such that

dist(S(tjn − n)bjn ,K) < δn,

and so there exists a kn ∈ K with

|S(tjn − n)bjn − kn| < δn.

It follows that

|S(tjn)bjn − S(n)kn| < 1/n.

Since S(tjn)bjn → β, it follows also that β = limn→∞ S(n)kn, and so β ∈
ω(K).

The main theorem here is essentially an immediate corollary of the above.

Theorem 2.4 There exists a global attractor A iff there exists a compact
attracting set.

Proof If A is an attractor then it is a compact attracting set. If K is a
compact attracting set then ω(K) is compact and invariant; since ω(B) ⊆
ω(K) for all B, and ω(B) attracts B, ω(K) attracts B.

We now discuss some properties of the attractor in more detail.

Lemma 2.5 A is the maximal compact invariant set, and the minimal set
that attracts all bounded sets.
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Proof Let X be compact and invariant. Since X is compact it is bounded,
so it is attracted to A . Therefore

dist(S(t)X,A ) = dist(X,A ) → 0 as t→∞,

i.e. dist(X,A ) = 0 so X ⊆ A . Similarly, if Y attracts all bounded sets
then Y attracts A . The same argument, using invariance of A , shows that
A ⊆ Y .

We now make the following definition:

Definition 2.6 We say that S(t) has the backwards uniqueness property if
S(t) is injective for every t ≥ 0, i.e.

S(t)u0 = S(t)v0 ⇒ u0 = v0.

If S(t) has the backwards uniqueness property then we have a standard
dynamical system on the attractor.

Proposition 2.7 If S(t) has the backwards uniqueness property, then on A
we can extend S(t) to a group {S(t)}t∈R, and

S(t)A = A for all t ∈ R.

Proof Take t > 0 and x ∈ A . Since A = S(t)A , we have x = S(t)y for
some y ∈ A . This y is unique by the backwards uniqueness property, and
so we can define S(−t)x = y.

The map S(−t) : A → A is continuous, since it is the inverse of a
continuous injective mapping on a compact set.

It is clear that defined this way {S(t)}t∈R becomes a group of mappings.
Since S(t)A = A for all t ≥ 0 and S(−t) is the inverse of S(t), it follows
that S(t)A = A for all t ∈ R.

With another definition we will be in a position to give a non-dynamical
characterisation of the attractor:

Definition 2.8 A complete orbit of S(·) is a map u : R → B such that

S(t)u(s) = u(t+ s) for all t ≥ 0, s ∈ R,



2.1 Examples 13

i.e. a solution defined for all t ∈ R. Such an orbit is bounded if there exists
an M > 0 such that

‖u(t)‖ ≤M for all t ∈ R.

Theorem 2.9 All complete bounded orbits lie in A . If S(t) has the back-
wards uniqueness property then A is precisely the union of all complete
bounded orbits.

Proof Let O be a complete bounded orbit and let x ∈ O. Then for any
t > 0 there exists a yt ∈ O such that x = S(t)yt. Since O is bounded, A
attracts O, and so

dist(x,A ) ≤ dist(S(t)O,A ) → 0 as t→∞,

i.e. x ∈ A . So O ⊆ A . Conversely if x ∈ A and S(t) has the backwards
uniqueness property then x lies on the complete bounded orbit u(t) = S(t)x.

In many cases we can show something stronger than the existence of a
compact attracting set, namely the existence of a compact absorbing set.
We say that a set X ⊂ B is absorbing if for every bounded subset B ⊂ B
there exists a time tB such that

S(t)B ⊆ X for all t ≥ tB,

i.e. the orbits of all bounded sets eventually enter and do not leave X.
Clearly the existence of a compact absorbing set implies the existence of
a compact attracting set, which we know implies the existence of a global
attractor.

2.1 Examples

We will continually use the following simple lemma (Gronwall’s inequality)
to integrate simple differential inequalities. The proof simply involves using
the integrating factor exp[−A(t)].

Lemma 2.10 (Gronwall’s inequality) Suppose that

dX
dt

≤ a(t)x+ b(t).
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Then

X(t) ≤ X(0) exp[A(t)] +
∫ t

0
exp[A(t)−A(s)]b(s) ds,

where A(t) =
∫ t
0 a(r) dr. In particular if a(t) ≡ α and b(t) ≡ β then

X(t) ≤
(
X(0) +

β

α

)
eαt − β

α
.

2.1.1 Reaction-diffusion equations

For both the reaction-diffusion equation and the Navier-Stokes equations we
proceed in two steps: find an absorbing set in L2, and use this to prove the
existence of an absorbing set in H1.

2.1.1.1 Absorbing set in L2

If we take the inner product of the equation with u then we obtain

1
2

d
dt
‖u‖2 + ‖Du‖2 =

∫
Ω
f(u(x))u(x) dx ≤

∫
Ω
k − α2|u|p dx ≤ k|Ω|, (2.3)

where |Ω| is the Lebesgue measure of Ω. Using the Poincaré inequality

‖u‖ ≤ λ
−1/2
1 ‖Du‖

we obtain
d
dt
‖u‖2 + 2λ1‖u‖2 ≤ 2k|Ω|.

Gronwall’s inequality (Lemma 2.10) then shows that

‖u(t)‖2 ≤ ‖u0‖2e−2λ1t +
k|Ω|
λ1

(1− e−2λ1t).

In particular, there exists a t0(‖u0‖) such that

‖u(t)‖2 ≤ ρ2
0 :=

2k|Ω|
λ1

for all t ≥ t0. (2.4)

Returning to (2.3) and integrating from t to t + 1 for t ≥ t0 shows further
that

1
2
‖u(t+ 1)‖2 +

∫ t+1

t
‖Du(s)‖2 ds ≤ k|Ω|+ ‖u(t)‖2,
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and so in particular it follows that∫ t+1

t
‖Du(s)‖2 ds ≤ I1 := k|Ω|+ 2k|Ω|

λ1
. (2.5)

2.1.1.2 Absorbing set in H1

We now use the integral bound in (2.5) to prove the existence of an absorbing
set in H1. The argument here can be formalised as the ‘uniform Gronwall
lemma’, but this hides the simple idea behind it.

Taking the inner product with −∆u we obtain

1
2

d
dt
‖Du‖2 + ‖∆u‖2 = −

∫
Ω
f(u)∆u dx =

∫
Ω
f ′(u)

∂u

∂xj

∂u

∂xj
dx ≤ l‖Du‖2.

Integrating this between s and t, where t ≤ s ≤ t+ 1, gives

‖Du(t+ 1)‖2 + 2
∫ t+1

s
‖∆u(r)‖2 dr ≤ ‖Du(s)‖2 + 2l

∫ t+1

s
‖Du(r)‖2 dr,

which implies in particular that

‖Du(t)‖2 ≤ ‖Du(s)‖2 + 2lI1.

Integrating again with respect to s between t and t+ 1 now gives

‖Du(t+1)‖2 ≤
∫ t+1

t
‖Du(s)‖2 ds+2lI1 ≤ (1+2l)I1 for all t ≥ t0(‖u0‖).

(2.6)

So we have shown that a bounded set in H1 is absorbing. Since H1

is compactly embedded in L2, this gives a compact subset of L2 that is
absorbing. So the RDE has a global attractor in L2(Ω).

2.1.2 2d Navier-Stokes equations

For the 2d Navier-Stokes equations

ut − ν∆u+ (u · ∇)u+∇p = f ∇ · u = 0

we will prove the existence of an attractor for the semigroup on H ' L2(Q).
Recall that we have a Poincaré inequality

‖u‖ ≤ λ1/2‖Du‖
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and the orthogonality condition∫
Q
[(u · ∇)u] · u dx = 0

when u is divergence-free (∇ · u = 0).

2.1.2.1 Absorbing set in H ' L2(Q)

If we take the inner product of the equation with u in L2 then we obtain

1
2

d
dt
‖u‖2 + ν‖Du‖2 = (f, u) ≤ ‖f‖‖u‖. (2.7)

Using the Poincaré inequality and Young’s inequality (2ab ≤ a2 + b2) we
have

1
2

d
dt
‖u‖2 + νλ‖u‖2 ≤ νλ

2
‖u‖2 +

1
2νλ

‖f‖2,

i.e.
d
dt
‖u‖2 + νλ‖u‖2 ≤ 1

νλ
‖f‖2,

which after an application of Gronwall’s inequality yields

‖u(t)‖2 ≤ e−νλt‖u0‖2 +
‖f‖2

ν2λ2
(1− e−νλt).

This shows that there exists a time t0(‖u0‖) such that

‖u(t)‖2 ≤ ρ2
0 :=

2‖f‖2

ν2λ2
for all t ≥ t0. (2.8)

If we return to (2.7) and integrate from t to t + 1, with t ≥ t0, we now
obtain

‖u(t+ 1)‖2

2
− ‖u(t)‖2

2
+ ν

∫ t+1

t
‖Du(s)‖2 ds ≤ ‖f‖ρ0,

so that

ν

∫ t+1

t
‖Du(s)‖2 ds ≤ I0 := ‖f‖ρ0 +

ρ2
0

2
.
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2.1.2.2 Absorbing set in V ' H1(Q)

We will take the inner product of the equations with −∆u. In the 2d case for
periodic boundary conditions only we have the useful orthogonality relation∫

Q
[(u · ∇)u] ·∆u dx = 0.

The proof is many cancellations using the divergence-free condition and is
uninformative.

The analysis that follows here can be done in the Dirichlet case, but is a
little messier since the nonlinear term does not vanish.

We obtain

1
2

d
dt
‖Du‖2 + ν‖∆u‖2 = (f,∆u) ≤ ‖f‖ ‖∆u‖ ≤ ‖f‖2

2ν
+
ν

2
‖∆u‖2,

and so in particular
d
dt
‖Du‖2 ≤ ‖f‖2

ν
.

Integrating between s and t+ 1, where t ≤ s ≤ t+ 1 gives

‖Du(t+ 1)‖2 − ‖Du(s)‖2 ≤ ‖f‖2

ν
,

and now integrating with respect to s between t and t+ 1 gives

‖Du(t+ 1)‖2 ≤
∫ t+1

t
‖Du(s)‖2 +

‖f‖2

ν
,

and so

‖Du(t+ 1)‖2 ≤ I0
ν

+
‖f‖2

ν
for all t ≥ t0(‖u0‖),

i.e. a bounded set in V is absorbing.

Since V is compactly embedded in H (H1 is compactly embedded in L2)
it follows that there is a compact absorbing set in H, and so the 2d Navier-
Stokes equations have a global attractor in H.

With further analysis along similar lines one can show that there is an ab-
sorbing set in H2. In particular, therefore, the global attractor is uniformly
bounded in H2, and we will use this fact from time to time later.
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The global attractor II
Continuity & Structure

We now discuss the behaviour of attractors under perturbation of the semi-
group. It is relatively easy to prove that the attractor cannot ‘explode’, but
to show that it does not ‘collapse’ we need to some structural assumptions.

We will consider a family of semigroups indexed by η ∈ [0, η0), Sη, and
assume that Sη converges to S0 as η ↓ 0 in the sense that

lim
η↓0

(
sup

t∈[0,T ]
sup
u0∈B

|Sη(t)u0 − S0(t)u0|

)
= 0

for all T > 0 and bounded B, i.e. uniform convergence on bounded time
intervals and bounded sets of initial conditions.

3.1 Upper semicontinuity – ‘no explosion’

We now prove that attractors cannot explode under perturbation.

Proposition 3.1 Let Sη : B → B be a family of semigroups as above, and
suppose that for all η ∈ [0, η0) there exists a global attractor Aη. Then the
following two statements are equivalent:

(i) there exists an η1 > 0 and a bounded set X such that

Aη ⊆ X for all η ∈ [0, η1),

(ii)

dist(Aη,A0) → 0 as η ↓ 0.

18
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Proof It is clear that (ii) implies (i). So we only show that (i) implies (ii).
Since A0 is an attractor, it attracts the bounded set X for S0. So given
ε > 0 there exists a T > 0 such that

dist(S(T )X,A0) < ε/2.

Now choose η1 > 0 such that

‖Sη(T )u0 − S0(T )u0‖ < ε/2 for all u0 ∈ X.

Then

Aη = Sη(T )Aη ⊆ Sη(T )X ⊆ N(A0, ε).

3.2 Connectedness of omega limit sets

In order to discuss the structure of the attractor further, we will require the
following result on the connectedness of omega limit sets.

Lemma 3.2 Assume that there exists a compact attracting set K, and that
B is connected (i.e. the unit ball in B is connected). Then if X is a bounded
connected set, ω(X) is connected, and the attractor A is connected.

Proof First, we have already shown that if there is a compact attracting
set K then ω(X) ⊆ ω(K) for any bounded set X. In particular, if X is
a bounded ball containing K then it follows from this and ω(X) ⊇ ω(K)
that A = ω(X). Since one can therefore write the attractor as the omega
limit set of a bounded connected set, we prove only that ω(X) is connected
whenever X is bounded and connected.

Suppose not. Then there exist open sets O1 and O2 such that O1∩O2 = ∅,
ω(X) ∩Oj 6= ∅ for j = 1, 2, but ω(X) ⊆ O1 ∪O2.

Now, since S(t) : B → B is continuous, S(t)X is connected for each
t ≥ 0. But since ω(X) attracts X, for some t0, S(t)X ⊂ O1 ∪ O2 for all
t ≥ t0, since O1 ∪ O2 is an open neighbourhood of ω(X). It follows, then,
that for all t ≥ t0 S(t0)X is contained entirely in O1 or O2, wlog O1.

But since S(·) is continuous, S(t)X cannot ‘jump’ from O1 to O2. It
follows that ω(X) ⊂ O1, a contradiction.

Note that this shows in particular that ω(u0) is connected for any initial
condition u0.
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3.3 Unstable manifolds of invariant sets

If X is an invariant set for S(·), we can define

W u(X) = {u0 ∈ B : u0 lies on a complete orbit u s.t. dist(u(t), X) → 0 as t→ −∞}.

In the case that X is a single point, one obtains the more familiar

W u(x0) = {u0 ∈ B : u0 lies on a complete orbit u s.t. u(t) → x0 → 0 as t→ −∞}.

All such unstable sets must lie in the attractor

Proposition 3.3 For any bounded invariant set X, W u(X) ⊆ A .

Proof If u0 ∈ W u(X) then u0 lies on a complete orbit u : R → B. Since
there is an attractor, dist(u(t),A ) → 0 as t → ∞ and the forward por-
tion of the orbit is bounded. Since u0 lies in the unstable manifold of
X, dist(u(t), X) → 0 as t → −∞, and the backward portion of the or-
bit is bounded. So u0 lies on a complete bounded orbit, which implies that
u0 ∈ A .

3.4 Attractors for gradient semigroups

When the semigroup S(·) has a Lyapunov function, we can describe the
structure of the attractor fairly completely.

We say that S(·) is gradient on a positively invariant subset U ⊂ B
(S(t)U ⊆ U for all t ≥ 0) if there exists a Lyapunov function Φ : U → R,
i.e.

(i) Φ : U → R is continuous and bounded below,
(ii) Φ(S(t)u0) is non-increasing in t, and
(iii) If Φ(S(T )u0) = Φ(u0) for some T > 0 then u0 is an equilibrium point

(i.e. S(t)u0 = u0 for all t ≥ 0).

Note that (iii) excludes the existence of periodic orbits.

Proposition 3.4 Let S(t) be gradient on U . Then for any u0 ∈ U , ω(u0) ⊂
E , where E is the set of equilibria. If B is connected and E is discrete then
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ω(u0) ∈ E (i.e. is one equilibrium), i.e. for every u0 ∈ U there exists an
e ∈ E such that

S(t)u0 → e as t→∞.

Proof We want to prove that Φ is constant on ω(u0). So note that

ω(u0) =
⋂
t≥0

{S(s)u0 : s ≥ t}.

Now,

Φt := sup{Φ(x) : x ∈ {S(s)u0 : s ≥ t}

is a non-increasing function of t that is also bounded below since Φ is continu-
ous, dist(S(s)u0,A ) → 0, and A is compact. It follows that Φ∗ = limt→∞ Φt

exists, and that Φ|ω(u0) = Φ∗. Property (iii) implies that ω(u0) ⊆ E . If B is
connected then ω(u0) is connected; if E is discrete then ω(u0) must consist
of a single point of E .

We know already that in general W u(E ) ⊆ A . We now show that if the
system is gradient and S(·) has the backwards uniqueness property on A
then this is an equality.

Theorem 3.5 (Structure Theorem) If S(·) has a Lyapunov function on
A , and the backwards uniqueness property on A , then A = W u(E ). If B
is connected and E is discrete then

A =
⋃
e∈E

W u(e).

Proof As remarked above, we already have W u(E ) ⊆ A . Now, if u0 ∈ A
then since S(·) has the backwards uniqueness property on A we can define
u(t) = S(t)u0 for t ≤ 0, and consider

γ = ∩t<0{u(s) : s ≤ t}.

One can follow the argument in Proposition 2.3 to show that dist(S(t)u0, γ) →
0 as t→ −∞, so u0 ∈W u(γ); while the argument of Proposition 3.4 shows
that Φ is constant on γ, and so γ ⊆ E . It follows that u0 ∈ W u(E ), which
gives the promised equality.

If E is discrete and u0 ∈W u(E ) then S(t)u0 lies in a neighbourhood of E
for all t ≤ t0, from which it follows that in fact u0 ∈W u(e) for some element
of e.
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3.5 Lower semicontinuity of the attractor

We now show that when the attractor has the structure in Theorem 3.5, it
cannot collapse under perturbation. The proof as given here is taken from
Stuart & Humphries (1996).

The main addition assumption, in addition to the structural one, is that
the equilibira and their local unstable manifolds perturb continuously: more
precisely, there exists a δ > 0, such that for 0 < ε < δ/2, one can find an η0

such that

‖eη − e0‖ < ε

and

distH(W u(e0) ∩Bδ(e0),W u(eη) ∩Bδ(e0)) < ε.

Theorem 3.6 Suppose that E is discrete,

A0 =
⋃
e∈E

W u(e),

and that the equilibria and their local unstable manifolds perturb continu-
ously. Then

lim
η↓0

dist(A0,Aη) = 0. (3.1)

Proof The conclusion (3.1) means that given any ε > 0, for η sufficiently
small, A0 is contained within an ε neighbourhood of Aη. In other words, for
every u ∈ A0, there must exist a v(η) ∈ Aη with ‖v(η)− u‖ < ε.

Since A0 is compact, there exists a finite set of points {uj}N
j=1 such that

for any u ∈ A0 there exists a j ∈ {1, . . . , N} such that ‖u − uj‖ < ε/2.
So one need only show that for each uj there exists a vj(η) ∈ Aη with
‖uj − vj(η)‖ < ε for all η small enough.

First, note that there exists a ζ > 0 such that if u0 ∈ A0,

‖u0 − u1‖ < ζ ⇒ sup
t∈[0,T ∗]

‖S(t)u0 − S(t)u1‖ < ε/4.

Now, given the form of the attractor, uk = S(Tk)zk for some zk ∈W u(ej)∩
Bδ(ej). Set T ∗ = maxk Tk, and choose η1 > 0 small enough that for all
η ∈ [0, η1):

(i)

sup
t∈[0,T ∗]

sup
u0∈Nδ(A0)

‖S0(t)u0 − Sη(t)u0‖ < ε/4,
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and
(ii) for each k, there exists a zk(η) ∈W u(ek(η)) such that

‖zk(η)− zk‖ < ζ.

Now, consider vk(η) = Sη(Tk)zk(η). Since zk(η) ∈W u(ek(η)), zk(η) ∈ Aη,
and since Aη is invariant for Sη(·), it follows that vk(η) ∈ Aη. Now it only
remains to check that

‖vk(η)− uk‖ = ‖Sη(Tk)zk(η)− S0(Tk)zk‖
≤ ‖Sη(Tk)zk(η)− S0(Tk)zk(η)‖+ ‖S0(Tk)zk(η)− S0(Tk)zk‖
< ε/4 + ε/4 = ε/2,

as required.
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RDE as a gradient system: regularity

We now want to show that the RDE

ut −∆u = f(u)

where

−k − α1|s|p ≤ f(s)s ≤ k − α2|s|p and f ′(s) ≤ l

gives rise to a gradient system, and so has an attractor of the form (3.5). In
order to do this, we have to show that it has a Lyapunov function. In order
to show that this Lyapunov function is continuous from A into R, we will
need some additional regularity for functions lying on the attractor.

We have already shown that the attractor is bounded in L2 and in H1.
We will now show that it is also bounded in L∞ and in H2. (Of course, for
the RDE on a one-dimensional domain, a bound in H1 gives a bound in L∞

with no additional work.)

4.1 A bound in L∞(Ω)

In order to show this bound, we introduce

u+(x) =

{
u(x) u(x) > 0

0 otherwise
and u−(x) =

{
u(x) u(x) < 0

0 otherwise.

It is clear that if u ∈ L2(Ω) then u± ∈ L2(Ω) and ‖u±‖L2 ≤ ‖u‖L2 . We now
show that the same is true if u ∈ H1(Ω):

24
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Lemma 4.1 If u ∈ H1(Ω) then u± ∈ H1(Ω), ‖u±‖H1 ≤ ‖u‖H1, and

Du+(x) =

{
Du(x) u(x) > 0

0 otherwise
, (4.1)

with a similar equality for Du−.

Proof Define

uε(x) =

{
(u(x)2 + ε2)1/2 − ε u(x) > 0

0 otherwise
.

Then

u′ε(x) =

{
u(x)u′(x)

(u(x)2+ε2)1/2 u(x) > 0

0 otherwise
.

It is clear that ‖uε‖H1 ≤ ‖u‖H1 , and that uε → u+ in L2(Ω). Since uε is
bounded in H1, it has a subsequence uεj that converges weakly to some v,
uεj ⇀ v in H1. But weak convergence in H1 implies strong convergence in
L2, so uεj → v in L2. But we know that uε → u+ in L2, so v = u+. It follows
that Du+ ∈ H1 with ‖Du+‖H1 ≤ ‖Du‖H1 as claimed, and taking limits of
u′ε as ε→ 0 gives (4.1). The result for u− follows since u− = −(−u)+.

We can now prove that the attractor is bounded in L∞.

Proposition 4.2 The attractor for the RDE ut −∆u = f(u) is bounded in
L∞(Ω) with

‖u‖∞ ≤
(
k

α2

)1/p

for all u ∈ A .

Proof Set M = (k/α2)1/p, so that for s ≥M , f(s)s ≤ 0. Now multiply the
equation by (u(x)−M)+ and integrate:

1
2

d
dt
‖(u(x)−M)+‖2 +

∫
Ω
(−∆u) · (u(x)−M)+ dx =

∫
Ω
f(u)(u(x)−M)+ dx.

Now,∫
Ω
(−∆u)·(u(x)−M)+ dx =

∫
Ω
Du·D(u(x)−M)+ dx =

∫
Ω
|D(u(x)−M)+|2 dx,
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using (4.1). We also have∫
Ω
f(u)(u(x)−M)+ dx =

∫
x: u(x)>M

f(u)u[1− (M/u)] dx ≤ 0.

So
1
2

d
dt
‖(u−M)+‖2 + ‖D(u−M)+‖2 ≤ 0.

Since u = 0 on ∂Ω, clearly (u−M)+ = 0 on ∂Ω, so we can use the Poincaré
inequality:

1
2

d
dt
‖(u−M)+‖2 ≤ −λ‖(u−M)+‖2.

Integrating from −t to 0 it follows that

‖(u(0)−M)+‖2 ≤ ‖(u(−t)−M)+‖2e−2λt.

Since A is bounded in L2(Ω), and any u(0) lies on a complete bounded orbit,
it follows letting t → ∞ that ‖(u(0) −M)+‖2 = 0. Therefore u(x) ≤ M

almost everywhere.
A similar argument considering (u+M)− shows that u(x) ≥ −M every-

where, and so ‖u‖L∞ ≤M .

It is worth emphasising again that if Ω is one-dimensional, we already
know that A is bounded in L∞ since it is bounded in H1.

4.2 A bound in H2

We show that the attractor is bounded in H2. During the course of the
proof we will also find the Lyapunov function for the semigroup on L2.

Proposition 4.3 The attractor for the RDE is bounded in H2(Ω).

Proof The plan is to rearrange the equation as −∆u = f(u)−ut, show that
the right-hand side is bounded in L2, and use elliptic regularity to show that
u must be in H2: indeed, if −∆u = g, u|∂Ω = 0 and g ∈ L2, it is known
that ‖u‖H2 ≤ c‖g‖L2 .

We already know that f(u(·)) ∈ L2, since we know that u(·) ∈ L∞ (this
implies that f(u(·)) ∈ L∞, which immediately gives f(u(·)) ∈ L2. So our
task is to show that ut ∈ L2 for all solutions on A .
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First we take the inner product of the equation with ut:

‖ut‖2 +
d
dt
‖Dut‖2 =

∫
Ω
f(u)ut dt =

d
dt

∫
F (u(x)) dx,

where F (r) =
∫ r
0 f(s) ds. Note that this show that

d
dt

∫
Ω

1
2
|∇u|2 −F (u) dx = −|ut|2. (4.2)

The quantity whose time derivative occurs on the left-hand side will be our
Lyapunov function V (u).

Integrating from 0 to t we obtain∫ t

0
‖ut(s)‖2 ds+

1
2
‖Du(t)‖2 =

1
2
‖Du0‖2 +

∫
F (u(t)) dx−

∫
F (u(0)) dx.

Since A is bounded in L∞ and H1, this implies that∫ t

0
‖ut(s)‖2 ds ≤ C.

Now differentiate the governing equation with respect to t,

utt −∆ut = f ′(u)ut

and take the inner product with t2ut:

(t2ut, utt)− (t2ut,∆ut) = (t2ut, f
′(u)ut),

from whence
1
2

d
dt

(t2‖ut‖2)− t2‖ut‖2 + t2‖Dut‖2 = t2
∫

Ω
f ′(u)|ut|2 dx ≤ lt2‖ut‖2.

Integrating from 0 to t gives

t2‖ut(t)‖2 ≤ (1 + l)t2
∫ t

0
‖ut(s)‖2 ds,

and so

‖ut(t)‖2 ≤ (1 + l)C.

It follows that on the attractor, ut is bounded in L2. Since this implies
that −∆u is bounded uniformly in L2 over the attractor, elliptic regularity
theory gives a uniform bound in H2 for all u ∈ A .

We can now show that

V (u) =
∫

Ω

1
2
|∇u|2 −F (u) dx



28 4 RDE as a gradient system: regularity

from (4.2) is a Lyapunov function. Equation (4.2) shows that it is non-
increasing, and also that if V (u(T )) = V (u0) then ut = 0 on [0, T ] and so
u0 is an equilibrium.

To show that V is continuous from A into R, consider V (u1)− V (u2):∫
Ω

1
2
(|∇u1|2 − |∇u2|2) dx−

∫
Ω

F (u1)−F (u2) dx.

For the first term,

|(Du1, Du1)− (Du2, Du2)| = |(Du1 −Du2, Du1) + (Du1, Du1 −Du2)|
≤ (‖Du1‖+ ‖Du2‖)‖Du1 −Du2‖
≤ C‖Du1 −Du2‖,

since A is bounded in H1. Now,

‖D(u1−u2)‖2 = (D(u1−u2), D(u1−u2)) = (u1−u2,−∆(u1−u2)) ≤ C ′‖u1−u2‖

since A is bounded in H2. So u 7→ ‖Du‖2 is continuous from A into R.

For the second part,∫
F (u1)−F (u2) dx =

∫
Ω

∫ u1(x)

u2(x)
f(s) dsdx,

and so∣∣∣∣∫ F (u1)−F (u2) dx
∣∣∣∣ ≤ ∫

Ω
C|u1(x)− u2(x)|dx ≤ C ′‖u1 − u2‖,

since F (u(x)) ≤ C on A .

It follows that V : A → R is continuous, and so is a Lyapunov function.
So the RDE generates a gradient dynamical system, and the attractor has
the form (3.5).

4.2.1 The Chafee-Infante equation

For the particular example

ut + ∆u = βu− u3 x ∈ [0, 1],

the ‘Chafee-Infante’ equation, the structure of the attractor is extremely
well understood. The equation is gradient, so the attractor is the union
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of the unstable manifolds of the equilibria, and equilibria are all created in
bifurcations from the zero solution.

If one considers the linearisation about zero,

Ut = (−∆ + βI)U,

if the eigenvalues of −∆ are λ1 ≤ λ2 ≤ λ3 ≤ · · · then for β < λ1 all solutions
tend to the origin – there is only one equilibrium. For λ1 < β < λ2 there
are three equilibria (there has been a pitchfork bifurcation about the origin
at β = λ1); for λ2 < β < λ3 there are five equilibira...

For λn < β < λn+1 there are 2n+ 1 equilibria, and the dimension of the
attractor is n. Since in this case λn ∼ n2, it follows that the dimension of
the attractor satisfies d(A ) ∼ β1/2. We now turn to the general problem of
bounding the attractor dimension.
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Bounding the dimension of the attractor

We will use the upper box-counting dimension. If X ⊂ B then

dbox(X) = lim sup
ε→0

logN(X, ε)
− log ε

,

where N(X, ε) is the number of balls of radius ε (in the norm of B) required
to cover X. Essentially this extracts the exponent d from N(X, ε) ' ε−d.

The lim sup is necessary in general, but one can take

lim sup
k→∞

logN(X, εk)
− log εk

,

if, for example, εk = αkε0 with 0 < α < 1.

It is a consequence of the definition that if one defines

Vγ(X, ε) = εγN(X, ε),

then if

lim sup
ε→0

Vγ(X, ε) = 0

then dbox(X) ≤ γ. One can also take the limsup through a sequence εk =
αkε0, as above.

We will now outline a method for proving that the box-counting dimension
of an invariant set is finite. We will restrict to the case of dynamical systems
on Hilbert spaces, and initially rather than dealing with continuous time it
will be easier to deal with a fixed map S : H → H.

30
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The idea is to cover A by balls of radius ε:

A ⊂
N⋃

j=1

B(xj , ε),

and then apply S to both sides:

SA = A ⊂
N⋃

j=1

SB(xj , ε).

If ε is sufficiently small then SB(xj , ε) will be well approximated by Sxj +
DS(xj)[B(0, ε)], where DS(xj) is the derivative of S at xj . So the key to the
argument will be that the image of a ball under a linear map is an ellipse,
coupled with a result that allows one to cover an ellipse by a certain number
of balls of specified radius.

5.1 The image of a ball under a linear map

Let H be a Hilbert space and L : H → H be a compact linear operator.
Then L∗L is a compact self-adjoint linear operator that is positive; so it
has a set a eigenvalues α2

1 ≥ α2
2 ≥ α2

3 · · · with corresponding orthonormal
eigenvectors {ej} that form a basis for H.

Lemma 5.1 LB(0, 1) is an ellipse whose semi-axes are {Lej}, and ‖Lej‖ =
αj.

Proof First, we have

(Lej , Lei) = (L∗Lej , ei) = (α2
jej , ei) = α2

jδij ,

so that the {Lej} are orthogonal with ‖Lej‖ = αj .
Now if u ∈ H with u =

∑
ujej then

Lu =
∑

j

uj(Lej) =
∑

j: αj 6=0

(ujαj)︸ ︷︷ ︸
ξj

Lej
αj

.

So

u ∈ B(0, 1) ⇔
∑

|uj |2 = 1 ⇔
∑

j: αj 6=0

(
ξj
αj

)2

≤ 1 and ξj = 0 if αj = 0.

So LB(0, 1) is an ellipse with semi-axes Lej .
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As a result of this lemma, given a compact linear operator L : H →
H, define the linear expansion factors αj(L) to be the square root of the
eigenvalues of L∗L (equivalently, the eigenvalues of (L∗L)1/2) in decreasing
order,

α1(L) ≥ α2(L) ≥ α3(L) ≥ · · ·

– these are the lengths of the semi-axes of the ellipse LB(0, 1) – and let
ωn(L) be the maximal expansion factor of n-dimensional volumes under L,

ωn(L) = α1(L)α2(L) · · ·αn(L).

We will need the following lemma on coverings of ellipsoids by balls – it
says essentially that an ellipsoid can be covered by Volj(E)/Volj(Br/7(0)) if
r ∼ αj , where Volj is (in some sense) the j dimensional volume. For a proof
see Temam (1988).

Lemma 5.2 Let E be an ellipsoid, with semi-axes α1 ≥ α2 ≥ α3 ≥ ·. Then
for any r < α1, the number of balls of radius

√
2r needed to cover E is less

than

7j ωj

rj
,

where ωj = α1 · · ·αj and j is the largest integer such that r ≤ αj.

5.2 Bounding the dimension of an invariant set of a map

Our result will treat invariant sets A of nonlinear maps S : H → H that
are differentiable in the following sense: for every u ∈ A there exists a map
DS(u) : H → H such that

‖S(u+ h)− S(u)−DS(u)h‖ ≤ K‖h‖1+α for all u ∈ A .

For the statement of the theorem, we choose ω̄n and ᾱn such that

αn(DS(u)) ≤ ᾱn and ωn(DS(u)) ≤ ω̄n for all u ∈ A ,

respecting

ᾱ1 ≥ ᾱ2 ≥ ᾱ3 · · · and ᾱn
n ≤ ω̄n.
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Theorem 5.3 Assume that 2ω̄1/d
d < 1. Then for any γ such that

(2ω̄1/d
d )γ max

1≤j≤d
7j ω̄j

ω̄
j/d
d

< 1,

dbox(A ) ≤ γ.

Proof First choose ε0 > 0 such that if ε < ε0,

Kε1+α < (2−
√

2)ω̄1/d
d ε.

Cover A with balls of radius ε < ε0,

A ⊂
N⋃

i=1

B(ui, ε).

Then

SA ⊂
N⋃

i=1

SB(ui, ε).

Now,

SB(ui, ε) ⊆ S(ui) +DS[B(0, ε)] +B(0,Kε1+α).

We consider how to cover SB(ui, ε) for each i:
(i) If α1(DS(ui)) < ω̄

1/d
d then

DS(ui)B(0, ε) ⊆ B(0, α1(DS(ui))ε) ⊆ B(0, ω̄1/d
d ε),

from which it follows that

SB(ui, ε) ⊂ B(S(ui), 2ω̄
1/d
d ε).

Thus it requires only one ball of radius 2ω̄1/d
d ε to cover SB(ui, ε) in this case.

(ii) If ω̄1/d
d < α1(DS(ui)) then using Lemma 5.2 the number of balls of

radius
√

2ω̄1/d
d needed to cover DS(ui)B(0, ε) is bounded by

7jωj(DS(ui))

ω̄
j/d
d

where j is the largest integer such that ω̄j/d
d ≤ αj . Since ω̄1/d

d ≥ ᾱd, it
follows that j ≤ d. So no more than

M := max
1≤j≤d

7jωj(DS(uj))

ω̄
j/d
d

≤ max
1≤j≤d

7j ω̄j

ω̄
j/d
d
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balls of radius
√

2ω̄1/d
d are required to cover DS(ui)B(0, ε).

It follows that SB(uj , ε) can be covered by M balls of radius 2ω̄1/d
d ε.

Combining these, if A is covered by N(X, ε) balls of radius ε, it can also
be covered by

MN(X, ε) ≤ max
1≤j≤d

7j ω̄j

ω̄
j/d
d

N(X, ε)

balls of radius 2ω̄1/d
d ε.

Thus

Vγ(X, 2ω̄1/d
d ε) ≤

[
(2ω̄1/d

d )γ max
1≤j≤d

7j ω̄j

ω̄
j/d
d

]
Vγ(X, ε).

If the expression in square brackets is less than 1, it therefore follows that
dbox(X) ≤ γ.

In order to apply this to examples, note that we have

ω̄d(Sn) ≤ [ω̄d(S)]n.

So if

ω̄d(S) < 1 and ω̄
γ/d
d max

1≤j≤d

ω̄j

ω̄
j/d
d

< 1 (5.1)

we can find an n such that ω̄j(Sn) satisfies the conditions of Theorem 5.3,
i.e. one can conclude that dbox(A ) ≤ γ.

Now, write q̄j = log ω̄j . The conditions in (5.1) become

q̄d < 0 and γ > max
1≤j≤d

jq̄d − dq̄j
q̄d

.

The following lemma is useful in applications:

Lemma 5.4 Assume that q̄j ≤ qj, where qj is a concave function of j. Then
qn < 0 implies that dbox(A ) ≤ n.

Proof Since qj is concave, there exist α, β such that qj ≤ −αj + β: choose
α, β such that

0 < qn−1 = −α(n− 1) + β and 0 > qn = −αn+ β.

Note that in particular it follows that β/α < n.
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The argument leading to the bound on γ uses only upper bounds on the
q̄js, so dbox(A ) ≤ γ provided that

γ > max
1≤j≤d

j(−αd+ β)− d(−αj + β)
−αd+ β

= max
1≤j≤d

β(d− j)
αd− β

≤ βd

αd− β
.

Since d is arbitrary, one can let d→∞ and show that dbox(A ) ≤ γ provided
that γ > β/α. But β/α < n, so dbox(A ) ≤ n.

5.3 Finding ω̄n for a flow

We consider the solution of

u̇ = F (u)

and the equation for the linearisation about u(t),

U̇ = L(u(t))U.

We’ll give an unconvincing and entirely spurious argument, which will give
the right answer...

Write the solution of the linearised equation as

U(t) = exp
(∫ t

0
L(u(s)) ds

)
U0

(you can’t do this - even for a two-dimensional linear equation ẋ = A(t)x
you can’t write x(t) = e

R
A(s) dsx0). So our expansion factor ωn at time t

will be related to the eigenvalues of

exp
(∫ t

0
L(u(s)) ds

)
(which isn’t exactly true, since we have to take the eigenvalues of (L∗L)1/2

in our rigorous argument). Since we are looking at qn(t) = logωn(t), this
amounts to considering the eigenvalues of

I(t) =
∫ t

0
L(u(s)) ds

(not sure about the connection between eigenvalues of A and eA). The sum
of the first n eigenvalues of this are given by

n∑
j=1

(I(t)ej , ej)
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where {ej} are the orthonormal eignevectors of I(t) corresponding to the
largest n eigenvalues (but I(t) may not be self-adjoint). So then certainly

qn(t) ≤ sup
orthonormal {φj}n

j=1

(I(t)φj , φj).

Let’s define the n-dimensional trace of a linear operator L by

Trn(L) = sup
orthonormal {φj}n

j=1

(Lφj , φj),

so we can write

qn(t) ≤ Trn

(∫ t

0
L(u(s)) ds

)
.

Then clearly

qn(t) ≤
∫ t

0
Trn(L(u(s)) ds;

not only is this final step valid, but this result is actually true.

Since we are free to choose t, and what matters is that qn < 0, it is sensible
to consider

q′n = lim sup
t→∞

1
t

∫ t

0
Trn(L(u(s)) ds := 〈Trn(L(u(s)) ds〉

(so 〈h〉 denotes the long-time average of h). If q′n < 0 then qn(t) < 0 for
some t. But, of course, we want this to hold all over the attractor, so finally
we are lead to consider

q̃n = sup
u0∈A

〈Trn(L(S(t)u0))〉.

We make the following definition:

Definition 5.5 S(t) is uniformly differentiable on the attractor: for each
t > 0 there exists a linear operator Λ(t;u0) : H → H such that

sup
u0,v0∈A

‖[S(t)u0 + Λ(t;u0)(v0 − u0)]− S(t)v0‖ ≤ K‖u0 − v0‖1+r

for some r > 0, and supu0∈A ‖Λ(t;u0)‖op <∞.

We can now state the following theorem.
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Theorem 5.6 Suppose that S(t) is uniformly differentiable on the attractor,
and that Λ(t;u0) is compact for each t > 0 and is the solution of the equation

dU/dt = L(S(t)u0)U with U(0) = IdH .

Set

q̃j := sup
u0∈A

〈Trn(L(S(t)u0))〉.

If the upper bounds on q̃j are concave then q̃n < 0 implies that dbox(A ) ≤ n.

5.4 Example I: the reaction-diffusion equation

We return to

ut −∆u = f(u) with f ′(s) ≤ l.

Note that for the example fβ(s) = βs − s3 we considered in Section 4.2.1,
f ′β(s) ≤ β. We will assume that S(t) is uniformly differentiable on the
attractor (this is awkward to prove), and given this show:

Theorem 5.7 The attractor of the RDE has

dbox(A ) ≤
(
cl

λ1

)d/2

.

Proof The linearised equation is

Ut = ∆U + f ′(u(t))U.

So we have to consider Trn(∆U + f ′(u(t))I). Taking n orthonormal (in L2)
functions φj , we need to bound

n∑
j=1

(∆φj + f ′(u)φj , φj) =
n∑

j=1

(∆φj , φj) +
n∑

j=1

∫
Ω
f ′(u)|φj |2 dx

≤ −cλ1n
(d+2)/d +

n∑
j=1

l

∫
Ω
|φj |2 dx

= −cλ1n
(d+2)/d + nl,

since ‖φj‖ = 1. It follows that

Trn(L(u)) ≤ −cλ1n
(d+2)/d + nl,
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which gives the same bound on q̃n. This bound is concave, so if q̃n < 0,
dbox(A ) ≤ n. This happens when n2/d > c(l/λ1).

5.5 Dimension bound for the 2d Navier–Stokes equations

We now return to the 2d Navier-Stokes equations. Here we will prove the
uniform differentiability property:

Proposition 5.8 The flow on the attractor of the 2d Navier-Stokes equa-
tions is uniformly differentiable, with Λ(t;u0)ξ the solution of

dU/dt− ν∆U + (u · ∇)U + (U · ∇)u+∇q = 0 ∇ · U = 0. (5.2)

Proof Let u(t) = S(t)u0, v(t) = S(t)v0, and let U(t) be the solution of (5.2)
with initial condition ξ = v0 − u0. We will consider

θ(t) = u(t) + ξ(t)− v(t).

After some calculation, θ(t) satisfies

dθ
dt
− ν∆θ + (u · ∇)θ + (θ · ∇)u+ (w · ∇)w = 0.

Taking the inner product with θ gives

1
2

d
dt
‖θ‖2 + ν‖Dθ‖2 = −

∫
[(u · ∇)θ] · θ −

∫
[θ · ∇)u] · θ −

∫
[(w · ∇)w] · θ

≤ k‖θ‖ ‖Dθ‖ ‖Du‖+ k‖w‖ ‖Dw‖ ‖Dθ‖
≤ kρ1‖θ‖ ‖Dθ‖+ k‖w‖ ‖Dw‖ ‖Dθ‖

≤ (kρ1)2

ν
‖θ‖2 +

ν

4
‖Dθ‖2 +

k2

ν
‖w‖2 ‖Dw‖2 +

ν

4
‖Dθ‖2,

and so
d
dt
‖θ‖2 + ν‖Dθ‖2 ≤ c‖θ‖2 + c‖w‖2‖Dw‖2.

An application of Gronwall’s inequality gives (since θ(0) = 0)

‖θ(t)‖2 ≤ cect

∫ t

0
‖w(s)‖2‖Dw(s)‖2 ds. (5.3)

In our uniqueness proof (page 7) we obtained the equation

d
dt
‖w‖2 + ν‖Dw‖2 ≤ c‖Du‖2‖w‖2 (5.4)
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which implies that

‖w(t)‖2 ≤ ecρ2
1t‖w(0)‖2.

Multiplying (5.4) by ‖w‖2 gives

1
2

d
dt
‖w‖4 + ν‖w‖2‖Dw‖2 ≤ cρ2

1‖w‖4.

Integrating from 0 to t gives

‖w(t)‖4 + 2ν
∫ t

0
‖w(s)‖2‖Dw(s)‖2 ds ≤ 2ecρ2

1t‖w(0)‖4,

and so

ν

∫ t

0
‖w(s)‖2‖Dw(s)‖2 ds ≤ K(t)‖w(0)‖4.

Combining this with (5.3) gives

‖θ(t)‖2 ≤ K ′(t)‖w(0)‖4,

which proves the uniform differentiability on A .
Compactness of Λ can be shown following the procedure we used to prove

the existence of a compact absorbing set. Find a bound on ‖Λ(t)ξ‖ and on∫ t
0 ‖D(Λ(s)ξ)‖2, the use the uniform Gronwall approach to find a bound on
‖D(Λ(t)ξ)‖ that depends only on ‖ξ‖. This shows that Λ(t) maps bounded
sets in L2 into bounded sets in H1, i.e. that Λ(t) is compact.

Theorem 5.9 The attractor of the 2d Navier-Stokes equations satisfies

dbox(A ) ≤ cG2,

where G is the dimensionless Grashof number,

G =
‖f‖
ν2λ1

.

Note that the best known bound in the Dirichlet case (at least in terms
of G) is cG; in the periodic case it is cG2/3(1 + logG)1/3.

Proof We have to consider Trn(L(u)) where

L(u)φ = ν∆φ− (u · ∇)φ− (φ · ∇)u.
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So we estimate
n∑

j=1

(L(u)φj , φj) =
n∑

j=1

(ν∆φj , φj)− ((u · ∇)φj , φj)− ((φj · ∇)u, φj)

= ν
∑

j

(∆φj , φj)−
∑

j

((φj · ∇)u, φj)

≤ ν
∑

j

(∆φj , φj) + c
n∑

j=1

‖φj‖ ‖Dφj‖ ‖Du‖

≤ ν
∑

j

(∆φj , φj) +
ν

2

∑
j

‖Dφj‖2 +
c2

2ν
‖Du‖2

=
ν

2

∑
j

(∆φj , φj) +
∑

j

c2

2ν
‖Du‖2

≤ −cνλ1n
2 +

cn

ν
‖Du‖2.

Taking the time average gives

q̃n ≤ −cνλ1n
2 +

cn

ν
〈‖Du‖2〉.

This is a concave function of n, so we have

dbox(A ) ≤ c
〈‖Du‖2〉
ν2λ1

. (5.5)

We can easily estimate the time average of ‖Du‖2. Taking the inner
product of the original equation we obtain (we’ve done this already)

1
2

d
dt
‖u‖2 + ν‖Du‖2 = (f, u) ≤ ‖f‖‖u‖ ≤ λ

−1/2
1 ‖f‖‖Du‖

and so
d
dt
‖u‖2 + ν‖Du‖2 ≤ ‖f‖2

νλ1
.

Integrating from 0 to t and dividing by t gives

ν
1
t

∫ t

0
‖Du(s)‖2 ds ≤ 1

t
(‖u(t)‖2 − ‖u(0)‖2) + ‖f‖2νλ1,

and so

〈‖Du‖2〉 ≤ ‖f‖2

ν2λ1
. (5.6)
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Using this in (5.5) gives

dbox(A ) ≤ c

(
‖f‖
ν2λ1

)2

.

One can do better than this and obtain a bound linear in G if one uses
the following Lieb-Thirring inequality (see Temam, 1988):

Theorem 5.10 Let {φj}n
j=1 be a set of functions in H1 that are orthonormal

in L2, and set

ρ(x) =
n∑

j=1

|φj(x)|2.

Then there exists a constant c independent of n such that(∫
Ω
ρ(x)2 dx

)
= ‖ρ‖2

L2 ≤ c

n∑
j=1

‖Dφj‖2.

To use this, note that

n∑
j=1

([φj · ∇]u, φj) =
∫

Q

n∑
j=1

2∑
i,k=1

φji(x)∂iuk(x)φjk(x)︸ ︷︷ ︸
I(x)

dx.

The integrand can be bounded pointwise by

|I(x)| ≤
n∑

j=1


 2∑

i,k=1

|∂iuk(x)|2
1/2 2∑

i,k=1

|φji(x)φjk(x)|2
1/2


≤ |Du(x)|

n∑
j=1

 2∑
i,k=1

|φji(x)φjk(x)|2
1/2

= |Du(x)|
n∑

j=1

2∑
i=1

|φji(x)|2

= |Du(x)|
n∑

j=1

|φj(x)|2,
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where the first equality follows from the identity

2∑
i,k=1

|aiak|2 =

(∑
i

|ai|2
)2

.

So if we return to the second line on page 40, setting ρ(x) =
∑n

j=1 |φj(x)|2
as in the statement of Theorem 5.10, then

n∑
j=1

(L(u)φj , φj) = ν
∑

j

(∆φj , φj)−
∑

j

((φj · ∇)u, φj)

≤ ν
∑

j

(∆φj , φj) +
∫

Q
|Du(x)|ρ(x) dx

≤ ν
∑

j

(∆φj , φj) + ‖Du‖‖ρ‖L2

≤ ν
∑

j

(∆φj , φj) + ‖Du‖

c n∑
j=1

‖Dφj‖2

1/2

≤ ν
∑

j

(∆φj , φj) +
ν

2

 n∑
j=1

‖Dφj‖2

+
c

2ν
‖Du‖2

≤ ν

2

∑
j

(∆φj , φj) +
c

2ν
‖Du‖2

≤ −ν
2
λ1n

2 +
c

2ν
‖Du‖2.

Taking the time average we obtain, using (5.6),

〈TrnL(u)〉 ≤ −ν
2
λ1n

2 +
c

2ν
‖f‖2

ν2λ1

and hence 〈TrnL(u)〉 is negative provided that n > cG.
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Embedding finite-dimensional sets into Rk

We will now show that many linear maps from H into Rk are injective on
X provided that k > 2dbox(X).

6.1 Auxiliary construction and estimates

For φ ∈ H, let φ∗ denote the element of H∗ given by

φ∗(u) = (φ, u) for all u ∈ H.

Then ‖φ∗‖ = ‖φ‖.

Now let Vj be a sequence of linear subspaces of H with dj := dim(Vj) →
∞. We construct a set Ek of linear maps from H into Rk as follows:

Ek =

L = (L1, . . . , Lk) : Ln =
∞∑

j=1

j−2φ∗nj , with φnj ∈ Sj

 ,

where Sj is the unit ball in Vj . We define a measure µ on Ek to be what
results from choosing each φnj at random from a uniform distribution on
Sj ; clearly µ(Ek) = 1.

We want to show that for any x ∈ H,

µ{L ∈ Ek : |Lx| < ε} ≤ c(εj2d1/2
j ‖Pjx‖−1)k,

where Pj is the orthogonal projection onto Vj and c is a constant independent
of x and j.

43
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Lemma 6.1 For any α ∈ R, x ∈ Rm,

λm{φ ∈ Sm : |α+ (φ · x)| < ε} ≤ Ωm−1

Ωm
2ε|x|−1 = Aεm1/2|x|−1.

Proof We have

λm{φ ∈ Sm : |α+ (φ · x)| < ε} ≤ λm{φ ∈ Sm : |φ · x̂| < ε|x|−1}

≤ Ωm−1

Ωm
2ε|x|−1,

where Ωj = πj/2Γ((j/2) + 1).

Lemma 6.2 If x ∈ H then for every j,

µ{L ∈ Ek : |Lx| < ε} ≤ c(εj2d1/2
j ‖Pjx‖−1)k, (6.1)

where c is independent of j and x.

Proof Write M(x, ε) for the left-hand side of (6.1). First, note that

M(x, ε) ≤ µ{L ∈ Ek : |Lnx| < ε, n = 1, . . . , k}.

Given j ∈ N, fix φni for all i 6= j. Consider

|Lmx| = |αm + j−2(φmj , x)|,

where

αm =
∑
i6=j

i−2(φmi, x).

It follows from Lemma 6.1 that for every choice of φni, i 6= j,

λj({φmj ∈ Sj : |Lmx| < ε}) ≤ cεj2d
1/2
j ‖Pjx‖−1,

from which (6.1) follows.

6.2 Thickness exponent

Let d(X, ε) denote the smallest dimension of a linear subspace V such that
every point of X lies within ε of V . Define the thickness exponent of X,
τ(X), by

τ(X) = lim sup
ε→0

log d(X, ε)
− log ε

.
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Note that τ(X) ≤ dbox(X): clearly the linear space V spanned by the centres
of N(X, ε) ε-balls that cover X has dist(X,V ) ≤ ε.

6.3 Hunt & Kaloshin’s embedding theorem

We can now prove the following result, due to Hunt & Kalsohin (1999):

Theorem 6.3 Let X be a compact subset of a Hilbert space H, with dbox(X) <
∞. Take k > 2dbox(X), and

0 < α <
k − 2d

k(1 + (τ/2))
. (6.2)

Then µ-almost every L ∈ Ek (many linear maps L : H → Rk) is one-to-one
between X and its image, and

|L−1x− L−1y| ≤ C|x− y|α for all x, y ∈ LX

for some C > 0.

Proof Let dj = d(X, 2−jα/3), and Vj a linear subspace such that dist(X,Vj) ≤
2−jα/3. Note that for any σ > τ , dj ≤ C2jασ.

Now let Ek be the collection of linear maps from H into Rk define above,
based on the subspaces Vj .

Define

Zj = {(x, y) ∈ X ×X : |x− y| ≥ 2−αj}

and

Qj = {L ∈ Ek : |Lx− Ly| ≤ 2−j for some (x, y) ∈ Zj}.

Cover Zj with balls of radius 2−j : it takes at most C22jδ for any δ >

dbox(X). Let Y be the intersection of Zj with one these balls.
Then if (x0, y0), (x, y) ∈ Y , since |(x, y) − (x0, y0)| ≤ 2−(j−1) it follows

that

|L(x0 − y0)| ≥ (2L+ 1)2−j ⇒ |L(x− y)| ≥ 2−j for all (x, y) ∈ Y.

So

µ{L ∈ Ek : |L(x− y)| ≤ 2−j for some (x, y) ∈ Y }
≤ µ{L ∈ Ek : |L(x0 − y0)| < (2L+ 1)2−j}

≤ c[(2L+ 1)2−jj2C2jασ/22αj ]k,
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from which it follows that

µ(Qj) ≤ C22jδc[(2L+ 1)2−jj2C2jασ/22αj ]k

= Cc[(2L+ 1)C]kj2k2j[2δ−k(1−α(1+σ/2))]

= Mj2k2j[2δ−k(1−α(1+σ/2))].

It follows that if

2δ − k(1− α(1 + σ/2)) < 0 (6.3)

then
∞∑

j=1

µ(Qj) <∞. (6.4)

Now, if k > 2dbox(X), (6.3) can be satisfied for appropriate δ > dbox(X)
and σ > τ(X) provided that (6.2) holds.

In this case, the Borel-Cantelli lemma1 implies that µ-almost every L ∈ Ek

can be in only a finite number of the Qjs. Thus, for µ-almost every L ∈ Ek,
there exists a j0 such that

|x− y| ≥ 2−αj ⇒ |Lx− Ly| ≥ 2−j for all j ≥ j0.

It follows from this that L is injective on X, with α-Hölder continuous
inverse as claimed.

The same result holds for finite-dimensional subspaces of a Banach space
B (Robinson, 2007), provided (6.2) is replaced by

0 < α <
k − 2d
k(1 + τ∗)

, (6.5)

where τ∗(X) is the dual thickness of X, defined as follows:

For a given θ > 0, let dθ(X, ε) denote the smallest dimension of a linear
subspace V of B∗ such that for every x, y ∈ X with ‖x−y‖ ≥ ε, there exists
a ψ ∈ V such that ‖ψ‖ = 1 and

|ψ(x− y)| ≥ ε1+θ.

1 Consider

Q = ∩∞n=1 ∪∞j=n Qj .

Then Q consists precisely of those L ∈ Ek for which L ∈ Qj for infinitely many values of j.
Now, for any n we must have µ(Q) ≤ µ(∪∞j=nQj) ≤

P∞
j=n µ(Qj). Since

P∞
j=1 µ(Qj) < ∞, it

follows that
P∞

j=n µ(Qj) → 0 as n →∞, and hence µ(Q) = 0.
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Set

τ∗θ (X) = lim sup
ε→0

log dθ(X, ε)
− log ε

,

and finally let

τ∗(X) = lim sup
θ→0

τ∗θ (X).

While in general there is no relation between the thickness and the dual
thickness, one can show that τ(X) = 0 implies that τ∗(X) = 0.

Having a bound on the inverse of the linear maps L in Theorem 6.3 allows
one to obtain a lower bound on the dimension of LX. This is a consequence
of the following simple lemma:

Lemma 6.4 Let X ⊂ B1, and let f : B1 → B2 be a θ-Hölder map,

‖f(x1)− f(x2)‖B2 ≤ c‖x1 − x2‖θ
B1

for some 0 < θ ≤ 1. Then dbox(f(X)) ≤ dbox(X)/θ.

Proof A cover of X by N(X, ε) balls of radius ε leads to a cover of f(X) by
N(X, ε) balls of radius Cεθ. So putting η = Cεθ

NB2(f(X), η)
− log η

≤ NB1(X, ε)
− logC − θ log ε

,

and the result follows.
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Asymptotically determining nodes

As a prelude to the embedding result of the next chapter, we prove the
following simple result due to Foias & Temam (1984):

Theorem 7.1 For the 2d Navier-Stokes equations

ut − ν∆u+ (u · ∇)u+∇p = f ∇ · u = 0

there exists a δ0 = δ0(u, ‖f‖), such that if {x1, . . . , xk} are a collection of
points in Q such that for any x ∈ Q there exists a j such that |x− xj | < δ0,
then for any two solutions lying on the attractor,

max
j
|u(xj , t)− v(xj , t)| → 0 as t→∞

implies that

‖u(t)− v(t)‖∞ → 0 as t→∞.

In fact the solutions need not lie on the attractor for this to hold. We will
use the fact that they do below to bound ‖Du‖ and ‖∆u‖ uniformly. But
one can be more careful using integral estimates and obtain the same result
for arbitrary solutions.

Proof First observe that H2(Q) ⊂ C0,1/2 (and in fact C0,α for any α < 1),
so that

|u(x)− u(y)| ≤ c‖u‖H2 |x− y|1/2.

It follows that if u ∈ H2 then

‖u‖∞ ≤ max
xj

|u(xj |+ cδ
1/2
0 ‖∆u‖. (7.1)

48
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Given two solutions u(t), v(t), with u0, v0 ∈ A , write

η(t) = max
xj

|u(xj , t)− v(xj , t)|.

The assumption of the theorem is then that η(t) → 0 as t→∞.
We will in fact prove that ‖Du(t) − Dv(t)‖ → 0 as t → ∞. Coupled

with the bound on solutions in H2 this leads, via an interpolation result for
Sobolev spaces and the Sobolev embedding theorem, to the convergence of
two solutions in L∞.

Consider the difference of the two solutions, w(t) = u(t) − v(t). This
satisfies the equation

wt − ν∆w + (u · ∇)w + (w · ∇)u− (w · ∇)w +∇q = 0.

Taking the inner product with ∆w and using the orthogonality property
((w · ∇)w,∆w) = 0 leaves two nonlinear terms,

((u · ∇)w,∆w) + ((w · ∇)u,∆w).

Now, if one considers

([(w + εu) · ∇](w + εu),∆(w + εu)) = 0

it follows that

((u · ∇)w,∆w + ((w · ∇)u,∆w) + ((w · ∇)w,∆u) = 0.

So the equation for ‖Dw‖ can be written

1
2

d
dt
‖Dw‖2 + ν‖∆w‖2 = ((w · ∇)w,∆u).

One can bound the right-hand side by c‖w‖∞‖Dw‖‖∆u‖, and so

1
2

d
dt
‖Dw‖2 + ν‖∆w‖2 ≤ c‖w‖∞‖Dw‖‖∆u‖.

Now, we can use (7.1) to write

1
2

d
dt
‖Dw‖2 + ν‖∆w‖2 ≤ c

{
η(t) + cδ

1/2
0 ‖∆w‖

}
‖Dw‖‖∆u‖

≤ cη(t)‖Dw‖‖∆u‖+ cδ
1/2
0 λ

−1/2
1 ‖∆w‖2‖∆u‖

≤ cη(t)ρ1ρ2 + cδ
1/2
0 λ

−1/2
1 ‖∆w‖2ρ2,

using the fact that A is bounded inH1 (‖Du‖ ≤ ρ1) and inH2 (‖∆u‖ ≤ ρ2).
Therefore

1
2

d
dt
‖Dw‖2 +

{
ν − cδ

1/2
0 λ

−1/2
1 ρ2

}
‖∆w‖2 ≤ cρ1ρ2η(t),
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our after using the Poincaré inequality

1
2

d
dt
‖Dw‖2 +

{
ν − cδ

1/2
0 λ

−1/2
1 ρ2

}
λ1‖Dw‖2 ≤ cρ1ρ2η(t).

Now, if δ0 is sufficiently small that

ν − cδ
1/2
0 λ

−1/2
1 ρ2 > 0

then we have an equation for X(t) = ‖Dw(t)‖2 of the form

dX
dt

+ aX ≤ b(t),

where a > 0 and b(t) → 0 as t → ∞. We also know that X(t) ≤ 2ρ2
1, so

X(t) is bounded. It follows that X(t) → 0 as t→∞: given ε > 0, choose T
such that b(t) < ε/2 for all t ≥ T , and then

Ẋ+aX ≤ (ε/2) ⇒ X(T +s) ≤ X(T )e−at +(ε/2) ≤ 2ρ2
1e
−at +(ε/2)

so that for t ≥ T ∗ we have X(t) ≤ ε.
It follows that ‖Dw(t)‖2 → 0 as t→∞. The L∞ bound follows from the

interpolation inequality

‖u‖H3/2 ≤ ‖u‖1/2
H1 ‖u‖

1/2
H2

and the Sobolev embedding H3/2 ⊂ L∞.
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Gevrey regularity

One property of solutions lying on the attractor is that they are more regular
than arbitrary solutions. In particular, if the forcing function f is real
analytic then the functions lying in the attractor are real analytic, in a
uniform way. Let A = −∆. Then we can interpret A1/2 via the effect of A
on the Fourier expansion of a function u: if

u =
∑
j∈Z2

ujei·jx

then

Au = −∆u =
∑
j∈Z2

uj |j|2ei·jx,

and A1/2 is given by

A1/2u =
∑
j∈Z2

uj |j|ei·jx.

A function f(x) is real analytic [it can be represented locally by its Taylor
series expansion] if and only if its derivatives satisfy

|Dβf | ≤M |β|!τ−|β|

for some M and τ . This motivates the definition of the analytic Gevrey
class D(eτA1/2

): this consists of functions such that

|eτA1/2
u| < +∞,

51
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where eτ1/2A is defined using the power series for exponentials,

eτA1/2
=

∞∑
n=0

τn

n!
An/2.

For more details see Friz & Robinson (2001).

If u has Fourier expansion as above, then

|eτA1/2
u|2 =

∑
j∈Z2

e2τ |j||uj |2.

In particular, therefore, if u ∈ D(eτA1/2
) the Fourier coefficients of u must

decay exponentially fast.

Foias & Temam (1989) showed that if f ∈ D(eσA1/2
) for some σ > 0 then

u(t) is bounded in D(A1/2eτA1/2
),

|A1/2eτA1/2
u| ≤ K for all t ≥ T,

T and K depend only on |Du(0)|.

We give the proof here, following Foias & Temam’s paper closely. We
assume the following result (which is lemma 2.1 in Foias & Temam (1989)):

Lemma 8.1 If u, v, and w ∈ D(AeτA1/2
) for some τ > 0 then B(u, v) ∈

D(eτA1/2
) and

|(eτA1/2
B(u, v), eτA1/2

Aw)|
≤ c|eτA1/2

A1/2u|1/2|eτA1/2
Au|1/2|eτA1/2

A1/2v||eτA1/2
Aw|,

for some c > 0.

In order to make the notation more compact, we can write

(u, v)τ = (eτA1/2
u, eτA1/2

v)

and

((u, v))τ = (A1/2eτA1/2
u,A1/2eτA1/2

v)).

The result of lemma 8.1 is now

|(B(u, v), Aw)τ | ≤ c|A1/2u|1/2
τ |Au|1/2

τ |A1/2v|τ |Aw|τ . (8.1)

We now show:
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Theorem 8.2 If f ∈ D(eσA1/2
) then for t ≤ T (|f |σ + |A1/2u(0)|) we have

|A1/2eφ(t)A1/2
u(t)| ≤ K(|f |σ, |A1/2u(0)|) for all 0 ≤ t ≤ T,

where φ(t) = min(σ, t).

Proof Taking the scalar product with Au (or u) in D(eτA1/2
) leads to an

equation for y = |A1/2u|τ like ẏ ≤ Ky3. Not only do the solutions of this
equation blow up in a finite time, but also we need to control |A1/2u(0)|τ
in order to control |A1/2u(t)|τ : we would need to start with analyticity in
order to prove it.

The trick to get round this is to define φ(t) = min(t, σ), and take the
scalar product of

du
dt

+ νAu+B(u, u) = f

with e2φ(t)A1/2
Au to obtain(

du
dt
, e2φ(t)A1/2

Au

)
+ ν|eφ(t)A1/2

Au|2

= (eφ(t)A1/2
f, eφ(t)A1/2

Au)− (eφ(t)A1/2
B(u, u), eφ(t)A1/2

Au)

= (f,Au)φ − (B(u, u), Au)φ

≤ |f |φ|Au|φ + c|A1/2u|3/2
φ |Au|3/2

φ

≤ ν

4
|Au|2φ + c|A1/2u|3/2

φ |Au|3/2
φ

≤ ν

4
|Au|2φ +

2
ν
|f |2φ +

c

ν3
|A1/2u|6φ.

The left hand side of the equation we can bound as(
eφ(t)A1/2 du

dt
, eφ(t)A1/2

Au

)
=
(
A1/2 d

dt
(eφ(t)A1/2

u(t))− dφ
dt
Aeφ(t)A1/2

u(t), eφ(t)A1/2
A1/2u(t)

)
= 1

2

d
dt
|A1/2eφ(t)A1/2

u(t)|2 − dφ
dt

(Aeφ(t)A1/2
u, eφ(t)A1/2

A1/2u)

= 1
2

d
dt
‖u‖2

φ(t) −
dφ
dt

(Au,A1/2u)φ(t)

≥ 1
2

d
dt
‖u‖2

φ(t) − |Au|φ(t)‖u‖φ(t)

≥ 1
2

d
dt
‖u‖2

φ(t) −
ν

4
|Au|2φ(t) −

1
ν
‖u‖2

φ(t).
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We therefore have

d
dt
|A1/2u|φ + ν|Au|2φ ≤ 4

ν
|f |2φ +

2
ν
|A1/2u|2φ +

c

ν3
|A1/2u|6φ

≤ 4
ν
|f |2φ + c+

c

ν3
|A1/2u|6φ.

Now we can set

y(t) = 1 + |A1/2u(t)|2φ(t),

and we have
dy
dt

≤ Ky3 (8.2)

with

K =
4
ν
|f |2σ + c+

c

ν
.

The solution of (8.2) is

y(t) ≤ 1
y(0)−2 − 2Kt

,

and so y(t) ≤ 2y(0) for t ≤ (4Ky(0)2)−1. Since φ(0) = 0, we have

y(0) = 1 + |A1/2u(0)|2,

and so for t ≤ T (|A1/2u(0)|, |f |σ), we have

|A1/2u(t)| ≤ K(|A1/2u(0)|, |f |σ).

It now follows that solutions on the attractor are uniformly bounded in
D(A1/2eτA1/2

):

Corollary 8.3 The global attractor for the 2d Navier-Stokes evolution equa-
tion with periodic boundary conditions is uniformly bounded in D(A1/2eτA1/2

),
i.e. there exists a constant K such that if u ∈ A then

|A1/2eτA1/2
u| ≤ K. (8.3)

In particular the attractor consists of real analytic functions.

Proof The attractor is bounded in H1(Q), with |A1/2u| ≤M for all u ∈ A .
Set T = T (M, |f |σ). Since the attractor is invariant, if u ∈ A then there
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exists a u0 ∈ A such that u = S(T )u0. It follows from the above theorem
that

|A1/2eφ(T )S(T )u0| ≤ K(M, |f |σ).

Now set τ = φ(T ) and K = K(M, |f |σ), which gives (8.3).
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Instantaneous determining nodes

In this final chapter we will prove the following theorem, due to Kukavica
& Robinson (2004). Where details are missing they can be found there.

Theorem 9.1 Let A ⊂ L2(Q,Rd) have finite box-counting dimension. Sup-
pose further that for each r ∈ N, A is a bounded subset of Cr(Q,Rd), and
that moreover for all u, v ∈ A with u 6= v, u−v has finite order of vanishing.

Then for k ≥ 16dbox(A ) + 1, Lebesgue almost every choice of k points in
Q, x = (x1, . . . , xk), makes the map Ex : A → Rdk given by

u 7→ (u(x1), . . . , u(xk))

one-to-one between A and its image, i.e. if u, v ∈ A and u(xj) = v(xj) for
all j = 1, . . . , k, then u = v.

We will have to assemble a number of preliminary results, that will all be
combined in the final proof.

9.1 Order of vanishing

If u ∈ C∞(Ω,Rd) (where Ω is an open subset in Rm), the order of vanishing
of u at x ∈ Ω is the smallest integer k such that Dαu(x) 6= 0 for some multi-
index α with |α| = k. A function u is said to have finite order of vanishing
in Ω if the order of vanishing of u at x is finite for every x ∈ Ω.

Note that the order of vanishing of a function is uniformly bounded for
all x ∈ K, whenever K is a compact subset of Ω. If not, then there would

56
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exist xj ∈ K such that the order of vanishing of u at xj is at least j. But
extracting a subsequence such that xjk

→ x∗ produces a point x∗ at which
the order of vanishing of u is not finite, a contradiction.

Note also that real analytic functions have finite order of vanishing.

9.2 Zeros of functions with finite order of vanishing

Analytic functions cannot have ‘too many’ zeros, and the same is true of
functions with finite order of vanishing. The following lemma will be suf-
ficient for our purposes. The proof uses a tailored version of the implicit
function theorem.

Lemma 9.2 Let K be a compact connected subset of Rm. Suppose that for
all p ∈ Π ⊂ RN the function w = w(x; p), where w : K × Π → Rd has
order of vanishing at most M < ∞, and that ∂αw(x; p) depends on p in a
θ-Hölder way for all |α| ≤M .

Then the zero set of w(x; p),

{(x, p) ∈ Rm × RN : w(x; p) = 0}

is contained in a countable union of manifolds of the form

(xi(x′, p), x′; p)

where x′ = (x1, . . . , xi−1, xi+1, . . . , xm) and xi is a θ-Hölder functions of its
arguments.

Note that in the case of the 2d Navier-Stokes equations, where w is a
two-component function, this says that the manifolds containing the zeros
are of the form

(x1(x2, p), x2; p) or (x1, x2(x1, p); p).

9.3 Hausdorff dimension

The proof will also use the Hausdorff dimension, since this definition is
stable under countable unions (such as the countable union of manifolds
that appear in Lemma 9.2).
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The d-dimensional Hausdorff measure is defined by

H d(X) = lim inf
ε→0

{∑
i

rd
i : X ⊂ ∪iUi, diam(Ui) = ri ≤ ε

}
.

The Hausdorff dimension is then

dH(X) = inf{d ≥ 0 : H d(X) = 0}.

The Hausdorff dimension has the following properties

• dH(X) ≤ dbox(X);
• if f : B1 → B2 is θ-Hölder then dH(f(X)) ≤ dH(X)/θ, so in particular
dH(LX) ≤ dH(X) if L is a bounded linear map;

• if X ⊂ Rn and f : X → Rm is θ-Hölder then

dH({(x, f(x))} ⊂ Rn+m) ≤ n+ (1− θ)m;

• stability under countable unions,

dH

 ∞⋃
j=1

Xj

 = sup
j
dH(Xj);

and
• if X ⊂ Rn and dH(X) < n then X has (n-dimensional) Lebesgue measure

zero.

9.4 Bounds on box-counting and thickness

In order to use the abstract embedding result of Theorem 6.3 we will need
the following:

Lemma 9.3 Let Q ⊂ Rm, and let X ⊂ L2(Q,Rd) be uniformly bounded in
Cr(Q,Rd) for all r ∈ N. Then for any r ∈ N,

(a) dbox(X;Cr) ≤ dbox(X,L2) and
(b) τ∗(X;Cr) = 0.

Proof We first note that if B1 and B2 are two Banach spaces such that
B1 ⊂ B2 and

‖u‖B2 ≤ c‖u‖B1
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then if X ⊂ B1,

dbox(X;B2) ≤ dbox(X;B1) and τ(X;B2) ≤ τ(X;B1).

Since we will show (b) by proving that τ(X;Cr) = 0, it is therefore sufficient
– using the Sobolev embedding result

‖u‖Cr ≤ c‖u‖H(r/2)+m+1

– to show that for every r ∈ N,

(a′) dbox(X;Hr) ≤ dbox(X;L2) and
(b′) τ(X;Hr) = 0.

(a′) The Sobolev interpolation result that for s > r

‖u‖Hr ≤ ‖u‖1−(r/s)
L2 ‖u‖r/s

Hs

implies that the identity map on X from L2 into Hr is [1 − (r/s)]-Hölder.
Using Lemma 6.4 this implies that dbox(X;Hr) ≤ dbox(X;L2)/[1 − (r/s)]
for any s ∈ N, which implies (a′).

(b′) Elliptic regularity implies that

‖u‖H2r ≤ ‖Aru‖,

where A = −∆. Let {wj} be the eigenfunctions of −∆ on Q, ordered so
that the corresponding eigenvalues satisfy λj+1 ≥ λj . Let Pn denote the
orthogonal projection from L2 onto the first n eigenvalues of A,

Pnu =
n∑

j=1

(u,wj)wj

and let Qn = I−Pn be its orthogonal complement. Then any u ∈ X can be
approximated by an element of PnH to within an error in H2r bounded by

‖u− Pnu‖H2r ≤ ‖ArQnu‖
= ‖A−sQnA

r+su‖
≤ ‖A−sQn‖op‖Ar+su‖
≤ λ−s

n+1‖u‖H2(r+s)

≤ λ−s
n+1K2(r+s),

where Kj is the uniform bound on ‖u‖Hj for u ∈ X. Since λn ∼ n2/m, it
follows that τ(X;Hr) ≤ m/2s. But s is arbitrary, and so τ(X;Hr) = 0.
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9.5 Proof of Theorem 9.1

Set W = A −A \ {0}, i.e.

W = {a1 − a2 : a1, a2 ∈ A , a1 6= a2}.

Decompose W as

W =
∞⋃

j=0

Wj

where u ∈ W is in Wj if j is the smallest integer such that u has order of
vanishing bounded by j throughout Q.

If for each j, Ex is non-zero on Wj for almost every choice of x, then Ex

is non-zero on W for almost every choice of x.

So fix j. In follows from Lemma 9.3 that

dbox(Wj ;Cr) ≤ dbox(Wj ;L2) ≤ dbox(A −A ;L2) ≤ 2dbox(A ;L2)

and that

τ∗(Wj ;Cr) = 0.

So, using the Banach space version of Theorem 6.3, for any N > 4dbox(A )
and

0 < θ < 1− 4dbox(A )
N

there is a parametrisation w(x; p) of Wj in terms of N coordinates p ∈ Π ⊂
RN , such that the map p 7→ w(x; p) is θ-Hölder into Cr. In other words,
w and all its partial derivatives ∂αw up to order |α| = j depend on p in a
θ-Hölder way.

It follows from Lemma 9.2 that the zeros of w(x; p) are contained in a
countable collection of manifolds, given in the form

(xi(x′, p), x′; p)

where x′ = (x1, . . . , xi−1, xi+1, . . . , xm) and xi is a θ-Hölder functions of its
arguments.

Collections of k such zeros are given by a collection of such manifolds. The
parameter p is common to all these, so one obtains a countable collection
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of manifolds given as the graphs of θ-Hölder functions from RN+(m−1)k into
Rk. So

dH(k simultaneous zeros) ≤ N + (m− 1)k + k(1− θ).

These are ‘bad choices’ in Qk × Π. We want to exclude all bad choices in
Qk, so if we project these simultaneous zeros onto Qk this does not increase
the Hausdorff dimension:

dH(bad choices) ≤ N + (m− 1)k + k(1− θ).

If we can ensure that

N + (m− 1)k + k(1− θ) < dim(Qk) = mk

then the set of bad choices will have measure zero. This condition reduces
to N < kθ. Since θ can be chosen arbitrarily close to 1 − [4d(A )/N ], it
follows that we need

k >
N2

N − 4d(A )
.

Choosing N to minimise this gives k ≥ 16dbox(A ) + 1.
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Sobolev spaces are collections of spaces of functions whose (weak) derivatives
are square integrable. Although spaces of continuous functions would seem
to be more natural in the context of PDEs, Sobolev spaces are often provide
a much more mathematically convenient setting in which to work.

On a smooth bounded domain Ω ⊂ Rd, Hs(Ω) consists of functions all of
whose derivatives of order up to s are square integrable,

Hs(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω), |α| ≤ s}.

The standard norm on Hs is

‖f‖2
Hs(Ω) =

∑
|α|≤s

‖Dαf‖2
L2(Ω). (9.1)

Here α is a multi-index (α = (α1, . . . , αd), |α| = α1 + · · · + αd, and Dα =
∂α1

1 · · · ∂αd
d ).

We will concentrate here on Sobolev spaces of periodic functions, for which
the analysis can be done in terms of Fourier series. All the results here hold
for Sobolev spaces of functions on bounded domains.

In this context, let C∞
p (Q) denote the collection of C∞ functions that

are periodic with period Q. Then Hs
p(Q) is the completion of C∞

p (Q) with
respect to the norm (9.1), replacing Ω by Q throughout.

It is relatively easy to show that this definition is equivalent to the fol-

62
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lowing characterisation in terms of Fourier series:

Hs
p(Q) = {u : u =

∑
k∈Zd

cke2πik·x/L, ck = c−k,
∑
k∈Zd

|k|2s|ck|2 <∞}, (9.2)

the main observation yielding this being that the Hs
p is equivalent to∑

k∈Zd

(1 + |k|2s)|ck|2
1/2

when u is given as a Fourier series as in (9.2).

Some standard results on Sobolev spaces that are not straightforward to
prove in the bounded case are much simpler to prove in the periodic setting.
For example, density of C∞

p (Q) in Hs
p(Q) is immediate from the definition

– density of C∞(Ω̄) in Hs(Ω) requires some non-trivial work (and requires
sufficient smoothness of ∂Ω).

The following results are all true in the case of bounded domains (remove
the ·p and replace Q by Ω) provided Ω is sufficiently smooth.

Theorem 9.4 If u ∈ Hs
p(Q) with s > d/2 then u ∈ C0(Q) and

‖u‖∞ ≤ Cs‖u‖Hs .

Proof For simplicity we take L = 2π. The general case follows with extra
factors of L and 2π throughout as appropriate. All sums are over Zd.

If u =
∑

k cke
ik·x then if

∑
|ck| is finite it follows that the Fourier series

converges uniformly. Since each partial sum is continuous, from this it would
follow that u itself is continuous, as clearly ‖u‖∞ ≤

∑
k |ck|. So we show

that
∑

k |ck| ≤ Cs‖u‖Hs to prove the result.
We have∑

k

|ck| ≤
∑

k

(1 + |k|2s)1/2|ck|
1

(1 + |k|2s)1/2

≤

(∑
k

(1 + |k|2s)|ck|2
)1/2(∑

k

1
1 + |k|2s

)1/2

.

Provided that s > d/2 the second sum is finite (= Cs, say), in which case∑
k

|ck| ≤ Cs‖u‖Hs ,

and the result follows.
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The following corollary is straightforward:

Corollary 9.5 If u ∈ Hs
p(Q) with s > d/2 + j then u ∈ Cj(Q) and

‖u‖Cj ≤ Cs‖u‖Hs .

In particular, if u ∈ Hs
p(Q) for all s ∈ N then u ∈ C∞(Q).

After the above result, it is natural to ask what happens if u ∈ Hs
p(Q)

with s < d/2 (and in particular if s = d/2). The following result shows
in particular that if u ∈ H

d/2
p (Q) then u ∈ Lp(Q) for all p ∈ [2,∞) (but

not necessarily ∞). The key is the following observation (a little weak for a
result that requires some significant mathematical sophistication to prove):
if c ∈ `p and

u =
∑

k

ckeik·x

then u ∈ Lq(Q) (where p and q are conjugate) and

‖u‖Lq ≤ αp‖c‖`p .

Theorem 9.6 If u ∈ Hs
p(Q) with s < d/2 then u ∈ Lp(Q) for all

p ∈
[
2,

d

(d/2)− s

)
.

If s = d/2 then the same is true for all p ∈ [2,∞).

In fact the result is true when s < d/2 for all p ∈ [2, d/((d/2) − s)],
i.e. includes the right-hand end of the interval. So in particular in a three-
dimensional domain, H1 ↪→ L6, and in a two-dimensional domain H1 ↪→ Lp

for any p ∈ [2,∞).

Proof The argument follows that above, writing∑
k

|ck|q =
∑

k

[(1 + |k|2s)q/2|ck|q](1 + |k|2s)−q/2

and using Hölder’s inequality appropriately.

Finally, a key compactness property:
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Theorem 9.7 H1
p(Q) is compactly embedded in L2(Q), i.e. any sequence

{un} that is bounded in H1
p(Q) has a subsequence that converges in L2(Q).

Proof Let {u(n)} with

u(n) =
∑

k

c
(n)
k eik·x

be a sequence that is uniformly bounded in H1
p(Q), i.e. for some M > 0,∑

k

(1 + |k|2)|c(n)
k |2 ≤M

for each n. Let {kj}j∈N be an enumeration of the elements of Zd (over which
the sum is taken).

It is clear that each Fourier coefficient is uniformly bounded. One can
therefore find a subsequence u(n1,j) such that c(n1,j)

k1
converges; and a subse-

quence of this, u(n2,j) such that c(n1,j)
k1

converges and c
(n1,j)
k2

converges; and
by continuing in this way one can find successive subsequences such that for
u(nm,j), c(nm,j)

ki
converges for all i = 1, . . . ,m.

Now if one takes the ‘diagonal subsequence’ u[j] = u(nj,j) it follows that
c
[j]
i := c

(nj,j)
k converges for every k ∈ Zd; call the limit c∗k.

Now, for each finite K we have∑
|k|≤K

(1 + |k|2)|c[n]
k |2 ≤M,

and hence ∑
|k|≤K

(1 + |k|2)|c∗k|2 ≤M.

Since this holds for all K,∑
k

(1 + |k|2)|c∗k|2 ≤M,

so u∗ =
∑

k c
∗
ke

ik·x is an element of H1
p(Q). To show that u[n] → u in L2(Q),

observe that ∑
k

(1 + |k|2)|c[n]
k − c∗k|2 ≤ 4M.
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So now ∑
k

|c[n]
k − c∗k|2 =

∑
|k|≤K

|c[n]
k − c∗k|2 +

1
K2

∑
|k|≥K

|k|2|c[n]
k − c∗k|2

≤ 4M
K2

+
∑
|k|≤K

|c[n]
k − c∗k|2.

Given ε > 0, choose K such that 4M/K2 < ε/2, and then n sufficiently
large that the second term is also less than ε/2. It follows that u[n] → u∗ in
L2(Q).
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