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Chapter 1

Evolutionarily game theory

Evolutionarily game theory assumes a population where individuals can use different strategies.

These strategies are interpreted as different phenotypes. There are two distinct possibilities: either

all individuals use the same strategy in which case the population is monomorphic, or population is

polymorphic, if population consists of several phenotypes. The classical evolutionarily game theory

started with the assumption that the population is monomorphic (Maynard Smith and Price 1973).

The theory assumes that phenotypes are inherited by offsprings, which is realistic in the case of

clonal reproduction but questionable in the case of sexual reproduction. Payoff to an individual

adopting some strategy is called fitness which is assumed to be proportional to the expected number

of offsprings. As phenotypes with a higher fitness produce more offsprings, these phenotypes will

spread in the population replacing those with a lower fitness. Evolutionarily game theory aims to

study the stable equilibria of evolution and it became one of the major methodologies to study

evolution. One of the problem with the theory since it was conceived by Maynard Smith and Price

(1973) was the fact that this theory aims to explain the outcome of an inherently dynamical process

without actually specifying the underlying dynamics. This shortcoming was pointed out by Taylor

and Jonker (1978). However, it is quite surprising that even if some evolutionary dynamics are

introduced, the corresponding equilibrium often is that which corresponds to the one defined by

Maynard Smith and Price (1973). Many articles therefore try to reconciliate the relation between

the classical evolutionarily game theory with the results when some particular dynamics are used

(Cressman 1992).

Another complication with the evolutionarily game theory is the fact that this name is used

for two different types of games. The first type are so called pairwise contest games where a given

individual plays against an opponent that was randomly chosen from the population. These games

are then formally the same as those from the classical two-person game theory. However, there is
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another type of games, so called games against the field in which there is no specific opponent for

a given individual. In this case the individual payoff depends on what everyone in the population

is doing.

I will start with the classical example introduced by Maynard Smith and Price (1973) that laid

foundations of evolutionarily stability.

1.1 Hawk-Dove game

One of the first evolutionarily games was invented to understand evolution of aggressiveness among

animals (Maynard Smith and Price 1973). Although many species have strong weapons (e. g., teeth,

horns), it is puzzling observation that in many cases the antagonistic encounters do not result in

fight. In fact, such encounters often result in a complicated series of behaviors, but without causing

serious injuries. For example, in contests between male red deers, the two contestants first approach

each other, and provided one does not withdraw, the contest escalates to roar contest and to so

called parallel walk. Only if this does not lead to withdrawal of one deer, fight follows. It was

observed (Maynard Smith 1982) that out of 50 encounters, only 14 resulted in fight. The obvious

question is why do not animals always end up in the fight? As it is good for an individual to get

the resource, Darwinian selection seems to suggest that individuals should fight whenever possible.

One possible answer to this question is that such a behavior is for the good of the species, because

any species following this aggressive strategy would die out quickly. Then we should accept that

the unit of selection is not an individual, and abandon Darwinian “survival of the fittest”.

Hawk-Dove model explains animal contest behavior from the Darwinian point of view. This

model considers two strategies, that differ in the level of aggressiveness, in a single species pop-

ulation. The highly aggressive strategy (or phenotype) is called Hawk and the strategy with low

level of aggressiveness is called Dove. The question is, what should be distribution of these two

strategies in a population? Should all individuals use Hawk strategy, Dove strategy, or a mixture

of these two? These model assumes pairwise contests in which exactly two individuals are involved.

To quantify these two strategies we need to specify how Darwinian fitness increases (decreases)

after each encounter between two opponents. Change in fitness W depends on the strategy the two

opponents use. For Hawk-Dove game there are four possibilities:

• When an individual playing strategy H encounters an individual playing strategy D it always

wins and its fitness increases by V units. I write W (H, D) = V.

• When an individual playing strategy D encounters an individual playing strategy H it always

withdraws and its fitness does not change. I write W (D, H) = 0.
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• An encounter between two individuals playing strategy H will always lead to fight. One

individual will win and its fitness increases by V , one individual will loose and it fitness

decreases by C units. In average, the change in fitness is equal to W (H, H) = (V − C)/2.

• An encounter between two individuals playing strategy D does not lead to fight and both

contestants share the reward equally, i. e., W (D, D) = V/2.

The above evaluation of each strategy lead to the following payoff table that specifies the payoff

for the raw player. The payoffs for the column player are assumed to be symmetric, which is why

such games are called symmetric games in the literature.

H D

H V −C
2 V

D 0 V
2

Here, the payoff of the player one that uses strategy H against the second (column) player that uses

say strategy D is equl to V and so on.

Now, I want to know which of the two strategies is better and will spread in the population.

First, let us consider a resident population where all individuals use strategy D. Now, consider a

mutant with strategy H in this population. Because fitness of such a mutant will be higher than is

the fitness of residents

W (H, D) = V > W (D, D) = 0

this mutant will, initially (i. e., when at low density) spread in the resident population. Thus, it

seems that strategy H is better than is strategy D. Can mutants that use strategy D spread in the

resident population where all individuals use strategy H? Because

W (D, H) = 0

and

W (H, H) =
V − C

2

there are two possibilities. If C < V , then W (H, H) > W (D, H) and mutants (playing strategy D)

cannot spread in the population. In this case, strategy H is resistant with respect to invasions of

mutants that use strategy D. If C > V , then W (D, H) > W (H, H) and strategy D can spread in

the resident population where all individuals use strategy H .

It follows that it is a priori impossible to say which of the two strategies is better then the

other. I remark that neither strategy D nor strategy H is superior. To proceed, I consider mixed

strategies where individuals play H with probability p and D with probability 1− p. Such a mixed

strategy will be denoted as pH + (1 − p)D.
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Fitness of strategies H and D in the population that plays the mixed strategy is

W (H, pH + (1 − p)D) = pW (H, H) + (1 − p)W (H, D) = V − p

2
(V + C)

and

W (D, pH + (1 − p)D) = pW (D, H) + (1 − p)W (D, D) = (1 − p)
V

2
.

If p < V/C, then W (H, pH + (1 − p)D) > W (D, pH + (1 − p)D) and the strategy H increases in

the population. If p > V/C, then W (H, pH + (1 − p)D) < W (D, pH + (1 − p)D) and strategy D

spreads in the population.

The mixed strategy p = V/C resists invasions of both strategies H and D and it is called the

evolutionarily stable strategy (ESS). Parameter C measures the damage one individual can cause to

his opponent. The model predicts that if this cost C is high then aggressiveness in the population

will be low. In other words, the species that pose strong weapons (e.g., antlers in deers) should

solve conflicts without direct fights. The level of aggressiveness in species that do not have such

weapons should be much higher and conflicts end often in fight where one of the opponents is killed

or seriously injured. For example, biological doves are known to be very aggressive when caged. A

similar reasoning lead to “arms race” during the Cold war as it was generally believed that weapons

of mass destruction can prevent the opponent to strike first.

1.2 Darwinian evolution vs. group selection

Darwinism assumes that selection operates at the level of an individual, maximizing individual

fitness. However, this is not the only possibility. Some biologists (e. g., Gilpin 1975) postulated

that selection operates on a larger unit, a group, maximizing the benefit of this unit (e. g., a

population, a species etc.). This approach was termed group selection. Some others suggested that

selection operates on a lower gene level (Dawkins 1976). The Hawk-Dove game allows to show

clearly the difference between the group and Darwinian selection.

Let us consider a mixed strategy in the Hawk-Dove game. If individuals are monomorphic the

individual fitness and the average fitness in the population is the same

W (pH+(1−p)D, pH+(1−p)D) = pW (H, pH+(1−p)D)+(1−p)W (D, pH+(1−p)D) =
V

2
−C

2
p2.

Thus, the group selection should maximize this average fitness, which implies p = 0. In other words,

the level of aggressiveness in the population should be zero and individual fitness equals V/2.

On the contrary, at the evolutionarily stable equilibrium p = V/C, individual fitness is

V

C
W (H, pH + (1 − p)D) + (1 − V

C
)W (D, pH + (1 − p)D) =

V

2
(1 − V

C
),
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thus always smaller than V
2 .

We observe that when selection operates on an individual level, fitness is lower than in the

case of group selection. However, in the case of group selection, the population is not resistant

to invasions of aggressive mutants and such a strategy cannot be considered as an end point of

evolution.

1.3 Normal form games

In these notes I will mainly use so called normal form games. These games consists of players, a

finite number of elementary strategies e1, . . . , en and a payoff matrix U .

Definition 1 A mixed strategy p = (p1, . . . , pn) defines probabilities pi, with which elementary

strategies e1, . . . , en are played. The set of all mixed strategies is the probability simplex

Sn = {p ∈ Rn | pi ≥ 0,
n
∑

i=1

pi = 1}.

I remark that the elementary strategy ei can be also written as a mixed strategy ei = {0, . . . , 1, . . . 0}
where 1 is at the i-th place.

Definition 2 Matrix U = (uij)n
i,j=1, where uij is the expected payoff of the elementary strategy ei

when played against ej , is called the payoff matrix.

Example 1 In the Hawk-Dove game there are two elementary strategies: e1 = (1, 0) denotes

Hawk strategy and e2 = (0, 1) Dove strategy. A mixed strategy p = (p1, p2) ∈ S2, where p1 is the

probability of playing Hawk and p2 is the probability of playing Dove. The payoff table for the

Hawk-Dove game defines the payoff matrix for the first player:

U =





V −C
2 V

0 V
2



 .

The payoff matrix for the second player is the transposed matrix because this game is symmetric.

1.3.1 Fitness for mixed strategies

The payoff matrix defines fitness for a player that uses one of his elementary strategies against

another player that also uses one of his elementary strategies. Now the question is how to compute

fitness of a player that uses a mixed strategy against another player that can use a mixed strategy
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as well. If the first player uses an elementary strategy ei and his opponent uses a mixed strategy

q = {q1, . . . , qn} then the payoff of the first player is

W (ei, q) =
n
∑

j=1

uijqj = 〈ei, Uq〉,

where 〈·, ·〉 denotes the scalar product in Rn. If the first player uses also a mixed strategy p =

(p1, . . . , pn), then his payoff is

W (p, q) = 〈p, Uq〉 =
n
∑

i,j=1

piuijqj .

Definition 3 Let p = (p1, . . . , pn) ∈ Sn be a mixed strategy. Then

supp(p) = {i | 1 ≤ i ≤ N, pi > 0}

denotes the set of elementary strategies that are used in the mixed strategy p.

1.3.2 Nash equilibrium

Definition 4 Strategy p = (p1, . . . , pn) ∈ Sn is called an equilibrium if

W (p, p) = W (ei, p) for every i ∈ supp(p).

Thus, every elementary strategy is an equilibrium by definition. At the equilibrium p, every

elementary strategy when played against p has the same payoff.

Example 2 The Hawk-Dove game has three equilibria: Elementary strategies H and D, and the

mixed strategy (V/C, 1 − V/C).

Definition 5 (Nash equilibrium) Strategy p = (p1, . . . , pn) ∈ Sn for which

W (p, p) ≥ W (q, p)

for all strategies q = (q1, . . . , qn) ∈ Sn is called the Nash equilibrium (NE).

If

W (p, p) > W (q, p)

for every other strategy q 6= p, then p is a strict Nash equilibrium.

In words, the NE p is “the best response against itself”. The question is, under which conditions

a NE for a given game exists. Let W : Sn × Sn 7→ R and b : Sn ; Sn be the best response map,

i. e.,

b(x) = {y ∈ Sn | W (y, x) = sup
z∈Sn

W (z, x)}.
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Here the sign ; indicates that the mapping is set-valued, i. e., b(x) ⊂ Sn. Then, the Nash equilib-

rium p is the best response against itself, i. e.,

p ∈ b(p).

For matrix games with a payoff matrix U , the best response is

b(x) = arg max
y∈Sn

〈y, Ux〉 = {y ∈ Sn : 〈y, Ux〉 = max
z∈Sn

〈z, Ux〉}.

The question of the existence of a NE is thus reduced to the existence of a fixed point for the

best response mapping. To answer this, we need an extension of continuity and the Brower fixed

point for multivalued maps.

Definition 6 (Upper semicontinuous set-valued map) Let F : X 7→ Y be set-valued map

with non-empty values. We say that F is upper semicontinuous at a point x, if for any open set N

containing F (x) there exists an open set M containing x such that F (M) ⊂ N.

Proposition 1 (The Kakutani fixed point theorem, Aubin and Cellina (1984)) Let K

be a compact convex subset of a Banach space X and let F be an upper semicontinuous set-valued

map from K into its compact convex subsets. Then F has a fixed point, i. e., there exists x such

that x ∈ F (x).

Proposition 2 (Existence of the NE) Let W : Sn×Sn 7→ R be continuous. Then at least one

Nash equilibrium exists.

Proof. It is enough to prove that the best response map x ; b(x) has a fixed point is Sn. Because

the best response map is upper semicontinuous (Aubin and Cellina 1984) with non-empty, convex

and compact values, the existence of a fixed point follows from the Kakutani fixed point theorem.

2

Remark 1 The above proposition implies that every matrix game has a NE.

The next Proposition is used when calculating the NE.

Proposition 3 Let p = (p1, . . . , pn) be a Nash equilibrium. Then W (ei, p) = W (p, p) for every

elementary strategy ei, i ∈ supp(p).

Proof. For every elementary strategy ei, i ∈ supp(p), W (p, p) ≥ W (ei, p) by definition. If for some

ei, W (p, p) > W (ei, p) then

W (p, p) =

n
∑

j=1

pjW (ej , p) < W (p, p),
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a contradiction.

2

Proposition 4 Let U = (uij)n
i,j=1 be a payoff matrix. If there exists i such that uii ≥ uji for

j = 1, . . . , n, then elementary strategy ei is the Nash equilibrium. If uii > uji for j = 1, . . . , n, j 6= i

then elementary strategy ei is a strict Nash equilibrium.

Proof. Inequality

pjuii ≥ pjuji

implies

uii ≥ p1u1i + · · · + pnuni.

Thus W (ei, ei) ≥ W (p, ei) and elementary strategy ei is a Nash equilibrium.

2

Example 3 For the Hawk-Dove game the mixed equilibrium p = (V/C, 1 − V/C) is a NE. Ele-

mentary strategy H (e1 = (1, 0)) is a NE provided V > C. Elementary strategy D (e2 = (0, 1)) is

not a NE because W (e2, e2) < W (e1, e2).

Let us consider a population of individuals. If every individual uses a strategy that corresponds

to a strict NE, then any mutant strategy has a lower fitness and cannot increase in the population

when rare. However, in a non-strict NE this is not so as there are mutant strategies that give the

same fitness. Indeed, Let p be a Nash equilibrium different from any elementary strategy. Then

supp(p) consists at least of two elements. and W (ei, p) = W (p, p), for every i ∈ supp(p). Let q be

any other strategy with the same support. Then

W (q, p) =

n
∑

i=1

qiW (ei, p) = W (p, p).

Thus, at a mixed NE there are mutant strategies that get the same fitness as residents. If all

elementary strategies are played at a NE, then any other strategy gets the same fitness. This

means that a mixed Nash equilibrium is not protected against invasions by mutants that have the

same payoff. The phenotype that corresponds to the Nash equilibrium has the highest possible

fitness in the environment where other individuals play the same strategy, but there are infinitely

many phenotypes with the same payoff. This motivated Maynard Smith and Price (1973) to select

among all Nash equilibria those that resist invasions by mutants.
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1.4 Evolutionarily stable strategies

Maynard Smith and Price (1973) introduced so called evolutionarily stable strategies (ESS) as those

NE that are stable with respect to invasions by mutants. Thus, the ESS should correspond to an

end point of evolution, as no other strategy (phenotype) can invade.

Definition 7 Strategy p∗ ∈ Sn is evolutionarily stable provided for every other strategy p 6= p∗

there exists ε(p) > 0 such that

W (p∗, εp + (1 − ε)p∗) > W (p, εp + (1 − ε)p∗)

for every 0 < ε < ε(p).

If W is linear in the second argument (which is the case of matrix games) the above inequality

can be re-written as

(1 − ε)(W (p∗, p∗) − W (p, p∗)) + ε(W (p∗, p) − W (p, p)) > 0

for every 0 < ε < ε(p). This implies that for pairwise matrix games p∗ is an ESS if and only if the

following two conditions hold:

(1.) W (p∗, p∗) ≥ W (p, p∗) for every p ∈ Sn

(2.) If p 6= p∗ and W (p∗, p∗) = W (p, p∗) then W (p∗, p) > W (p, p).

The first condition is nothing else than condition on NE and the second condition is the so

called stability condition. The latter condition shows that the ESS strategy is globally superior to

other strategies.

The definition of ESS p∗ requires that for every other mutant strategy p there exists an invasion

barrier ε(p) > 0 that depends on strategy p. The next proposition shows that for matrix games

this invasion barrier is uniform, i. e., independent from the mutant strategy p.

Proposition 5 (Hofbauer and Sigmund (1998),Weibull (1995)) For matrix games the in-

vasion barrier can be chosen independently of the mutant strategy.

Proof. For an ESS p∗ and p ∈ Sn let us define

f(ε, p) = W (p∗ − p, p∗) + εW (p∗ − p, p − p∗).

Function f is linear in ε. As p∗ is an ESS it follows that either f(0, p) > 0, or f(0, p) = 0 in which

case the slope W (p∗ − p, p − p∗) > 0. Thus, there exists 1 > ε > 0 such that f(ε, p) > 0 for ε < ε.
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Let

C(p∗) = {p ∈ Sn | pi = 0 for some i ∈ supp(p∗)}. (1.1)

be the union of all boundary faces of Sn that do not contain p∗. Fix q ∈ C(p∗) and consider function

f(ε, q). As f is linear in ε, there exists at most one solution to f(ε, q) = 0. If such a solution exists,

it is given by ε0 = W (p−p∗,p∗)
W (p∗−p,p−p∗) . I define

β(q) =







ε0 if f(ε, p) has a solution ε0 ≤ 1

1 otherwise.
(1.2)

Function β is continuous, positive and therefore it attains a positive minimum on the compact set

C(p∗). Thus, we proved that a global invasion barrier exists for all q ∈ C(p∗).

Now, let us consider any strategy p ∈ Sn, p 6= p∗. Then here exists q ∈ C(p∗) and 1 > λ > 0 such

that p = λq + (1 − λ)p∗. Because f(ε, p) = f(ελ, q) it follows that β(p) = min{β(q)/λ, 1} ≥ β(q).

2

The next theorem shows that for a strategy to be an ESS it is enough if it is only locally superior

(Hofbauer and Sigmund 1998; Weibull 1995).

Proposition 6 For matrix games strategy p∗ ∈ Sn is an ESS if and only if

W (p∗, p) > W (p, p) (1.3)

for every p 6= p∗ in some neighborhood of p∗ in Sn.

Proof. Let p∗ be an ESS and let 1 > ε > 0 be its the uniform invasion barrier that exists due to

Proposition 5. Let C(p) be defined by (1.1) and

V = {p ∈ Sn | p = εq + (1 − ε)p∗ for some q ∈ C(p∗), ε < ε}.

There exists a neighborhood U of p∗ such that U ⊂ V . Let p ∈ U and

W (q, p) < W (p∗, p).

Multiplying the inequality by ε and adding W ((1 − ε)p∗, p) we get

W (p∗, p) > W (p, p).

Now I prove that local superiority condition (1.3) implies ESS. Let q ∈ Sn. Then there exists

ε > 0 such that p = εq + (1 − ε)p∗ belongs for every ε < ε to the neighborhood of p∗ for which

inequality (1.3) holds. Then

W (p∗, p) > W (p, p) = εW (q, p) + (1 − ε)W (p∗, p)
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and

W (p∗, p) > W (q, p)

which implies that p∗ is an ESS.

2

The local superiority of an ESS is used to define ESS for games where payoff is not a bilinear

in strategies (ESS, Weibull 1995; Cressman and Hofbauer 2005).

The next proposition is important when searching for ESSs.

Proposition 7 If two different ESS p∗ and q∗ exist, then supp(p∗) is not contained in supp(p∗)

and vice versa.

Proof. Let supp(p∗) ⊂ supp(q∗). Then for every elementary strategy ei, i ∈ supp(q∗), W (ei, q
∗) =

W (q∗, q∗). Therefore,

W (p∗, q∗) =
n
∑

i=1

p∗i W (ei, q
∗) = W (q∗, q∗).

It follows that p∗ is an alternative best response to q∗. Because q∗ is an ESS, the stability condition

W (p∗, p∗) < W (q∗, p∗)

contradicts with the assumption that p∗ is a NE.

2

A consequence of this proposition is that there can be at most one interior ESS.

Example 4 The Hawk-Dove game has for C > V one interior Nash equilibrium p = (V/C, 1−V/C).

The stability condition holds because for q 6= p

W (p − q, q) =
1

2
C

(

V

C
− p

)2

> 0.

Thus, p is an ESS and because it is an interior ESS it is also unique.

If C < V , then elementary strategy e1 = (1, 0) (Hawk) is strict Nash equilibrium, thus an ESS.

It is worthwhile to stress that an ESS is not resistant against simultaneous invasions of two or

more mutant strategies. Let us consider the Hawk-Dove game with ESS p∗ = (3/4, 1/4). Let us

consider simultaneous invasion by Hawks and Doves (e1 = (1, 0) and e2 = (0, 1)). Both mutant

strategies are at the same, low proportion 1
2ε where ε is sufficiently small. This is formally equivalent

with a fictious monomorphic mutant with strategy q = (e1 + e2)/2 = (1/2, 1/2). The resulting

population mix is ω = ε/2(e1 + e2) + (1 − ε)p∗. Because p∗ is an ESS, it is true that the fictious
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mutant does worse in the population mix ω than p∗. However, this does not mean that both

invading phenotypes do worse. Indeed, since ω1 < 3/4 the Hawk strategy e1 is the unique best

reply against the fictious mutant with strategy ω, i. e., W (e1, ω) > W (p∗, ω).

1.4.1 Analysis of two-player games with two strategies.

Let

U =





a b

c d





by the payoff matrix.

Proposition 8 Let either a 6= c or b 6= d. Then every two-player game with two strategies has an

ESS. There are the following possibilities:

1. If a ≥ c and d < b then e1 is an ESS.

2. If a > c and d > b then e1 and e2 are ESSs.

3. If a < c and d ≥ b then e2 is an ESS.

4. If a ≤ c and d ≤ b then
(

b−d
b−d+c−a , c−a

b−d+c−a

)

is an ESS.

Proof. If a > c then elementary strategy e1 is a strict NE, thus an ESS.

If a = c then the stability condition from the definition of ESS requires that W (e2, e2) <

W (e1, e2), i. e., d < b. This shows that in the case 1., e1 is an ESS.

Analogously we verify condition case 3. The case 2 is clear, because under these assumptions

both elementary strategies are strict NE.

Let us consider case 4. There is no strict NE. The interior NE p = (p1, p2) satisfies W (e1, p) =

W (e2, p) which gives

p1 =

(

b − d

b − d + c − a
,

c − a

b − d + c − a

)

.

Let us consider any other strategy q = (q1, q2). Because

W (p, q) − W (q, q) =
((b − d)(1 − q1) + (a − c)q1)2

b − d + c − a
> 0,

we proved that strategy p is an ESS.

2
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1.4.2 Rock-scissors-paper game

RSP game is an example of a game without an ESS. The three elementary strategies are e1 = (1, 0, 0)

(rock), e2 = (0, 1, 0) (scissors), e3 = (0, 0, 1) (paper) and the payoff matrix is

U =











0 1 −1

−1 0 1

1 −1 0











Let p = (p1, p2, 1 − p1 − p2) and q = (q1, q2, 1 − q1 − q2). Then

W (p, q) = 〈p, Uq〉 = (q1 − q2) − (p1 − p2) + 3p1q2 − 3p2q1

and

W (p, p) = 0.

First, we observe that no elementary strategy is a Nash equilibrium (if strategy ei is a NE than

uii ≥ uij for all j = 1, 2, 3).

Second, there does not exist any NE whose support has exactly two elementary strategies. For

example, if a NE q such that supp(q) = {1, 2} exists then

W (e1, q) = W (e2, q)

which implies that q1 + q2 = 2/3. As q3 = 0 this is impossible. Similarly, one can prove that no

other NE with two elementary strategies in its support exists.

The interior NE satisfies W (e1, p) = W (e2, p) = W (e3, p) = W (p, p) = 0 which gives p =

(1/3, 1/3, 1/3). However, this interior NE does not satisfy the stability condition W (q, q) < W (p, q)

because both sides are equal to 0. Thus, no ESS exists.

The fact that the RSP game has no interior ESS is a more general property of symmetric

zero-sum games that satisfy uij = −uji for every i, j = 1, · · · , n.

Proposition 9 No mixed strategy can be an ESS of a symmetric zero-sum matrix game.

Proof. For symmetric zero-sum games W (p, p) = 0 for every strategy p ∈ Sn. Let us assume that

p∗ is a mixed ESS and let us take p 6= p∗ in a neighborhood of p∗ so that

W (p∗, p) > W (p, p) = 0 (1.4)

and supp(p) = supp(p∗). It follows that W (p, p∗) = W (p∗, p∗) = 0. However, from (1.4) it follows

that W (p, p∗) < 0, a contradiction.

2
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Applications of RSP game can be found in Sinervo and Lively (1996) and Sinervo et al. (2000).

These authors showed that males of the Common Side-blotched lizard occur in three phenotypes

that differ in the level of aggressiveness. They also showed that the middle aggressive phenotype

invades the non-aggressive phenotype, the non-aggressive phenotype invades the highly aggressive

phenotype and the highly aggressive phenotype invades the middle aggressive phenotype which

corresponds to the RSP game.

1.5 Habitat selection game

So far we have considered pairwise contest games where an individual plays against an opponent

and the payoff depends just on what both individuals do. Such games are described by the payoff

matrix, i. e., the fitness functions W (u, v) is bilinear and can be written as W (u, v) = 〈u, Uv〉. On

the contrary, in so called games against the field a focal animal does not play against any fixed

opponent and its payoff depends on what everyone in the population is doing. Thus, the focal

individual plays against the mean strategy in the population which is the distinctive feature of such

games. In general, payoffs in these games can be non-linear in which case the game cannot be

described as a matrix game. An example of such a game is the habitat selection game.

Fretwell and Lucas (1970) introduced the Ideal Free Distribution that aims to describe a dis-

tribution of animals in a heterogeneous environment consisting of discrete patches. The model

assumes that animals are free to move between several patches, the travel time is negligible, each

individual knows perfectly the quality of all patches and all individuals have the same competitive

abilities. Assuming that these patches differ in their basic quality Bi (i. e., their quality when un-

occupied by any consumers), the IFD model predicts that the best patch will always be occupied.

I will assume that n patches are ordered so that the first patch has a higher basic quality than

the second patch and so on B1 > · · · > Bn > 0, and fitness in each patch is Vi(mi) where mi is

the animal density in patch i, Vi(0) = Bi and Vi is a decreasing function of animal density in that

patch.

Let pi = mi/(m1 + · · · + mn) be the proportion of animals in patch i, i. e., p = (p1, . . . , pn)

describes the spatial distribution of the population. I remark that for a monomorphic population,

the distribution pi also specifies the individual strategy as the proportion of the lifetime an average

animal spends in patch i. Then, fitness of a mutant with strategy p′ = (p′1, . . . , p
′
n) in the resident

monomorphic population with strategy (distribution) p = (p1, . . . , pn) is

W (p′, p) = 〈p′, V (pM)〉

where V (pM) = (V1(p1M), · · · , Vn(pnM)) and M is the overall population density. However, we do
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not need to make the assumption that the population is monomorphic, because what really matters

in calculating W (p′, p) above is the animal distribution p ∈ Sn. If the population is not monomorphic

this distribution can be different from strategies animals use and we call it the population mean

strategy. Thus, in the habitat selection game individuals do not enter pair-wise conflicts, but they

play against the population mean strategy. This is why this game is an example of the game against

the field.

Definition 8 (Fretwell and Lucas (1970)) Distribution p = (p1, . . . , pn) is called the Ideal

Free Distribution provided the following conditions hold:

1. There exists a number 1 ≤ k ≤ n such that p1 > 0, . . . , pk > 0 and pk+1 = · · · = pn = 0.

2. V1(m1) = · · · = Vk(mk) = V ∗ and V ∗ ≥ Vi(mi) for i = k + 1, . . . , n.

The IFD has been repeatedly given in the literature (e. g., Parker 1978; Parker 1984; Pulliam

and Caraco 1984; Pulliam and Danielson 1991; Kennedy and Gray 1993; Morris 2003) as an example

of the evolutionarily stable strategy. However, from the definition it is immediately clear that the

IFD is a NE, but it is not clear that it satisfies the stability condition. This is proved in the next

proposition.

Proposition 10 (Cressman and Křivan (2006)) The IFD is an ESS.

Proof. Let p∗ be the IFD at fixed population density M = m1 + · · · + mn. First suppose that all

patches are occupied (i. e., k = n in Definition 8). Then

W (p, p′) − W (p′, p′) =

〈p, V (p′M)〉 − 〈p′, V (p′M)〉 =

n
∑

i=1

(pi − p′i) Vi(p
′
iM) =

n
∑

i=1

(pi − p′i) (Vi(p
′
iM) − Vi(piM)) .

Since Vi(piM) is strictly decreasing, pi > p′i if and only if Vi(p
′
iM) > Vi(piM). Thus 〈p, V (p′M)〉 >

〈p′, V (p′M)〉 unless p = p′. Thus, the local superiority condition holds.

Now suppose that not all patches are occupied (k < n) and define V ∗ = V1(p1M) = · · · =

Vk(pkM). Then

〈p, V (p′M)〉 − 〈p′, V (p′M)〉 =

n
∑

i=1

(pi − p′i) Vi(p
′
iM) ≥

k
∑

i=1

(pi − p′i) Vi(p
′
iM) −

n
∑

i=k+1

p′iV
∗

=

k
∑

i=1

(pi − p′i) (Vi(p
′
iM) − V ∗) ≥ 0

by the same reasoning as above. The inequality is again strict unless p = p′.

2
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1.5.1 Patch payoff is a linear function

Following Křivan and Sirot (2002) I assume that the payoff in habitat i is a linearly decreasing

function of population density

Vi = ri

(

1 − mi

Ki

)

(1.5)

where mi is the population density in habitat i, ri is the intrinsic per capita growth rate in habitat

i, and Ki is its carrying capacity. The total population size in a two habitat environment is denoted

by M(= m1 + m2) and the proportion of the population in habitat i is pi = mi/M .

Let us consider an individual which spends proportion p′
1 of its lifetime in habitat 1 and p′2

in habitat 2. Provided population densities are fixed, then its payoff in the population with the

population mean strategy p = (p1, p2) is

W (p′, p) = p′1V1(p1M) + p′2)V2(p2M) = 〈p′, Up〉,

where

U =





r1(1 − M
K1

) r1

r2 r2(1 − M
K2

)



 .

This shows that the habitat selection game can be written as a matrix game. By definition, an IFD

is a strategy for which all current choices of an individual as to how to partition its time between

the two habitats have the same payoffs and no other possible choice has a higher payoff. In what

follows I will assume that the per capita intrinsic population growth rate in habitat 1 is higher than

that in habitat 2 (r1 > r2). Then it is easy to derive the IFD (Křivan and Sirot 2002)

p1 =







1 if M < K1
r1−r2

r1

r2K1

r2K1+r1K2
+ K1K2(r1−r2)

(r2K1+r1K2)M otherwise.
(1.6)

In the first case, payoff in habitat 1 is higher than is the payoff in habitat 2 for all possible population

distributions because the competition in patch 1 is low due to low population densities. For higher

population abundances, neither of the two habitats is always better than the other, and under the

IFD animal payoff in both habitats must be the same (V1(p1M) = V2(p1M)). Once again, it is

important to emphasize here that the IFD concept is very different from maximization of the mean

animal fitness W = 〈p, V (p)〉 which would lead to

p1 =







1 if M < K1
r1−r2

2r1

r2K1

r1K2+r2K1
+ K1K2(r1−r2)

2(r1K2+r2K1)M otherwise.
(1.7)

The two expressions (1.6) and (1.7) are the same if and only if r1 = r2. Figure 1.1 shows that,

while the latter strategy is never worse than the IFD, individuals using it obtain lower payoffs in

one patch than in the other patch which makes this strategy vulnerable to invasions by individuals

using a different strategy such as the IFD.
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Figure 1.1: Panel A plots mean fitness W as a function of distribution p1 and overall number of individuals M for

a two-patch model with linear payoff (Vi = ri(1−
piM

Ki
), i = 1, 2). The thick curve corresponds to the IFD, while the

thin solid curve corresponds to the distribution along which the mean payoff maximizes. Panel B shows that along

the IFD the fitness in both patches is the same (solid line) for all M when both patches are occupied. On the other

hand, for the strategy that maximizes the mean payoff, the patch specific payoffs are different (the two dashed lines

correspond to payoffs in the two patches). Parameters used in simulations: r1 = 1, r2 = 2, K1 = 20, K2 = 10.

1.5.2 Parker’s matching principle

Parker (1978) considered the case where resource input rates ri, i = 1, . . . , n are constant and all

resources in all patches are consumed immediately when they enter the system and so there is no

standing crop. This leads to a particularly simple definition of animal payoff in a patch as the ratio

of the resource input rate divided by the number of individuals there, i. e.,

Vi =
ri

mi
=

ri

piM
. (1.8)

The IFD for these payoff functions is called the matching principle and it states that animals

distribute themselves so that their density in each patch is proportional to the rate with which

resources arrive into the patch pi/pj = ri/rj . On the contrary to the case where patch payoff is

a linear function of consumer strategy, all patches will be occupied now. Indeed, as the consumer

density in a patch decreases, payoff ri/(piM) tends to infinity so there cannot be any unoccupied

patch. This concept successfully predicts the distribution of house flies that arrive at a cow patch

where they immediately mate (Parker 1978; Parker 1984; Blanckenhorn et al. 2000), or of fish that

are fed at two feeders in a tank (Milinski 1979; Milinski 1988; Berec et al. 2006). For example,

Berec et al. (2006) observed that distribution of two fish species (white cloud mountain minnow,

Tanichthys albonubes and giant danio, Danio aequipinnatus) in a water tank closely matched the
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Figure 1.2: Panels show preferences for the more rewarding habitat 1 in minnow (A, mean ± SE)

and danio (B) at different fish numbers. The solid line is the single-species IFD, corresponding to

the distribution matching the ratio 2:1 of food supply rates. After Berec et al. (2006).
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food input rate (2:1) at two feeders (Figure 1.2).

However, it has also been inappropriately applied to many other empirical systems where re-

sources form a standing crop (for a review see Tregenza 1994). In Section 2.7.5 I extend this

matching principle to situations where resources form a standing crop.

1.6 Replicator dynamics

So far I have considered monomorphic mutants that play against either monomorphic residents

or against the population mean strategy. The ESS is then such a strategy that resist invasions

by these mutants that use a different strategy. Now we will deal with polymorphic populations

where each phenotype uses a different strategy. We say that a population is in state p ∈ Sn if

pi is the proportion of the population using strategy ei. In this polymorphic interpretation the

individual strategies and the mean strategy are different, because the mean strategy characterizes

the population, not a single individual. A question arises how and if the ESS of the underlying

game relates to the polymorphism.

Example 5 Let us consider the Hawk-Dove game. So far I have assumed that all individuals use

the same strategy, so fitness of a mutant using strategy p̃ = (p̃1, p̃2) against a resident with strategy

p = (p1, p2) was 〈p̃, Up〉. The polymorphic setting assumes that proportion p1 of individuals use

Hawk strategy and proportion p2 of individuals use Dove strategy. The average fitness in the

population will be 〈p, Up〉 exactly as in the case of monomorphism, although no single individual

uses the mixed strategy that corresponds to the mean strategy p = (p1, p2). Nevertheless, we are

interested in evolution of the proportion of Hawks and Doves in the population, and, in particular,

we ask, if these proportions converge to the ESS of the Hawk-Dove game. In this setting, the

Hawk-Dove game is also called the underlying game.

To study the changes in proportions of different phenotypes in the population, we have to define

some explicit dynamics. I will consider only continuous time dynamics, although discrete time

dynamics can be used as well. Several such dynamics have been used in the game theoretical

literature. In biological applications it seems that the most frequently used dynamics are those

described by the so called replicator dynamics (e. g., Weibull 1995; Hofbauer and Sigmund 1998;

Cressman 2003). In replicator dynamics phenotypes with fitness larger than is the average fitness

in the population increase in frequency while those with lower than average fitness decrease. These

relative changes in frequencies are due to the fact that the overall population numbers change too.

Another class of dynamics are based on the so called best response dynamics (e. g., Weibull 1995;

Hofbauer and Sigmund 1998; Cressman 2003). and they assume that a proportion of individuals
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updates their strategy at each time and the update follows the best response with respect to the

current strategy. In ecological context these dynamics are relevant description of animal dispersal

that leads to the IFD.

Let us consider a polymorphic population where there are n different phenotypes, each of them

using its own strategy. I also assume that each of these phenotypes replicates in the sense that it

produces offsprings of the same phenotype. Let mi be the abundance of the i−th phenotype and I

will assume that the per capita population growth rate equals to fitness of the i−th phenotype Fi,

i. e.,
dmi(t)

dt
= mi(t)Fi(m1, · · · , mn), i = 1, . . . , n.

Then the growth of the overall population M = m1 + · · · + mn is described by

dM

dt
= M

n
∑

i=1

xiFi = NF

where xi = mi/M is the frequency of the i−th phenotype. The replicator equation describes

changes in relative frequencies of phenotypes in the population

dxi

dt
= xi(Fi − F ). (1.9)

This equation shows that the proportion of individuals using strategy i increases in the population

if these individuals have higher than average fitness.

Let us assume that the n phenotypes are given by a matrix game with m pure strategies

and a payoff matrix U . If the phenotypes correspond to the pure strategies of the game then

m = n. However, the phenotypes can be also correspond to mixed strategies in which case m can

differ from n. Each phenotype pi, i = 1, · · · , n is characterized by a vector (pi1, . . . , pim) which

specifies frequency of elementary strategies used by this phenotype. Fitness of phenotype i when

played against phenotype j is then wij = 〈pi, Upj〉. Fitness of phenotype i in the population is

Fi(x) =
∑n

j=1 wijxj , the avarage fitness in the population is F = 〈x, Wx〉, and the replicator

equation has the following form

dxi

dt
= xi(〈ei, Wx〉 − 〈x, Wx〉).

It follows immediately from this form that every NE for the game with matrix W is also the

equilibrium of the replicator equation. Indeed, if a strategy j is not contained in the support of the

NE, then xj = 0 and dxj/dt = 0. If a strategy j is in the support of the NE. At the NE all strategies

that are played have the same fitness which equals to the average fitness in the population and so

the expression in parentheses equals 0.
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Example 6 Here I consider the replicator equation for Hawk-Dove game and I denote FH = F1

and FD = F2. Let x be the frequency of Hawks in the population. Then

FH(x) =
V − C

2
x + V (1 − x)

and

FD(x) = (1 − x)
V

2
.

Then

F (x) = xFH(x) + (1 − x)FD(x) =
(V − Cx2)

2

and
dx

dt
=

1

2
x(1 − x)(V − Cx)

and the growth of the population is

dM

dt
=

M

2
(V − Cx2).

I remark that the interior distribution equilibrium of this equation corresponds to the mixed ESS

for the underlying game.

In this example phenotypes correspond to elementary strategy of the game. We can consider

another phenotype that corresponds to a mixed strategy p = (p1, p2) ∈ S2. Then we have three

phenotypes (Hawks, Doves and the mixed strategy phenotype; n = 3) while the underlying game

has only two elementary strategy. The matrix W is

W =











V −C
2 V V − p1

2 (V + C)

0 V
2 (1 − p1)V

2

p1
V −C

2
V
2 (1 + p1)

V −p2
1C

2











.

It is easy to construct the replicator dynamics that corresponds to matrix W .

The fact that for the Hawk-Dove game the ESS coincides with the asymptotically stable equi-

librium of the replicator equation in the Hawk-Dove game holds for any two-strategy games as the

next proposition shows.

Proposition 11 For any two-strategy matrix game, a strategy is an ESS if and only if the corre-

sponding fixed point of the replicator dynamics is locally asymptotically stable.

Proof. Let us consider two phenotypes corresponding to strategies p and q. Let xp and xq be

frequency of phenotype p and q, respectively, in the population. Then

Fp(xp, xq) = 〈p, Up〉xp + 〈p, Uq〉xq
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and

Fq(xp, xq) = 〈q, Up〉xp + 〈q, Uq〉xq

The replicator equation is

dxp

dt
= xp(1 − xp)(Wp − Wq)(xp〈p − q, Up〉 − xq〈q − p, Uq〉.

If p is an ESS then either 〈p− q, Up〉 > 0 for any p, or 〈q− p, Uq〉 < 0. In both cases we can find

ε > 0 such that for xq < ε the right handside of the replicator equation will be positive. This implies

that xp = 1 is a stable equilibrium. Similarly, if xp = 1 is stable, then for small perturbations the

right hand side of the replicator equation must be positive which shows that xp = 1 is also an ESS.

2

Proposition 12 (Hofbauer and Sigmund (1998)) Every ESS is an asymptotically stable equi-

librium of the corresponding replicator equation.

Proof. Let x∗ = (x∗
1, · · · , x∗

n) ∈ Sn. First we prove that function P (x) = Πn
i=1x

x∗

i

i attains its

maximum at x∗, i. e., that

Πn
i=1(x∗

i )x∗

i ≥ Πn
i=1x

x∗

i

i

holds for every x ∈ Sn. This inequality can be written as

n
∑

i=1

x∗
i ln

xi

x∗
i

≤ 0.

Because logarithm is concave function

n
∑

i=1

x∗
i ln

xi

x∗
i

≤ ln(
n
∑

i=1

xi) = ln 1 = 0,

due to Jensen’s inequality.

Second, I assume that x∗ is an ESS and I prove that P is an increasing function along trajectories

of the replicator equation. Indeed,

1

P

dP (x(t))

dt
=

d ln P (t)

dt
=

n
∑

i=1

x∗
i

xi

dxi(t)

dt
=

n
∑

i=1

x∗
i (〈ei, Wx〉 − 〈x, Wx〉) =

〈x∗, Wx〉 − 〈x, Wx〉 > 0,

where the last inequality follows from the assumption that x∗ is an ESS. As P is a Lyapunov

function, trajectories of the replicator equation converge to x∗.

2
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One question remains. Is every locally asymptotically stable equilibrium of replicator dynamics

also an ESS? One of the first examples that this is not so was given by Taylor and Jonker (1978).

Example 7 Taylor and Jonker (1978) considered a game with the payoff matrix

W =











2 1 5

5 α 0

1 4 3











.

The corresponding game has for −8 ≤ α < 17
2 one interior NE p3 = ( 17−2α

36−α , 11
36−α , 8+α

36−α ).

Let us consider stability of this NE. Let q = (q1, q2, 1 − q1 − q2) and

f(q) = W (p3, q) − W (q, q) = 4 − 4q1 + q2
1 − 18q2 − 2q1q2 + q2

2 − αq2
2 − 11(−13 + 12q1 + 60q2)

α − 36
.

The local superiority condition requires that f(q) > 0 for every q 6= p3. For α < 0 f attains its

maximum at p3. Thus, p3 is an ESS provided −8 ≤ α < 0. Replicator dynamics for this game are

dx1

dt
= 2 + x2

1 − 2x2 − x1(3 + 2x2) − x2
2(α − 1)

dx2

dt
= x2

1 + x1(5 − 2x2) + (1 − x2)(−3 + x2(α − 1))

Equilibrium p3 is locally asymptotically stable provided trace of the Jacobian matrix is negative

and determinant is positive. The Jacobian matrix evaluated at p3 is

J =





96+α
α−36

4(21+4α)
α−36

3(3α−64)
α−36

−60−16α+α2

α−36



 .

It is easy to see that these two conditions hold provided −8 < α < 3. Thus, for 0 < α < 3, p3

is asymptotically stable equilibrium of the replicator equation which is not an ESS.

I remark that under the replicator equation a missing phenotype cannot enter the population.

Thus, only the phenotypes that exist initially can replicate. This is because the replicator equation

assumes exact replication of phenotypes, so that a phenotype produces exactly the same offspring.

In the context of the habitat selection game replicator dynamics cannot describe animal dispersal

as they do not assume that individuals move between patches. The next section shows a different

dynamics that is more suitable for description of animal dispersal.

1.7 Dispersal dynamics

Here I consider habitat selection game again. We have already seen that the eventual outcome of a

single species distribution in a heterogeneous environment (the IFD) is an ESS. This means, that
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if such a distribution will be slightly perturbed, it will return back to the IFD. However, this does

not tell us anything about the rules of animal dispersal that lead to the IFD.

To describe changes in population distribution due to dispersal, I define the dispersal matrix D.

The entries of this matrix (Dij) describe the transition probabilities that an individual currently

in patch j moves to patch i in a unit time interval. The local changes in population numbers due

to dispersal are described by (Cressman and Křivan 2006)

dmi

dt
=

n
∑

j=1

(Dij(m)mj − Dji(m)mi) for i = 1, . . . , n (1.10)

where m = (m1, · · · , mn) is the vector of population densities in n patches. Thus, the first term

in the above summation describes immigration to patch i from other patches and the second term

describes emigration from patch i to other patches. Since the terms Dii(m)mi describing movement

from patch i to itself cancel in (1.10), Dii(m) can be chosen in such a way that the sum of the entries

in each column of the dispersal matrix equals 1. Furthermore, by taking the unit time interval short

enough, all entries Dij(m) will be nonnegative. Dividing both sides of the above equation by total

population size M and writing the dispersal matrix as a function of the population distribution

(p = (p1, . . . , pn)) leads to the following vector dispersal dynamics

dp

dt
= D(p)p − p. (1.11)

The next proposition gives conditions under which trajectories of (1.11) converge to an equilib-

rium.

Proposition 13 (Cressman and Křivan (2006)) Let us assume that dispersal matrix D : Sn 7→
Sn is continuous and Dij(p) does not decrease as the payoff in patch i increases and does not in-

crease as the payoff in patch j increases. Then (1.11) has a unique globally asymptotically stable

equilibrium distribution p∗ ∈ Sn.

Proof. Because D(p) is continuous, the map Sn → Sn given by p → D(p)p is continuous. Since Sn

is a compact convex space, there exists at least one fixed point p∗ of this map by Brouwer’s fixed

point theorem (Binmore 1992). But any fixed point is an equilibrium of (1.11). Since D(p∗) is a

positive matrix (i. e., all its entries are positive), 〈ei, D(p∗)p∗〉 = p∗i > 0 for all 1 ≤ i ≤ n. That is,

all patches are occupied at p∗.

To show asymptotic stability of p∗, linearize (1.11) about p∗ (see Hugie and Grand (1998) for

the two-patch case)
dpi

dt
=
∑

j

Qij

(

pj − p∗j
)
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where Q is the Jacobian matrix of (1.11). From equation (1.10), Qij =
∂Dij(p∗)

∂pj
p∗j + Dij(p∗) −

∂Dji(p∗)
∂pj

p∗i for i 6= j. This is positive by our assumption. Because
∑n

k=1 Dki = 1 for every i =

1, · · · , n, each column sum of Q is zero. Thus, Q has an eigenvalue 0 corresponding to the left

eigenvector given by the uniform distribution pi = 1
n . Furthermore, Qii < 0 and so Q is diagonally

dominant (Hofbauer and Sigmund 1998) in that

Qii +
∑

j 6=i

| Qji |= 0

for all i. Gershgorin circle theorem implies that all other eigenvalues of Q have negative real part

(Hofbauer and Sigmund 1998) and so p∗ is asymptotically stable.

2

The question now is under which conditions on dispersal the stable population distribution of

dispersal model (1.11) will correspond to the IFD. Fretwell and Lucas (1970) assumed that animals

are ideal in the sense that they know the quality of each patch. This implies that they should move

directly to the best patch(es). It is interesting to note that under such assumption the dispersal

matrix in (1.11) changes discontinuously near animal distributions where two (or more) habitats

have the same (highest) payoff. Suppose there are two patches. The dispersal rates between these

two patches are D12(p) and D21(p). If individuals disperse from patches with lower payoff to patches

with a higher payoff only (which excludes random dispersal between patches), then they disperse

from patch 2 to patch 1 (D12(p) > 0 and D21(p) = 0) when the payoff in patch 1 is higher than

in patch 2 (V1 > V2) and conversely when the payoff in patch 2 is higher than that in patch 1

(D12(p) = 0 and D21(p) > 0). Thus, continuous dependence of the dispersal matrix D(p) on the

distribution p immediately implies that, under the IFD (i. e., when V1(p1M) = V2(p2M)), there is

no dispersal between the two patches (D12 = D21 = 0). However, if dispersal ceases under the IFD,

then individuals cannot keep track of changes in other patch payoffs ( unless the migratory cues are

obtained without moving such as through animals observing feeding rates as in Harper 1982). Out

of the 5 empirical studies of fish and bird habitat distributions reviewed by Hugie and Grand (1998)

that converged to the IFD, in only one instance was no movement between patches observed at

equilibrium distribution and this was for a case where distance between patches was large. Thus, if

we want animals to disperse between patches even under the IFD, then either the dispersal matrix

must be a discontinuous function of population distribution p, or there must be some non-IFD

(e. g., random) dispersal between patches (Hugie and Grand 1998) that prevents the IFD to be

reached. If the dispersal matrix is discontinuous, trajectories if model (1.11) are defined in the

Filippov sense.
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The next proposition shows that trajectories of model (1.11) converge to the IFD under weaker

assumptions than those originally imposed by Fretwell and Lucas (1970).

Proposition 14 (Cressman and Křivan (2006)) Any solution of the dispersal dynamics (1.11)

converges to the IFD under the following two conditions:

(a) Dij = 0 if Vi < Vj

(b) Dij > 0 for some i, j with pj > 0 and Vj < Vi = max1≤k≤n Vk.

Proof. I define W (p) = max1≤i≤n Vi(piM) and show that this function decreases along the trajec-

tories of (1.11). This means that the function W is a Lyapunov function (Filippov 1988) and all

trajectories converge to the minimum value of W which occurs only at the IFD. First, let us assume

that dispersal dynamics are described by a model where the matrix D(p) depends continuously on

the distribution p. Unless all patches have the same payoff, assumption (b) implies that there

exists a patch i such that W (p(t)) = Vi(pi(t)M) and Dij(p(t)) > 0 for some occupied patch j with

a lower payoff. Furthermore, Dij = 0 if Vi = Vj (i 6= j) due to assumption (a) and the continuous

dependence of D(p) on p. I also have Dii(p) = 1 since the sum of the entries in every column of the

dispersal matrix equals 1 (i. e., it is a stochastic matrix). It follows that dpi

dt = (D(p)p − p)i > 0

and, consequently, Vi and W decrease along trajectories of model (1.11).

Second, I show that W is a Lyapunov function even if the matrix D(p) does not depend continu-

ously on the distribution p. In this case, individuals can disperse between patches with the highest

payoff and I cannot use the preceding argument. If there is a unique patch i with highest payoff

then dpi(t)
dt > 0 and so W (p(t)) is strictly decreasing. Filippov (1988) showed that this condition

is not enough to prove convergence of solutions to the minimum of the function W , because it is

possible that W can still increase along those trajectories of (1.11) that move along the intersection

of equal payoff manifolds. I have to exclude such a case. Suppose a solution p(t) moves along an

intersection of equal payoff manifolds (i. e., Vi(pi(t)M) = W (p(t)) for some finite set of indexes

i ∈ K). It follows (Shevitz and Paden 1994) that
dW (p(t))

dt
=
∑

i∈K

ξi
dVi(pi(t)M)

dpi

dpi(t)

dt
where

∑

i∈K ξi = 1. The derivative with respect to time of the equality Vi(pi(t)M) = Vj(pj(t)M) for any

i, j ∈ K implies that dVi(pi(t)M)
dpi

dpi(t)
dt =

dVj(pj(t)M)
dpj

dpj(t)
dt . In particular, all dpi(t)

dt (i ∈ K) have the

same sign (because all dVi

dpi
are negative). However, from (a) and (b), these derivatives must be

positive (unless all patches provide the same payoff) and, consequently dW (p(t))
dt is negative and W

decreases along trajectories of (1.11).

2

It is important to emphasize that these conditions do not require “ideal animals” that know their

environment perfectly in the sense that they always move directly to the best patch as originally



30

assumed by Fretwell and Lucas (1970). Instead, an individual only needs to be able to compare the

payoff in one other patch that it samples (perhaps at random) with its payoff in its current patch,

a much weaker assumption. This is one explanation for the prevalence that the IFD is observed in

the experimental literature despite the fact that clearly the species in many of these experiments

were non-ideal.

Below I illustrate these results using some explicit dispersal dynamics. Most of these dispersal

dynamics satisfy the above two assumptions but I am also interested in situations where some

individuals disperse between patches at random, in which case our first condition does not hold.

1.7.1 Ideal animals and the best response dynamics

I start with dispersal dynamics that assume ideal animals, exactly as Fretwell and Lucas (1970)

did. Thus, if these animals are in a suboptimal patch, they always disperse directly to the patch(es)

with the highest payoff. If, for a given distribution p = (p1, · · · , pn), the payoff Vi in patch i is

larger than in any other patch, then the corresponding dispersal matrix has 1’s in the i-th row

(because the probability that an animal disperses from any other patch to patch i equals 1) and

0’s everywhere else.

I will document this for the case with 3 patches (n = 3, Figure 1.3A) where I set Vi(piM) =

ri(1 − piM/Ki). The inequalities

V1(p1M) > max{V2(p2M), V3(p3M)},

V2(p2M) > max{V1(p1M), V3(p3M)},

and

V3(p3M) > max{V1(p1M), V2(p2M)}

split the distribution phase space (shown as the dotted triangle in Figure 1.3A, left panel) into

three parts. In each of these three parts the best patch is uniquely given and the dispersal matrix

D(p) is constant and equal to one of the following three matrices

D1 =











1 1 1

0 0 0

0 0 0











, D2 =











0 0 0

1 1 1

0 0 0











, D3 =











0 0 0

0 0 0

1 1 1











.

I stress here that although the matrices D1, D2, and D3 are frequency independent, the dispersal

matrix D(p) is frequency dependent because its entries depend on the distribution p. Specifically,

dispersal matrix D(p) is piece-wise constant and changes its value when the distribution crosses one

of the three equal payoff lines V1(p1M) = V2(p2M) > V3(p3M), V2(p2M) = V3(p3M) > V1(p1M),
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Figure 1.3: The left panel shows three trajectories for dispersal dynamics (1.11) when individuals are ideal (A),

individuals are myopic (B), when dispersal is proportional to difference in patch payoffs (C, µ = 0.5 in formula

(1.15)), and when dispersal is suboptimal with some random dispersal (D, µ = 0.5 and ε = 0.2 in formulas (1.15) and

(1.18) respectively). The trajectories are shown in a probability simplex phase space (p1, p2, p3) where 0 ≤ pi ≤ 1

and p1 + p2 + p3 = 1. The vertices of the triangle correspond to distributions where all individuals occupy one

patch only. The IFD is shown as the solid dot at the intersection of dashed lines. The middle panel shows changes

in individual payoffs along the trajectory that starts at the initial distribution (0, 1, 0). The solid line is the payoff

in the first patch, the dashed line is the payoff in the second patch and the dotted line is the payoff in the third

patch, respectively. The right panel shows emigration rates from these respective patches along the same trajectory.

Parameters: r1 = 1, r2 = 0.8, r3 = 0.6, K1 = 10, K2 = 9, K3 = 8, M = 10.
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V1(p1M) = V3(p3M) > V2(p2M) (which are the three lines that meet at the interior point in Figure

1.3, left panel). If population size (M) is large enough so that all habitats are occupied at the IFD,

these three equal payoff lines intersect at the IFD (the solid dot in Figure 1.3A)

p∗1 =
K1(K3r2(r1 − r3) + (Mr2 + K2(r1 − r2))r3)

M(K3r1r2 + K2r1r3 + K1r2r3)

p∗2 =
K2(K3r1(r2 − r3) + (Mr1 + K1(r2 − r1))r3)

M(K3r1r2 + K2r1r3 + K1r2r3)
(1.12)

p∗3 =
K3(K1r2(r3 − r1) + (Mr2 + K2(r3 − r2))r1)

M(K3r1r2 + K2r1r3 + K1r2r3)
.

As the right hand side of (1.11) is discontinuous along the equal payoff lines, the solutions of

(1.11) are defined along these discontinuity manifolds in the sense of Filippov (1988). Let us consider

ideal individuals whose dispersal matrix for the case where V1(p1M) > max{V2(p2M), V3(p3M)}
is D1 and D2 when V2(p2M) > max{V1(p1M), V3(p3M)}. Thus, the dispersal matrix D(p) is

discontinuous when the distribution crosses the equal payoff curve V1(p1M) = V2(p2M) > V3(p3M).

The Filippov solution then consists of defining the dispersal matrix D12 along this curve as

D12 = uD1 + (1 − u)D2 =











u u u

v v v

0 0 0











, (1.13)

where u is any number between 0 and 1 and v = 1−u. Such a definition is biologically very realistic

because it says that, if two patches both have the highest fitness (in our case these are patch 1 and

patch 2), then the probability of moving to these two patches from the remaining patches (in our

case from patch 3) is anywhere between 0 and 1. That is, the probability of moving from patch

3 to patch 1 is u while the probability of moving from patch 3 to patch 2 is 1 − u. The dispersal

matrix D12 is a convex combination of dispersal matrices in the two adjacent regions of the phase

space (i. e., a convex combination of D1 and D2). The dispersal dynamics along the equal payoff

line V1(p1M) = V2(p2M) > V3(p3M) are

dp1

dt
= u − p1

dp2

dt
= 1 − u − p2

dp3

dt
= −p3.

(1.14)

Similarly, at the IFD p∗ the dispersal matrix D∗ is given as a convex combination u1D
1 + u2D

2 +

u3D
3 of the three adjacent dispersal matrices (i. e., ui ≥ 0 satisfy u1+u2+u3 = 1). Since D∗p∗ = p∗

at the IFD, it follows that ui = p∗i and so

D∗ =











p∗1 p∗1 p∗1

p∗2 p∗2 p∗2

p∗3 p∗3 p∗3











.
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Three trajectories of (1.11) are shown in Figure 1.3A (left panel) as solid lines. The IFD is

reached in finite time as is clearly documented in Figure 1.3A (middle panel) where patch payoffs

equalize in a finite time when the IFD is achieved.

For example, let us consider an initial distribution where all individuals occupy patch 2 only,

corresponding to the lower right corner of the triangle in Figure 1.3A (left panel). For the particular

parameters used in this figure, the “best” patch is then the first patch and so individuals initially

disperse there. Thus, initially, payoff in patch one decreases, payoff in patch two increases and

payoff in patch three does not change (Figure 1.3A, middle panel). Once the population reaches

the equal payoff line where the payoff in patch 1 equals the payoff in patch 3, individuals then start

to disperse to patch 3 as well because both patch 1 and patch 3 are the “best” patches. The animal

distribution must stay on this equal payoff line. Indeed, if slightly more individuals moved to patch

1 (so that the corresponding trajectory shifted slightly off and below the equal payoff line), the

payoff in this patch would decrease below the payoff in patch 3 and, immediately, patch 3 would

become the best patch. This forces the trajectory to move back to the equal payoff line.

The above specific example can be extended to any number of patches. The dynamics given by

(1.11) are also called the best response dynamics (Hofbauer and Sigmund 1998) because they can

be used to model individuals who choose the best strategy with respect to the present state of the

system. Under our assumptions, the IFD is globally asymptotically stable regardless of the number

of patches. That is, every trajectory of (1.11) will converge to the IFD when the dispersal matrix

corresponds to ideal animals. Furthermore, dispersal does not cease at the IFD. In fact, at the IFD

(1.12), the dispersal rates are equal to the population distribution, i. e., Dij = p∗i , i, j = 1, 2, 3. That

is, the probability of migrating from any other patch to patch i, or to stay in patch i and not to

disperse is positive (and equal to p∗i ). If the total population density M = K1+K2+K3 corresponds

to the population equilibrium (i. e., V1(p1M) = V2(p2M) = V3(p3M) = 0), then the IFD (1.12)

simplifies to p∗i = Ki/(K1 + K2 + K3) and corresponds exactly to balanced dispersal (Holt and

Barfield 2001). This agrees with the theoretical prediction given by McPeek and Holt (1992) that

the dispersal rate from patch j to patch i (which is Dij = p∗i ) is inversely related to the carrying

capacity Kj of patch j. Furthermore, the emigration rate from patch j (Ej , defined as the sum of

the dispersal rates from patch j to other patches, e. g., E3 = p∗1 + p∗2 = (K1 + K2)/(K1 + K2 + K3)

for j = 3) at the IFD is also inversely related to Kj in agreement with experimental results such

as Osawa (2000) and Diffendorfer (1998). In fact, for our models, a comparison of patch payoffs

and emigration rates (the middle and right panels of Figure 1.3A respectively) shows these are

also inversely related along trajectories of (1.11) that have not yet reached the IFD. Indeed, for

every time instant, if the payoff in patch i is higher than that in patch j (i. e., Vi > Vj) then the

emigration rate from patch i is lower than from patch j. Along this trajectory the emigration rates
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are piece-wise constant and it is clear that they do not cease when the IFD is reached.

1.7.2 Myopic animals and better response dynamics

The assumption that animals are ideal in the sense they immediately move to the best patch is

in many cases unrealistic because it means that animals know their environment perfectly. Other,

more realistic dispersal rules that are based on local knowledge can be considered. For example, I

can assume that individuals sample patches at random and switch to a new habitat only if it has a

higher payoff. If the sampled patch has a lower payoff, then the individual moves back to the patch

it started from. This type of behavior was observed in the sticklebacks of Milinski (1988) where it

continued after the IFD was reached as some fish checked the resource level in each patch. It is

also a common assumption in simulations of real ecosystems (e. g., Mooij et al. (2002) used this

behavior to simulate the movement of snail kites in their Florida wetlands habitat). In our model,

the probability that an individual switches from a patch j with a lower payoff (Vj) to a patch i

with a higher payoff (Vi) is 1/n due to random sampling of the n patches (here I assume that

with probability 1/n an individual “samples” its own patch). The probability that an individual

switches in the opposite direction (i. e., from patch i to patch j) is zero. If all patches have different

payoffs, the probability that an individual returns to the same patch it started from is k/n where k

is the number of patches with a lower payoff. I will call individuals that follow such dispersal rules

“myopic”, because their behavior depends only on a local knowledge of their environment.

I illustrate this dispersal rule in the case of three patches. Once again, the dispersal matrix

D(p) is piece-wise constant. Migration rates change when the population distribution crosses one

of the equal payoff lines (dashed lines in Figure 1.3B), which leads to six different values of the

dispersal matrix. For example, in the region of the distribution space where V1 > V2 > V3, the

dispersal matrix is

D(p) = D123 =











1 1/3 1/3

0 2/3 1/3

0 0 1/3











.

Indeed, because the payoff in the first patch is highest, all individuals from patch 1 that sampled

any other patch will return which gives dispersal probability D123
11 = 1. On the other hand, 1/3 of

individuals from patch 2 and patch 3 sample patch 1 and stay there. This gives the first row in

the dispersal matrix D123. Likewise, all individuals that sampled patch 2 from patch 1 will move

back to patch 1 leading to D123
21 = 0. Furthermore, 1/3 of individuals from patch 2 sample patch

3 and return to patch 2, which together with 1/3 of individuals from patch 2 that did not sample

any other patch gives D123
22 = 2/3. Also, 1/3 of individuals from patch 3 sampled patch 2 and stay

there. This gives the second row of the dispersal matrix. For the third row, all individuals from
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patch 1 and patch 2 that sampled patch 3 return, and only 1/3 of individuals from patch 3 (i. e.,

those that did not sample any other patch) stay in patch 3. The dispersal matrices in any of the

other remaining parts of the distribution phase space can be constructed similarly.

The dispersal dynamics are shown in Figure 1.3B. As predicted, they converge to the IFD which

is the same as the one for ideal animals. In contrast to the ideal case (Figure 1.3A), trajectories

in Figure 1.3B do not evolve immediately in the direction of the current best patch. This is

because individuals from the worst patch can disperse to either of the two other patches that

have a higher payoff. There is another important difference when compared with ideal animals;

namely, it is no longer possible to compute dispersal rates at the IFD, because these rates are not

defined uniquely (Figure 1.3B, right panel). This is because at the IFD, the dispersal matrix is

a convex combination of 6 matrices that correspond to six regions of the phase space adjacent to

the IFD (see Figure 1.3B, left panel). That is, at the equilibrium, the Filippov regularization is

D∗ = u1D
123 +u2D

132 +u3D
312 +u4D

213 +u5D
231 +u6D

321 where ui ≥ 0 satisfy u1 + · · ·+u6 = 1.

Since the IFD condition D∗p∗ = p∗ has only three equations, it is impossible to compute uniquely

the six values ui, i = 1, . . . , 6. In other words, it is in principle impossible to predict the dispersal

rates at the IFD when animals are myopic. However, as with ideal animals, the distribution

dynamics continue to be uniquely defined for myopic animals and there will still be dispersal at the

IFD.

1.7.3 Preferences for patches are proportional to differences in payoffs

The two dispersal dynamics studied above assumed that individuals disperse even if their distri-

bution is at the IFD. Migration dynamics can also be developed in which dispersal matrices I(p)

depend continuously on the population distribution p (e. g., Hugie and Grand 2003). In other

words, a small change in the distribution causes small changes in individual strategies. However, as

I already discussed, under the assumption that individuals never disperse to patches with a lower

payoff, continuity immediately implies there can be no dispersal among patches with the same pay-

off. Although this assumption is therefore unrealistic in many situations, there are circumstances

where continuous dependence makes sense. For instance, if individuals can perceive their environ-

ment by some sensory stimuli that do not require them to visit the other patches, they do not need

to disperse when patch payoffs are the same (i. e., when the distribution corresponds to the IFD).

One of the simplest examples of such a dispersal matrix is given by

Dij(p) =



















µ(Vi − Vj) if Vi > Vj , i 6= j

0 if Vi ≤ Vj , i 6= j

1 −∑Vi<V`
µ(V` − Vi) if i = j,

(1.15)
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where µ > 0 is so small that Dii is positive. The above matrix describes dispersal which increases

as the difference between the payoffs increases. That is, the higher the benefit to moving to a new

patch, the more willing individuals are to do so. As our two general conditions are satisfied (i. e.,

individuals do not disperse to patches with a lower payoff and some disperse to a patch with the

highest payoff), the trajectories of these dispersal dynamics converge to the IFD. In this example,

dispersal ceases at the IFD (Dij = 0 for i 6= j). Furthermore, convergence to the IFD can no longer

occur in finite time since the resulting dynamical system has a continuous vector field near the IFD.

The case with three patches is shown in Figure 1.3C.

It is interesting to note that when dispersal rates are given by

Dij(p) =



















µpi(Vi − Vj) if Vi > Vj , i 6= j

0 if Vi ≤ Vj , i 6= j

1 − µ
∑

Vi<V`
p`(V` − Vi) if i = j.

(1.16)

model (1.11) becomes the replicator equation

dpi

dt
= µpi

(

Vi(piM) − V (p, M)
)

, i = 1, . . . , n. (1.17)

Here individuals disperse to patches that provide them with a higher payoff, but only provided

these better patches are already occupied which is an unrealistic assumption for animal dispersal.

1.7.4 Suboptimal dispersal

In this section, I assume that there are some individuals that will move from patches with higher

payoffs to patches with lower payoffs but the probability of such maladaptive movement will be

small when compared with the probability of moving from a worse patch to a better patch. This

section can then be interpreted as a dispersal model that combines both IFD and non-IFD dispersal

(sensu Hugie and Grand 1998). One interpretation of adding random dispersal is that it allows an

individual to make a mistake in assessing the payoff of a sampled patch. When the component of

dispersal that leads to the IFD varies continuously with payoff differences as in the previous section,

we show that undermatching occurs. It is interesting observation that for ideal or myopic animals

the resulting population distribution can still correspond to the IFD even if individuals make errors

in their decisions where to move.

Assume that the dispersal matrix has the form

Dij(p) =
ε

n
+ (1 − ε)Jij(p) (1.18)

where parameter ε (0 ≤ ε ≤ 1) measures the degree of random versus frequency-dependent dispersal

in the population. For example, matrix J can be any of the dispersal matrices considered previ-

ously that describe frequency-dependent dispersal. When ε = 1, dispersal matrix (1.18) describes
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unconditional random dispersal since every individual has the same probability to move to any one

of the other n − 1 patches or to stay in the current patch. The corresponding random dispersal

dynamics then has the globally asymptotically stable uniform equilibrium distribution p∗
i = 1/n.

Suppose that matrix D depends continuously on distribution p and satisfies assumptions of

Proposition 13. There exists an asymptotically stable equilibrium p∗ and due to random dispersal

all patches are occupied at this equilibrium distribution. If dispersal under J converges to the

IFD, this equilibrium distribution ranges from the uniform distribution when ε = 1 (shown as

(1/3, 1/3, 1/3) in Figure 1.3D) to the IFD when ε = 0. For positive ε (such as in Figure 1.3D),

there is undermatching since fewer individuals are in the better patch than predicted by the IFD.

The extent of undermatching increases as the component of IFD movement in the population

decreases (i. e., as ε approaches one).

Somewhat counter intuitively, if the dispersal matrix can change abruptly with population

distribution, then the IFD can still be reached even if individuals make errors in their decisions

(i. e., when ε > 0) and dispersal under J corresponds to ideal (or myopic) individuals. This is

clearly documented in Figure 1.4, where the stable distribution is shown as a function of the degree

of randomness (ε) in individual behavior. This figure assumes that, when ε = 0, individuals are

ideal and their dispersal is described by the best response dynamics. We observe that, even with

some random dispersal (here ε can be any value up to 0.2), the stable population distribution still

corresponds exactly with the IFD and, despite the randomness in individual movement, there is

no undermatching. For this phenomenon to occur, the dispersal matrix J corresponding to IFD

movement cannot depend continuously on the population distribution since it is crucial that the

IFD movement under J continue even when the IFD is reached in order to offset the random (i. e.,

non-IFD) dispersal component.

Suboptimal dispersal patterns can also emerge when individual movement depends on other

factors besides resource abundance. For instance, animals may exhibit exploratory behavior based

in part on the memory of patch payoffs received in the past (our models all assume dispersal rates

depend only on current payoffs). The two-patch simulation study of Regelmann (1984) shows

that combining this effect with some tendency to move to better patches again leads to the IFD.

Furthermore, in a variety of taxa, it has been shown (e. g. Weisser 2001) that animals select

patches with lower predation risk. Thus, risky patches can be occupied by disproportionately fewer

consumers than would be the case without predation risk, while safe patches can be occupied

disproportionately more often. Similarly, animals may prefer to move to already occupied patches

where they can find mates to patches with no or low occupancy. Qualitatively, dispersal then

combines two mechanisms: an increase in immigration rates to patches occupied by conspecifics

because of increased mating probability or decreased predation risk and; an increase in emigration
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Figure 1.4: Dependence of the equilibrium distribution on the degree of randomness ε for mi-

gration dynamics given by migration matrix (1.18) when matrix J is given by the best response

dynamics. For ε smaller than approximately 0.2, the distribution corresponds exactly to the IFD

(p∗1, p
∗
2, p

∗
3) = (0.51, 0.35, 0.14). As ε tends to 1, the distribution converges to the uniform distribu-

tion (1/3, 1/3, 1/3). Parameters as in Figure 1.3.

rate from a patch as the number of individuals increase there. For instance, these two tendencies

are captured by the dispersal matrix

Dij(p) = pi
1

n
(1 − µVj) for i 6= j (1.19)

where the factors pi and 1
n (1 − µVj) model the first and second mechanisms respectively. The

second factor can also be interpreted as an individual’s dissatisfaction with a low payoff in its

current patch together with a random component 1
n whereby these individuals have not chosen the

destination patch. What is interesting for us is that the IFD again emerges for dispersal matrix

(1.19) that includes some random dispersal and also varies continuously with frequency. The reason

for this is that (1.11) again leads to the replicator equation (1.17) of the previous section since the

maladaptive movement of some individuals is more than offset by net dispersal to better patches

and the aggregate population behavior results in balanced dispersal at the IFD. That is, the overall

population distribution moves towards the IFD even though individuals do not behave optimally,

a phenomenon that has been noted many times in habitat selection models (e. g. Houston and

McNamara 1988; Hugie and Grand 1998; Stamps 2001).

In summary, while suboptimal dispersal may lead to undermatching as in Hugie and Grand

(1998), it can often result in the IFD outcome along with continued movement between patches at

this equilibrium.
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1.8 Distribution of lady beetles

In this section I will study dispersal modes for lady beetles. In particular, using some data from

the field on distribution of lady beetles I will search for the best model (within a given set of

models) of dispersal dynamics. Several authors observed (e. g. Turchin and Kareiva 1989; Hodek

and Honěk 1996; Elliott and Kieckhefer 2000; Osawa 2000; Evans and Toler 2007) that density of

adult lady beetles is positively correlated with aphid density. There is empirical evidence that the

time coccinellids remain in experimental plots is positively correlated with patch quality. Banks

(1957) and Osawa (2000) observed that lady beetles spend more of their time searching where

prey are dense than where prey are sparse. Ives et al. (1993) observed positive correlation between

the time females of lady beetle stayed on a fireweed (Epilobium angustifolium L.) stem and aphid

density. These authors also observed a similar relationship on a larger spatial scale where scattered

individuals of fireweed were manipulated experimentally to harbor varying numbers of aphids. Van

der Werf et al. (2000) observed increased residence time and 10-20 times higher abundance of lady

beetles in sugar sprayed plots when compared with control plots. As the emigration rate is inversely

proportional to the staying time, these works (reviewed in Evans 2003) provide solid evidence that

emigration rate decreases with increasing number of prey. Cardinale et al. (2006) observed a linear

negative relationship between the emigration rate of lady beetles and the logarithm of aphid density.

However, even when aphids are abundant at a given habitat a significant proportion of coccinellid

adults disperses every day (Ives 1981; Frazer 1988). Interference between conspecifics can be one of

the reasons for dispersal. For example, Růžička and Zemek (2007) observed that coccinellid larvae

avoid staying on substrates with tracks of other larvae. These observations suggest that emigration

rate may depend on both aphid and conspecifics density.

With respect to immigration the situation is less clear. Honěk (1980) (see also Hodek and

Honěk 1996) estimated that the minimum aphid abundance capable of retaining predators is about

10 aphids per square meter of the crop area. Tracking individual lady beetles Osawa (2000) showed

that short range movement of a lady beetle within plants of the same species or genus led to a

better habitat only in approx. 44% of observed cases. However, movement between different sub-

populations (i. e., plants of different genus) led to a better habitat in 75% of observations. Cardinale

et al. (2006) observed no correlation between immigration rates and aphid density.

An idealized model describing spatial distribution of consumers in a patchy environment is

the Ideal Free Distribution (IFD; Fretwell and Lucas 1970). At the IFD, consumer payoff in all

occupied patches is the same and the number of immigrants to a given patch must equal the

number of emigrants from the patch. Such a pattern of equalized immigration and emigration is

called “balanced dispersal” (McPeek and Holt 1992; Doncaster et al. 1997; Holt and Barfield 2001).
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Under balanced dispersal, there is an inverse relation between local population size and its dispersal

rate. In other words, individuals at good sites are less likely to disperse then those from poor

sites. Unbalanced dispersal caused by e. g., random animal movements between patches leads

to a higher consumer density in the poor patch and a lower density in the good patch when

compared with the IFD. This phenomenon is known as “undermatching” (Milinski 1988; Kennedy

and Gray 1993; Houston et al. 1995; Jackson et al. 2004). It was shown that unconditional (i. e.,

random) dispersal should be selected against in spatially heterogeneous environments (Hastings

1983; Holt 1985; McPeek and Holt 1992). The Fretwell and Lucas concept is static in the sense

that it does not address the question how a population distribution achieves the IFD. Cressman

and Křivan (2006) studied various dispersal dynamics that lead to the IFD. They proved that if

individuals never move to patches with a lower payoff and they do not ignore the best patch then

the resulting distribution will correspond to the IFD.

I construct models that describe predator dispersal in a heterogeneous environment consisting

of n patches. consumer distribution dynamics are described by (1.10). I will assume that Dij is

product of an immigration rate bj(mj) and an emigration rate ai(mi) that depend continuously on

the consumer density. This means that emigration from a patch and immigration to a patch are

independent processes. These assumptions lead to the following form of dispersal dynamics

dmi

dt
= ai(mi)

n
∑

j=1

bj(mj)mj − bi(mi)mi

n
∑

j=1

aj(mj) for i = 1, . . . , n. (1.20)

The first term on the right hand side describes immigration to patch i and the second term emi-

gration from patch i. The equilibrium distribution m∗ = (m∗
1, · · · , m∗

n) of model (1.20) satisfies the

following equation

ai(m
∗
i )

bi(m∗
i )m∗

i

= C for i = 1, · · · , n (1.21)

where constant C is given by

C =

∑n
j=1 aj(m∗

j )
∑n

j=1 bj(m∗
j )m∗

j

.

Proposition 13 shows that provided dispersal matrix changes continuously with changing distri-

bution and that immigration to a patch does not decrease as a payoff in that patch increases and

emigration from a patch does not increase as the payoff in that patch increases then the equilibrium

distribution is locally asymptotically stable. These assumptions hold for all dispersal models I will

consider below.
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1.8.1 Patch payoff

I will assume that each patch is characterized by its payoff Vi and I will consider two patch payoffs.

The first payoff is given by patch quality (measured as aphid abundance Ki in the patch) per an

individual lady beetle

Vi =
Ki

mi
(1.22)

which leads to Parker’s input matching principle (Section 1.5.2)

mi

mj
=

Ki

Kj
for i, j = 1, . . . , n

(e. g. Parker 1978; Parker and Stuart 1976; Milinski and Parker 1991; Sutherland 1996).

As an alternative, I will also consider the case where patch payoff does not depend on the

number of conspecifics, i. e.,

Vi = Ki. (1.23)

In this case, under the IFD only the patch(es) with the highest Ki will be occupied.

1.8.2 Emigration

Ives et al. (1993) and Osawa (2000) observed that the patch staying time of a lady beetle increases

with aphid density. Here, I will generalize this observation by assuming that the staying time

increases linearly with patch payoff (the proportionality constant cancels out in subsequent calcu-

lations and I set it arbitrarily equal to 1) . As the emigration rate from the i-th patch is inversely

proportional to patch payoff (i. e., bi = 1
Vi

) I get

bi =
mi

Ki
(1.24)

when Vi is given by equation (1.22) and

bi =
1

Ki
(1.25)

when Vi is given by (1.23). In both cases, emigration rates from patch i always decrease with

increasing number of aphids in that patch.

1.8.3 Immigration is unconditional

Here I assume that the probability of immigrating to any of the n patches is the same and equal

to ai = 1/n (assuming that animals can return to the patch they departed from). From (1.21) it

follows that for emigration rates given by (1.24) the equilibrium distribution satisfies

mi = c
√

Ki for every i = 1, . . . , n, (1.26)
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where c is a constant. Thus, mi/mj =
√

Ki/
√

Kj which is not the IFD. Unconditional immigration

leads to “undermatching” where better patches get lower animal numbers when compared with the

IFD.

For emigration rates (1.25) that depend on the aphid density only the equilibrium distribution

is

mi = cKi for every i = 1, . . . , n. (1.27)

It is interesting to note that despite the fact that immigration is random and emigration rates

depend on the patch quality only, the resulting lady beetle distribution corresponds to the Parker’s

matching principle, thus to the IFD.

1.8.4 Immigration is proportional to patch quality

Here I assume that immigration is directly proportional to patch quality Ki. This means that

individuals can sense prey abundance, but their decision where to immigrate is not influenced by

the number of conspecifics already present in the patch. The immigration rates are ai = Ki

K1+···+Kn
.

When substituted to (1.21) the equilibrium distribution for emigration rates (1.24) is given by

(1.27). Once again we get the Parker’s matching principle.

For alternative emigration rates (1.25) the corresponding equilibrium is

mi = cK2
i for every i = 1, . . . , n. (1.28)

Thus mi/mj = K2
i /K2

j which corresponds to the “overmatching” because good patches contain a

higher proportion of lady beetles than would correspond to the IFD.

1.8.5 Immigration is proportional to patch payoff

Another possibility is to consider the case where immigration rate is proportional to patch payoff

Vi. In this case the dispersing individuals must be able not only to sense the number of aphids in a

patch but also the number of conspecifics in that patch. The corresponding immigration rates are

ai =
Ki/mi

K1/m1 + · · · + Kn/mn
.

When substituted to (1.21) the equilibrium distribution for emigration rates given by (1.24) is

mi = cK
2
3

i for i = 1, . . . , n. (1.29)

Thus, mi/mj = (Ki/Kj)
2
3 which corresponds to undermatching.

For alternative emigration rates (1.25) the predicted distribution is given by the Parker’s match-

ing principle (1.27).
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Model Parameter estimate Asymptotic SE Confidence Interval Mean Sum of Squares

c
√

K c = 2.138 0.174 (1.78, 2.49) 1800

cK c = 0.016 0.003 (0.01, 0.02) 4845

cK2/3 c = 0.452 0.051 (0.35, 0.55) 2903

cK2 c = 6.7 ∗ 10−7 2.1 × 10−7 (2.5 × 10−7, 1.1 × 10−6) 7266

cKd c = 11.509 3.445 (4.51, 18.50) 1120

d = 0.300 0.037 (0.22, 0.37)

Table 1.1: Best fit parameter(s) for models (1.26), (1.27), (1.29), (1.28) and a general power law

using data on coccinellids distribution taken from Honěk (1982).

.

1.8.6 Which model fits data best?

Honěk (1982) (reprinted in Hodek and Honěk 1996) published data that relate density of Coccinella

septempunctata to aphid density (Figure 1.5). For these data I estimated the unknown parameter c

in models (1.26), (1.27), (1.28), (1.29) using regression function Regress of Mathematica 6. Func-

tion Regress finds a least-squares fit to a list of data for a given linear combination of functions. For

example, to estimate parameter c for (1.26) I used command Regress[data,{√x},x,IncludeConstant->False].

Without setting the optional argument IncludeConstant to False value, Mathematica would au-

tomatically estimate parameters k and c for model k + c
√

x. With this optional argument, the

absolute term k is not included. The results are given in Table 1.1 and Figure 1.5. Because Figure

1.5 plots the data in the log-log scale, line slopes correspond to exponents of corresponding models.

As least-squares minimize the sum of squared errors the predicted values must fit observed data

for high lady beetle densities quite well. Thus, most of the data are above the estimated lines in

Figure 1.5.

First, I will consider results for emigration rates given by (1.24). The corresponding distribu-

tions are then given by models (1.26), (1.27) and (1.29). Among these models, model (1.26) that

corresponds to unconditional immigration (solid line in Figure 1.5) fits the data best (in the sense

of mean sum of squares, Table 1.1) while model (1.27) that corresponds to the IFD provides the

worst fit (dotted line in Figure 1.5).

Second, when emigration rates are given by (1.25), the corresponding distributions are given by

models (1.27) and (1.28) because the model with unconditional immigration and the model with

immigration proportional to patch payoff lead to the same distribution (1.27). Model (1.28) gives

even worse fit (long-dashed line) than model (1.27).
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Figure 1.5: This figure shows the relation between abundance of C. septempunctata adults and

aphids (Acyrthosiphon pisum). Data (crosses) were taken from Honěk (1982). The solid line is

for model (1.26), the short-dashed line for model (1.29), the dotted line for model (1.27), the

long-dashed line for model (1.28) and the dash-dotted line for a general power law function.

In addition, I also estimated parameters for a general power function mi = cKd
i . Not surprisingly,

the general power law with two estimated parameters c = 4.3 and d = 0.435 gives the best least-

squares fit (dot-dashed line in Figure 1.5, mean sum of squares=1580).

1.9 Asymmetric games

So far I have considered games between individuals of the same species. A question arises how

one can extend these game theoretical concepts to two or multiple species. Such games are called

asymmetric as the opponents are of different species.

Let us consider two species. Elementary strategies of the first species are e1, . . . , en and el-

ementary strategies of the second species are f1, . . . , fm, respectively. By p = (p1, . . . , pn) and

q = (q1, . . . , qm) I denote mixed strategies for the first and second species, respectivelly. For the

games in the normal form I also assume there are four matrices A, B, C, D that define payoffs

Vi(p, q) = 〈ei, Ap + Bq〉 and Wj(p, q) = 〈fj , Cp + Dq〉 for elementary strategies against (mixed)

strategy (p, q). Concept of the Nash equilibrium readily generalizes for two (or more) species.

Definition 9 Strategy (p∗, q∗) ∈ Sn × Sm is called the Nash equilibrium, if

〈p∗, V (p∗, q∗)〉 ≥ 〈p, V (p∗, q∗)〉
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and

〈q∗, W (p∗, q∗)〉 ≥ 〈q, W (p∗, q∗)〉

for any p ∈ Sn and q ∈ Sm.

The question is how to extend the notion of evolutionarily stability for asymmetric games.

There have been several attempts in the literature to extend the single-species ESS concept to non

symmetric games that model multiple species interactions. An early attempt by Taylor (1979) (see

also Thomas (1986)) took the sum of payoff functions for each species and searched for a single-

species ESS with respect to this lumped payoff function. From the evolution point of view this

suggestion is not acceptable because it assumes the two species “share” their payoff.

Another attempt has developed over the past twenty years through the work of J. S. Brown

and T. L. Vincent (surveyed in Vincent and Brown 2005). This approach was originally based on

what is now called their “Darwinian dynamics” that couples population dynamics with a strategy

dynamics when the set of pure strategies for a given species is a continuum. When applied to a

game that has linear payoffs, no ESS candidate that involves a mixed strategy qualifies as an ESS

for them (p. 293 in Vincent and Brown 2005) (see also p. 152 in Brown and Vincent 1987). For the

habitat selection game this approach excludes the possibility that a single population can occupy

several patches.

Here I follow Cressman (1992) (see also Cressman 1996; Cressman 2003) who defined a two-

species ESS (p∗, q∗) as a NE such that, if the population distributions of the two species are shifted

slightly to (p, q), then an individual in at least one species does better by playing its ESS strategy

than by playing the slightly perturbed strategy of this species.

Definition 10 (Cressman (1992)) A strategy (p∗, q∗) ∈ Sn × Sm is caled an ESS if at least one

of the inequalities

〈p∗, V (p, q)〉 > 〈p, V (p, q)〉 or 〈q∗, W (p, q)〉 > 〈q, W (p, q)〉 (1.30)

is true for each perturbed pair of distributions (p, q) ∈ Sn × Sm sufficiently close (but not equal) to

(p∗, q∗).

A strategy (p∗, q∗) is called a weak ESS if at least one of the conditions is true for each perturbed

pair of distributions (p, q) such that p 6= p∗, q 6= q∗ and (p, q) is close to (p∗, q∗).

Proposition 15 Every two-species ESS is a Nash equilibrium.

Proof. Let (p∗, q∗) be an ESS and let us consider a point (p, q∗) in a neighborhood of (p∗, q∗). Then

the first of the two conditions (1.30) holds, i. e.,

〈p∗, V (p, q∗)〉 > 〈p, V (p, q∗)〉
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and continuity of payoff function V implies

〈p∗, V (p∗, q∗)〉 ≥ 〈p, V (p∗, q∗)〉.

The other inequality is proved analogously.

2

The two-species ESS definition can be rephrased that at least one of the two strategies is locally

superior.

The following characterization of the interior two-species ESS was given in Cressman (1996),

Cressman (1996).

Proposition 16 A strategy (p∗, q∗) in the interior of Sn × Sm is an ESS if and only if it is the

unique NE and there is an r > 0 such that

〈p − p∗, A(p − p∗) + B(q − q∗)〉 + r〈q − q∗, C(p − p∗) + D(q − q∗)〉 < 0 (1.31)

for all (p, q) 6= (p∗, q∗).

A special case of two-species games are bi-matrix games where the payoffs are given as

Vi(p, q) = 〈ei, Aq〉, Wj(q, p) = 〈fj , Bp〉. (1.32)

Thus, the distinctive feature of bi-matrix games is that payoff of species one depends on strategies

of species two only, and vice versa. An important consequence of the ESS definition is non-existence

of an interior ESS for bi-matrix games (Selten 1980; Hofbauer and Sigmund 1998).

Proposition 17 If (p∗, q∗) is an ESS of a bi-matrix game then p∗ and q∗ are pure strategies.

Proof. Let us take (p, q) = (p∗, q) sufficiently close but not equal to (p∗, q∗). Then, necessarily,

〈q∗, Bp∗〉 > 〈q, Bp∗〉.

Similarly, taking (p, q) = (p, q∗) sufficiently close but not equal to (p∗, q∗) we get

〈p∗, Aq∗〉 > 〈p, Aq∗〉.

This shows that the ESS must be a strict NE.

2
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For two-species assymetric games we can extend single-species dynamics. For example, the

replicator dynamics extended for two-species are

dpi

dt
= pi(Vi(p, q) − V (p, q))

dqj

dt
= qj(Wj(p, q) − W (p, q)).

(1.33)

Similarly, the two-species dispersal dynamics are

dp

dt
= ν(I(p, q)p − p)

dq

dt
= ξ(J(p, q)q − q)

(1.34)

where (p, q) ∈ Sn × Sm and I and J are dispersal matrices. Parameters ν and ξ reflect different

time scales for the two species (and without the loss of generality ν can be set equal to 1). Thus,

dispersal dynamics are defined by some specific dispersal rules given by transition matrices I and

J and by time scales ν and ξ.

Similarly to the single-species case it is important to to know how the two-species ESS relates

to equilibrium of replicator and dispersal dynamics.

Proposition 18 (Cressman (2003), Křivan et al. (2008)) The two-species interior ESS is

globally asymptotically stable equilibrium of replicator (1.33) and best response dynamics (1.34).

To show the interior ESS (p∗, q∗) is globally asymptotically stable for the replicator dynamics

we consider Lyapunov function (Cressman 2003)

F (p, q) = Πn
i=1p

p∗

i

i (Πm
j=1q

q∗

i

i )r,

where r is that from Proposition 16. Derivative of this function along trajectories of (1.33) is

negative because

dF

dt
= F (p, q) (〈p − p∗, A(p − p∗) + B(q − q∗)〉 + r〈q − q∗, C(p − p∗) + D(q − q∗)〉 < 0) .

To show the interior ESS (p∗, q∗) is globally asymptotically stable for the class of best response

dynamics, we follow Křivan et al. (2008). Specifically, for a fixed ν and ξ, define

F (p, q) = max
i

(Ap + Bq)i − 〈p, Ap + Bq〉 +
rξ

ν
(max

i
(Cp + Dq)i − 〈q, Cp + Dq〉).

Then F (p, q) ≥ 0 for all (p, q) with equality if and only if (p, q) = (p∗, q∗). When (p, q) has a unique

best response b1 and b2 for species one and two respectively, then
dp

dt
= ν(b1−p) and

dq

dt
= ξ(b2−q)
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(see (1.34)). Thus

dF

dt
= −ν〈b1 − p, Ap + Bq〉 + 〈b1 − p, [νA(b1 − p) + ξB(b2 − q)]〉

−rξ2

ν
(b2 − q) · (Cp + Dq) +

rξ

ν
(b2 − q) · [νC(b1 − p) + ξD(b2 − q)]

≤ ν

[

(b1 − p) ·
(

A(b1 − p) +
ξ

ν
B(b2 − q)

)

+
rξ

ν
(b2 − q) ·

(

C(b1 − p) + D
ξ

ν
(b2 − q)

)]

≤ 0

by (1.31) where b1−p is a nonnegative scalar multiple of some p̂−p∗ and ξ
ν (b2−q) is a nonnegative

scalar multiple of some q̂−q∗. In fact,
dF

dt
= 0 if and only if (p, q) is a NE (and so equal to (p∗, q∗)).

The above argument also holds when (p, q) does not have a unique best response by simply

taking b1 and b2 as the directions of the vector field in (1.34) whenever the trajectory of the best

response dynamics has a tangent line (which occurs for almost all positive times t). Then
dF

dt
≤ 0

at all such points and so F is decreasing. This shows that (p∗, q∗) is globally asymptotically stable.

2

1.9.1 The habitat selection game for competing species

In this section I extend the single species Ideal Free Distribution for two competing species in

heterogeneous environment consisting of two habitat patches. The Lotka–Volterra payoff functions

for two competing species (see also Section 2.7.1) in patch i (Křivan and Sirot 2002; Cressman et

al. 2004) are

Vi(pi, qi) = ri

(

1 − piM
Ki

− αiqiN
Ki

)

Wi(pi, qi) = si

(

1 − qiN
Li

− βipiM
Li

)

.
(1.35)

Here, the overall fixed densities of species one and two are M and N , respectively, and pi and qi,

respectively, are their distributions in patch i = (1, 2). Positive parameters αi (respectively, βi),

are interspecific competition coefficients, ri (respectively, si) are the intrinsic per capita popula-

tion growth rates and Ki (respectively Li) are the environmental carrying capacities. All these

parameters are assumed to be patch specific.

The payoff functions of the habitat selection game can be based on pairwise interactions and

written in the form Vi(p, q) = (Ap + Bq)i, Wi(p, q) = (Cp + Dq)i where A, B, C, D are:

A =





r1(1 − M/K1) r1

r2 r2(1 − M/K2)





,

B =





−α1r1N/K1 0

0 −α2r2N/K2




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Figure 1.6: ESS (solid dots) for two competing species. In panel F is the interior NE an ESS. In panel E the

interior NE (circle) is not an ESS and there are two other boundary NE that are both ESSs. The dashed and dotted

lines are the equal-payoff lines for species 1 and species 2, respectively.
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,

C =





−β1s1M/L1 0

0 −β2s2M/L2





,

D =





s1(1 − N/L1) s1

s2 s2(1 − N/L2)



 .

The NE structure of the two-patch habitat selection game relies heavily on the analysis of the

two equal payoff lines, one for each species. The equal payoff line for species one is defined to be

those (p, q) ∈ S2 × S2 for which V1(p1, q1) = V2(p2, q2). Similarly, the equal payoff line for species

two satisfies W1(p1, q1) = W2(p2, q2). Since payoffs are linear functions and since p2 = 1 − p1 and

q2 = 1−q1, these are lines in the coordinates p1 and q1 as indicated in Figure 1.6. The equal-payoff

line for species one (solid line in Figure 1.6) is

q1 =
K1(K2(r1 − r2) + r2(M + Nα2))

N(K2r1α1 + K1r2α2)
− M(K2r1 + K1r2)

N(K2r1α1 + K1r2α2)
p1

and for species two (dotted line in Figure 1.6)

q1 =
L1(L2(s1 − s2) + s2(N + Mβ2))

N(L2s1 + L1s2)
− M(L2s1β1 + L1s2β2)

N(L2s1 + L1s2)
p1.

Clearly, both of these lines have negative slope. If the two equal payoff lines do not intersect in the

unit square, the two species cannot coexist in both patches at a NE. This means that at least one

species will reside in a single habitat only. If only one species is entirely in its higher payoff patch,

then the other species will distribute itself according to the single-species IFD conditional on species

one being in its single patch. That is, there is then exactly one NE, which must automatically be

on the boundary of the unit square (Figure 1.6).

An ESS (shown as the solid dots in Figure 1.6) on the boundary of the unit square can then be

found by following the arrows in Figure 1.6 which indicate directions in which the payoff for species

1 increases (horizontal arrows) and similarly for species 2 (vertical arrows). A boundary ESS is

then any point where all nearby boundary arrows point towards it as well as all nearby interior

arrows perpendicular to this boundary. In particular, a vertex is an ESS if and only if both adjacent

boundary arrows point in that direction. That is, if the two equal-payoff lines do not intersect in

the unit square (Figure 1.6A-D), then there exists a unique ESS such that at least one population

occupies one habitat only. To determine whether an interior intersection of the two equal-payoff

lines is a two-species ESS requires more care. The analysis of Figure 1.6E shows the the interior

intersection (shown as an empty circle) is not a two-species ESS. However, if the two equal-fitness

lines are interchanged (Figure 1.6F), the interior intersection is the only two-species ESS.

To summarize, for the two-species two-habitat competition model, there is exactly one ESS for

all possible parameter values except as in Figure 1.6E where the two equal-payoff lines intersect
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in the interior of the unit square and the equal-payoff line for species 2 is steeper than is the

equal-fitness line for species 1 which happens when

r1K2 + r2K1

α1r1K2 + α2r2K1
>

β1s1L2 + β2s2L1

s1L2 + s2L1
.

In this case there are two ESSs and, without some additional information (for example about the

order of colonization), it is impossible to predict which of the two corresponding species spatial

distributions will be attained for the two species. This inequality can be rewritten as

r1s1K2L2(1−α1β1)+r1s2K2L1(1−α1β2)+r2s1K1L2(1−α2β1)+r2s2K1L1(1−α2β2) < 0. (1.36)

It is obvious from this latter inequality that if interspecific competition is weak (αi and βj are

sufficiently small so that αiβj < 1) a unique ESS exists. The same holds if one species is dominant

over the other species in both habitats (e. g., α’s are much smaller than β’s, or vice versa).

1.9.2 Two-Patch Predator-Prey Systems

Now I study the IFD for predators (C) and their prey (R) in a two patch environment. Again I

assume that fitness is measured by the per capita population growth in each patch and the payoff

functions of the prey and predator species in patch i are given by the Lotka–Volterra model (see

also Section 2.2)

Vi = ri − λiqiC and Wi = eiλipiR − mi, (1.37)

respectively. Since the Vi and Wi exhibit no intraspecific effects on individual payoff, the equal

payoff line for the prey (species one) is (see the dashed horizontal line in Figure 1.7A)

q∗1 =
r1 − r2 + λ2C

C(λ1 + λ2)
(1.38)

and the equal payoff line for the predator (species two) is (see the dotted vertical line in Figure

1.7A)

p∗1 =
m1 − m2 + e2Rλ2

R(e1λ1 + e2λ2)
, (1.39)

respectively. If one of these lines (say the vertical line for the predator) does not intersect the unit

square, then any NE has all of the predators in one patch.

The above payoffs can be represented through the bi-matrix game (1.32) where

A =





r1 − λ1C r1

r2 r2 − λ2C





and

B =





e1λ1R − m1 −m1

−m2 e2λ2R − m2




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In what follows I will assume that patch 1 is better for prey when compared with patch 2

(r1 > r2). Let us assume that m1 ≥ m2 and

R∗ =
m1 − m2

e1λ1
, C∗ =

r1 − r2

λ1
.

Then for low prey densities (R < R∗) the NE predicts that all prey will occupy patch 1 and all

predators patch 2. This is because prey density is low and it does not compensate for a higher

predator mortality rate in patch 1. As all predators are in patch 2, all prey will stay in patch 1.

Thus, the two populations spatially segregate. If prey density is high (R > R∗) while consumer

density is low (C < C∗) the NE predicts that both population will occupy patch 1 only. This is

because overcritical prey density makes patch 1 more profitable fro predators. As predator density is

low, patch 1 continues to be more profitable for prey as well. For high densities of both populations

(R > R∗, C > C∗) the NE predicts that both populations occupy both patches and population

distribution is given by (p∗1, q
∗
1). If R = R∗ or C = C∗ there are infinitely many NEs. If R = R∗

and C ≤ C∗ the set of NE consists of all couples (p1, q1) = (p1, 1) where 0 ≤ p1 ≤ 1. Similarly,

when R = R∗ and C > C∗ then the set of NE is as in the latter case but with 0 ≤ p1 ≤ p∗1. When

R > R∗ and C = C∗ then (p1, q1) = (1, q1) where q∗1 ≤ q1 ≤ 1.

Similarly, one can get the NE for the case where m1 < m2.

Let us consider the interior NE (p∗, q∗). The horizontal and vertical arrows in Figure 1.7A

indicate the direction in which fitness increases. These directions satisfy our definition for the weak

ESS. I remark that the interior NE is never an ESS because at distributions that lie on these lines

neither prey nor predator fitness increases in the direction toward (p∗, q∗). This result also follows

from Proposition 17. Moreover, this equilibrium is globally asymptotically stable for the continuous-

time best response dynamics (Figure 1.7A; Křivan et al. 2008). A strict NE, which corresponds

to a situation where all predators are in one patch and the prey are either all in the same patch

or all in the other patch, is automatically asymptotically stable for evolutionary dynamics such as

better response dynamics by one part of the Folk Theorem of Evolutionary Game Theory (p. 11,

Cressman 2003) applied to two-player bimatrix games.

1.10 Optimal diet selection model

The classical model of diet selection is based on the assumption that resources are distributed

uniformly randomly within a foraging patch. In such a scenario, consumers must decide, upon each

encounter with a food item, whether or not it should attack that item or ignore it and search for

another, possibly more profitable food item. There is some experimental evidence that some animals

can make decisions with respect to composition of their diet (Stephens and Krebs 1986; Hanson
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Figure 1.7: Two-patch Lotka–Volterra predator-prey system with a weak interior ESS. The vertical (horizontal)

line through the weak ESS is the predator (prey) equal payoff line. These lines are given by given by (1.38) and

(1.39). The horizontal and vertical arrows indicate the directions under best response dynamics. Trajectories of the

best response dynamics evolve counterclockwise around the weak ESS. Other parameters: M = N = 10, r1 = r2 = 1,

s1 = s2 = 1, α1 = α2 = 0.1, β1 = β2 = 0.9, ξ = ν = 1.

and Green 1989; Belovsky and Schmitz 1994; Bulmer 1994). The standard model describing this

foraging process is based on the assumption that consumers attempt to maximize their net rate of

energy intake while foraging, which leads to the maximization of

E

Ts + Th
, (1.40)

(Charnov and Orians 1971; Charnov 1976; Stephens and Krebs 1986). Here Ts represents the total

time spent searching for resources, Th denotes the total time spent by handling resources and E is

the net amount of energy gained in the total time Ts + Th.

In the n−resource species case, where the abundance of resource i is denoted as Ri

Th = Ts

n
∑

i=1

λihiuiRi,

where ui denotes the probability that a consumer will attack resource i upon an encounter, λi

represents the cropping rate of consumers for resource i, if alone, and hi is the handling time a

consumer needs to process one food item of resource i.

The total net amount of energy obtained in time Ts + Th is

E = Ts

n
∑

i=1

eiuiλiRi,

where ei is the expected net energy gained from the i−th resource item. Thus, the surrogate for a

fitness function (1.40) becomes

W =

∑n
i=1 eiuiλiRi

1 +
∑n

i=1 hiuiλiRi
, (1.41)
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(Charnov 1976; Stephens and Krebs 1986). The question that optimal foraging theory solves is to

predict composition of consumer diet choice. To maximize W we calculate partial derivative

∂W

∂ui
= λiRi

ei(1 +
∑n

j 6=i,j=1 hjujλjRj) − hi

∑n
j 6=i,j=1 ejujλjRj

(1 +
∑n

j 6=i,j=1 hjujλjRj)2
.

As this formula is independent of ui, optimization of W with respect to ui is independent of this

variable. Thus, W is maximized with respect to this variable either for ui = 0 or ui = 1. This is

called zero-one rule in the literature on optimal foraging. If

ei

hi
<

∑n
j 6=i,j=1 ejujλjRj

1 +
∑n

j 6=i,j=1 hjujλjRj

then the optimal value is ui = 0, if the opposite inequality holds then ui = 1.

To determine the optimal diet selection it is useful to rank resource species according to the

profitability ratios ei/hi in a decreasing order. The main result, derived from the maximization of

fitness function (1.41) is that the most profitable resource 1 will be always included in the consumer

diet (u1 = 1). Resource j will only be included provided

ej

hj
>

∑j−1
i=1 eiλiRi

1 +
∑j−1

i=1 hiλiRi

,

(Stephens and Krebs 1986). This shows that inclusion of resource j depends on density of resources

that are already included in the diet. For two resources, this then leads to a critical density for

resource 1

R∗
1 =

e2

λ1(e1h2 − e2h1)
(1.42)

such that if resource 1’s density is below this threshold, resource 2 will be included in the optimal

diet, i. e., u2 = 1. If, however, the density of resource 1 is larger than the threshold, the optimal

diet will consist only of resource 1. If the density of prey type 1 equals R∗
1 then consumer preference

for the alternative resource (u2) cannot be determined directly and it may be anywhere between 0

and 1. These conditions cause u2 to be a step-like function of the density of the more profitable

resource species

u2(R1) ∈



























{0} if R1 > R∗
1

{u | 0 ≤ u ≤ 1} if R1 = R∗
1

{1} if R1 < R∗
1.

(1.43)

The diet selection model assumes that consumers are omniscient and they are perfect optimizers.

This then leads to instantaneous resource switching. More gradual switching (called also partial

preferences) may also be observed (see also review in Stephens and Krebs 1986). Various mecha-

nisms have been proposed to explain this discrepancy within the energy rate maximization models.
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Figure 1.8: Optimal foraging strategies for diet selection model (solid line). The less profitable resource type is

included in consumer diet when the density of the preferred resource is below the switching density R∗

1 . Otherwise

consumers specialize on the more profitable resource type. A more gradual switching described by function (1.44)

(with µ = 5) is shown as dotted line.

They range from incorrect classification of prey types by predators (Krebs et al. 1977; Rechten et

al. 1983), uncertainty about the actual resource densities (McNamara and Houston 1987), a limited

memory capacity of predators (Bélisle and Cresswell 1997), limited spatial omniscience (Berec and

Křivan 2000) and individual differences in physiological state (Mangel and Clark 1988; Houston

and McNamara 1999; Křivan and Vrkoč 2000). These departures from the assumptions made in

optimal foraging models all lead to a more gradual switching which can be modeled as

u2(R1) =
R∗

1
µ

Rµ
1 + R∗

1
µ (1.44)

where parameter µ determines the width of the predators’ switching interval (van Baalen et al.

2001). The higher µ, the more closely gradual switching function u2(R1) approximates the stepwise

optimum switch (Figure 1.8, dotted line).



Chapter 2

The effects of adaptive behavior on

population dynamics

The classical models of behavioral ecology, e. g., patch and diet choice models, introduced in Chapter

1, do not consider population dynamics. On the contrary, classical models of population dynamics

do not consider animal adaptive behaviors. One argument that led to separation of behavioral and

population ecology is based on time separation argument. As the two processes run on different time

scales, they do not interfere one with another. In this chapter I show that this is not so. Combining

these two types of models leads to a behavioral-population feedback. Individual behavior influences

population dynamics which, in turn, influences animal behavior. I will show that such a feedback

can have important consequences both for population dynamics and animal behavior.

2.1 Habitat selection game for growing populations

In Section 1.5 I showed that for a fixed population size the IFD is an ESS provided patch payoffs

decrease with increasing number of individuals. Mechanism that can lead to such dependency can

be related to increased competition for available space, to interference between animals etc. Such

a negative effect of individuals of one species on its own population growth is called intraspecific

competition. Assuming that patch payoff is proportional to the per capita population growth rate

this assumption leads to the following population dynamics of the overall population abundance

M = m1 + · · · + mn in n patches

dM(t)

dt
= M(t)F (M(t)) (2.1)

56
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where

F (M) = p1(M)V1(p1(M)M) + · · · + pn(M)Vn(pn(M)M)

is the expected fitness of the population mean strategy. Because animal distribution depends on the

population abundance M , I make this dependence explicit by writing p(M) = (p1(M), · · · , pn(M)).

I first show that, at the population equilibrium, all patches will be completely occupied. This is

a non-trivial prediction, because outside of the population equilibrium, consumers, when at low

densities, will occupy the best patch(es) only (see (1.6) on page 19). Suppose M ∗ is a positive

population equilibrium of (2.1). Then all strategies that are present in the IFD (i. e., those strategies

for which pi(M
∗) > 0) must satisfy Vi(pi(M

∗)M∗) = 0 because all these Vi(pi(M
∗)M∗) are equal at

the IFD (animal fitness is equalized over all occupied patches under the IFD) and the equilibrium

population growth rate is zero (F (M ∗) = 0). Moreover, in population equilibrium all habitats will

be occupied, because if some habitat were empty (i. e., pi(M
∗) = 0) then Vi(pi(M

∗)M∗) > 0 and so

individuals moving to that habitat would obtain a higher payoff then those staying in other habitats.

Thus, at the population equilibrium M∗, all habitats will be occupied and individual fitness will

be the same (and equal to zero) in all habitats. When patch payoff Vi = ri(1 − pi(M)M
Ki

) is derived

from the logistic population growth This immediately implies that at the population equilibrium,

the density in each habitat is given by its carrying capacity (i. e., m∗
i = Ki for all i) and so the

overall population abundance is M∗ = K1 + · · ·+ Kn. The IFD in a two patch environment where

r1 > r2 is given by (1.6) on page 19. Population dynamics are described by a piecewise logistic

equation

dM

dt
=



















r1M

(

1 − M

K1

)

if M < K1
r1−r2

r1

r1r2M

K2r1 + K1r2
(K1 + K2 − M) if M ≥ K1

r1−r2

r1
.

(2.2)

For any given initial population density, the total population reaches equilibrium abundance K1 +

K2, at which the population density in either habitat equals the carrying capacity of that habitat

(Figure 2.1, bottom panel). At the population equilibrium population distribution “matches”

carrying capacities
p∗1
p∗2

=
K1

K2
.

I compare the case where animals distribute at each population abundance according to the IFD

with the case where animals disperse between patches with fixed preferences that are independent

from population densities (e. g., at random in which case p1 = 0.5). This corresponds to the case

where
dM

dt
= p1Mr1

(

1 − p1M

K1

)

+ p2Mr2

(

1 − p2M

K2

)
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Figure 2.1: Solutions of the logistic model in a two patch environment. Top panel assumes no dispersal at all (see

model (2.3)), the middle panel assumes fixed dispersal independent of population density (p1 = 0.7), and the bottom

panel assumes that animals follow the IFD and population dynamics are given by model (2.2). The left panel shows

population dynamics while the right panel shows population distributions. Parameters: r1 = 1.5, r2 = 1, K1 = 10,

K2 = 20.
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where p = (p1, p2) is fixed (i. e., independent of the population size M). The corresponding

equilibrium is

M∗ =
K1K2 (p1r1 + p2r2)

K2r1p2
1 + K1p2

2r2
.

We observe that m∗
i = piM

∗ = Ki if p1 = K1/(K1 + K2), which corresponds to the so called

balanced dispersal (Holt and Barfield 2001). One trajectory of model with fixed preferences is

shown in Figure 2.1 (middle panel, p1 = 0.7, K1 = 10, K2 = 20). The corresponding population

equilibrium is M∗ ≈ 17.31, far below K1 + K2 = 30. This is because disproportionally many

individuals move to patch 1 when compared with balanced dispersal.

It is interesting to point out that the same qualitative result as in the case where animal

distribution tracks the IFD emerges from the model without dispersal (e. g., sessile organisms).

This leads to two independent logistic equations

dmi

dt
= mi

(

1 − mi

Ki

)

, i = 1, 2. (2.3)

Contrary to the case where animal distribution tracks instantaneously the IFD, now the time scale

for the dynamics of animal distribution (given by pi = mi/(m1 + m2)) is of the same order as the

population dynamics. Clearly, mi converges to Ki and M∗ = K1 + K2 (Figure 2.1, top panel).

That is, from a population point of view that does not observe whether individuals change habitats

or not, the two stable limiting distributions look identical; namely, the proportion of individuals in

a given habitat is exactly equal to its carrying capacity. Thus, one can wonder if this is a general

property, or if this is limited to the special case of (single species) habitat selection models. In

fact, we will see in Section 2.7.2 that individual behavior is important for two-species IFD (i. e.,

qualitative predictions when animals can move are different than those when they cannot).

2.2 The Lotka-Volterra predator-prey model

Why a complete closure of fishery during the First World War caused an increase in predatory

fish and a decrease in prey fish in the Adriatic See? This was the question that led Vito Volterra

(Volterra 1926) to formulate a mathematical conceptualization of prey–predator population dynam-

ics. In his endeavor to explain mechanisms by which predators regulate their prey, he constructed a

mathematical model that describes temporal changes in prey and predator abundances. The model

makes several simplifying assumptions such as: (i) the populations are large enough so it makes

sense to treat their abundances as continuous rather than discrete variables; (ii) the populations are

well mixed in the environment (which is the reason why this type of models is sometimes called mass

action models in an analogy with chemical kinetics); (iii) the populations are closed in the sense
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that there is no immigration or emigration; (iv) the population dynamics are completely determin-

istic, i. e., no random events are considered; (v) in absence of predators, prey grow exponentially;

(vi) the per predator rate of prey consumption is a linear function of prey abundance; (vii) preda-

tors are specialists and without the prey their population will decline exponentially; (viii) the rate

with which consumed prey are converted to new predators is a linear function of prey abundance;

(ix) both populations are unstructured (e. g., by sex, age, size etc.); (x) reproduction immediately

follows feeding etc.

If R(t) and C(t) are the prey and predator abundance, respectively, then under the above

assumptions the population dynamics are described by two differential equations

dR

dt
= (r − λC)R,

dC

dt
= (eλR − m)C,

(2.4)

where r is the per capita prey growth rate, λ is the rate of search and capture (hereafter search

rate) of a single predator for an individual prey item so that λR is the per predator rate of prey

consumption (i. e., the functional response), e is the rate with which consumed prey are converted

into predator births, and m is the per capita predator mortality rate. Model (2.4), which was

independently formulated by Alfred Lotka (Lotka 1926), is today known as the Lotka–Volterra

prey-predator model. For initial population abundances R(0) and C(0), this model predicts future

abundance of prey R(t) and predators C(t) (Figure 2.2A).

From the ecological point of view, the important information such a model can provide is whether

or not population abundances tend to an equilibrium at which both species will coexists. At the

equilibrium, predator and prey abundances do not change (i. e.,
dR

dt
=

dC

dt
= 0), which gives

R∗ =
m

eλ
and C∗ =

r

λ
.

This equilibrium (shown as the solid dot in Figure 2.2B) is at the intersection of the prey and

predator isoclines, which are the lines in the phase space along which
dR

dt
= 0 and

dC

dt
= 0 (shown

as the dashed lines in Figure 2.2B). Interestingly, the prey equilibrium depends only on parameters

that describe population growth of predators whereas the predator equilibrium depends on the

prey per capita growth rate r. Thus, increasing the prey growth rate r (which is sometimes called

enrichment in the ecological literature) does not change the prey equilibrium density, but it increases

the predator equilibrium abundance.

The Lotka–Volterra model (2.4) is an example of a conservative system with the first integral

V (R, C) = m

(

R

R∗
− 1 − ln

R

R∗

)

+ r

(

C

C∗
− 1 − ln

C

C∗

)

, (2.5)
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Figure 2.2: Solutions of the Lotka–Volterra model (2.4) in time domain (A, solid line shows prey abundance,

dashed line predator abundance) and in the prey-predator abundance phase space (B). Dashed lines in panel B are

the isoclines. Parameters: r = 1, λ = 1, e = 0.2, m = 1.

which is constant along the trajectories of the model, since

dV (R(t), C(t))

dt
=

∂V

∂R
R(r − λC) +

∂V

∂C
C(eλR − m) = 0.

As function V is positive for positive population abundances (because the inequality x − ln x ≥ 1

holds for every x > 0) and it minimizes at the equilibrium point (R∗, C∗), it is a Lyapunov function.

Thus, solutions of the equation V (R, C) = const, which are closed curves in the prey–predator phase

space (Figure 2.2B), correspond to solutions of model (2.4). This analysis shows that both prey

and predator numbers will oscillate periodically around the equilibrium with the amplitude and

frequency that depend on the initial prey and predator densities. Moreover, the average values of

prey and predator densities over one period coincide with their equilibrium densities R∗ and C∗.

Indeed, the equation for prey can be rewritten as

d ln(R)

dt
= r − λC.

Integration of this equation over one population cycle of length T time units gives

ln(R(T )) − ln(R(0)) = rT − λ

∫ T

0

C(t)dt.

Since T is the period, the left hand side of the above equality is zero (because R(0) = R(T )) and

C =
1

T

∫ T

0

C(t)dt =
r

λ
= C∗,

where C denotes the average predator density. Similarly, the average prey density over each cycle

equals the prey equilibrium density.

The above analysis shows that the prey-predator equilibrium is Lyapunov stable (i. e., after a

small perturbation the animal abundances stay close to the equilibrium, Figure 2.2B), but it is not
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asymptotically stable because the population abundances do not return to the equilibrium. This

particular type of equilibrium stability is sometimes called the neutral stability. The eigenvalues

of the Lotka–Volterra model evaluated at the equilibrium are purely imaginary (±i
√

rm) which

implies that the period of prey-predator cycles with a small amplitude is approximately 2π/
√

rm.

The mechanism that makes prey–predator coexistence possible in this particular model is the

time lag between prey and predator abundances, with the predator population lagging behind the

prey population (Figure 2.2A). The Lotka–Volterra model shows that (i) predators can control

exponentially growing prey populations (this type of regulation is called the top-down regulation),

(ii) both prey and predators can coexist indefinitely, (iii) the indefinite coexistence does not occur

at equilibrium population densities, but along a population cycle. Can this model explain the

question about the observed changes in predator and prey fish abundances during the First World

War? Volterra hypothesized that fishery reduces the prey per capita growth rate r and increases

the predator mortality rate m, while the interaction rates e and λ do not change. Thus, ceased

fishery during the First World War should lead to a decrease in average prey fish population R∗

and to an increase in the average predator fish population C∗, exactly as observed (Volterra 1926).

2.3 The Lotka–Volterra model with foraging-predation risk

trade-offs

Animals are under constantly acting foraging-predation trade-off: to obtain food they have to be

active, but activity increases predation risk. It is well known that individuals change their behavior

under predation risk by reducing their activity level, or escaping to a safer areas (e. g., Murdoch

1969; Werner and Gilliam 1984; Fraser and Huntingford 1986; Holbrook and Schmitt 1988; Brown

and Alkon 1990; Kotler et al. 1992; Brown 1998; Lima 1998a; Lima 1998b; Sih 1998; Brown et

al. 2001; Dall et al. 2001; Peacor and Werner 2001; Werner and Peacor 2003; Brown and Kotler

2004; Kotler et al. 2004; Preisser et al. 2005). It is even more fascinating that rapid morphological

and physiological adaptations were recently observed (e. g., Wikelski and Thom 2000; Yalden 2000;

Relyea and Auld 2004; Losos et al. 2006). For example, the latter authors showed that within a

single generation Anolis sagrei, a common Bahamian lizard can change the length of its hindlimbs

as a result of habitat shift (from terrestrial to aboreal habitat) in response to increased predation

risk in the terrestrial habitat.

Following Křivan (2007), I extend the classical Lotka–Volterra predator-prey model (2.4) by

considering such a trade-off. I consider prey (u) and predator (v) activity levels that are numbers

between 0 and 1. I will assume that parameters of the Lotka–Volterra model are linear functions
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of these activity levels and I obtain the following model

dR

dt
= (r1u + r2 − (λ1u + λ2v)P ) R

dP

dt
= (e(λ1u + λ2v)R − (m1 + m2v)) P.

(2.6)

Increased prey activity (u) increases prey growth rate (r1u + r2) but it also increases the en-

counter rate with predators (λ1u + λ2v). Similarly, increasing predator activity (v) increases both

predator growth rate (e(λ1u+λ2v)R) and mortality rate (m1 +m2v). Here r2 and m1 are the prey

background growth rate and predator mortality rate, respectively, that are independent of activity

level. Positive (negative) r2 models the case where prey population grows (declines) if prey are

completely inactive (u = 0). In what follows I will assume that r1 + r2 > 0 which means that

active prey always reach a positive population growth rate. All other parameters in model (2.6)

are positive and they have the same meaning as in the classical Lotka–Volterra model (2.4).

2.3.1 Predators only behave adaptively

To model predators that adjust their activity to current prey density I fix prey activity level at

some arbitrary value (here u = 1) and I assume that predators behave so that their per capita

population growth rate maximizes. Thus, predators should be maximally active provided their

population growth rate exceeds the mortality rate associated with predator activity (i. e., v = 1 if

R > Rs = m2/(eλ2)) and they should be inactive otherwise (i. e., v = 0 if R < Rs).

For prey densities above the switching threshold (R > Rs) predators are active (v = 1) and

population dynamics are

dR

dt
= (r1 + r2 − (λ1 + λ2)P )R

dP

dt
= (e(λ1 + λ2)R − (m1 + m2))P.

(2.7)

These are the classical Lotka–Volterra equations with equilibrium

E1 =

(

m1 + m2

e(λ1 + λ2)
,

r1 + r2

λ1 + λ2

)

.

The resource equilibrium is higher than the switching threshold Rs if

λ2

m2
>

λ1

m1
. (2.8)

Similarly, when prey density is below the threshold (R < Rs), predators are inactive (v = 0) and
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population dynamics are
dR

dt
= (r1 + r2 − λ1P )R

dP

dt
= (eλ1R − m1)P

(2.9)

with equilibrium

E2 =

(

m1

eλ1
,
r1 + r2

λ1

)

.

This resource equilibrium density is lower than the threshold resource level Rs if the inequality

in (2.8) is reversed. I remark that for R = Rs, predator activity v is not uniquely defined by

maximizing predator fitness. I define a set-valued map S : R × R ; [0, 1] that associates to every

prey and predator density (R, P ) the corresponding optimal predator strategy v. This is a set-

valued map because S(Rs, P ) = {u | 0 ≤ u ≤ 1}. For this reason, model (2.6) when predators

behave adaptively is not a differential equation, but a differential inclusion (for more details see

Appendix).

First, I study behavior of model (2.6) using isoclines. The switch at R = Rs causes the prey

isocline to be Z-shaped (see the horizontal dotted line in Figure 2.3). The isocline consists of three

parts: two horizontal lines and the vertical line segment joining them. The vertical segment is

located at the prey density (R = Rs) where predators switch between active and inactive state. In

the vicinity and to the right of the vertical part of the isocline prey population decreases while to

the left it increases (see the arrows in Figure 2.3). It is clear that trajectories are “pushed” from

both sides to the vertical part of the prey isocline and they cannot cross it. Thus, by definition

(Rosenzweig and MacArthur 1963), the vertical segment is indeed a part of the prey isocline. This

is clearly shown in Figure 2.3 where upon reaching the vertical part of the prey isocline trajectories

cannot cross it and they move along it (downward in panel A and upward in panel B) before they

settle on a Lotka–Volterra cycle (Křivan 1997; van Baalen et al. 2001).

The predator isocline is a vertical line (vertical dotted line in Figure 2.3) exactly as in the classical

Lotka–Volterra case. The position of this isocline depends on the benefit/cost ratio (λ2/m2) which

is due to predator activity. This ratio relates the added benefit expressed as the increased predator

cropping rate (λ2) to the added cost expressed as the increased predator mortality rate (m2). If

the predator benefit/cost ratio is high so that

λ2

m2
>

λ1

m1
(2.10)

then the predator isocline is to the right of the switching threshold Rs (Figure 2.3A) and it is to

the left if the opposite inequality holds (Figure 2.3B). In the first case the population equilibrium

is in the part of the prey-predator density phase space where predator activity is at its maximum

(v = 1), while in the second case predators are inactive at the equilibrium (v = 0). Using a
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Figure 2.3: Solutions of model (2.6) where only predator behavior is adaptive. The dotted lines are isoclines, the

dashed line shows the critical prey density Rs = m2/(eλ2) below (above) which predators are inactive (active). The

global attractor is shown in gray. The arrows along the switching line show direction of trajectories. In panel A the

predator benefit/cost ratio (λ2/m2) is high, inequality (2.10) holds, and the population equilibrium is in the region

of the prey-predator density phase space where predator activity is at its maximum (v = 1, m1 = 0.2, m2 = 0.08).

Panel B considers the opposite case where inequality (2.10) does not hold and predators are inactive at the population

equilibrium (v = 0, m1 = 0.08, m2 = 0.2). Other parameters: r1 = 1, r2 = 0.1, λ1 = 1, λ2 = 1, e = 0.1.

Lyapunov function it can be proved that trajectories converge to a global attractor shown in Figure

2.3 as the gray area. Let us consider the case where (2.10) holds (the other case follows the same

path). Then

V (R, P ) =
1

λ1 + λ2
(R − R∗ − R∗ ln

R

R∗
) +

1

e(λ1 + λ2)
(P − P ∗ − P ∗ ln

P

P ∗
)

is the classical Lyapunov function for model (2.7), i. e., for R > Rs. For R ≤ Rs I get

dV

dt
=

(r1 + r2)(eλ2R − m2) + P (λ1m2 − λ2m1)

e(λ1 + λ2)2
< 0

due to (2.10). Thus, to the left of the switching threshold R = Rs V decreases along trajectories

of (2.9). Due to LaSalle theorem (Hofbauer and Sigmund 1998; Boukal and Křivan 1999), the

attractor is bounded by the largest Lotka–Volterra cycle that is to the right of the line R = Rs

(Figure 2.3A). The attractor is formed of the Lotka–Volterra cycles of model (2.7). Contrary to the

classical case where the amplitude of oscillations depends on the initial population densities, this

attractor is bounded, i. e., the amplitude of maximum prey and predator oscillations is bounded.

The bound is proportional to the distance of the equilibrium from the switching line (R = Rs).

When λ2

m2
< λ1

m1
the attractor is to the left of the switching line (Figure 2.3B) and the analysis is

similar.

2.3.2 Adaptive prey

Here I consider the case where only prey behave adaptively. I set predator activity level to some

fixed value (here to the maximum value v = 1). In this case the optimal prey strategy that
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maximizes the per capita prey population growth rate is to be inactive when predator density is

above a critical threshold given by Ps = r1/λ1 and to be active if the opposite inequality holds. This

switching leads to a step like predator isocline (the dotted vertical line in Figure 2.4). According

to its definition, trajectories cannot cross predator isocline in the vertical direction which is clearly

documented in Figure 2.4A where a trajectory slides along the horizontal part of the predator

isocline before it settles on a Lotka–Volterra cycle.

For predator densities that are lower than the switching threshold (P < Ps = r1

λ1
) prey are

active (u = 1) and population dynamics are given by (2.7). The corresponding equilibrium E1 is

in the region of the predator-prey density phase space where P < Ps if

r2

λ2
<

r1

λ1
. (2.11)

For predator densities that are higher than the switching threshold (P > Ps) prey are inactive

(u = 0) and population dynamics are

dR

dt
= (r2 − λ2P )R

dP

dt
= (eλ2R − (m1 + m2))P.

(2.12)

These population dynamics have equilibrium

E3 =

(

m1 + m2

eλ2
,
r2

λ2

)

which is in the region where P > Ps when inequality in (2.11) is reversed.

The prey isocline is the horizontal dotted line in Figure 2.4. Its position depends on the com-

ponent of the benefit/cost ratio (r1/λ1) which is due to prey activity. This ratio relates the added

benefit expressed as the increased intrinsic per capita prey population growth rate to the added cost

expressed as the increased prey mortality rate due to increased predation. If the prey benefit/cost

ratio is high so that
r1

λ1
>

r2

λ2
(2.13)

then the prey isocline is below the switching line (Figure 2.4A) while if the opposite inequality

holds then it is above the switching line (Figure 2.4B). If the background prey population growth

rate is negative (r2 < 0), inequality (2.13) always holds. To maximize population growth rate

at low predator density prey must be active. This leads to a high encounter rate between prey

and predators (which is given by λ1 + λ2). The corresponding part of the predator isocline is

the vertical segment at the point R1 = (m1 + m2)/(e(λ1 + λ2)). When predator density is higher

than the switching density, prey are inactive which shifts the predator isocline to the point R2 =

(m1 + m2)/(eλ2) that is to the right of R1 (Figure 2.4). All trajectories converge to a global
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attractor (shown as the gray area) that is formed by closed Lotka-Volterra cycles. Once again, prey

and predator amplitude is bounded which prevents predator and prey densities become too low.

When population densities settle on the attractor, the short term prey behavior effects attenuate:

prey are either completely active (Figure 2.4A), or completely inactive (Figure 2.4B) and no changes

in their activities should be observed.

2.3.3 Both species are adaptive

Finally, I consider the case where both prey and predators adjust their activity levels adaptively.

This results in a predator-prey game because prey activity level depends on predator activity

and vice versa. I assume that the activity levels reach the Ideal Free Distribution (Fretwell and

Lucas 1970), i. e., neither prey, nor predators can increase their fitness by changing their strategy.

The corresponding activity levels combine the activity level for adaptive prey with those for adaptive

predators.

In what follows I will consider two possibilities: either prey population can increase when

prey are completely inactive (r2 > 0), or not (r2 < 0). First I consider the case where prey

can increase when inactive (r2 > 0). The two switching thresholds (Rs and Ps) split the prey–

predator population density phase space in four parts (dashed lines in Figure 2.5). The short term

predictions at the behavioral time scale for fixed prey and predator densities suggest that when

prey density is lower (higher) than the threshold (Rs), predators are inactive (active). Similarly,

when predator density is higher (lower) then the threshold (Ps), prey are inactive (active) due to

high (low) predation risk. To obtain predictions at the population time scale I study population

dynamics (2.6) where I substitute the optimal prey and predator activity levels. The graphical

analysis shown in Figure 2.5 is based on the position of isoclines (dotted lines). The prey isocline is

either L-shaped (when r2 > 0, Figure 2.5A-D), or Z-shaped (when r2 < 0, Figure 2.5E-F). This is

because to the left of the predator switching line (the vertical dashed line in Figure 2.5) and above

the prey switching line (the horizontal dashed line), i. e., in the upper left corner in Figure 2.5,

both predators and prey are inactive, they do not interact, and prey population growth is always

positive (if r2 > 0), or negative (if r2 < 0). Thus, prey isocline cannot intersect this region of the

prey–predator phase space. Similarly, in the lower left corner of Figure 2.5A, prey are active (u = 1)

and predators are inactive (v = 0). Substituting these activity values in model (2.6) I observe that

the corresponding prey isocline is the horizontal line given by P = (r1 + r2)/λ1. However, this line

is in the lower left region of the prey–predator phase space only provided r2 < 0 (and r1 + r2 > 0;

Figure 2.5E and F) which then leads to Z-shaped prey isocline. For positive r2 this segment of line

is not in the lower left corner of the phase space and the prey isocline is L-shaped.
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For positive r2, depending on other parameters, there are four qualitative possibilities for posi-

tion of predator and prey isoclines (Figure 2.5A-D). First, I consider the case where prey benefit/cost

ratio is high (r1/λ1 > r2/λ2, Panels A and B).

If predator benefit/cost ratio is high (λ2/m2 > λ1/m1, Figure 2.5A) the population equilibrium

is located in the part of the population density phase space where both predators and prey are

active (u = v = 1) because prey density is high and predator density is low. This equilibrium is

neutrally stable and trajectories converge to a bounded attractor (Figure 2.5A).

If predator benefit/cost ratio is low (λ2/m2 < λ1/m1, Figure 2.5B), the intersection of the two

isoclines coincides with the intersection of the two switching lines (Rs = m2/(eλ2) and Ps = r1/λ1)

and population dynamics converge to this equilibrium. It is interesting to note that predator and

prey activities at this equilibrium are intermediate and can be calculated explicitly. Indeed, at this

equilibrium the right handside of model (2.6) must be zero by definition. Substituting the prey and

predator equilibrium values allows me to calculate the activity levels at the population equilibrium

u∗ =
m1λ2

m2λ1
; v∗ =

r2λ1

r1λ2
. (2.14)

The stability of this equilibrium can also be proved by constructing Lyapunov function

V =
m2

e2λ2

(

R

Rs
− 1 − ln(

R

Rs
)

)

+
r1

λ1

(

P

Ps
− 1 − ln(

P

Ps
)

)

.

Indeed, in the region where R > Rs and P > Ps, u = 0 and v = 1 and

dV

dt
=

(r1λ2 − r2λ1)(m2 − λ2eR) + λ2m1(r1 − λ1P )

eλ1λ2
< 0.

In the region where R < Rs and P > Ps, u = 0 and v = 0 and

dV

dt
=

λ1r2(λ2eR − m2) + λ2m1(r1 − λ1P )

eλ1λ2
< 0.

In the region where R < Rs and P < Ps, u = 1 and v = 0 and

dV

dt
=

(m1λ2 − m2λ1)(r1 − λ1P ) + r2λ1(eλ2R − m2)

eλ1λ2
< 0.

In the region where R > Rs and P < Ps, u = 1 and v = 1 and

dV

dt
=

(m1λ2 − m2λ1)(r1 − λ1P ) + (r2λ1 − r1λ2)(eλ2R − m2)

eλ1λ2
< 0.

Because along the lines R = Rs and P = Ps trajectories cannot diverge from the equilibrium, it

follows that the equilibrium is globally asymptotically stable.

Second, I consider the case where prey benefit/cost ratio is low (r1/λ1 < r2/λ2). The two

cases (Panel C assumes λ2/m2 < λ1/m1 and Panel D assumes λ2/m2 > λ1/m1) are qualitatively

similar because when population dynamics reach the attractor, predators are active (v = 1) and
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Figure 2.4: Solutions of model (2.6) when prey are adaptive. The dotted lines are isoclines, the dashed line is the

predator critical density Ps = r1/λ1 above (below) which prey are inactive (active). The global attractor is shown

in gray. Panel A shows the case where prey benefit/cost ratio (r1/λ1) is high and inequality (2.13) holds (r1 = 1.2,

r2 = 0.6), panel B shows the opposite case (r1 = 0.6, r2 = 1.2). Other parameters: λ1 = 1, λ2 = 1, m1 = 0.08,

m2 = 0.2, e = 0.1.

prey inactive (u = 0). In both cases the equilibrium is neutrally stable and all trajectories converge

to the bounded attractor.

If r2 < 0 there are two possibilities shown in Figure 2.5, panels E (λ2/m2 > λ1/m1) and F

(λ2/m2 < λ1/m1). In both cases the equilibrium predator density is in the region of the prey–

predator phase space where prey are active (u = 1). Predators can be either active (Panel E), or

inactive (Panel F) at the population equilibrium.

2.4 The functional response

The Lotka–Volterra model (2.4) on page 60 assumes that the prey consumption rate by a predator is

directly proportional to the prey abundance, i. e., λR. This means that predator feeding is limited

only by the amount of prey in the environment. While this may be realistic at low prey densities,

it is certainly an unrealistic assumption at high prey densities where predators are limited e. g.,

by time and digestive constraints. The need for a more realistic description of predator feeding

came from the experimental work of G. F. Gause (Gause 1934; Gause et al. 1936) on protist

prey-predator interactions. He observed that to explain his experimental observations, the linear

functional dependencies of the Lotka–Volterra model must be replaced by nonlinear functions.

To understand the nature of prey–predator interactions, M. E. Solomon (Solomon 1949) in-

troduced concept of functional and numerical responses. The functional response describes prey

consumption rate by a single predator as a function of prey abundance, while the numerical response

describes the effect of prey consumption on the predator recruitment. Most simple prey–predator

models such as the Lotka–Volterra model assume that production of new predators is directly pro-
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Figure 2.5: Solutions of model (2.6) when both prey and predators are adaptive. The dotted lines are isoclines,

the dashed lines correspond to prey (Rs = m2/(eλ2)) and predator (Ps = r1/λ1) switching densities. The gray area

denotes the attractor. Parameter r2 is positive in Panels A-D and negative in panels E and F. Parameters used in

simulations: A : r1 = 1, r2 = 0.6,m1 = 0.2,m2 = 0.08, B : r1 = 1, r2 = 0.6,m1 = 0.08, m2 = 0.2, C : r1 = 0.6, r2 =

1, m1 = 0.08,m2 = 0.2, D : r1 = 0.6, r2 = 1,m1 = 0.2, m2 = 0.08, E : r1 = 1, r2 = −0.1,m1 = 0.2, m2 = 0.08,

F : r1 = 1, r2 = −0.1,m1 = 0.08,m2 = 0.1. Parameters λ1 = 1, λ2 = 1, e = 0.1 were the same in all simulations.
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portional to the food consumption. In this case, the numerical response is directly proportional to

the functional response. The constant of proportionality, e in model (2.4), is the efficiency with

which prey are converted to newborn predators.

Finally, C. S. Holling (1966) introduced three types of functional responses (Figure 2.6). The

Type I functional response is the most similar to the Lotka–Volterra linear functional response, but

it assumes a ceiling on prey consumption rate

fI(R) = min{λR, const}

where const is the prey consumption rate when prey abundance is high (Figure 2.6A). This func-

tional response is found in passive predators that do not hunt actively (e. g., web-building spiders

and filter feeders).

The Type II functional response assumes that predators are limited by total available time T.

During this time predators are assumed either to search for prey (for Ts time units), or to handle

prey (for Th units). If the predator search rate is λ and R is the current prey density then the

encounter rate of a searching predator with prey is λR. If handling of a single prey item takes h

time units then Th = h λ R Ts. Thus, T = Ts + Th = Ts(1 + h λ R) and the number of consumed

prey by a predator during time T is λRTs. The average consumption rate over time interval T is

then

fII(R) =
λ R Ts

T
=

λ R

1 + h λ R
,

which is the Holling Type II functional response (Figure 2.6B). This functional response is concave

and for large prey abundances it converges to 1/h, which is the upper limit on consumption. The

form of the Holling type II functional response is equivalent with the Michaelis-Menten rate of

substrate uptake as a function of the substrate concentration.

The Holling Type II functional response assumes that the predator search rate λ is independent

of the prey density. However, there are several ecological processes that can make this parameter

itself a function of prey abundance i. e., λ(R). These processes include e. g., predator inability

to effectively capture prey when at low densities, predator learning, searching images, predator

switching between several prey types, optimal predator foraging etc. When substituted to the

Holling Type II functional response, this added complexity can change the concave shape of the

functional response to a sigmoid shape (Figure 2.6C). Sigmoid functional responses are called the

Holling type III functional responses. A prototype of such a functional response is obtained when

λ is replaced by λRµ−1 in the Holling type II functional response, which then leads to a particular

form of the Holling type III functional response

fIII(R) =
λRµ

1 + λhRµ
,
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Figure 2.6: The three Holling type functional responses (left panel A- Type I, B-Type II, C-Type III). Rcrit in

panel C is the critical prey density below which the functional response is stabilizing. The right panel shows the

effect of the functional response on the equilibrium stability. Stability condition (2.20) requires that the ratio of

consumed prey to total prey abundance is an increasing function of prey abundance. Parameters: λ = 1, h = 0.1.
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Figure 2.7: The Beddington-DeAngelis functional response (2.15). Parameters: λ = 1, h = 0.1, z = 0.2.

with parameter µ ≥ 1 (µ = 2 in Figure 2.6C). For µ = 1 the above functional response coincides

with the Holling type II functional response, while for µ > 1 the predator search rate increases with

increasing prey density. This functional response is also called the Hill function. In enzymatic reac-

tion kinetics the Hill function often describes a cooperative binding of several substrate molecules

with an allosteric enzyme that has several binding sites.

The Holling functional responses consider a single predator and are thus functions of prey

abundance only. If many predators are present, the per predator prey consumption rate can be

influenced by predator interference that makes the functional response also dependent on predator

density. A prototype of such a functional response is the Beddington–DeAngelis functional response

f(R, C) =
λR

1 + λhR + zC
, (2.15)

where z is a positive parameter that models predator interference (Figure 2.7).

The functional responses considered so far can be extended to multiple resources. In a homoge-

neous environment where a searching consumer encounters resources sequentially, multiple resource

Holling type II functional response for resource i is

fi =
eiuiλiRi

1 +
∑n

i=1 uihiλiRi
, i = 1, . . . , n.

Here 0 ≤ ui ≤ 1 is the consumer preference for resource i and other parameters have the same

meaning as for a single resource.
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Figure 2.8: Functional responses (2.16) (panel A) and (2.17) (panel B) for optimally foraging predators on two

resources in a homogeneous environment. Panel C shows the case where resource two abundance is fixed at R2 = 15.

Parameters: e1 = 1., e2 = 0.6, h1 = 0.2, h2 = 0.2, λ1 = 1., λ2 = 1.

Here I assume that consumers follow optimal diet selection described in Section 1.10. For

two resources, with resource 1 being more profitable than resource 2 (e1/h1 > e2/h2) the switch

in consumer diet choice u2(R1) described by (1.43) on page 54 leads to the following functional

response with respect to the more profitable resource 1

f1 =
λ1R1

1 + h1λ1R1 + u2(R1)h2λ2R2
(2.16)

(Figure 2.8A) and to the functional response with respect to the less preferred resource 2

f2 =
u2(R1)λ2R2

1 + h1λ1R1 + u2(R1)h2λ2R2
, (2.17)

(Figure 2.8B). At the switching density of the preferred resource type these functional responses

are multivalued functions.

Assuming that the density of the less profitable resource species (R2) is constant, I obtain a

preferred resource functional response by taking a cross-section of the multiple resource functional

response (the 3-dimensional surface in Figure 2.8A) parallel to the axis representing the primary

resource. The cross section is saturating with a discontinuity at the preferred resource switching

density (Figure 2.8C, solid curve).

Substituting a more gradual switching described by (1.44) on page 55 into a Holling type II

functional response for two resources , I get a Holling type III sigmoidal functional response with

respect to the first resource (Figure 2.8C, dotted line). Thus, adaptive foraging in multiple resource

environment is another mechanism that can lead to the Holling type III functional response.

2.5 Effects of functional and numerical responses on prey-

predator stability

How does the shape of functional and numerical responses influence prey-predator stability? To

study this question I replace the linear functional and numerical responses in the Lotka–Volterra
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predator prey model (2.4) by general functions f and g. In addition, I will also assume that the per

capita prey growth rate is density dependent. A general representation of a prey-predator model

is then
dR

dt
= r(R)R − f(R, C)C,

dC

dt
= (g(R, C) − m)C.

For r(R) = r, f(R, C) = λR and g(R, C) = eλR, the above model coincides with the Lotka–Volterra

model (2.4).

In what follows I will assume that model (2.18) has a single positive equilibrium R∗ and C∗. Then

the question is, what is the long term behavior of prey and predator abundances. Do they converge

to this equilibrium? The usual starting point to answer this question is to study conditions under

which the equilibrium is locally asymptotically stable. Conditions that guarantee local asymptotic

stability of the equilibrium are given in terms of the Jacobian matrix evaluated at the equilibrium

of model (2.18):





dr(R∗)
dR R∗ + r(R∗) − ∂f(R∗,C∗)

∂R C∗ , −f(R∗, C∗) − ∂f(R∗,C∗)
∂C C∗

∂g(R∗,C∗)
∂R C∗ , ∂g(R∗,C∗)

∂C C∗



 .

To derive the above matrix I used the fact that at the equilibrium, g(R∗, C∗) = m. If the sum of

the two diagonal elements (i. e., the trace) of the Jacobian matrix is negative and the determinant

is positive then the equilibrium is locally asymptotically stable. This leads to the following two

general conditions:

dr(R∗)

dR
R∗ + r(R∗) − ∂f(R∗, C∗)

∂R
C∗ +

∂g(R∗, C∗)

∂C
C∗ < 0 (2.18)

(

dr(R∗)

dR
R∗ + r(R∗) − ∂f(R∗, C∗)

∂R
C∗

)

∂g(R∗, C∗)

∂C
+

(

f(R∗, C∗) +
∂f(R∗, C∗)

∂C∗
C∗

)

∂g(R∗, C∗)

∂R
> 0.

(2.19)

Although these two conditions look quite formidable, they will substantially simplify for particular

cases of functional and numerical responses considered in the next section.

2.5.1 Prey growth is density independent

Here I assume that the per capita prey growth rate is density independent (r(R) = r), which

implies that in stability conditions (2.18) and (2.19), dr(R∗)
dR = 0. This case corresponds to the

original Lotka–Volterra model in the sense that the only mechanism that regulates the exponential

prey growth is predation (i. e., top-down regulation).
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First, I will consider the effect of replacing the linear functional response by a non-linear func-

tional response in the Lotka–Volterra model. Prey-predator population dynamics are described

by
dR

dt
= rR − f(R)C,

dC

dt
= (g(R) − m)C.

For these dynamics the stability conditions (2.18) and (2.19) substantially simplify because func-

tional and numerical responses are independent of the predator density (i. e., ∂f/∂C = ∂g/∂C = 0).

Substituting the predator equilibrium abundance C∗ = rR∗/f(R∗), in stability conditions (2.18)

and (2.19) gives
df(R∗)

dR
>

f(R∗)

R∗
(2.20)

and
dg(R∗)

dR
> 0.

The latter condition states that the numerical response should be an increasing function of prey

abundance. This condition will be satisfied for any reasonable numerical response and I will focus on

the first condition. This stability condition can be interpreted graphically. The equilibrium is locally

asymptotically stable provided the slope of the tangent line to the graph of the functional response

at the point (R∗, f(R∗)) is higher than is the slope of the line that passes through the origin and the

point (R∗, f(R∗)). For example, in Figure 2.6C this happens if the prey equilibrium density is to

the left of the critical value Rcrit at which both slopes are the same (i. e., the tangent to the graph,

shown as the dashed line, passes through the origin). Alternatively, stability condition (2.20) states

that for a prey-predator equilibrium to be locally asymptotically stable it is sufficient that the ratio

of consumed prey to total prey (i. e., f(R)/R, Figure 2.6, right panel) is an increasing function of

prey density at the equilibrium. Indeed, condition (2.20) is nothing else then expression of the fact

that derivative of function f(R)/R with respect to prey density is positive. This is equivalent with

saying that the prey zero isocline (C = rR/f(R), shown as the horizontal dashed curve in Figures

2.2B, 2.9) has a negative slope at the equilibrium (Rosenzweig and MacArthur 1963). Clearly, a

linear functional response used in the Lotka–Volterra model, the type I functional response and

the type II functional response do not satisfy stability condition (2.20) because fII(R)/R is a

decreasing function over the entire range of prey densities (Figure 2.6A,B, right panel). This means

that the interior equilibrium is not asymptotically stable and I can ask what happens if populations

are shifted of the equilibrium. In the case of the Lotka–Volterra model with the linear functional

response I already know that after a perturbation trajectories oscillate around the equilibrium

(Figure 2.2).
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Now I consider the effect of the Holling Type II functional response on the prey-predator equilib-

rium stability. For small handling times the Holling type II functional response causes trajectories

to spiral outward from the equilibrium (Figure 2.9B)

R∗ =
m

(e − hm)λ
, C∗ =

er

(e − hm)λ
.

When prey density is high, the Holling type II functional response is saturated and equal approxi-

mately to 1/h. Substituting this value in (2.20) and integrating the model, it was proved (Svirezhev

and Logofet 1983) that for large handling times that satisfy h > eλ/(r + m) there are trajectories

along which both prey and predator populations grow to infinity (one such trajectory is shown in

Figure 2.9C). In this latter case the prey population escapes completely the predator regulation.

This happens, e. g., when predators are inefficient when handling prey (i. e., when the handling time

is large), or the intrinsic per capita prey growth rate is high. This analysis validates the statement

that the Holling type II functional response is destabilizing, which means that when handling times

are positive, the neutrally stable equilibrium of the Lotka-Volterra model becomes unstable.

The Holling type I functional response combines the effects of the linear functional response

with the Holling type II functional response for large handling times. Thus, when the prey-predator

equilibrium is in the part of the prey-predator phase space where the functional response increases

linearly (Figure 2.9A), small perturbations lead to periodic oscillations around the equilibrium while

large perturbations lead to trajectories that diverge from the equilibrium.

Prey-predator coexistence can occur only either at the equilibrium, or along a limit cycle.

However, in the case of the prey-predator model (2.20) with the Holling type II functional response

it can be proved that no limit cycle exists. Indeed, because for the Holling type II functional

response

∂

∂R

(

1

RC
(rR − f(R)C)

)

+
∂

∂C

(

1

RC
(g(R)C − mC)

)

=
1

R

(

f(R)

R
− df(R)

dR

)

> 0, (2.21)

the Dulac criterion excludes prey-predator limit cycles.

The functional response that meets the local stability condition (2.20) is the Holling type III

response. But, the stabilizing effects of predators will occur only at low to medium prey equilibrium

densities (those that are to the left of Rcrit in Figure 2.6C). This is the case shown in Figure 2.9D. At

a higher prey equilibrium density, the functional response saturates and predators cannot regulate

their prey (Figure 2.9E).

Second, I consider the case where functional and numerical responses depend on the predator

density too. A prototype of such functions is the Beddington–DeAngelis functional response (2.15).

To simplify analysis, I assume that the handling time in the Beddington–DeAngelis functional
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Figure 2.9: Dependence of prey–predator population dynamics on the functional response. Panel A shows solutions

of the Lotka–Volterra model with the Holling type I functional response, Panels B (small handling time) and C

(large handling time) show destabilizing effect of the Holling type II functional response, panel D and E shows the

stabilizing and destabilizing effect of the Holling type III functional response, panel F shows the stabilizing effect

of the Beddington-deAngelis functional response (2.15) when handling time is neglected (h = 0). Dashed lines are

isoclines. Parameters: r = 1, λ = 1, e = 0.2, h = 0.02, m = 1 (except panel E where m = 5.5). The upper ceiling for

the Holling type I functinal response was set to 10.
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response is zero (h = 0). Thus, prey-predator population dynamics are described by

dR

dt
= rR − λR

1 + zC
C,

dC

dt
= (g(R, C) − m)C.

At the population equilibrium the first stability condition (2.18) simplifies to ∂g(R∗,C∗)
∂C < 0 which

means that the predator growth must be negatively density dependent. The second stability condi-

tion (2.19) simplifies to ∂g(R∗,C∗)
∂R > 0, which holds provided the numerical response increases with

increasing prey density. This analysis implies that density dependent predator growth stabilizes

prey-predator population dynamics when handling times are neglected (Figure 2.9F). Depending

on the parameters, positive handling times can surpass the stabilizing effect of predator interference

leading to an unstable equilibrium.

2.5.2 Prey growth is density dependent

Now I consider the case where the per capita prey growth rate is density dependent and decreases

with increasing prey density ( dr(R)
dR < 0). The simplest prototype of such dependence is a linear

decrease in the per capita prey growth rate (r(R) = r(1 − R
K )), which is then the logistic equa-

tion with the carrying capacity K. Limitation of prey growth by resources (here modeled as the

environmental carrying capacity K) is also called the bottom-up regulation. Clearly, the negative

density dependent prey growth promotes prey–predator coexistence because the prey growth is now

controlled by two independent mechanisms: top-down and bottom-up regulation. This is reflected

in stability condition (2.18) where the left hand side of the inequality is smaller for the negative

density dependent prey growth rate when compared with exponentially growing prey.

The Lotka–Volterra model with the logistic prey growth rate is

dR

dt
= rR

(

1 − R

K

)

− λRC,

dC

dt
= (eλR − m)C.

(2.22)

Provided K > m
eλ , the interior equilibrium of this system is

R∗ =
m

eλ
and C∗ =

(eKλ − m)r

eKλ2

and local stability conditions (2.18) and (2.19) hold for all parameter values. Using the first integral

V given by formula (2.5) as a Lyapunov function it is easy to see that this equilibrium is globally

asymptotically stable (i. e., all trajectories of model (2.22) with initially both populations present

converge to this equilibrium). Indeed, function V decreases along the trajectories of model (2.22)



80

because
dV (R(t), C(t))

dt
= − r

K
(R(t) − R∗)2 ≤ 0.

Replacing the linear functional response in model (2.22) by the Holling type II functional re-

sponse leads to the Rosenzweig–MacArthur prey–predator model (Rosenzweig and MacArthur 1963)

dR

dt
= rR

(

1 − R

K

)

− λR

1 + λhR
C,

dC

dt
=

(

eλR

1 + λhR
− m

)

C.

(2.23)

Provided the following two conditions are met

m <
e

h
and K >

m

λ(e − mh)

the prey–predator equilibrium is

R∗ =
m

(e − hm)λ
and C∗ =

er(λK(e − mh) − m)

K(e − hm)2λ2
.

Local stability condition (2.18) holds for carrying capacities that meet the following constraint

K <
e + hm

λh(e − hm)
:= Kcrit.

Stability condition (2.19) holds for all parameter values. Using the Dulac criterion it can be proved

that no limit cycles exist and the equilibrium is globally asymptotically stable (Figure 2.10A). At

the critical carrying capacity Kcrit the equilibrium undergoes the Hopf bifurcation and for higher

carrying capacities a unique globally stable limit cycle exists (Figure 2.10B). This model shows

that prey–predator coexistence is not limited to an equilibrium. In fact, as the environmental

carrying capacity (K) increases, the stable interior equilibrium is destabilized and a globally stable

limit cycle appears (Hofbauer and Sigmund 1998). This phenomenon was termed the paradox of

enrichment because, contrary to the intuition, enriched environments (i. e., environments with a

higher K) do not promote species coexistence at an equilibrium (Rosenzweig 1971). This paradox

is easy to understand, because an increase in the environmental carrying capacity means a weaker

bottom-up regulation, thus a less stable prey–predator population dynamics due to the destabilizing

Holling type II functional response.

2.5.3 Effects of the optimal diet choice on predator-prey dynamics

The previous section assumed a single prey or resource. Here I consider a system consisting of two

resource types denoted by a preferred resource R1, and an alternative resource R2, respectively, and

consumers C. Following van Baalen et al. (2001) I assume that the abundance of the alternative
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Figure 2.10: Prey-predator dynamics for the MacArthur–Rosenzweig model (2.23). Panel A shows the case where

the carrying capacity is below the critical level Kcrit (K = 20) and the equilibrium is globally asymptotically stable.

Panel B shows that for higher carrying capacities (K = 70) there exists a globally stable limit cycle along which prey

coexist with predators. Dashed lines are isoclines. Parameters: r = 1, λ = 1, e = 0.2, h = 0.02, m = 1.

resource is relatively constant in the environment, i. e., this resource does not undergo population

dynamics. This effectively means that uptake of the alternate resource by consumers is exactly

compensated by resource production. This simplification is justified for many arthropod consumers

because they can rely on alternative food such as pollen or nectar, the availability of which is unlikely

to be influenced by the consumption (van Rijn and Sabelis 1993; van Rijn and Tanigoshi 1999).

The presence of the alternative resource influences the consumer per capita growth rate which, in

turn, has consequences for the abundance and the dynamics of the primary resource population. A

generic framework to describe the dynamics of this system is:

dR1

dt
= r1(R1)R1 − f1(R1, R2)C

dC

dt
= C (e1f1(R1, R2) + e2f2(R1, R2) − m) .

(2.24)

Here r1 denotes the per capita resource 1 growth rate, fi is the functional response with respect

to the corresponding resource type, ei is the proportionality constant that describes efficiency with

which resources are converted to new consumers and m is the consumer mortality rate. I assume

that the functional responses are of the Holling type II and they are given by (2.16) and (2.17).

I start the analysis of model (2.24) under the assumption that the preferred resource undergoes

density-independent dynamics, i. e., r1(R1) = r1. If consumers are non-adaptive foragers (i. e., u2

is independent of resource one density in (2.16)) and (2.17)), condition (2.20) for local asymptotic

stability of the corresponding resource 1–consumer equilibrium

R1 =
m + R2 (mh2u2 − e2) λ2

(e1 − mh1) λ1
, C =

r1 (e1 + R2 (e1h2u2 − e2h1) λ2)

(e1 − mh1) λ1
(2.25)

cannot be satisfied because the functional response for the first resource does not satisfy stability
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Figure 2.11: Resource–consumer phase plane with consumer and resource isoclines (dotted lines) for optimal diet

model. When consumer mortality rate is above the profitability of the alternative resource (m > e2/h2) then the

equilibrial resource 1 density is above the switching density (Figure A, m = 1). For low consumer mortality rates the

equilibrial resource 1 density is below the switching density (Figure B, m = 0.4). In both cases consumer switching

behavior leads to the emergence of a locally stable limit cycle (heavy line) and an unstable limit cycle (shown in

Figure A as a dashed cycle). Parameters: R2 = 5, r1 = 1.2, e1 = 1, e2 = 0.1, h1 = 0.2, h2 = 0.2, λ1 = 1, λ2 = 1.

Figure A after van Baalen et al. (2001).

condition (2.20) as

df1(R1, R2)

dR1
− f1(R1, R2)

R1
= − h1R1λ

2
1

(h1R1λ1 + h2R2u2λ2 + 1) 2
< 0.

Qualitatively, for small handling times trajectories diverge away from the equilibrium similarly as

those shown in Figure 2.9B. Thus, additional food source does not stabilize predator-prey population

dynamics with the Holling type II functional response. Moreover, the two species could not coexist

indefinitely because there would be a sequence of times at which consumers or resource one would

converge to zero.

Now I assume that consumers exhibit adaptive behavior, viz., they follow rules of optimal diet

choice model (Section 1.10). This means that in (2.16) and (2.17), u2 is a step function given by

(1.43) on page 54. I will show that the discontinuity in the functional response leads to emergence

of a limit cycle along which both species can coexist.

Because at R1 = R∗
1 = e2

λ1(e1h2−e2h1) the right handside of model (2.24) is discontinuous, so-

lutions are understood in the Filippov sense (Appendix). To understand the consequences of the

discontinuity in the functional response on prey–predator population dynamics I examine the sys-

tem in phase space by plotting the consumer–resource isoclines and the population trajectories

about the equilibrium. Because per capita consumer reproduction rate does not depend on con-

sumer density, the consumer isocline is a vertical line (dotted vertical line in Figure 2.11). The

discontinuity in the functional response translates into a discontinuity in the isocline for resource

1 at the switching density R∗
1—the density of resource 1 where the consumer includes the less

profitable resource in its diet. This produces a piecewise linear (dotted skewed line in Figure 2.11)
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resource isocline that is z-shaped. By including the less profitable resource, consumers are able to

persist because they no longer drive the more profitable resource to critically low densities. The

system will oscillate along a limit cycle (the heavy line cycle in Figure 2.11). Qualitatively, there

are two possibilities with respect to consumer mortality rate and profitability of the alternative

resource. If the consumer mortality rate (m) is high such that consumers are unable to exist on

the less profitable resource alone (i. e., m > e2/h2) then the resource 1–consumer equilibrium is

R1 =
m

(e1 − mh1) λ1
, C =

e1r1

(e1 − mh1) λ1
,

that is to the right of the switching density R∗
1 (Figure 2.11A), and consumers will be specialists

on the preferred resource 1 at this (unstable) equilibrium.

If, on the other hand, consumer mortality rate is low relative to the profitability of the alternative

resource 2 (i. e., m < e2/h2) t the corresponding equilibrium is to the left of the switching line and

it is given by (2.25) where u2 = 1. At this (unstable) equilibrium consumers will be predominantly

generalists (Figure 2.11B). This analysis suggests an interesting prediction that as the predation

risk increases (higher values of consumer mortality rate m), consumers should specialize on the

more profitable resource type.

Numerical bifurcation analysis reveals (Figure 2.12), however, that the limit cycle shown by the

heavy solid line in Figure 2.11 is not globally stable because another, unstable, limit cycle exists

(the dashed line cycle in Figure 2.11A). When initial densities of consumers and resource 1 lie

beyond the orbit of this unstable limit cycle, the corresponding orbit will spiral outward, thereby

precluding indefinite species coexistence. This shows that although optimal diet choice promotes

species coexistence, it does not lead to species permanence.

Now I examine bottom-up effects on system dynamics by assuming that resource 1 exhibits

logistic growth (i. e., r1(R1) = r1(1 − R1

K1
)). When resource limitation is strong, i. e., K1 is small,

then population dynamics are effectively stabilized (Figure 2.13A and C). In this case, consumers

specialize on the preferred resource when predation mortality is high (Figure 2.13C). The reason for

this is that the profitability of the alternative resource is low relative to the magnitude of predation

mortality such that it is not worth eating the alternative resource. However, when predation

mortality is reduced, the model predicts the topology switch from a linear chain to food web with

two resources (Figure 2.13A) because it is now worthwhile to eat the alternative resource. Enriching

the system by increasing the environmental carrying capacity K1 (Figure 2.13B and D) causes the

system to fluctuate due to the paradox of enrichment (see the Rosenzweig-MacArthur model in

Section 2.5.2). So, enriching effectively relaxes bottom-up regulation and causes an increase in the

degree of top-down control.
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Figure 2.12: Bifurcation diagram of model (2.24) where predators behave as optimal foragers with respect to

predator mortality rate m. Solid dots denote the stable limit cycle while open circles denote the unstable limit cycle.

The dashed curve is the unstable interior equilibrium. Parameters correspond to those given in Figure 2.11.

2.6 Patchy environments

The original Lotka-Volterra model does not consider space explicitly. Instead, it assumes that

populations are uniformly distributed in space. Spatial structure can be incorporated in the model

either as a continuous variable which then leads to reaction-diffusion models (Britton 1986; Murray

1990), or as a discrete variable, which leads to patch models. A key question addressed by spatial

prey-predator models is the effect of animal dispersal on the stability of prey-predator dynamics.

Here I start with a simple example that considers two spatial patches (Murdoch et al. 2003).

In one patch prey are vulnerable to predation while the other patch is a complete refuge. I assume

that up to S prey can be in the refuge and both vulnerable and invulnerable prey reproduce at the

same positive rate r. This means that the refuge is always fully occupied and animals born in the

refuge must disperse to the open patch. Population dynamics in the open patch are described by

the Lotka–Volterra model
dR

dt
= r(R + S) − λRC,

dC

dt
= (eλR − m)C

with equilibrium densities

R∗ =
m

eλ
, C∗ =

r

λ
+

re

m
S.

The recruitment of prey to the open patch makes the per capita prey growth rate r(1 + S/R) in
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Figure 2.13: Phase plane analysis of model (2.24) where consumers behave as optimal foragers and prey growth

is described by the logistic equation. Resource and consumer isoclines are shown as dotted lines. When consumer

mortality rate is low (m = 0.4) then resource 1 equilibrium density is lower than is the switching density (Figures

A and B). On contrary, for higher resource mortality rates the equilibrial resource 1 density is above the switching

density (Figures C and D, m = 1). For low environmental productivities (K = 5 in Figures A and C) population

densities are stabilized at an equilibrium. Enriching the environment (K = 20 in Figure B and K = 9 in Figure D)

leads to the emergence of a locally stable limit cycle (heavy line) of smaller amplitude when compared with non-flexible

consumers (dashed line cycle). Parameters: R2 = 10, r1 = 1.2, e1 = 1, e2 = 0.1, h1 = 0.2, h2 = 0.2, λ1 = 1, λ2 = 1.

Figure D after Křivan and Schmitz (2003).
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the open patch negatively density dependent (i. e., it decreases with increasing prey abundance

R) similarly as in the case of the logistic growth. The stability conditions (2.18) and (2.19) hold

and the above equilibrium is locally asymptotically stable, which supports the general conclusion

from other theoretical studies that refugia that protect a constant number of prey have a strong

stabilizing effect on prey–predator population dynamics (Maynard Smith 1974).

This example nicely illustrates stabilizing mechanism of asynchronous oscillations in population

densities. In this example, the abundance of prey in the refuge is constant while the abundance of

vulnerable prey varies due to demographic changes and recruitment of prey from the refuge. This

asynchrony, then leads to the negative density dependent recruitment rate of prey to the vulnerable

patch. While this mechanism is clear in this simple example, it is much less obvious in many models

that consider space explicitly.

Now I consider a more complex prey–predator model in a heterogeneous environment consisting

of N patches. The simplest possible case assumes that all patches are identical and animal dispersal

is unconditional (random). The question is whether animal dispersal can stabilize population

dynamics that are unstable without dispersal. Because unconditional animal dispersal tends to

equalize prey and predator abundance across patches, animal dispersal tends to synchronize animal

population dynamics and the answer to the above question is negative. However, patch dependent

dispersal rates and/or differences in local population dynamics can lead to asynchrony in local

population dynamics, thus to negative density dependent recruitment rates that can stabilize prey–

predator population dynamics on a global scale exactly as in the example with the refuge. Figure

2.14 shows the stabilizing effect of prey dispersal in a two-patch environment. Population dynamics

are
dR1

dt
= r1R1 − λ1R1

1+h1λ1R1
C1 + ε2R2 − ε1R1

dC1

dt
= e1λ1R1

1+h1λ1R1
C1 − m1C1

dR2

dt
= r2R2 − λ2R2

1+h2λ2R2
C2 + ε1R1 − ε2R2

dC2

dt
= e2λ2R2

1+h2λ2R2
C2 − m2C2

(2.26)

where εi (i = 1, 2) describes prey dispersal between patches. Without dispersal, the local prey–

predator population dynamics are unstable due to the Holling type II functional response (Figure

2.14, left panel). Prey dispersal (Figure 2.14, right panel) can stabilize population dynamics at

an equilibrium. Similarly, dispersal of predators (or both prey and predators) can (but does not

necessarily) stabilize population densities. This mechanism is in the roots of deterministic metapop-

ulation dynamics where populations can coexist on the global spatial scale despite local extinctions.

The necessary conditions for such global stability are differences in patch or dispersal dynamics and



87

No dispersal

0 20 40 60 80
0

200

400

600

800

Time

A
b

u
n

d
a
n

ce
in

p
a
tc

h
1

Prey disperse

0 20 40 60 80
10

20

30

40

50

60

70

Time

A
b

u
n

d
a
n

ce
in

p
a
tc

h
1

0 20 40 60 80
0

25

50

75

100

125

150

Time

A
b

u
n

d
a
n

ce
in

p
a
tc

h
2

0 20 40 60 80
0

20

40

60

80

Time

A
b

u
n

d
a
n

ce
in

p
a
tc

h
2

Figure 2.14: This figure shows the stabilizing effect of dispersal in model (2.26). The left panel shows prey

(solid line) and predator (dashed line) dynamics in patch 1 (top panel) and patch 2 (bottom panel) without any

dispersal (ε1 = ε2 = 0). These dynamics assume the Holling type II functional response which excludes prey and

predator coexistence in either patch. The right panel shows the same system where prey disperse between patches

(ε1 = ε2 = 1). Parameters: r1 = 1, r2 = 0.2, λ1 = λ2 = 0.1, e1 = e2 = 0.2, h1 = h2 = 0.02, m1 = m2 = 1.

dispersal rates that are not too high to synchronize local patch dynamics.

2.7 Models of competition

The logistic growth is one possible description of intraspecific competition in which members of

the same species compete for resources (e. g., habitats, food, sunlight, mates etc.). Similarly, when

two or more species share common resources, presence of one species can exert a negative effect on

individuals of another species. Competition among members of different species (or populations)

is called interspecific competition. The negative effect is manifested by a decrease in fitness that is

related to the per capita population growth rate.

The following terms describe mechanisms by which competition occurs, which can generally be
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divided into direct and indirect. These mechanisms apply equally to intraspecific and interspecific

competition.

1. Interference competition - occurs directly between individuals via aggression etc. when the

individuals interfere with foraging, survival, reproduction of others, or by directly preventing

their physical establishment in a portion of the habitat. Male-male competition in red deer

during rut is an example of interference competition within a species.

2. Exploitation competition - occurs indirectly through a common limiting resource which acts

as an intermediate. For example the use of the resource(s) depletes the amount available to

others.

3. Apparent competition - occurs indirectly between two species which are both preyed upon by

the same predator. For example, species A and species B are both preys for predator C. The

increase of species A will cause the decrease of species B because the increase of A’s would

increase the number of predator C’s which in turn will hunt more of species B.

2.7.1 Lotka-Volterra model of competition

A direct extension of the logistic growth to two-species setting is called the Lotka–Volterra model

of competition
dM
dt = r1M

(

1 − M
K1

− α N
K1

)

dN
dt = r2N

(

1 − N
K2

− β M
K2

)

.
(2.27)

When alone, both populations grow logistically. Parameters α and β model interspecific competi-

tion, i. e., the negative effect of individuals of second species on individuals of the first species and

vice versa. These interspecific competition are relative with respect to intraspecific competitions

(measured as 1/Ki). Thus, α = 1 (α > 1, α < 1) means that the effect of second species on fitness

of the first species is exactly the same (larger, smaller) as is the effect of the first species on its own

fitness.

Besides the trivial equilibrium this model has one interior equilibrium

(M∗, N∗) =

(

K1 − αK2

1 − αβ
,
K2 − βK1

1 − αβ

)

and two equilibria with one species missing (0, K2), and (K1, 0). Graphical analysis based on position

of isoclines gives the following predictions (Hofbauer and Sigmund 1998):

1. Species 1 outcompetes species 2 when α < K1

K2
and K2

K1
< β. All trajectories converge to

(K1, 0).

2. Species 2 outcompetes species 1 if β < K2

K1
and α > K1

K2
. Trajectories converge to (0, K2).
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3. Both species coexist if α < K1

K2
and β < K2

K1
. Trajectories converge to (M∗, N∗).

4. If α > K1

K2
and β > K2

K1
then there are two locally stable equilibria (K1, 0) and (0, K2) which

results in bi-stability of model (2.27). The outcome of competition in this case depends on

the sequence in which species arrive which is called “the priority effect”. The species that

arrives and establishes first survives the invasion of the other species.

The above analysis shows that only in the case where αβ < 1 the two species can coexist. This rule,

called now the competitive exclusion principle, was formulated by Gause (1934). In the ecological

literature it is rephrased that two species occupying the same niche cannot coexist. Ecological

niche is a domain in the space of vitally important environmental factors within which the species

existence is possible. Partial or complete overlap of ecological niches for two species leads to

competition.

Using the niche concept we extend the 2-species competition model to n species whose densities

are Ni, i = 1, . . . , n. Let us assume that resources can be characterized by a scalar (or vector)

variable x (e. g., the size of food etc.). Moreover, the amount of the resource at x is K(x).

Ecological niche for consumer species i is characterized by a probability density function fi(x) that

describes the utilization of resource by individuals of this species. If the variance is small, the

species i is highly specialized on a particular food type. Large variance means low specialization,

i. e., a wide niche.

The uptake of resource by species i at the point x is given by fi(x)Ni(t). Then K(x) −
∑n

i=1 fi(x)Ni is the free resource at x. The Lotka–Volterra competition model becomes

dfi(x)Ni

dt
= rifi(x)Ni

K(x) −
∑n

i=1 fi(x)Ni

K(x)
.

Integrating this equation with respect to resource spectrum yields

dNi

dt
= riNi

(

1 −
∑n

j=1 αijNj

Ki

)

(2.28)

where Ki =
∫

K(x)fi(x)dx is the total amount of resource consumed by the ith species and

αij =
∫

fi(x)fj(x)dx is the coefficient of competition. In this sense the competition coefficient

αij characterizes the niche overlap between two species. Existence of a positive equilibrium (all

species present) of model (2.28) implies its global asymptotic stability in Rn
+.

Proposition 19 Let us assume that the positive interior equilibrium of model (2.28) exists. Then

it is globally asymptotically stable in Rn
+.

Proof. Let N∗ = (N∗
1 , . . . , N∗

n) be the positive interior equilibrium. Then function

V =

n
∑

i=1

Ki

ri
(Ni − N∗

i ln Ni)
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is a Lyapunov function. This follows from the fact that

dV

dt
= −

n
∑

i,j=1

αij(N∗
j − Nj)(N∗

i − Ni) = −
∫

(

n
∑

i=1

fi(x)(N∗
i − Ni)

)2

< 0

whenever N 6= N∗.

2

For many extensions of the above proposition see, e. g., Takeuchi (1996), Hofbauer and Sigmund

(1998).

2.7.2 Two-Species Competing in Two patches

Here I consider population dynamics of two competing species in a two-habitat environment. I

compare two types of population dynamics. The first type assumes that animals do not move

between habitats at all, while the second type of population dynamics assumes that at each time

the distribution of animals follows the two-species IFD (see Section 1.9.1). These two cases can

describe differences in population dynamics of competing sessile organisms versus those that are

mobile.

First, let us assume individuals do not move between habitats. This leads to an elementary

analysis of the population dynamics since the two-species dynamics in habitat 1 is completely

independent of habitat 2. Thus, the dynamics in habitat i are described by the Lotka–Volterra

competition model
dmi

dt
= miri

(

1 − mi

Ki
− αini

Ki

)

, i = 1, 2

dnj

dt
= njsj

(

1 − nj

Lj
− βjmj

Lj

)

, j = 1, 2.

(2.29)

I remark that the per capita growth rates 1/midmi/dt and 1/nidni/dt are the fitness functions Vi

and Wi, see formulas (1.35) on page 48. Suppose that at each habitat both species coexist at the

stable population equilibrium

m∗
i =

Ki − αiLi

1 − αiβi
, n∗

i =
Li − βiKi

1 − αiβi
, i = 1, 2.

The corresponding prey and predator distributions are pi = m∗
i /(m∗

1 + m∗
2) and qi = n∗

i /(n∗
1 + n∗

2).

Second, let us consider dispersing animals whose spatial distributions p(M, N) = (p1(M, N), p2(M, N))

and q(M, N) = (q1(M, N), q2(M, N)) of species 1 and 2, respectively, track the IFD at the current

population numbers N and M . Population dynamics for overall species densities M and N are

then given by the following model

dM

dt
= M (p1V1(p1M, q1N) + p2V2(p1M, q1N))

dN

dt
= N (q1W1(p1M, q1N) + q2W2(p1M, q1N)) .

(2.30)
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There are two conditions that an equilibrium of (2.30) must satisfy. First, as the distribution

corresponds to the IFD for any population numbers, when both species occupy both patches we have

V1 = V2 and W1 = W2. Moreover, at the population equilibrium M ∗ and N∗, the right handside

of (2.30) must equal zero which gives V1 = V2 = W1 = W2 = 0, exactly as at the equilibrium

of the model without dispersal. Thus, the interior equilibrium M ∗ = m∗
1 + m∗

2, N∗ = n∗
1 + n∗

2,

p∗i = m∗
i /M

∗, q∗i = n∗
i /N

∗ in model (2.29) where animals do not move between patches is also the

interior equilibrium of model (2.30) where both species disperse and their distribution corresponds

to the IFD. The interesting question now is how the stability of the model without dispersal (2.29)

compares to the model where animals disperse (2.30). We know that the model without dispersal

is globally asymptotically stable in both habitats if and only if 1 − α1β1 > 0 and 1 − α2β2 > 0.

However, there is no relation between these inequalities and inequality (1.36) on page 51 that

determines whether distribution (p∗, q∗) is IFD for the population equilibrium densities M ∗ and

N∗ when animals do disperse. Thus, it is easy to construct examples which show that there exists a

stable population equilibrium for the model without dispersal (2.29) under which the corresponding

species distribution is not stable with respect to small spatial spatial perturbations, i. e., it does not

correspond to the IFD. Such an example requires two conditions hold: (i) none of the two species

can go globally extinct (αi < Ki/Li and βi < Li/Ki for i = 1, 2) and condition (1.36) on page 51

holds. Figure 2.15 shows such a case. The upper panel corresponds to the model (2.29) where

animals do not disperse and the corresponding animal population equilibrium and distribution are

M = N = 11, p1 = 10/11, q1 = 1/11. (2.31)

However, for the model which assumes dispersal, this spatial distribution at the population

equilibrium is not stable with respect to small spatial perturbations (because condition (1.36) on

page 51 holds). As we request that at the population equilibrium the corresponding population

distribution corresponds to an IFD, (2.31) is not an equilibrium of model (2.30). In fact, for

the above equilibrium population densities there exists two IFD distributions (p = 1, q = 0 and

p = 0, q = 1). To make some predictions for population dynamics. we need to analyze all other

population equilibria of model (2.30). In addition to the point (2.31), there are seven candidate

points for equilibria (Table 2.1; Abrams et al. 2007). However, as it is clear from payoffs at these

population numbers, none of the corresponding distribution is a 2-species IFD. This is because at

these population distribution the patch where one (both) species are missing has a higher payoff

than the occupied patch. We conclude, that model (2.30) has no equilibrium and, consequently, as

species cannot go globally extinct, there must be some fluctuations in their population numbers.

as I will show now.
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Table 2.1: Candidate equilibria of model (2.30) for parametrization corre-

sponding to Figure 2.15.

M N p1 q1 payoffs

20 10 19
20 0 V1 = V2 = W2 = 0, W1 > 0

12 1 5
6 1 V1 = V2 = W1 = 0, W2 > 0

10 20 1 1
20 V1 = V1 = W2 = 0, V2 > 0

1 10 0 0 V2 = W2 = 0, V1 > 0, W1 > 0

19 19 1 0 V1 = W2 = 0, V2 > 0, W1 > 0

2 2 0 1 V2 = W1 = 0, V1 > 0, W2 > 0

10 1 1 1 V1 = W1 = 0, V2 > 0, W2 > 0

To model animal dispersal explicitly, I follow Křivan et al. (2008) (see also Abrams et al. 2007)

who combined population dynamics (2.29) with distribution dynamics (1.34) on page 47. This leads

to the following model

dmi

dt
= miVi(mi, ni) + ν(

∑n
j=1 Iij(m, n)mj − mi), i = 1, 2

dni

dt
= niWi(mi, ni) + ξ(

∑n
j=1 Jij(m, n)mj − mi), i = 1, 2.

(2.32)

In analogy to Section 1.9, ν and ξ are positive parameters that characterize the relative time scale

between population and dispersal processes.

Numerical simulations of model (2.32) with best response distributional dynamics reveal that

the stable equilibrium for the population dynamics (Figure 2.15, top panel, no dispersal, ν = ξ = 0)

is destabilized when individuals start to disperse (Figure 2.15, middle, ν = ξ = 0.01), leading to

periodic cycling in both animal distribution and abundance. As the dispersal process becomes even

faster with respect to the population dynamics time scale (Figure 2.15, bottom panel, ν = ξ = 0.1),

animal distribution fluctuates wildly (see also Abrams et al. 2007).

In summary, the instability of the interior NE for the dispersal dynamics suggests the combined

population/dispersal dynamics will also be unstable at the population equilibrium, especially as

the rate of dispersal relative to the population dynamics increases. Moreover, since the boundary

IFDs do not correspond to stable population equilibria, we do not expect the combined system

to approach an equilibrium solution (and this is illustrated in Figure 2.15, middle and bottom

panels). That is, unless the population equilibrium corresponds to an IFD, the game-theoretic

perspective predicts non-convergent system behavior. This conclusion contrasts markedly with

the single species results of Section 1.7 where I showed that dispersal dynamics cannot destabilize

population dynamics.
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Figure 2.15: Dependence of combined dispersal and population dynamics (see model (2.32)) on dispersal and

population time scales. The left panel shows animal distribution (p1-solid line, q1-dashed line) and the right panel

shows total animal abundance (M-solid line, N-dashed line). The upper panel illustrates population dynamics with

no animal dispersal (ν = ξ = 0). Here, the system approaches the population equilibrium M = N = 10 even though

the corresponding interior NE is not an IFD at these densities. The middle panel assumes low animal dispersal

(ν = ξ = 0.01) and the bottom panel assumes faster dispersal dynamics (ν = ξ = 0.1). In both these panels, the

system appears to be evolving to a limit cycle with the population switching quickly in the bottom panel between

the two unstable boundary NE where the two species are segregated into separate patches. Other parameters are

r1 = 1, r2 = 0.1, s1 = 0.1, s2 = 1, K1 = 19, K2 = 2, L1 = 2, L2 = 19, α1 = 9, α2 = 0.1, β1 = 0.1, β2 = 9.
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2.7.3 Exploitation competition. Tilman’s R∗ rule

The Lotka–Volterra competition model does not consider resource dynamics. Here I consider com-

petition by two species for a resource that undergoes population dynamics. In particular, I consider

competition in chemostat (abbreviated from Chemical environment is static) which is a bioreactor

to which fresh medium continuously flows and the culture liquid is continuously removed so that

the culture volume is constant. By changing the rate with which medium is added to the bioreactor

the growth rate of the microorganism can be easily controlled. I assume that the resource level R,

without consumers, is kept at a constant level R = 1. Competition for the resource in chemostat is

described by the following model

dR

dt
= 1 − R − m1N1R

a1 + R
− m2N2R

a2 + R

dN1

dt
=

m1N1R

a1 + R
− N1 (2.33)

dN2

dt
=

m2N2R

a2 + R
− N2.

Here the consumption of the resource is described by the Monod function ( mR
a+R ) which has the

same form as the Holling type II functional response in ecology.

The distinctive feature of this model is the fact that no interior equilibrium exists. There are

two equilibria with one consumer missing:

(R∗
1, 0, N∗

2 ) =

(

a1

m1 − 1
, 0, 1 − a1

m1 − 1

)

,

(R∗
2, N

∗
1 , 0) =

(

a2

m2 − 1
, 1 − a2

m2 − 1
, 0

)

.

The following proposition, called Tilman’s R∗ rule in ecology, states that the species that can

indefinitely survive at the lower value of the resource wins the competition (Tilman 1982; Tilman

1988).

Proposition 20 (Waltman (1983)) Let m1, m2 > 1 and 0 < a1

m1−1 < a2

m2−1 < 1. Then limt→∞ R(t) =

a1

m1−1 , limt→∞ N1(t) = 1 − a1

m1−1 and limt→∞ N2(t) = 0 for every solution of (2.33).

Proof. Introducing S = 1 − R − N1 − N2 transforms system (2.33) to

dS

dt
= −S

dN1

dt
= N1

(

m1(1 − N1 − N2 − S)

1 + a1 − N1 − N2 − S
− 1

)

dN2

dt
= N2

(

m2(1 − N1 − N2 − S)

1 + a2 − N1 − N2 − S
− 1

)

.
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As S(t) = S(0)e−t ⇒ S(t) → 0, the above transformation reduces 3D system to 2D system

N ′
1 = N1

(

m1(1 − N1 − N2)

1 + a1 − N1 − N2
− 1

)

N ′
2 = N2

(

m2(1 − N1 − N2)

1 + a2 − N1 − N2
− 1

)

.

Straightforward analysis of this system leads to the result.

2

2.7.4 Apparent competition

Here I consider two resource species R1 and R2 that interact indirectly through a shared consumer

C. A prototype of such a food web can be modeled by the following system of equations

dR1

dt
= r1R1 − f1(R1, R2)C

dR2

dt
= r2R2 − f2(R1, R2)C

dC

dt
= C (e1f1(R1, R2) + e2f2(R1, R2) − m) .

(2.34)

Similarly to the exploitative competition, the next proposition shows that one resource will be

always outcompeted.

Proposition 21 Let the functional responses f1 and f2 satisfy

f1(R1, R2)

f2(R1, R2)
=

λ1R1

λ2R2
. (2.35)

Then the resource with the lower value of ri/λi is always outcompeted in model (2.34).

Proof. Transformation of (2.34) to cylindrical coordinates (ρ, φ, C) given by R1 = (ρ cos φ)λ1 and

R2 = (ρ sin φ)λ2 gives the following equation for φ:

dφ

dt
=

1

2

(

r2

λ2
− r1

λ1

)

ρ sin(2φ). (2.36)

It follows that for r1/λ1 > r2/λ2, φ tends to zero which implies that the second species is outcom-

peted by the first species while for r1/λ1 < r2/λ2 it tends to π/2 which implies that the first species

is outcompeted by the second species.

2

Condition (2.35) holds not only for the linear functional response, but also for two-species Holling

type II functional responses in a homogeneous environment fi = λiRi/(1 + h1λ1R1 + h2λ2R2).
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In the ecological literature competition between two prey species that share a common predator

is referred to as predator mediated apparent competition (Holt 1977). If predation is the only

regulatory mechanism of prey exponential growth apparent competition will always lead to exclusion

of one prey for population dynamics modelled by Lotka–Volterra type differential equations with

either a linear or Holling type II functional response. If prey growth is density dependent then both

prey species can survive with predators for an appropriate range of parameters (Holt 1977). Thus,

in classical models of population ecology, prey density dependence (bottom-up regulation) relaxes

the strength of apparent competition making indefinite coexistence of both prey species possible.

2.7.5 Parker’s matching principle when resources undergo population

dynamics

Here I consider a fixed consumer population size while resource densities are treated dynamically.

This extends the Parker’s matching principle from section 1.5.2 to situations where not all resources

are immediately consumed when they enter the system so there is no resource standing stock. Here

I relax the assumption on zero standing resource stock keeping fixed consumer abundance.

If there are n patches and resources (Ri, i = 1, · · · , n ) undergo population dynamics, their

dynamics in patch i are
dRi

dt
= ri(Ri) − fi(Ri)piC

where ri and fi are the resource growth rate and the functional response, respectively. As before,

pi is the proportion of consumers in patch i and C is the (fixed) consumer density.

Following derivation of the Parker’s matching principle I will assume that consumer payoff in

any occupied patch is equal to the individual consumption rate (i. e., Vi = fi(Ri)), that each patch

has a resource carrying capacity Ki (i. e., ri(Ki) = 0) and that the resource dynamics converges

to an equilibrium R∗
i in each patch. Then, in each occupied patch, R∗

i is a decreasing function of

patch density. At this resource equilibrium ri(Ri) − fi(Ri)piC = 0 and derivation of this equality

with respect to pi is
∂(ri(Ri) − fi(Ri)piM)

∂Ri

dRi

dpi
− fi(Ri)C = 0.

As ∂(ri(Ri)−fi(Ri)piM)
∂Ri

is negative at the stable equilibrium, dRi/dpi < 0 at the equilibrium. Thus,

the resource level R∗
i decreases as pi increases and individual consumer payoff in patch i is a

decreasing function of pi. That is, the consumers are playing a habitat selection game (Section

1.5). Since Vi = fi(R
∗
i ) = ri(R

∗
i )/(p∗i C) at equilibrium, the IFD of this habitat selection game

is a p∗ ∈ Sn such that ri(R
∗
i )/(p∗i C) = rj(R∗

j )/(p∗jC) = V ∗ for all occupied patches i and j.

Furthermore, individual consumer payoff in any unoccupied patch k is Vk = fk(Kk) ≤ V ∗. In
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particular, at the equilibrium,
p∗i
p∗j

=
ri(R

∗
i )

rj(R∗
j )

for those patches that are occupied, which is a generalized Parker’s matching law (Lessells 1995).

2.7.6 The Lotka–Volterra model of apparent competition when consumers

are adaptive foragers

In this section I study the consumer distribution when resource-consumer dynamics are described

by the Lotka–Volterra model in a two patch environment

dR1

dt
= r1R1 − u1λ1R1C

dR2

dt
= r2R2 − u2λ2R2C (2.37)

dC

dt
= (e1λ1R1 − m1)u1C + (e2λ2R2 − m2)u2C.

In the model, the strategy ui (i = 1, 2, 0 ≤ ui ≤ 1, u1 + u2 = 1) specifies the proportion of an

average consumer’s lifetime that is spent feeding in patch i. I also assume, without loss of generality,

that the intrinsic resource growth rate in patch 1 is higher than that in patch 2 (r1 > r2).

Proposition 21 shows that for fixed values resource population with the lower ratio ri/(λiui)

goes extinct due to apparent competition (see Section 2.7.4). Thus, the three populations cannot

coexist indefinitely if consumer preferences for either resource are fixed.

Now I assume that consumers are omniscient and they instantaneously move to the better

patch. In Section 1.5, for fixed resource and consumer densities, the resulting consumer distribution

was called the IFD. There is one important distinction between the above model and the model

considered in Section 1.5, because now consumer fitness does not directly depend on consumer

density. The relation is indirect, because consumer density influences resource density which, in

turn, influences consumer fitness. Thus, for fixed resource densities the optimal strategy of a

consumer that maximizes its fitness measured as the per capita consumer population growth rate

is

u1(R1, R2) ∈



































{1} if e1λ1R1 − m1 > e2λ2R2 − m2

{u | 0 ≤ u ≤ 1} if e1λ1R1 − m1 = e2λ2R2 − m2

{0} if e1λ1R1 − m1 < e2λ2R2 − m2

(2.38)

and

u2(R1, R2) = 1 − u1(R1, R2).
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Figure 2.16: A long term dynamics of model (2.37) which is driven by the adaptive consumer patch choice is shown

in (R1, R2, C) phase density space. All trajectories converge to the global attractor (dark shaded area) which lies in

the IFD plane along which consumers fitness in both patches is the same. Population dynamics along this set are

described by a family of cycles centered at the neutrally stable equilibrium. As m1 > m2, the attractor is bounded

from below by the dashed line C = r1−r2
λ1

+ r2(m1−m2)

e1λ2
1R1

. Parameters: r1 = 1.5, r2 = 0.5,m1 = 0.3, m2 = 0.2, λ1 =

1, λ2 = 1, e1 = 0.15, e2 = 0.1.

Thus, model (2.37) with consumer strategy (2.38) extends the concept of the IFD to situation

where resources undergo population dynamics. This model can be fully analyzed as the following

proposition shows.

Proposition 22 (Boukal and Křivan (1999)) Trajectories of model (2.37) with optimal con-

sumer strategy given by (2.38) converge to a global attractor that is located in the discontinuity

plane e1λ1R1 − m1 = e2λ2R2 − m2. The attractor is formed by trajectories of

dR1

dt
=

R1(m1 − m2 − e1λ1R1)(λ1λ2C − r1λ2 − r2λ1)

e1λ1R1(λ1 + λ2) + λ2(m2 − m1)

dC

dt
= (e1λ1R1 − m1)C

(2.39)

that satisfy

C ≥ r1 − r2

λ1
+

r2(m1 − m2)

e1λ2
1R1

and

C ≥ e1λ1R1(r2 − r1) + r2(m2 − m1)

λ2(e1λ1R1 + m2 − m1)
.
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On the attractor, the optimal consumer strategy is

u1 =
r1e1λ1R1 + (m1 − m2 − e1λ1R1)(r2 − λ2C)

C((λ1 + λ2)e1λ1R1 + λ2(m2 − m1))
.

I remark that trajectories of model (2.39) in the plane e1λ1R1 − m1 = e2λ2R2 − m2 are closed

curves centered on the equilibrium point

R∗
1 =

m1

e1λ1
, R∗

1 =
m2

e2λ2
, C∗ =

r2λ1 + r1λ2

λ1λ2
, (2.40)

which is neutrally stable exactly as in the case of the classical Lotka–Volterra prey-predator model

(Figure 2.16). For the case where m2 < m1, the global attractor is shown in Figure 2.16 as the

dark shaded area.

Proposition 22 shows that consumers will drive resources to levels at which both patches will

provide consumers with the same fitness which is the condition for the IFD. Then, consumers will

spend a proportion u1 of their life in patch one and proportion u2 in patch 2, so that the fitness will

stay the same in both patches. The mechanism leading to this outcome is as follows. Assume, first

that the fitness of consumers that use resource patch 1 is higher than the fitness of consumers using

resource patch 2 only. Because consumers are assumed to be omniscient, this leads immediately to

a redistribution in which all consumers end up in the better patch. This redistribution causes a

decrease of resource population growth in patch 1 while resources in patch 2 are no longer limited

by their consumers. Consequently, payoff in the consumer free patch will increase in time faster

than payoff in the occupied patch. Thus, consumers will again redistribute themselves to maximize

fitness. Eventually the redistribution process results in a consumer distribution among patches in

which the net fitness of consumers among both patches is identical.

When mortality rates are the same in both patches (m = m1 = m2), population dynamics on

the attractor are given by

dR1

dt
= R1

(

r1λ2 + r2λ1

λ1 + λ2
− λ1λ2

λ1 + λ2
C

)

dC

dt
= C(e1λ1R1 − m)

and consumer distribution on the attractor is

u1

u2
=

r1 − r2 + λ2C

r2 − r1 + λ1C
.

At the population equilibrium R∗
1 = m

e1λ1
and C∗ = r1λ2+r2λ1

λ1λ2
the consumer distribution is

u∗
1

u∗
2

=
r1λ2

r2λ1
.

When the λ’s are identical, we recover the Parker’s input matching rule (Section 1.5.2) which states

that at the population equilibrium consumers distribute themselves among the patches in direct
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Figure 2.17: Trajectories of model (2.37) with bottom-up control which are driven by the optimal patch choice.

For low consumer mortality rates in patch 1 (m1 < e1λ1K1, m1 = 2), the trajectory converges to an equilibrium

EIFD at which the consumer population splits across both patches (Figure A shows a trajectory in the 3D phase

space while Figure B shows the projection of same trajectory to the resource 1–resource 2 phase space). When

consumer mortality rate is high enough so that patch 1 cannot support consumers at positive levels (m1 > e1λ1K1,

m1 = 6), all consumers will be in patch 2 (Figure C). The dashed line is projection of the IFD plane to the resource

1–resource 2 density phase space. E1 is the equilibrium of the linear food chain consisting of resource 1, consumers

and predators. As consumers include resource 2 in their diet, the equilibrium moves along the dotted curve toward

E2 which corresponds to complete diet shift of consumers to resource 2. Parameters: r1 = 0.5, r2 = 0.4, λ1 = 1, λ2 =

1, K1 = 50, K2 = 50, e1 = 0.1, e2 = 0.1, m2 = 1.1.

proportion to resource supply rate. If the system does not coincide with the resource–consumer

equilibrium, the IFD will fluctuate over time as population densities fluctuate along a population

cycle.

I now extend previous analysis to consider the effects of adding bottom-up control to our

consumer–resource system by making the assumption that resource population dynamics in the

system described by model (2.37) are logistic, i. e., ri(Ri) = ri(1 − Ri/Ki).

Once again, there are two “pure” strategies for consumers (i. e., stay in patch 1 only, or stay in

patch 2 only) with the corresponding equilibria

E1 = (R1, R2, C) =

(

m1

e1λ1
, K2,

r1(e1λ1K1 − m1)

e1K1λ2
1

)

and

E2 = (R1, R2, C) =

(

K1,
m2

e2λ2
,
r2(e2K2λ2 − m2)

e2K2λ2
2

)

.

The population trajectories of model (2.37) with density dependent resource growth tend to

converge on the first equilibrium whenever resource densities are such that the consumer fitness

in patch 1 is higher than that in patch 2, i. e., when resource densities are in the lower right

triangle of the resource 1–resource 2 phase space (e1λ1R1 − m1 > e2λ2R2 − m2, Figure 2.17B);

otherwise densities converge to the second equilibrium. However, if the above equilibria are positive,

equilibrium E1 lies in that part of the phase space in which consumers maximize fitness when they

are in patch 2 (e1λ1R1 −m1 < e2λ2R2 −m2) and equilibrium E2 lies in the part of the phase space
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where consumer fitness is maximized in patch 1 (e1λ1R1 − m1 > e2λ2R2 − m2). This situation

leads to a dynamical tension because it prevents the population trajectories from reaching their

expected equilibria. Numerical analyses of population dynamics of this system indicates that the

trajectories will converge to a new equilibrium point on the IFD plane

RIFD
1 =

m1

e1λ1
,

RIFD
2 =

m2

e2λ2
,

CIFD =
r1(e1λ1K1 − m1)

e1K1λ2
1

+
r2(e2K2λ2 − m2)

e2K2λ2
2

exactly as in the case of no density dependence considered in the previous section. This equilibrium

point lies at the intersection of the IFD plane e1λ1R1 − m1 = e2λ2R2 − m2 (shown as the dashed

line in Figure 2.17B) with a curve which is obtained by varying consumer patch preference u1 from

zero to one (see dotted line in Figure 2.17B). This allows to calculate that the IFD distribution of

consumers at this equilibrium is

u∗
1

u∗
2

=
r1e2λ

2
2K2(e1λ1K1 − m1)

r2e1λ2
1K1(e2λ2K2 − m2)

.

The IFD population equilibrium will not be reached whenever consumer mortality rate in patch 1

is so high that the level of productivity in patch 1 is not sufficient to support consumers at positive

densities (K1 < m1/(e1λ1)). In this case, all consumers will end up in patch 2 (Figure 2.17C).

The above analysis shows that manipulating resource carrying capacities and/or predation mor-

tality on consumers will cause changes in food web topology. If the level of predation mortality is

high relative to resource carrying capacity in a patch, i. e., Ki/mi low, then the system will not

persist if both patches have low values of Ki/mi. Alternatively, if both values are high, consumers

will use both resource patches. In the other cases, only the patch with the higher Ki/mi will be

used.

2.8 Both consumers and predators behave adaptively

Following Křivan (1997), I consider now the case where both species disperse. Suppose the predators

with population density C use strategy v = (v1, v2) (v1+v2 = 1)and prey with density R use strategy

u = (u1, u2) (u1 + u2 = 1). The corresponding population dynamics are

dR

dt
= (r1 − λ1v1C)u1R + (r2 − λ2v2C)u2R

dC

dt
= (e1λ1u1R − m1)v1C + (e2λ2u2R − m2)v2C.

(2.41)
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When both prey and predators maximize their fitness at fixed densities R and C we recover the

predator-prey habitat selection game studied in Section 1.9.2. There we computed, for each fixed

prey and predator density, the corresponding IFD distribution that is also a weak ESS. Here we

continue to assume that dispersal is very fast when compared with population dynamics so that as

the population numbers change, the species distribution tracks these changing prey and predator

numbers.

Let us first consider the case r1 > r2 and m1 > m2. From Section 1.9.2 we know there are two

thresholds for animal distribution, R∗ = m1−m2

e1λ1
and C∗ = r1−r2

λ1
. For R < R∗ animal distribution

is (u1, v1) = (1, 0) and the corresponding population dynamics are

dR

dt
= r1R

dC

dt
= −m2C.

(2.42)

Clearly, all solutions that start in this region will enter the part of the phase space where R > R∗. For

R > R∗ and C < C∗ the animal distribution is (u1, v1) = (1, 1) and the corresponding population

dynamics are
dR

dt
= (r1 − λ1C)R

dC

dt
= (−m1 + e1λ1R)C.

(2.43)

For R > R∗ and C > C∗ the animal distribution is (u1, v1) = ( r1−r2+λ2C
(λ1+λ2)C , m1−m2+e2λ2R

(e1λ1+e2λ2)R ) and

population dynamics are

dR

dt
=

(

r1λ2 + r2λ1

λ1 + λ2
− λ1λ2

λ1 + λ2
C

)

R

dC

dt
=

(

−e1λ1m2 + e2λ2m1

e1λ1 + e2λ2
+

e1λ1e2λ2

e1λ1 + e2λ2
R

)

C.

(2.44)

Systems (2.43) and (2.44) are Lotka–Volterra prey–predator models with respective equilibria

E(2.43) = (R(2.43), C(2.43)) =

(

m1

e1λ1
,
r1

λ1

)

E(2.44) = (R(2.44), C(2.44)) =

(

e1λ1m2 + e2λ2m1

e1λ1e2λ2
,
r1λ2 + r2λ1

λ1λ2

)

.

Both of these equilibria are in the region R > R∗ and C > C∗. Boukal and Křivan (1999) proved

that trajectories converge to a global attractor that is formed by solutions of model (2.44) that are

in the region R > R∗ and C > C∗ of the phase space. For m1 > m2 the attractor is shown as the

shaded area in Figure 2.18. If m1 < m2 then the two thresholds are R∗ = m2−m1

e2λ2
and C∗ = r1−r2

λ1

and the attractor is bounded by these two tresholds analogously with the case where m1 < m2.
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Figure 2.18: Dynamics of the patch model (2.41) where both predators and prey behavior is adaptive. In this

figure m1 > m2, and trajectories converge to a global attractor (shaded area).
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2.9 APPENDIX

2.9.1 Existence and uniqueness of Filippov solutions

Here I review some results on existence and uniqueness of solutions of differential equations with

discontinuous right-hand sides. I considered dynamics of interacting populations that are described

by a differential equation

x′(t) = f(x(t), u(t)) (2.45)

where x ∈ Rn, f : Rn × Rm 7→ Rn, and u is a control from a given set U ⊂ Rm of admissible

controls. Together with (2.45) there is given a set-valued map S that associates to any x a subset

S(x) of U . I will assume that the map S is set-valued only along a manifold M of a lower dimension.

The map S defines a feedback map that associates to every state x a set of corresponding controls,

i. e.,

u(t) ∈ S(x(t)). (2.46)

Solutions of (2.45), (2.46) are couples (x(t), u(t)) where x is an absolutely continuous function that

satisfies (2.45) almost everywhere and u is a measurable function that satisfies (2.46) everywhere

(Aubin and Cellina 1984; Deimling 1992; Filippov 1988). Under some weak assumptions (continuity

of f , upper semicontinuity of S(x)), the above model is equivalent with differential inclusion

x′ ∈ F (x) := f(x, S(x)) (2.47)

in the sense that for every solution x(t) of (2.47) there exists a measurable function u(t) such that

(2.45) holds (Filippov 1962; Aubin and Cellina 1984).

The above system can be seen either as a differential inclusion or, equivalently, as a Filippov

solution of a differential equation with a discontinuous right-hand side, see (Filippov 1988). Indeed,

the above system is equivalent to the following differential

inclusion

x′ ∈ F (x) := f(x, S(x)), (2.48)

see (Aubin and Cellina 1984). Since S is single-valued with the exception of points belonging to the

set M that has a lower dimension, (2.45) is a single-valued differential equation at points that do

not belong to the set M . The right-hand side of (2.45) cannot be continuously defined at points of

M , thus I may consider (2.45) as a differential equation with a discontinuous right-hand side. The

Filippov solution of such an equation is then defined as a solution of (2.48), see (Filippov 1988). I

give here two existence results that apply in several cases of practical interest.

Proposition 23 (Aubin and Cellina (1984),Filippov (1988)) Let f : Rn × U → Rn be a

continuous map which is linear in u. If the strategy map S has closed graph and non empty



105

convex values, then for any initial condition (to, xo) there exist a (strictly) positive T , an absolutely

continuous x : [to, to + T ] → Rn and a bounded measurable u : [to, to + T ] → U that satisfy

(2.45),(2.46).

In several cases solutions of (2.48) are uniquely defined despite the non-uniqueness in the right

handside. In general, right uniqueness follows from one-sided Lipschitz condition, namely

〈f1 − f2, x1 − x2〉 ≤ L‖x1 − x2‖2, for every fi ∈ F (xi), i = 1, 2,

where L is a Lipschitz constant and 〈·, ·〉 stands for the scalar product in Rn, see (Filippov 1988).

This condition may not be easy to verify, but if I assume that M splits Rn into two parts that I

denote by G1 and G2, then right uniqueness follows from Proposition below. I denote by ui the

unique value of the control u in Gi. Let fi(x) denote the unique value of (2.45) for x ∈ Gi (i = 1, 2).

For x such that x ∈ M , f1(x) denotes the limit of f1 at the point x from the region G1 and similarly

for f2. By n(x) I denote the normal vector to M at x oriented from G2 towards G1.

If f is not linear in u the existence and uniqueness of solutions of (2.45) may still be proved.

For x ∈ M I assume that S(x) is an interval with the endpoints ui.

Proposition 24 (Filippov (1988)) Let M be a C2 manifold, f , ∂f
∂u , ui ∈ C1 and

∂〈n, f(x, u)〉
∂u

6= 0 for all u ∈ S(x).

If for each t ∈ R+ at each point x ∈ M at least one of the inequalities 〈n(x), f2(t, x)〉 > 0 or

〈n(x), f1(t, x)〉 < 0 is fulfilled, then for each initial condition there exists a unique solution of

(2.48).

Since Proposition 24 does not require the map f(x, u) to be linear in u it may be applied to

(1.9). Thus using the above Propositions I get that for any initial condition there exists an unique

solution of (1.9) and (2.6) which satisfy ui ∈ Si(x).
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Cressman, R., and V. Křivan. 2006. Migration dynamics for the ideal free distribution. The

American Naturalist 168:384–397.



108

Cressman, R., V. Krivan, and J. Garay. 2004. Ideal free distributions, evolutionary games, and

population dynamics in multiple-species environments. American Naturalist 164:473–489.

Dall, S. R. X., B. P. Kotler, and A. Bouskila. 2001. Attention, ’apprehension’ and gerbils searching

in patches. Ann. Zool. Fennici 38:15–23.

Dawkins, R. 1976. The selfish gene. Oxford University Press, Oxford.

Deimling, K. 1992. Multivalued differential equations. DeGruyter, Basel.

Diffendorfer, J. E. 1998. Testing models of source-sink dynamics and balanced dispersal. Oikos

81:417–433.

Doncaster, C. P., J. Clobert, B. Doligez, L. Gustafsson, and E. Danchin. 1997. Balanced dispersal

between spatially varying local populations: An alternative to the source-sink model. American

Naturalist 150:425–445.

Elliott, N. C., and R. W. Kieckhefer. 2000. Response by coccinellids to spatial variation in cereal

aphid density. Population Ecology 42:81–90.

Evans, E. W. 2003. Searching and reproductive behaviour of female aphidophagous ladybirds

(Coleopptera: Coccinellidae): a review. European Journal of Entomology 100:1–10.

Evans, E. W., and T. R. Toler. 2007. Aggregation of polyphagous predators in response to multiple

prey: ladybirds (Coleoptera: Coccinellidae) foraging in alfalfa. Population Ecology 49:29–36.

Filippov, A. F. 1962. On certain questions in the theory of optimal control. SIAM J. Control and

Optimization 1(1):76–84.

Filippov, A. F. 1988. Differential equations with discontinuous righthand sides. Kluwer Academic

Publishers, Dordrecht.

Fraser, D. F., and F. A. Huntingford. 1986. Feeding and avoiding predation hazard: the behavioral

response of the prey. Ethology 73:56–68.

Frazer, B. D. 1988. Coccinellidae. Pages 217–230, in A. K. Minks and P. Harrewijn, eds. Aphids;

Their Biology, Natural Enemies and Control, Volume B. Elsevier, Amsterdam.

Fretwell, D. S., and H. L. Lucas. 1970. On territorial behavior and other factors influencing habitat

distribution in birds. Acta Biotheoretica 19:16–32.

Gause, G. F. 1934. The struggle for existence. Williams and Wilkins, Baltimore.



109

Gause, G. F., N. P. Smaragdova, and A. A. Witt. 1936. Further studies of interaction between

predators and prey. The Journal of Animal Ecology 5:1–18.

Gilpin, M. E. 1975. Group selection in predator-prey communities. Princeton University Press,

Princeton, NJ, USA.

Hanson, J., and L. Green. 1989. Foraging decisions: Prey choice by pigeons. Animal Behaviour

37:429–443.

Harper, D. G. C. 1982. Competitive foraging in mallards: ’ideal free’ ducks. Animal Behaviour

30:575–584.

Hastings, A. 1983. Can spatial variation alone lead to selection for dispersal? Theoretical Population

Biology 24:244–251.
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Křivan, V. 1997. Dynamic ideal free distribution: Effects of optimal patch choice on predator-prey

dynamics. American Naturalist 149:164–178.
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Křivan, V., and O. J. Schmitz. 2003. Adaptive foraging and flexible food web topology. Evolutionary

Ecology Research 5:623–652.
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