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Lemma 1:
1. Let u, v be finite measures on Borel subsets of the interval
[—m, 7). If for every t € Z,

/ e du(X) = / e du(N),
then u(B) = v(B) for every B C (—m, ) and
pl{=m} U{r}) = v({—m} U {r}).
2. Let p, v be finite measures on (R, B). If for every t € R

/ h e du(\) = / h e du(N),

—0o0 —0o0

then p(B) = v(B) for all B C B.
Proof: Andé&l (1976), I11.1, Theorems 5 and 6.
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Lemma 2 [Helly theorem]:

Let {Fn, n € N} be a sequence on non-decreasing uniformly
bounded functions. Then there exists a subsequence {F, },
that, as k — oo, nx — o0, converges weakly to a
non-decreasing right-continuous function F, i.e., on the
continuity set of F.

Proof: Rao (1978), Theorem 2c.4, I.

Lemma 3 [Helly-Bray]:

Let {Fn, n € N} be a sequence of non-decreasing uniformly
bounded functions that, as n — oo, converges weakly to a
non-decreasing bounded right-continuous function F, and
lim Fp(—00) = F(—00), lim Fp(400) = F(+00). Let f be a
continuous bounded function. Then

/_Z f(x)dFn(x) — /_Z F(x)dF(x) as n — oo.

Proof: Rao (1978), Theorem 2c.4, II.
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Remark

The integral at the Helly-Bray theorem is the Riemann-Stieltjes
integral of the function f with respect to the function F. If

[a, b] is a bounded interval and F is right-continuous, we will
understand that

b
/a f(x)dF(x) == /(a : f(x)dF(x).
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Theorem 19:
A complex-valued function R(t), t € Z, is an autocovariance
function of a stationary random sequence if and only if

™

REt) = [ ePdF() forall t€ 2. (1)
—T

where F is a right-continuous non-decreasing bounded function

on [—m, w], F(—m) = 0. The function F is determined by

formula (1) uniquely.

Formula (1) is called the spectral decomposition (or

representation) of the autocovariance function of a stationary

random sequence. The function F is called the spectral

distribution function of a random sequence.
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Proof
1. Suppose that (1) holds for any complex-valued function R
on Z. Then R is positive semidefinite since for any n € N, any

constants ¢1,...,c, € Cand all t1,...,t, € Z
n n
S ekl -6 = 3 g | eermrary
j=1 k=1 j=1 k=1
T n n
= / ZZ cicke e A | dF(\)
T j=1 k=1

2
T n )
/ > et dF(A) >0
=

because F is non-decreasing in [—m, 7]. It means that R is the
autocovariance function of a stationary random sequence.
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Spectral 2. Let R be an autocovariance function of a stationary random
representation . . ., . . .. .
of autocovari- sequence; it is positive semidefinite, i.e.,
ance
function n n P
Zj:l Yor_1GekR(tj—ty) >0forallneN, ci,...,c, €C
and ty,...,t, € Z.

Put t; =j, ¢g=e ¥* fora A € [-m, 7]
Then for every n € N, A € [—m, 7],

) = 5 3SR

Jj=1 k=1
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representation

of autocovari-
n n

?L?ncjtion 1 —1 k)
=50 > e VPR~ k)
j=1 k=1
min(n, k+n)
Z Z —I'H/\R(H)
N——n-‘rlj max(1, k+1)
1 = KA
=5 Z e ""*R(k)(n— |K|).

k=—n+1
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e oo For any n € N let us define function
function
0, x < —m,
Fa(x) =< 7 @n(A)dA, x € [-m,«],
F”(Tr)v X > m.

Obviously, F,(—7) = 0 and F,(x) is non-decreasing on [—, 7].
Compute Fu(7):
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i Fo(r) = / on(\)dA
—Tr
1 T n—1
_ —iRA _
=5 _W[ Z e " R(k)(n |/{\)] d\
r=—n+1
1 n—1 T
o —IiKA _
5 2 RGN s) [ = RO)
rk=—n+1

since the last integral is 2wd(k).
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proof, continued

{Fn, n €N} is a sequence of non-decreasing functions,
0 < Fr(x) < R(0) < oo for all x € R and all n € N.

According to the Helly theorem there exists a subsequence
{Fn.} C{Fn}, Fn, — F weakly as k — o0, ny — oo, where F
is a nondecreasing bounded right-continuous function and
F(x)=0, x < —m, F(x)=R(0), x > .

From the Helly - Bray theorem for f(x) = e/, where t € 7Z,

/ e dF, (\) — e dF(\) as k — 00, ng — 0.

—T —T
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On the other hand,
vy s
rSeF:)er(;ts;ar:tation / e’tAank()\) :/ eltAsan()\)d)\
of autocovari- —T -7
?L?:ftion T . 1 ne—1 )
= eftA e A R(k)(nk — |K|)| dA
| & o X R )
1 ng—1 - N
HT—RK
=5 >, RE)(m- |m|)/ e dA,
k k=—n,+1 -T

thus

/7r eitAank()\):{ R(t) (1—%), It] <

- 0 elsewhere.
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proof, continued

We get
- T it _ _H
lemoo/ﬂe dF,,k(/\)—kh_)mooR(t)( nk)
= R(t) = / e dF ()
Uniqueness:

Let R(t) = ["_e™dG(\), where G is a right-continuous
non-decreasing bounded function on [—7, 7] and G(—7) = 0.

Then
™ . s i
/ elt/\dMF — / elt)\d,uG,
-7 -7

where pfF a g are finite measures on Borel subsets of the
interval [—7, 7] induced by functions F a G, respectively. The
rest follows from Lemma 1. L]
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Formula (1) is called the spectral decomposition of the
autocovariance function of a stationary random sequence.
Function F is called the spectral distribution function of a
random sequence.

If there exists a function f(\) > 0 for A\ € [—7, 7] such that
F(\) = fj‘w f(x)dx (F is absolutely continuous), then f is
called spectral density. Obviously f = F’.

In case that the spectral density exists, the spectral
decomposition of an autocovariance function is of the form

R(t) = / i e f(\)d\, teZ. 2)

—T
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Theorem 20:

A complex-valued function R(t), t € R, is the autocovariance
function of a centered stationary mean square continuous
process if and only if

R(t) = /_ T etdF(\), teR, (3)

where F is non-decreasing right-continuous function such that
limy—_oo F(x) =0, limy_o F(x) = R(0) < co. Function F is
determined uniquely.

Function F is called the spectral distribution function of a
mean square continuous stochastic process.
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Proof.

1. Let R be a complex-valued function on R that satisfies (3),
where F is non-decreasing right-continuous function,

F(—00) =0, F(+00) = R(0) < co. Then R is positive
semidefinite, moreover, it is continuous. According to Theorem
6 there exists a stationary centered process with the
autocovariance function R. Since R is continuous (hence,
continuous at zero), this process is mean square continuous
which follows from Theorem 15.

2. Suppose that R is the autocovariance function of a centered
stationary mean square continuous process. Then, it is positive
semidefinite and continuous at zero. For the proof that R

satisfies (3), see, e.g., And&l (1976), V.1, Theorem 2. ]
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If the spectral distribution function in (3) is absolutely
continuous, its derivative f is called spectral density and (3)
can be written in the form

R(t) = / h e f(\)d\, teR. (4)

—00

Remark: Two different stochastic processes may have the
same spectral distribution functions and thus the same
autocovariance functions.
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Theorem 21:
Let K be a complex-valued function of an integer-valued
variable, let > 30 |K(t)| < co. Then

K(t):/ e f(N)dN, tez,

—T

where
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Proof:
Let us consider function K, such that > 72 |K(t)] < oc.
Since the series on the right-hand side of

1 o
F(N) == TK(t
N =5- 3 e K(y)
t=—0o0
is absolutely convergent uniformly for A € [—7, 7], we can
interchange the integration and the summation and for any
t € Z we get

T m 1 e .
/ e f(N)d\ = / e'tA [2 D e K(K) | dA
—T —Tr ™ _
_1y [K(k) /7r ei(t")AdA}
2w Pl x
1 (e.0)

== > K(k)2rd(t — k) = K(t).
k
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Theorem 22:

Let {X:, t € Z} be a stationary sequence such that its
autocovariance function R is absolutely summable, i.e.

Y e o |R(t)] < 00. Then the spectral density of the sequence
{Xt, t € Z} exists and for every \ € [—7, 7]

f()\):% > e R(k). (5)

k=—00
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R(t):/ e f(N)d\, teZ,

f()\):% S e R(t), A€ [, 1]

(from the previous theorem). Due to the uniqueness of the
spectral decomposition (2) it suffices to prove, that f(A) >0
for every A € [—m, 7).

For every \ € [—m, 7],

n—1

en(A) = 5— Z e " R(k)(n — |K[) >0

n
r=—n+1

(it follows from the proof of Theorem 19). We show that
f(A\) = limp—oo ©n(A).
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Proof, continued
We have

[£(A) = en(N)] < Z e "*R(k

|k|>n
L Zl e~ "NR(1) K]
2mn
k=—n+1
1 1 n—1
< _
<o SIRWN 45— Y IRkl — 0
|k|>n K=—n+1

(Kronecker lemma: Y32 ax < oo =137 kay — 0 pro
n— 00). O
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Formula (5) is called inverse formula for computing the
spectral density of a stationary random sequence.

Theorem 23:

Let {X:, t € R} be a centered weakly stationary mean square
process. If its autocovariance function R satisfies condition
J7o IR(t)|dt < oo then there exists the spectral density of the
process and it holds

f(\) 1/00 e R(t)dt, € (—o0,00). (6)

=/
The proof is quite analogous to computation of a probability
density function by means of a characteristic function (Fourier
transformation)
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Example (white noise):
Let {X;, t € Z} be a sequence of uncorrelated random
variables with zero mean and a finite positive variance o2:

EX; = 0,varX; = 02, cov(Xs, X;) = 020(s — t) = R(s — t).
Y22 |IR(t)] = 02 < 0o = spectral density exists
According to the inverse formula
1« ik 1 o?
= — T"R(k) = —R(0)=—, Xe[- .
o Z =5, RO =5 [ 7]
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spectral distribution function of the
F(\) = 0,
2
g
= —(A
27_[_( + 7'(')7
_= 0'2’

Notation: WN(0, c?) (white noise)

white noise
A< —m,
A€ [—m, 7,

A>T
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Consider a stationary sequence with the autocovariance
Zuzana .
it function R(t) = a‘t‘, teZ, lal < 1.

[e's) [e%s) )
YR =D fa =142 Ja* <o,
t=—o00 t=—o00 t=1
1 )
_ = —ikX k|
Existence and f()\) B 2’]'(' Z € a
computation k=—00
of spectral
ey s, 1 o KX —k
= — e "a — e "am
5D +on 2
k= =—00
_ 1 —iX k 1 - I)\)k
C 2 (ae ) + 2w Z (ae
k=0 k=1
1 11 ae'
C 2rl—ae " 271 — ae
1 1-2° 1 1-a?

T 2r|l—ae M2 271—2acos\+ a
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AR(1), 0.8
6 T T T T

0 100 200 300 400 500

AR(1), -0.8
6 ‘ ‘ ‘ ‘

, N

-4 4

(o)

0 100 200 300 400 500

trajectories of a process with the a autocovariance function R(t) = a
a=20,8, down a=—-0,8

[t]

, up:
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o
< ~
wn
o 7 ‘ @ 7
s 2 “““\ 5(\,,
wn
S -
1
o
. o
! T T T T T T T T T T
0 2 4 6 8 10 -t -T2 0 /2 n
t A

autocovariance function (left) and spectral density (right),
a=020,8
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autocovariance function (left) and spectral density (right),
a=-0,8
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Example :

Centered weakly stationary process with the autocovariance
function R(t) = ce @It t € R, ¢ > 0,a > 0.

The process is mean square continuous.

It holds

|R(t)|dt:/ ce ?ltldt < oo,

—00

thus, the spectral density exists and by formula (6)

1 o0 ) 1 oo .
f()\) = / e—ltAR(t)dt — / e—lt)\ce—a\t\dt
27T —00 27T —00
= i _Oo(cos At — isin )\t)e—altldt

co 1

c > —at _
= 7'['/0 COS()\t)e dt = ?m

for every A € R.
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09
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07
06 02
05
04
03 01
02

01

autocovariance function (left) and spectral density (right),
c=1lLa=1
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Example :
A centered mean square process with the spectral distribution
function process

F(\) = 0, A< -1,
1

- = —1<A<1

2’ sAa<h

— 1, 2> 1.

Spectral distribution function is not absolutely continuous; the
spectral density of the process does not exist. According to (3)
the autocovariance function is

R(t) = / e’t’\dF(/\) = Eef’t + Ee’t =cost, teR.

The process has a discrete spectrum with non-zero value at
frequencies \; = —1, Ao = 1.
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Example :
The process {X;, t € R} of uncorrelated random variables with

zero mean and a finite positive variance does not satisfy
decomposition (3), since it is not mean square continuous.
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