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Prášková
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Lemma 1:
1. Let µ, ν be finite measures on Borel subsets of the interval
[−π, π]. If for every t ∈ Z,∫ π

−π
e itλdµ(λ) =

∫ π

−π
e itλdν(λ),

then µ(B) = ν(B) for every B ⊂ (−π, π) and
µ({−π} ∪ {π}) = ν({−π} ∪ {π}).

2. Let µ, ν be finite measures on (R,B). If for every t ∈ R∫ ∞
−∞

e itλdµ(λ) =

∫ ∞
−∞

e itλdν(λ),

then µ(B) = ν(B) for all B ⊂ B.
Proof: Anděl (1976), III.1, Theorems 5 and 6.



Stochastic
processes 2

Zuzana
Prášková
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Lemma 2 [Helly theorem]:
Let {Fn, n ∈ N} be a sequence on non-decreasing uniformly
bounded functions. Then there exists a subsequence {Fnk

},
that, as k →∞, nk →∞, converges weakly to a
non-decreasing right-continuous function F , i.e., on the
continuity set of F .
Proof: Rao (1978), Theorem 2c.4, I.

Lemma 3 [Helly-Bray]:
Let {Fn, n ∈ N} be a sequence of non-decreasing uniformly
bounded functions that, as n→∞, converges weakly to a
non-decreasing bounded right-continuous function F , and
lim Fn(−∞) = F (−∞), lim Fn(+∞) = F (+∞). Let f be a
continuous bounded function. Then∫ ∞

−∞
f (x)dFn(x) −→

∫ ∞
−∞

f (x)dF (x) as n→∞.

Proof: Rao (1978), Theorem 2c.4, II.
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Remark
The integral at the Helly-Bray theorem is the Riemann-Stieltjes
integral of the function f with respect to the function F . If
[a, b] is a bounded interval and F is right-continuous, we will
understand that∫ b

a
f (x)dF (x) :=

∫
(a,b]

f (x)dF (x).
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Theorem 19:
A complex-valued function R(t), t ∈ Z, is an autocovariance
function of a stationary random sequence if and only if

R(t) =

∫ π

−π
e itλdF (λ) for all t ∈ Z, (1)

where F is a right-continuous non-decreasing bounded function
on [−π, π], F (−π) = 0. The function F is determined by
formula (1) uniquely.
Formula (1) is called the spectral decomposition (or
representation) of the autocovariance function of a stationary
random sequence. The function F is called the spectral
distribution function of a random sequence.
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Prášková
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Proof
1. Suppose that (1) holds for any complex-valued function R
on Z. Then R is positive semidefinite since for any n ∈ N, any
constants c1, . . . , cn ∈ C and all t1, . . . , tn ∈ Z

n∑
j=1

n∑
k=1

cjckR(tj − tk) =
n∑

j=1

n∑
k=1

cjck

∫ π

−π
e i(tj−tk )λdF (λ)

=

∫ π

−π

 n∑
j=1

n∑
k=1

cjcke itjλe−itkλ

 dF (λ)

=

∫ π

−π

∣∣∣∣∣∣
n∑

j=1

cje
itjλ

∣∣∣∣∣∣
2

dF (λ) ≥ 0,

because F is non-decreasing in [−π, π]. It means that R is the
autocovariance function of a stationary random sequence.
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proof, continued

2. Let R be an autocovariance function of a stationary random
sequence; it is positive semidefinite, i.e.,∑n

j=1

∑n
k=1 cjckR(tj − tk) ≥ 0 for all n ∈ N, c1, . . . , cn ∈ C

and t1, . . . , tn ∈ Z.

Put tj = j , cj = e−ijλ for a λ ∈ [−π, π].
Then for every n ∈ N, λ ∈ [−π, π],

ϕn(λ) :=
1

2πn

n∑
j=1

n∑
k=1

e−i(j−k)λR(j − k) ≥ 0.
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proof, continued

From here we get

ϕn(λ) =
1

2πn

n∑
j=1

n∑
k=1

e−i(j−k)λR(j − k)

=
1

2πn

n−1∑
κ=−n+1

min(n, κ+n)∑
j=max(1, κ+1)

e−iκλR(κ)

=
1

2πn

n−1∑
κ=−n+1

e−iκλR(κ)(n − |κ|).
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proof, continued

For any n ∈ N let us define function

Fn(x) =


0, x ≤ −π,∫ x
−π ϕn(λ)dλ, x ∈ [−π, π],

Fn(π), x ≥ π.

Obviously, Fn(−π) = 0 and Fn(x) is non-decreasing on [−π, π].
Compute Fn(π):
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Prášková
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proof, continued

Fn(π) =

∫ π

−π
ϕn(λ)dλ

=
1

2πn

∫ π

−π

[
n−1∑

κ=−n+1

e−iκλR(κ)(n − |κ|)
]

dλ

=
1

2πn

n−1∑
κ=−n+1

R(κ)(n − |κ|)
∫ π

−π
e−iκλdλ = R(0),

since the last integral is 2πδ(κ).
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proof, continued

{Fn, n ∈ N} is a sequence of non-decreasing functions,
0 ≤ Fn(x) ≤ R(0) <∞ for all x ∈ R and all n ∈ N.

According to the Helly theorem there exists a subsequence
{Fnk
} ⊂ {Fn}, Fnk

→ F weakly as k →∞, nk →∞, where F
is a nondecreasing bounded right-continuous function and
F (x) = 0, x ≤ −π, F (x) = R(0), x > π.

From the Helly - Bray theorem for f (x) = e itx , where t ∈ Z,∫ π

−π
e itλdFnk

(λ) −→
∫ π

−π
e itλdF (λ) as k →∞, nk →∞.
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proof, continued

On the other hand,∫ π

−π
e itλdFnk

(λ) =

∫ π

−π
e itλϕnk

(λ)dλ

=

∫ π

−π
e itλ

 1

2πnk

nk−1∑
κ=−nk+1

e−iκλR(κ)(nk − |κ|)

 dλ

=
1

2πnk

nk−1∑
κ=−nk+1

R(κ)(nk − |κ|)
∫ π

−π
e i(t−κ)λdλ,

thus∫ π

−π
e itλdFnk

(λ) =

{
R(t)

(
1− |t|nk

)
, |t| < nk

0 elsewhere.
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proof, continued
We get

lim
k→∞

∫ π

−π
e itλdFnk

(λ) = lim
k→∞

R(t)

(
1− |t|

nk

)
= R(t) =

∫ π

−π
e itλdF (λ)

Uniqueness:

Let R(t) =
∫ π
−π e itλdG (λ), where G is a right-continuous

non-decreasing bounded function on [−π, π] and G (−π) = 0.
Then ∫ π

−π
e itλdµF =

∫ π

−π
e itλdµG ,

where µF a µG are finite measures on Borel subsets of the
interval [−π, π] induced by functions F a G , respectively. The
rest follows from Lemma 1.
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Formula (1) is called the spectral decomposition of the
autocovariance function of a stationary random sequence.
Function F is called the spectral distribution function of a
random sequence.

If there exists a function f (λ) ≥ 0 for λ ∈ [−π, π] such that

F (λ) =
∫ λ
−π f (x)dx (F is absolutely continuous), then f is

called spectral density. Obviously f = F ′.

In case that the spectral density exists, the spectral
decomposition of an autocovariance function is of the form

R(t) =

∫ π

−π
e itλf (λ)dλ, t ∈ Z. (2)
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Theorem 20:
A complex-valued function R(t), t ∈ R, is the autocovariance
function of a centered stationary mean square continuous
process if and only if

R(t) =

∫ ∞
−∞

e itλdF (λ), t ∈ R, (3)

where F is non-decreasing right-continuous function such that
limx→−∞ F (x) = 0, limx→∞ F (x) = R(0) <∞. Function F is
determined uniquely.
Function F is called the spectral distribution function of a
mean square continuous stochastic process.
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Proof.
1. Let R be a complex-valued function on R that satisfies (3),
where F is non-decreasing right-continuous function,
F (−∞) = 0, F (+∞) = R(0) <∞. Then R is positive
semidefinite, moreover, it is continuous. According to Theorem
6 there exists a stationary centered process with the
autocovariance function R. Since R is continuous (hence,
continuous at zero), this process is mean square continuous
which follows from Theorem 15.

2. Suppose that R is the autocovariance function of a centered
stationary mean square continuous process. Then, it is positive
semidefinite and continuous at zero. For the proof that R
satisfies (3), see, e.g., Anděl (1976), IV.1, Theorem 2.
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If the spectral distribution function in (3) is absolutely
continuous, its derivative f is called spectral density and (3)
can be written in the form

R(t) =

∫ ∞
−∞

e itλf (λ)dλ, t ∈ R. (4)

Remark: Two different stochastic processes may have the
same spectral distribution functions and thus the same
autocovariance functions.
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Auxiliary
assertions

Spectral
representation
of autocovari-
ance
function

Existence and
computation
of spectral
density

Theorem 21:
Let K be a complex-valued function of an integer-valued
variable, let

∑∞
t=−∞ |K (t)| <∞. Then

K (t) =

∫ π

−π
e itλf (λ)dλ, t ∈ Z,

where

f (λ) =
1

2π

∞∑
t=−∞

e−itλK (t), λ ∈ [−π, π].
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Proof:
Let us consider function K , such that

∑∞
t=−∞ |K (t)| <∞.

Since the series on the right-hand side of

f (λ) =
1

2π

∞∑
t=−∞

e−itλK (t)

is absolutely convergent uniformly for λ ∈ [−π, π], we can
interchange the integration and the summation and for any
t ∈ Z we get∫ π

−π
e itλf (λ)dλ =

∫ π

−π
e itλ

[
1

2π

∞∑
k=−∞

e−ikλK (k)

]
dλ

=
1

2π

∞∑
k=−∞

[
K (k)

∫ π

−π
e i(t−k)λdλ

]

=
1

2π

∞∑
k=−∞

K (k)2πδ(t − k) = K (t).
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Theorem 22:
Let {Xt , t ∈ Z} be a stationary sequence such that its
autocovariance function R is absolutely summable, i.e.∑∞

t=−∞ |R(t)| <∞. Then the spectral density of the sequence
{Xt , t ∈ Z} exists and for every λ ∈ [−π, π]

f (λ) =
1

2π

∞∑
k=−∞

e−ikλR(k). (5)
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Proof:∑∞
t=−∞ |R(t)| <∞⇒

R(t) =

∫ π

−π
e itλf (λ)dλ, t ∈ Z,

f (λ) =
1

2π

∞∑
t=−∞

e−itλR(t), λ ∈ [−π, π]

(from the previous theorem). Due to the uniqueness of the
spectral decomposition (2) it suffices to prove, that f (λ) ≥ 0
for every λ ∈ [−π, π].
For every λ ∈ [−π, π],

ϕn(λ) =
1

2πn

n−1∑
κ=−n+1

e−iκλR(κ)(n − |κ|) ≥ 0

(it follows from the proof of Theorem 19). We show that
f (λ) = limn→∞ ϕn(λ).
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Proof, continued

We have

|f (λ)− ϕn(λ)| ≤

∣∣∣∣∣∣ 1

2π

∑
|k|≥n

e−ikλR(k)

∣∣∣∣∣∣
+

∣∣∣∣∣ 1

2πn

n−1∑
κ=−n+1

e−iκλR(κ)|κ|
∣∣∣∣∣

≤ 1

2π

∑
|k|≥n

|R(k)|+ 1

2πn

n−1∑
κ=−n+1

|R(κ)||κ| −→ 0

(Kronecker lemma:
∑∞

k=1 ak <∞⇒ 1
n

∑n
k=1 k ak → 0 pro

n→∞).
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Formula (5) is called inverse formula for computing the
spectral density of a stationary random sequence.

Theorem 23:
Let {Xt , t ∈ R} be a centered weakly stationary mean square
process. If its autocovariance function R satisfies condition∫∞
−∞ |R(t)|dt <∞ then there exists the spectral density of the

process and it holds

f (λ) =
1

2π

∫ ∞
−∞

e−itλR(t)dt, λ ∈ (−∞,∞). (6)

The proof is quite analogous to computation of a probability
density function by means of a characteristic function (Fourier
transformation)
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Example (white noise):
Let {Xt , t ∈ Z} be a sequence of uncorrelated random
variables with zero mean and a finite positive variance σ2:
EXt = 0, varXt = σ2, cov(Xs ,Xt) = σ2δ(s − t) = R(s − t).∑∞

t=−∞ |R(t)| = σ2 <∞⇒ spectral density exists

According to the inverse formula

f (λ) =
1

2π

∞∑
k=−∞

e−ikλR(k) =
1

2π
R(0) =

σ2

2π
, λ ∈ [−π, π].
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spectral distribution function of the white noise

F (λ) = 0, λ ≤ −π,

=
σ2

2π
(λ+ π), λ ∈ [−π, π],

= σ2, λ ≥ π.

Notation: WN(0, σ2) (white noise)
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Example :
Consider a stationary sequence with the autocovariance
function R(t) = a|t|, t ∈ Z, |a| < 1.

∞∑
t=−∞

|R(t)| =
∞∑

t=−∞
|a||t| = 1 + 2

∞∑
t=1

|a|t <∞,

f (λ) =
1

2π

∞∑
k=−∞

e−ikλa|k|

=
1

2π

∞∑
k=0

e−ikλak +
1

2π

−1∑
k=−∞

e−ikλa−k

=
1

2π

∞∑
k=0

(
ae−iλ

)k
+

1

2π

∞∑
k=1

(
ae iλ

)k

=
1

2π

1

1− ae−iλ
+

1

2π

ae iλ

1− ae iλ

=
1

2π

1− a2

|1− ae−iλ|2 =
1

2π

1− a2

1− 2a cosλ+ a2
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Auxiliary
assertions

Spectral
representation
of autocovari-
ance
function

Existence and
computation
of spectral
density

0 100 200 300 400 500
−6

−4

−2

0

2

4

6
AR(1), 0.8

0 100 200 300 400 500
−6

−4

−2

0

2

4

6
AR(1), −0.8

trajectories of a process with the a autocovariance function R(t) = a|t|, up:
a = 0, 8, down a = −0, 8
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Obrázek 5.3: Autokorelační funkce (vlevo) a spektrální hustota (vpravo) posloupnosti
AR(1): Xt = 0,8Xt−1 + Yt; Yt ∼ N (0, 1)
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autocovariance function (left) and spectral density (right),
a = 0, 8
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Example :
Centered weakly stationary process with the autocovariance
function R(t) = ce−α|t|, t ∈ R, c > 0, α > 0.
The process is mean square continuous.
It holds ∫ ∞

−∞
|R(t)|dt =

∫ ∞
−∞

ce−α|t|dt <∞,

thus, the spectral density exists and by formula (6)

f (λ) =
1

2π

∫ ∞
−∞

e−itλR(t)dt =
1

2π

∫ ∞
−∞

e−itλce−α|t|dt

=
c

2π

∫ ∞
−∞

(cosλt − i sinλt)e−α|t|dt

=
c

π

∫ ∞
0

cos(λt)e−αtdt =
cα

π

1

α2 + λ2

for every λ ∈ R.
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Example :
A centered mean square process with the spectral distribution
function process

F (λ) = 0, λ < −1,

=
1

2
, −1 ≤ λ < 1,

= 1, λ ≥ 1.

Spectral distribution function is not absolutely continuous; the
spectral density of the process does not exist. According to (3)
the autocovariance function is

R(t) =

∫ ∞
−∞

e itλdF (λ) =
1

2
e−it +

1

2
e it = cos t, t ∈ R.

The process has a discrete spectrum with non-zero value at
frequencies λ1 = −1, λ2 = 1.
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Example :
The process {Xt , t ∈ R} of uncorrelated random variables with
zero mean and a finite positive variance does not satisfy
decomposition (3), since it is not mean square continuous.


	Auxiliary assertions
	Spectral representation of autocovariance function
	Existence and computation of spectral density

