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Colouring knots

ToMmAS NAGY

In the talk we will introduce knots and knot theory. We will discuss how can we
distinguish knots by knot invariants and we will focus mostly on knot colouring. We will
show that colouring of knots by algebraical structure called quandle is a knot invariant.
The aim is to discuss an algorithm for distinguishing knots. We will show how can we
transform knot colouring into the SAT-problem and we will shortly introduce the results
of an computer experiment dealing with colouring several special types of knots.

1. BASIC NOTIONS

Definition 1. A knot is an embedding of a circle in 3-dimensional Euclidean space.

Two projection of a knot are called equivalent if there exists an ambient isotopy between
them. This holds if and only if one projection can be obtained from the other by a final
sequence of Reidemeister moves.

‘We represent knots by diagrams, e.g. projections with final number of crossings. We
can get PD notation of a given knot diagram with n crossings as follows: Let us choose
an orientation of the diagram and let us number the arcs of the projection by numbers
1,2,...,n. Then we represent a crossing with upper arc numbered by a, right arc (e.g.
arc that is on the right side of the upper arc) with number b and left arc with number ¢
by a triple (a, b, c). That means that we can represent this knot by n triples.

Knot invariants are properties that are common for all equivalent projections of a given
knot.

2. COLOURING AND QUANDLES

Definition 2. Let K = {(k1,l1,m1),...,(kn,ln,mn)} be a representation of a knot
diagram in PD notation and let C' be a set with a binary operation x. We say that a
mapping f: C — K is a colouring of a diagram K by C if f(k;)* f(l1) = f(m1) for each
1€{1,...,n}
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We say that C' is a set of colours. Let Q = (C,*). We denote by colg(K) the number
of different colourings of the diagram K by Q.

Definition 3. Let C be a set and let * be a binary operation on C'. We say that Q = (C, )
is a quandle if the operation * satisfies following conditions:
(1) a*xa=gq;
(2) for each a,b there exists exactly one x € C such that a * z = b;
(3) ax(bxc)=(ax*b)x*(ax*c).
The colours used in colouring generate algebraically connected quandles, i.e., quandles
(C, *) where the group generated by left translations acts transitively on C. We can

construct them from the pairs (G, ¢) where G is a group that acts transitively on C' and
¢ € H (H is a stabilizer of an arbitrary element e € G), such that (¢g¢g~1',g € G) = G-

e Let (G,() be as defined above.

e Let us chose for y € G some element § € G such that ge = y.

e We define the quandle operation * on C as follows: x *y = ¢~ tag¢ 1y~ 1.

Theorem 4. Let Q = (C,*) be a quandle. Then colq is a knot invariant.

3. DISTINGUISHING KNOTS ON THE COMPUTER

In order to distinguish knots on the computer we will transform colouring into the
Boolean satisfiability problem (SAT):

Let K be a projection of a knot with n arcs and let us denote these arcs by a1, a2, ..., an.
Let Q = ({1,2,...,|Q|},*) be a quandle. We want to find a colouring f. We define n|Q)|
many propositional variables v; j, where ¢ € {1,...,n} and j € {1, ...,|Q|}. We interpret
v 5 as “arc 4 has a color 57, i.e. f(i) = j.

We want following formulas to be satisfied:

(1) Each arc has exactly one color:

e Each arc has a color, i.e. vi1 Vvj2V -V g fori=12,...,n.
e No arc has two colours, i.e. =w; |V m fori=1,2,...,n,1=1,2,...,|Q[,m
I+1,...,1Ql.

(2) Each crossing satisfies the colouring condition, i.e. for a crossing (a;,aj,ay) it
holds that f(3) * f(3) = f(k).
e Formulas of the form (v;; Avjm) = Uk 1xm, 1.€. =01 V W) m V Vg 15 for
lam: 17277|Q‘

(3) We want only non-trivial colourings.
o Le. —wy V-wg, V- V-, forl=1,2,...,|Q|
(4) In order to simplify the result we can define that arc 1 has a color 1.
o le vy1.
‘We get col’Q (K) many interpretations satisfying the given set of formulas. It can be

easily seen that colg(K) = |Q|(00l22 (K) + 1) (“+1” for the trivial colouring,“|Q|-times”
because we can choose |Q| colours for the first arc).



Polynomial Closure of Classes of Regular Languages

JANA BARTONOVA

The topic of this talk falls into the theory of regular languages. A polynomial closure
is a certain operation on sets of regular languages. Its importance lies in the fact that
it is used in defining so-called concatenation hierarchies of regular languages. The main
problem concerning these hierarchies — the question of the decidability of their levels — is
therefore closely connected with the question of the decidability of the polynomial closure.

1. REGULAR LANGUAGES

Let A be a fixed finite set, called an alphabet. We denote by A* a free monoid generated
by A. Elements of A* are called words, the monoid operation on A* is a concatenation.
A language over A is an arbitrary subset L C A*.

A regular language over A is a language which can be created from languages of the
form @ and {a}, where a € A, by means of a finite number of applications of the following
operations:

e union,
e concatenation: K-L={z-y|z € K,y € L},
e iteration: L* =|J;—, L™ (a submonoid of A* generated by L).

Remark: The set of all regular language is closed also under complementation. (It is not
obvious from the definition).

2. POLYNOMIAL CLOSURE

Definition 1. A polynomial closure Pol(C) of a set of regular languages C is a set of
regular languages which are finite unions of languages of the form

LoaiLy...anLy where a; € A, L; € C.

3. CONCATENATION HIERARCHIES

Definition 2. A lattice of regular languages is a set of regular languages containing 0,
A* and closed under supremum U (union) and infimum N (intersection).

A quotienting lattice is a lattice of regular languages closed under quotients (a certain
operation on regular languages).

Co .. a given quotienting lattice of regular languages

Cnt1/2 = Pol(Cn) = POl(Cn—1/2) where Cp,_1/3 = {A*\L|Le Cn—1/2}

Cn+1 = B(Cp41/2) - Boolean closure of the level n + 1/2 (closure under union and
complementation)

The main question concerning half levels: How to decide whether a given regular
language belongs to C,, 11/ for given Co and n € No?



4. SYNTACTIC MONOID

Definition 3. A language L C A* is said to be recognized by a finite monoid M if there
exist a homomorphism a: A* — M and a set ' C M such that L = a~}(F).

Proposition 4. A language L is reqular iff it is recognized by a finite monoid.

Definition 5. A syntactic monoid My, of a regular language L is the smallest finite
monoid recognizing L. The corresponding homomorphism «ay,: A* — M, is called a syn-
tactic homomorphism of the language L.

Every syntactic monoid M, is equipped with a distinguished partial order <p,.
5. AN ALGEBRAIC DESCRIPTION OF THE POLYNOMIAL CLOSURE

Theorem 6 (Branco, Pin, 2009; Place, Zeitoun, 2018). Let C be a quotienting lattice
of regular languages, K a regular language. Then K belongs to Pol(C) if and only if
e <y ete for all (e,t) € C[K] C (Mk)? such that e € My is an idempotent.

Computation of C[K] C (Mf)?:
(1) Stratification: C = |J32; C*¥ where all C* are finite quotienting lattices such
that C1 CC2 CC3 C---. Then C[K] = N2, C*[K] where
CF K] = {(s,t) € (MK)? | Ju,v € A* : ag (u) = s,k (v) = t,u <o v},
u<eorv & VLeC*:uel = vel.
(2) Find m € N such that C™[K] = C[K] and compute C™[K].
6. EXAMPLE — COMPUTATION OF Cy /5[K]

Straubing—Thérien hierarchy:

Co = {0, A*}

Ci1/2 - a set of finite unions of languages of the form
A*a1A*as A* .. .anA* whereay,...,anp € A

(1) Stratification: Cy/o = UpZ, Cf/2 where Cf/2 is a (quotienting) lattice of regular
languages generated by languages of the form

A*a1A*as A" ...anA*  where n <k,ai,...,an € A.

(2) Let K be a regular language. Then Cy /5[K] = Clll/u;(‘ [K].

7. CONCLUSION

From the existence of an algorithm for the computation of C;/5[K] we obtain the
decidability of C3/5 of Straubing—Thérien hierarchy. The sets C3/2[K], C5/2[K] are known
to be computable algorithmically as well (Place, Zeitoun 2014; Place, 2015). From these
results we obtain the decidability of Cs5/2 and C7/2 of Straubing—Thérien hierarchy. The
question of the decidability of the other half levels of this hierarchy is still an open problem.



Why is an elliptic curve a torus?

ONDREJ BiNOVSKY

We will show why elliptic curves over C are essentially the same objects as complex
tori. Having established this correspondence, we will see that many nontrivial properties
of elliptic curves become completely transparent, when viewed as the properties of complex
tori. Moreover, these often remain valid for elliptic curves over other fields than C.

1. ELLIPTIC CURVES

Definition 1. An equation of the form
E:y? =42% — gaw — g3, 92,93 €C

is called a Weierstrass equation over C. A Weierstrass equation is called nonsingular if its
discriminant A = gg - 27g§ does not vanish.

Definition 2. Let E be a nonsingular Weierstrass equation. The set
& ={(z,y) € C*: E(z,y) = 0} U {oo}

is called an elliptic curve over C.

Definition 3. Let £ be an elliptic curve and let O be the point at infinity of £. Each
line intersects the curve £ exactly at three points (counted with multiplicity). We define
the addition law of the elliptic curve £ so that collinear triples of points sum to zero:

P+Q+R=0 < P,Q,R are collinear.

Under this definition of addition, the elliptic curve £ becomes an abelian group with
O as the identity element. It is, however, not easy to show that the addition is indeed
associative.

2. COMPLEX TORI

Definition 4. A lattice A is a set of the shape
A = Zwi + Zws = {mw1 + nwa: m,n € Z}

where wi snd wa are complex numbers which are linearly independent over the real num-
bers.

Definition 5. Let A be a lattice. Then the quotient group (of additive groups) C/A is
called a complex torus.



3. ELLIPTIC FUNCTIONS

Definition 6. Let A be a lattice. An elliptic function f for the lattice A is a function
satisfying
(1) f is analytic on C except possibly at some isolated points (the poles of f).

(2) The lattice A is the lattice of periods of f, that is, f(z + X) = f(z) for all z € C,
and all X € A.

Theorem 7 (Liouville). Let A be a lattice. Suppose that f is an elliptic function for A
which is analytic on the whole complex plane (so it has no poles). Then f is constant.

Theorem 8. Let f be an elliptic function for a lattice A. Then there exists a positive
integer n with the following property: for every ¢ € C the function f(z) — c has ezactly
n zeros modulo A (the multiplicity of the zeros is taken into account). The number n is
called the order of the elliptic function f, and it is denoted by ord(f).

Definition 9. Let A be a lattice. The function

*+Z( A*%)

0#ANEA

is called the Weierstrass elliptic function.
Theorem 10. Let A be a lattice. The function @p is an elliptic function for A. The

Laurent expansion of pp around origin is

1

poa(z) = Z (2n+ 1)Gan42(A)22",  where Gan(A) = > SvTe

0#NEA
Theorem 11. The function pa satisfies the differential equation
©h(2)? = 4pA(2)°—g2(M)pa(2)—ga(A),  where ga(A) = 60G4(A) and g3(A) = 140G (A).

Theorem 12. Let A be a lattice. The Weierstrass equation y? = 4x3 — ga(A)x — g3(A)
is nonsingular, and so it defines an elliptic curve £. The map

¢:C— &

2 (p(2),9'(2))
induces a bijection between the complex torus C/A and the elliptic curve E. Here ¢(A) is
to be interpreted as the point at infinity of £.
Theorem 13. The bijection ¢ from the previous theorem is a group isomorphism.
Theorem 14. Let y? = 423 — ax — b be a nonsingular Weierstrass equation. Then there
exists a lattice A such that g2(A) = a and g3(A) = b.

4. APPLICATIONS

Theorem 15. Let £ be an elliptic curve over C. Then the addition law of £ defined in
Definition 3 is associative.

Theorem 16. Let £ be an elliptic curve over C. Let E[N] be the group of N-th torsion
points of £. Then E[N] = (Z/NZ)2.



Theorem 17. Let £1,&2 be elliptic curves over C. Let A1, Ao be the associated lattices.
Then the homomorphisms from £1 to E2 correspond bijectively with complex numbers \

such that A\A1 C Ago. In particular, £1,E2 are isomorphic if and only if AA1 = Ag for
some nonzero X € C.

Theorem 18. Let & be an elliptic curve over C. Let End(E) be the endomorphism ring
of £. Then either End(€) 2 Z or End(€) =& Rk, where Rk is an order in an imaginary
quadratic field K.



Pseudovarieties of semigroups and irreducibility

JONATAN KOLEGAR

In this talk I will introduce the theory of finite semigroups and the study of certain
classes of semigroups. Early theorems regarding finite semigroups followed the general
approach of algebra classifying structures up to isomorphism. There are just too many
semigroups to characterize them this way, though. Asymptotically speaking, 3-nilpotent
semigroups (i.e., semigroups satisfying xyz = 0) are almost all finite semigroups. Thus a
revolution in thinking about semigroups was needed. This led to the study of classes of
semigroups with additional properties. As these classes form a lattice, it is natural to aks
for indecomposable elements of this lattice.

These classes of semigroups are called pseudovarieties. We will avoid a lot of structural
theory of semigroups and dive directly into the study of pseudovarieties carried by useful
examples with the goal of getting a good grasp for what a pseudovariety is. This is
the main focus of the talk. Then we’ll meet the notion of irreducibility in the lattice of
pseudovarieties of finite semigroups and study one of the tools to show that a certain type
of pseudovarieties is irreducible, Rees extension semigroup.

1. REITERMAN THEOREM

Definition 1. Class V of finite semigroups is called pseudovariety if it is non-empty and
satisfies the following conditions:
e If S €V and ¢: S — T is surjective homomorphism, then T" € V.
e If T is a subsemigroup of S € V, then T' € V.
e If S, T are semigroups in V, then S x T" € V.
In other words, pseudovarieties of semigroups are classes of semigroups closed under
taking finite direct products, subsemigroups and homomorphic images.
By a pseudoidentity we mean a pair of two implicit operations. We denote 3 a set of
pseudoidentites. Then [X] is a class of all semigroups satisfying all pseudoidentities from
3. Omitting for now what an implicit operation is, we state the Reiterman theorem.

Theorem 2 (Reiterman, 1982). Class V of finite semigroups is pseudovariety if and only
if there exists a set of pseudoidentities ¥ such that V = [Z].

Further, we define an operation for pseudovarieties of groups, bar.

Definition 3. Let H be pseudovariety of finite groups. Then H is a pseudovariety of
semigroups such that their subgroups belong to H.

2. IRREDUCIBILITY
Definition 4. Pseudovariety V is irreducible if for any two pseudovarieties U, W holds
V=UVW=—V=UorV=W,

where U V W is the join of pseudovarieties, i.e., the supremum in the lattice of pseudova-
rieties (the smallest pseudovariety containg them both).

Now we introduce one of the tools to show some pseudovariety is irreducible. We
denote S' smallest monoid containing S.
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Definition 5. Let S and T be finite semigroups and f: S — T be a function. On the
set
M(S,T, f)=SuS! xT! x st

we define multiplication - for all s,7 € S, s1, s}, s2, s, € S! and t,t' € T:
s-7=8"r
s+ (s1,t,52) = (s51,¢, 52)
(s1,8,82) - 5 = (s1,¢, 525)
(s1,t,82) - (s1, ', 83) = (s1,f (s251)t', 83),
and call it Rees extension semigroup of S and T.

Definition 6. For pseudovarieties U,V denote U e V pseudovariety generated by all Rees

extention semigroups M (S, T, f), where S € U and T € V. We say that pseudovariety V

is bullet idempotent if V=V e V.

Lemma 7. Pseudovariety of groups H satisfies H=H e H.
Now we state the main result.

Theorem 8 (Almeida, Klima, 2011). Let V be a bullet idempotent pseudovariety. Then
V is irreductble.

Corollary. Pseudovariety H is irreducible.

Going further, it can be shown that
VeV=V<=V=VNG,

where G is the pseudovariety of all groups.

11



Operads and algebras over operads

LADA PEKSOVA

Operads could be understood as an abstraction of composable functions.

Given functions f: X*" — X and g: X*™ — X, one may consider for 1 < ¢ < n
their composition f(id,...,g,id,...,id): X>*(m+n=1) _ X where g is on the i-th place.
This could be schematically illustrated by the following picture.

9

‘When composing several functions it obviously shouldn’t matter in which order we
realize these compositions. We can also consider a permutation of variables. And in such
a case we want some kind of equivarinace!. And sometimes we also want to consider the
identity map.

These observations lead us to the definition of operad:

Definition 1. An operad in category of K-modules is a collection P = {P(n)},>0 of
right K [X,]-modules where ¥, is symmetric group together with K-linear maps called
composition maps

(1) 0;: P(m)® P(n) —» P(m+n—1)
(where 1 <4 < m and 0 < n) such that the following two axioms are satisfied:
e Associativity: For each 1 < j < m, 0 < n,0 < k and f € P(m), g € P(n),
h € P(k)
(fO]'h)OZ;HC,]_g lf1§j<l
(2) (foiglojh=q foi(goj—iyrh) fi<j<n+i

e Equivariance: Foreach 1 <i<m,0<n, 7 € X,, and o € X, let 70; o be the
permutation where pairs

(¢,70i0()),(i+1,70,0(+1)),...(i+n,7o;0(t+n))

corresponds to o inserted on i-th place of 72. Then for f € P(m),g € P(n) we
require

3) (f7)0i (g0) = (f 0r(i) 9) (T 01 0)
where the action of 7 € 3,, on an element f € P(m) is denoted as f7.
In this case, it means that the composition of functions with permuted variables should be the
same as making first the composition and then applying some appropriate permutation.

2For example if we take permutation 7 = (4,1,3,2) € ¥4 and o = (2,1,3) € X3 and insert o as
second argument of 7 we get 7 05 0 = (2,5,4,6,3,1) € Zg.

12



e Unitality: There exists e € P(1) such that for f € P(m)and 1 <:<m: foe =

f. And for g € P(n): eo1g=g.
(The definitions and other constructions could be in most cases done for a general
commutative ring K. We suggestively denote this ring in the same way as it is usual for

a field of characteristic zero. This is because we mostly work with special K-modules,
vector spaces.)

The definition of a homomorphism of operads is what one would intuitively think of.

And even not knowing, we are already familiar with one example of operads:

An endomorphism operad is a collection Endy = {Endy (n)},>0 for a K-module V'
(vector space) such that Endy (n) = Homg (V®™, V). For elements f € Endy (m) and
g € Endy (n) is the composition defined as

foig=fllyr®..ly®gQ@1ly ®...0 1y
N e’

i—1 times
where 1y denotes identity morphism on V. The symmetric group action is defined as
(fo) (v1,v2,...vm) = f (voq(l), Vg=1(g)r- - ’Uo.—l(m))
where v1,v2,...v;m €V and o € ¥y,
But there are also other operads capturing the concepts of associativity, commutativ-
ity, Lie bracket structure...
Now, the homomorphism of operads P — Endy will give us an “evaluation” of an

operad on the vector space V' (given by the endomorphism operad). For example, for
operad C'om capturing commutativity, this gives us the usual commutative algebra.

13



Curvature and Cohomology

JOSEF SVOBODA

In the lecture, I will start with basic notions of differential geometry. Then I will
explain what is a circle bundle and its curvature and finally present basic topological
T-duality.

1. VECTOR AND FORMS

Definition 1. Tangent vector X, at point p of a surface S in R3 is a vector in tangent
plane of S in p. For every function f: S — R defined around p, it gives the directional
derivative X, (f) (real number) of f at point p.

General variety M is not naturally embedded in Euclidean space R"™, so we define
tangent vector X in p € M as a “directional derivative”, that is a linear map from real
functions around p to R satisfying Leibniz rule:

Xp(fg) = Xp(flg + fXp(9)-

Vector field is a smooth choice of tangent vectors in every point p of M.

Definition 2. Differential form of degree k (k-form in p) at p takes k tangent vectors in p
and gives a real number so that it is linear in each variable and antisymmetric. Differential
k-form on M is a smooth choice of k-form in every point p of M. Set of k-forms is denoted
QF (M), set of all forms Q(M).

For any function f on M we have 1-form df defined by df(V) = V(f) (directional
derivative of f in the direction of V).

Definition 3. De Rham differential d (exterior derivative) is a unique map from Q(M) —
Q(M) of degree one which is linear, it gives usual df on functions and satisfies Leibniz
rule with respect to wedge product.

We can integrate k-forms over (oriented) k-dimensional objects (roughly we feed the
k-form by k tangent vectors and get a function which we integrate).

Theorem 4 (Stokes). Integral of a differential form w over the boundary of an orientable
manifold M is equal to the integral of its exterior derivative d over the whole of M :

/ w:/ dw
oM M

2. BUNDLES

Bundle over M is a smooth choice of some type of object at every point of M. More
formally it is a manifold P with a smooth map 7: P — M.

Example. (1) Vector bundle is a bundle so that at every point we have a vector
space e.g. bundle consisting of all tangent vectors.

(2) Circle bundle is a bundle so that at every point there is a circle — e.g. circle
of every possible “directions” — tangent vectors of length 1 on a Riemannian
manifold M.

14



(3) We have trivial circle bundle S! x §2 — S2. An example of a nontrivial circle
bundle is Hopf fibration S3 — S2.

Theorem 5 (Gysin sequence). For a fiber oriented circle bundle P — M with curvature
F' there is a long exact sequence:

- — HF (M) I HR(P) T 5BV () A5 mRL () —
where Ty is the pullback, w. is the integration along fiber and AF' is the wedge product
with curvature.

Theorem 6 (Topological T-duality). For every circle bundle P — M with curvature
2 form F and with a 3 form H on P there is a dual circle bundle P — M with curvature
form F and a three form H such that F' = 7, H and F = . H.

15



Lo6b’s Theorem and Self-Modifying Agents

ANNA GAJDOVA

1. INTRODUCTION

Let’s start with a paradox: If this sentence is true, then Santa Claus exists.
In this talk we will explore what does this paradox have to do with agents that are
able to self-modify themselves.

2. PRELIMINARIES

We will informally define some basic notions from mathematical logic.

A formula in the language of arithmetic is a well-formed expression using natural
numbers, symbols <,-, +,=,—,A,V,—,V,3, (, ), a false symbol L, a true symbol T and
a set of variables, e.g. (Vz)(z > 5) A (z < 3) is a formula.

A sentence is a formula which has only variables that are quantified.

A theory is a set of sentences which are called azioms.

The theory of Peano Arithmetic (PA) is a theory given by the Peano Azioms which
describe the properties of natural numbers, e.g. (z+1=y+1) — (z =y).

We say that that a theory 7T proves a formula ¢ if we can derive ¢ from the axioms
using some rules of inference, e.g. from z — y and y — z we can infer x — z. We will
denote this by 7 F ¢.

We will denote the existence of a proof of a formula ¢ by O[¢].

3. GODEL & LOB

Definition 1 (Consistency). We say that a theory T is inconsistent if 7 proves the
constant false sentence L:
THL.

Otherwise we say that 7 is consistent.

Theorem 2 (Godel’s Second Incompleteness Theorem). If any theory T that is at least
as powerful as Peano Arithmetic proves its own consistency then T is inconsistent:

TH-OWL =Tk L.

Theorem 3 (Lob’s Theorem). For any theory T that is at least as powerful as Peano
Arithmetic and for any formula ¢ holds, that if T proves “If T proves ¢ than ¢ is true”
than T proves ¢:

(TH@O[gl =) =Tk ¢

4. SELF-MODIFYING AGENTS

Definition 4 (Intelligent agent). An intelligent agent is a goal oriented entity that acts
upon the observation of its environment.

16



ADC-forms

PAVEL FRANCIREK

The aim of this talk is to introduce ADC-forms and to show how they can be useful
for solving certain problems concerning the representation of integers by quadratic forms.

1. REPRESENTATION OF INTEGERS BY QUADRATIC FORMS

Definition 1. An integer m is (rationally) represented by an n-ary quadratic form f €
Q[z1, 2, ..., zy] if there exists u € Q™ such that

flu) =m.

Moreover, if u € Z™, we say that the integer m is integrally represented by the form f.

Note. The problem of (rational) representaion is completely resolved by the famous
Hasse-Minkowski theorem.

Definition 2. An n-ary quadratic form f € Z[z1,x2,...,%n] is an ADC-form if for all
a € Z the following holds:

a is represented by f < a is integrally represented by f.
Definition 3. A quadratic form f € Z[z1,...,zy] is called Fuclidean if for every u €
Q™ \ Z"™ there exists v € Z™ such that 0 < |f(u —v)| < 1.

Proposition 4 (Aubry-Davenport-Cassels). Every Euclidean quadratic form is an ADC-
form.

To give an example of Euclidean form (thus ADC-form by Proposition 4) consider the
form

T k
E a;x? — E a;x?
i=1 i=r+1

with a; € N. It is not hard to see that this form is Euclidean if it is anisotropic and

k
iaigi’)and Z a; < 3.
i=1

i=r+1

Using this observation, Proposition 4 and the Hasse-Minkowski theorem we can easily
resolve some of classical problems: e.g. we can prove the Legendre’s three-square theorem
or we can show which integers are integrally represented by the form z? + ny? for n €
{£1,+2,-3}.
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2. BINARY QUADRATIC FORMS

Let ¢ be an odd prime number. We shall study the binary quadratic form
Fylz,y) = 2 — qu*.

If Fy is an ADC-form then the class number of Q(,/q) is 1.
Note. For ¢ =3 (mod 4) the converse is also true.

We shall prove the following proposition:
Proposition 5. Let ¢ =3 (mod 4) be a prime number. The form Fy is an ADC-form if
and only if for every odd prime number p < \/q satisfying (%) =1 the form Fy integrally
represents (—1)1)2;1]3.
Corollary. Let ¢ = 3 (mod 4) be a prime number. If (%) = —1 for every odd prime
p < +/q then Fy is an ADC-form.
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p-adic numbers
Eva HAINZL
This talk will provide an introduction to the p-adic numbers @, which play a significant
role in modern number theory and which will come up in a subsequent talk.
First, we will take an analytic approach and introduce @, as the completion of Q with

respect to a newly defined metric dp. Further on, we will explore algebraic properties
of Qp, solve quadratic equations and eventually discuss Hensel’s lemma.

1. P-ADIC NUMBERS AS A COMPLETION OF Q

Let p be a prime number. The p-adic order (or p-adic valuation) of z € Z is defined as

vp T =

max{n € N: p" |z} ifx#0
) otherwise

The definition can be extended to the rational numbers. For z = % € Q, define
vpr=vpa—vpb
The p-adic absolute value of x € Q is defined as

p~vr® ifx #0
|zlp = {

0 otherwise

The p-adic absolute value induces an ultrametric dp(x,y) = |z — y|p on Q. We define the
p-adic numbers, denoted by Qp , as the completion of the metric space (Q,dp).
The ring of integers is defined as Z, = {x € Qp : |z|p < 1}.

2. ALGEBRAIC PROPERTIES OF Qp

Conversely, we could have defined the p-adic integers Z , as sequences (an)p>1, where
an € Z /p"7Z and an = am mod p™, for n < m. Consequently,

Zy— [[2/p"z
n>1

After checking that Z, is a ring without zero divisors, we would obtain Q, as the field of
fractions on Zp.

It is easy to see, that Z can be embedded into Z . In fact, Z is dense in Z, and the
ring of p-adic integers is uncountable.

Lemma 1. Every x € Qp has a unique representation

T=bonep "0+ Fbo+bip+...bup" + = > bnp"

n>ng

with 0 < by <p—1 for alln > —ng and —ng = vp x.
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Theorem 2 (Hensel’s lemma). Let F(z) = co+ c1x + -+ + cnx™ be a polynomial whose
coefficients are in Z p. Suppose there exists a p-adic integer o1 such that

F(a1) =0 mod p and F'(a1) 20 mod p
Then there exists a unique p-adic integer o such that

F(a)=0 and a=a; modp

20



Hilbert symbols

PAVEL SURY

We will introduce Hilbert symbols, which can be considered as a generalisation of
Legendre symbols. Without going through technical details, we will highlight the basic
properties and Hilbert reciprocity.

We say that a positive definite quadratic form is universal, if it represents all natu-
ral numbers. We will use Hilbert reciprocity to show that no ternary positive definite
quadratic form is universal.

1. HILBERT SYMBOLS

Definition 1. Let F' = Qp or FF =R. Let a,b € F. We define the Hilbert symbol of a
and b relative to the field F as

1, if axz? + by? =1 is solvable in F,
(1) (a,b)r = { Y

—1, otherwise.

Basic properties.

e If a is a square, then (a,b) = 1 for any b.

e We have (a,b) = (b,a) for any a,b.

e Multiplicativity in the form (a,bc) = (a,b)(a,c). (difficult)
Theorem 2 (Hilbert reciprocity). For every a,b € Q*, we have

H(a7 b)F =1,

F

where we take a product over all fields Qp, p prime, and R.

2. NO TERNARY POSITIVE DEFINITE QUADRATIC FORM IS UNIVERSAL

Definition 3. A n-ary quadratic form over a ring R is a polynomial of degree 2 of the

form g(z1,...,2n) =Y 1y 2?21 ajjrixz; with a;; € R.

e A quadratic form is positive definite, if g(__) > 0 for every __ # 0.
F

A

e An integral quadratic form g is universal if it represents all positive integers
over Z. Formally, for every k € N there exist x1,x2,...,25, € Z such that
q(z1,z2,...,20) = k.

e A quadratic form is integral, if R = Z.

Theorem 4. No positive definite ternary integral quadratic form is universal.

Proof. For contradiction, we will assume such form ¢(z,y, z).

(1) We notice that g as a rational form is still positive definite and universal.

(2) We will obtain an equivalent diagonal form d(x,vy, z) = ax? + by? + cz2.

(3) From positive definiteness we conclude that (—a/c, —b/c)r = —1.

(4) From Hilbert reciprocity we obtain a prime p such that (-a/c, —b/c)g, = —1.
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5
6
7
8

(5) We conclude that d(z,y,z) = 0 has only trivial solution in Qp.

(6) We notice that d(z,y, z) as a p-adic form represents all p-adic numbers.
(M
(8)

We will get a contradiction with (5), as this form represents 0 non-trivially.

In particular, we will see that d(z,y, 2) is equivalent in Q, to —abcz? + y? — 22.

2
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Gelfand-Tsetlin Bases for Representations of the Symmetric
Group

PETR ZiMA

The Schur-Weyl duality relates representation theories of the symmetric group S(k)
and the general linear group GL(V) of a vector space V by considering their mutually
commuting actions on the kth tensor power V®* of V. A classical approach to describing
irreducible components of V®* is based on an explicit construction of suitable idempo-
tents in the group algebra Q[S(k)] called Young symmetrizers. Although effective this
approach is indirect and gives only a limited insight into the role of Young diagrams
which parametrize irreducible representations of S(k).

We review an alternative approach introduced by Okounkov and Vershik in [OV96].
They consider the whole chain of symmetric groups

{1}=5S(1) € S2) C ... C S(k) C ...

and inductively construct the so called Gelfand-Tsetlin bases of the irreducible represen-
tations. These bases can be characterized as common eigenvectors of the Gelfand-Tsetlin
algebra GT(k) which is a maximal commutative subalgebra in Q[S(k)]. This way the
Young diagrams arise naturally from the spectra of distinguished generators of GT (k).

In the second part of the talk we present the results of our ongoing work which aims
at extending this approach to study the tensor products V®* @ V®!  In particular, our
original motivation is decomposing the product of two tensors with given symmetries
to individual components with different symmetries. Analogously to the construction of
the Gelfand-Tsetlin algebra the key step is finding suitable commuting elements in the
centralizer of S(k) and S(1) inside Q[S(k + 1)].

1. YOUNG DIAGRAMS

Definition 1. A partition of a positive integer k is a nonincreasing sequence (k1, ..., kr)
of positive integers such that k = k1 + -+ + k. A Young diagram corresponding to a
partition (k1,...,kr) is a collection of k boxes arranged in r left justified rows such that

ith row has k; boxes.

For example, the Young diagrams corresponding to (4), (3,1) and (2,2) are:

Definition 2. A Young tableau is obtained by filling in the boxes of the Young diagram
by numbers 1,...,k. A Young tableau is standard if the numbers in each row and each
column are increasing.

All the possible standard Young tableaux obtained from the above diagrams are:

AEEE @1213\ &1214‘ @‘3[4‘

Theorem 3. Irreducible representations of the symmetric group S(k) are up to isomor-
phism in one-to-one correspondence with partitions of k, or equivalently, with Young
diagrams with k bozes.

The dimension of the irreducible representation Vp corresponding to a diagram D is
given by the number of standard Young tableaux obtained from D.
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For example, there is only one possible standard Young tableau for the partitions (k)
and (1,...,1). Those partitions correspond to the one-dimensional trivial and alternating
representation respectively.

2. GELFAND-TSETLIN BASES
Let us denote by [i142 . ..1p) the cyclic permutation
1] —> 2 —> - —>ip —> 11,
Definition 4. The Jucys-Murphy elements are the following elements in Q[S(k)],
Xi = [19) + [24] + - - + [(s — 1)1, 1=2,...,k.
In other words, X; is the sum of all transpositions in S(z) minus the sum of all trans-
positions in S(i — 1).

Lemma 5. The Jucys-Murphy elements commute and hence are simultaneously diago-
nalizable on every representation of S(k). They generate the so called Gelfand-Tsetlin
algebra GT (k) which is a mazimal commutative subalgebra in Q[S(k)].

Definition 6. Given a Young tableau T let us define a function c¢p: {1,...,k} — Z such
that cp(z) is the column number minus the row number of the box of T" which contains 3.

For example:

11274 1—0 21 42
T =[3]5]7 = cr: 3— —1 5—0 7T—1
61819 6+ —2 8 -1 90

Theorem 7. Let Vp be the irreducible representation of S(k) corresponding to a Young
diagram D. The eigenvalues of the Jucys-Murphy elements X; are given by cr (i) where
T runs through all the standard Young tableauz obtained from D.

The corresponding common eigenspaces of X; are all one-dimensional and the nonzero
vectors vy characterized up to a scalar multiple by

Xi(vr) =cr(Qvr, i=2,... .k,
form a basis of Vp called the Gelfand-Tsetlin basis.
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Introduction to universal homogeneous structures

MARTIN RASKA

On the example of Urysohn’s universal metric space, we will address the basic questions
regarding universal homogeneous structures — existence, uniqueness and embeddings.
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Positional Numeral Systems in Quaternions

JAKUB KRASENSKY

1. OUTLINE

In the first part of the talk the general concept of position numeral systems will be
discussed. We introduce an important example due to Walter Penney (1955) — using
radix —1 + 1 and digits 0 and 1, it is possible to represent every element of the ring Z[i]
(and by allowing negative powers of the radix the whole complex plane). We will discuss
similar ideas and results about positional numeral systems with the GNS property (unique
representation property), especially in the complex plane. In the second part, position
numeral systems in quaternions will be explored, in particular in the ring of Hurwitz and
Lipschitz integers. GNSs with the smallest possible alphabet will be described. For every
Hurwitz and Lipschitz integer it will be determined whether it can or cannot serve as a
radix of some number system.

2. POSITIONAL NUMERAL SYSTEMS

Having a ring R, nonzero radiz 3 € R and a finite alphabet A C R containing zero, we
try to represent elements of R using the positional numeral system (8, A). Representation
of a nonzero x € R is a string an - - - ag such that

N
r = Z(lzﬁe,
£=0

where an # 0 and all ay € A.

As in any fixed numeral system the set of all possible representations is countable,
most rings are not suitable for examination of numeral systems. We will mostly work with
discrete subsets of complex numbers — the lattices of Gaussian and Eisenstein integers.
We are interested in a special type of numerals systems:

Definition 1. A GNS (numeral system with uniqueness property) in R is a numeral
system where every nonzero element of R has a unique representation.

Observe that even the binary and decimal systems are not GNSs in Z since they do
not enable to represent negative numbers. The numeral system (—1 + i, {0, 1}) proposed
by Walter F. Penney in 1955 is a GNS in Z[i] (as will be explained). There are basic
conditions which have to be satisfied for every GNS:

Proposition 2. For every GNS (5, A) the following holds:
(1) The alphabet A is a complete residue system modulo (.
(2) Neither 8 nor B — 1 is a unit.

The second condition is the reason why there is no GNS with radix 2 and in Z[i] there
is no GNS with radix 1 & i. On the other hand, Gabrielle Steidl showed in 1989 that in
Zli] for every other radix 3, |8| > 1 there is an alphabet A such that (3, A) is a GNS.
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3. IN QUATERNIONS

The algebra of quaternions, denoted by H, is a four-dimensional vector space over
R spanned by four elements 1, i, j, k where multiplication is defined by ij = —ji = k,
jk = —kj =1, ki = —ik = j. It shares many properties with the complex numbers, e.g. it
is a field (albeit a non-commutative one).

The ring of Lipschitz integers, denoted by L, consist of quaternions with integer coef-
ficients. The ring of Hurwitz integers, denoted by W, can be defined as L. U (L + ) where
¥ = (L+1i+j+k)/2; the fact that is is closed under multiplication is not immediately
obvious. However, this strangely defined ring has in fact better properties than L, e.g.
every left (or right) ideal is principal. Our aim is to examine positional numeral systems
in these two rings.

The main result is the following analogy of Gabriele Steidl’s result:

Proposition 3. Both in L and in W, the element (B is radiz of some GNS if and only if
81 #1 and 8] # 1.

A much more immediate result shows that in quaternions there is no GNS which is as
nice as Penney’s number system (—1 +1,{0,1}) in complex numbers:

Observation 4. (1) A two-element alphabet enables to express only a two-dimensional
subset of H.
(2) The same holds for an alphabet A C R.
(8) The alphabet of a GNS in L or W has always at least 4 digits.
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Greedy expansions and property (F)

MAGDALENA TINKOVA

In this talk, we will focus on different representations of numbers. In our daily life, we
use a decimal system and all of us know a binary system using digits 0 and 1. However,
we can also choose any real or complex number as a base to express all elements of R or
C. More precisely, our aim is to rewrite some number x as

N

T = Z anB"”

n=-—oo

where N € Z. Number 3 is called a base and coefficients a,, belong to a finite set of digits
A, which includes zero and is called an alphabet. In this talk, we will restrict to real bases
B8>1and A={0,1,...,[8] —1}.

Number z can have one, two or even infinitely many representations using 8 and our
fixed alphabet A. We will mention some of them and, finally, we will discuss so-called
greedy expansions, which, in some sense, are the largest among these representations.
To give an instance, we will show how to recognize them using the special expansion of
number 1.

If we add or multiply two integers, we get a number belonging to Z. Applying these
operations on some numbers with a finite number of nonzero digits after a decimal point
also leads to a number with the same property. However, a sum or a product of two
numbers with a finite greedy expansion, i.e., with an expansion ended with infinitely
many zeros, may have a greedy expansion with infinitely many nonzero digits.

If this situation does not occur, we say that 8 has so-called property (F). In the final
part of this talk, we will show several either sufficient or necessary conditions related to
the fulfillment of this property.
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Biases amongst products of two primes

FivLip BiALAS

There is much more small numbers in the form pq, where p, ¢ are prime numbers both
congruent with 3 modulo 4 than numbers with these prime numbers both congruent with
1 modulo 4.

In this talk we will recall Prime number theorem and similar theorem for primes in
arithmetic progression without proofs and then use them to prove asymptotic formula,
which will in special case help us understand, why there is more numbers of the first type
than of the second.

1. MAIN SECTION

Definition 1. Prime number function is the function 7 : ;{I — &, m(n) = |{p prime, p <
n}|. More generally if a,b € &,(a,b) = 1, then we define 7, 4: ;ﬂ — &, mep(n) =
|{p prime,p < n,p=b (mod a)}|.

Theorem 2 (Prime number theorem). Following equality holds

. m(x)
lim —— =1.
@00 In(x)

More generally if a,b are coprime positive integers, then

i Ta,b(T) 1
im ——~ = ,

r—r+00 ﬁ gp(a)

where ¢ is the Euler function.

Definition 3. Let n be a positive integer. We call a function x: | — M a Dirichlet
character modulo n, iff it is periodic with period of length n, x(d) = 0 < (n,d) > 1 and it
is multiplicative (Va,b € : x(a)x(b) = x(ab)). If Im(x) = {—1,0,1} we call the Dirichlet
character x quadratic.

Theorem 4. Let n be a positive integer and x a quadratic Dirichlet character modulo
n, then for n € {—1,1} following asymptotic formula holds

Hpg<z:ix(p) =xt@=nl _  Lx+oll)
iH{pa <z : (p,d) = (¢,d) = 1} loglogz '

where Ly, = > %, where p,q are always primes and the sum is taken over all primes.

2. CONCLUSION

‘We can see, that the difference between number of products of two primes with values 1
in x and the products of primes with values —1 in yx is surprisingly large — asymptotically
proportional to a constant times function m.

Similar methods can be used for computing asymptotics for products of more primes
or for primes in defined arithmetic progressions instead with the same quadratic Dirichlet
character.
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SCHEDULE

Thursday 15th.
13:30 Lunch
14:30 Tomas Nagy: Colouring knots
15:15 Jana Bartonova: Polynomial Closure of Classes of Regular Languages
16:00 Ondrej Binovsky: Why is an elliptic curve a torus?
16:45 Break
17:00 Jonatan Kolegar: Pseudovarieties of semigroups and irreducibility
17:45 Lada Peksova: Operads and algebras over operads
18:00 Jan Cizek: Talk
19:15 Dinner

Friday 16th.
8:15 Breakfast
9:00 Josef Svoboda: Curvature and Cohomology
9:45 Anna Gajdova: Lob’s Theorem and Self-Modifying Agents
10:30 Break
10:45 Pavel Francirek: ADC-forms
11:30 Eva Hainzl: p-adic numbers
12:15 Pavel Sury: Hilbert symbols
13:00 Lunch
14:45 Trip
19:15 Dinner
20:00 Marian Kechlibar: Talk
20:45 Rump session

Saturday 17th.
8:15 Breakfast
9:00 Petr Zima: Gelfand-Tsetlin Bases for Representations of the Symmetric Group
9:45 Martin Raska: Introduction to universal homogeneous structures
10:30 Break
10:45 Jakub Krasensky: Positional Numeral Systems in Quaternions
11:30 Magdaléna Tinkova: Greedy expansions and property (F)
12:15 Filip Bialas: Biases amongst products of two primes
13:00 Lunch
14:45 Puzzlehunt
19:15 Dinner

Sunday 18th.
10:00 Breakfast
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