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Low-Communication Parallel Quantum Multi-target preimage
search

ADOLF STREDA

The most important pre-quantum threat to AES-128 is the Oorschot-Wiener’s parallel
rho method. While the quantum algorithms (more specifically Grover’s algorithm) offer
us a significant asymptotic speed-up, this speed-up alone may not be significant enough
as they loose much of their potential on lengthy serial phases. To tackle this problem
Banegas and Bernstein introduced an algorithm which tries to combine the strengths of
Grover’s algorithm quantum speed-up and Oorschot-Wiener’s algorithm parallelization.

1. PARALLEL RHO

Parallel rho utilises similar idea as a traditional Pollard’s rho method. The intuitive
idea is that we want to search for collisions of F': {0,1}" — {0, 1}™ in parallel thus we will
have many different starting points. As the communication between machines to check
for collisions would have generated a significant overhead and saving all the results would
require too much space, we will have to utilize so-called distinguished points. This notion
has to satisfy two properties — it has to be easily verified and also tweakable probability
of their occurrence.

Definition 1. Fix d € {0,...,1}. Then z € {0,1}" is called distinguished point if the
first d bits are zero.

WO W e N
Wit w e > W {
Wy —‘{. WE  memmmmmemeeeaeeaaas - (W) =Wwp)

(W8, =Wg,)

With such notion it is enough to save the starting point xg_;, the path length d and the
distinguished point z4 ;. We can do this without loss of functionality as the collision of
two paths means that any subsequent points on these paths will also collide. There remain
two problems to be tackled — we need to set maximum path length to avoid cycles without
distinguished paths and tweak the parameters to make “Robin Hood” trails, which collide
with another path’s starting point, rare. This algorithm runs in O(N/pt) (p processors, t
ciphertexts, N ciphertext set size).

2. GROVER’S ALGORITHM

This is originally an algorithm for finding an object in a database without any ordering.
The basic idea is that we have a function S that returns 1 if the input is the item we are
looking for and 0 otherwise.
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At first every item in the database is assigned the same amplitude (a complex number).
Now we have to repeat two phases approximately O(\/N ) times — in the first phase we use
function S to perform controlled rotation (shift the phase by 7 of items in the pre-image of
1 under S), then we apply diffusion operator which performs an inversion about average.
After several iterations we will measure, with a high probability, a value corresponding to
the item in the pre-image of 1 under S. This algorithm runs in O(/N/t) (¢t ciphertexts,
N ciphertext set size).

Grover diffusion operator
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Repeat O(v/IN) times

3. HYBRID ALGORITHM

In order to utilise quantum computer properties we have to modify a parallel rho,
e.g. we will need the algorithm to be reversible (i.e., every step of computation can be
reversed). To make basic logic gates reversible we will need a Toffoli gate.

Definition 3. A Toffoli gate is a gate that maps (z,y, 2) — (z,y, 2+ zy), z,y,z € {0,1},
where + means XOR.

It is straightforward to prove that any logical gate can be simulated by Toffoli gate,
e.g. we can fix third input bit of Toffoli gate to one (such fixed bits are called ancilla
bits) produces reversible NAND gate which is universal logical gate.

We will now utilize said algorithms to e.g. find a pre-images of fixed (y1,y2,-..,9t)
under function H: k — AES)(0).

e Input vector (z1,x2,...,T¢)

e Compute, in parallel, the chain ends for x1,z2,...,z: (parallel-rho)

e Compute chain ends for y1,y2,...,y: (parallel-rho)

e Sort chain ends for y1,y2,...,y: and z1,22,...,x: (odd-even mergesort)

e If there is a collision between chain end for x; and y; recompute the chain for x;
and check every chain element whether it is pre-image of y; (Grover’s algorithm)

e Output 0 if pre-image was found, otherwise 1

These steps should produce an algorithm running in O(y/ N/pt1/2) (p processors, ¢ cipher-
texts, N ciphertext set size).



Avoiding additive cubes

BARBORA HUDCOVA

In this talk we will explore the so-called avoidability problems from the area of combi-
natorics on words. The aim is to construct infinite words over finite alphabets which avoid
a given pattern. We will look at various patterns that have been considered in the past
and discuss how such “non-repetitive” words avoiding these patterns can be expressed.

1. BASIC NOTIONS FROM COMBINATORICS ON WORDS

Let ¥ be a non-empty finite set. We will call ¥ an alphabet. Each a € ¥ is called a
letter. A (finite) word over ¥ is any sequence of the form

U= UQUL * * * Unp,, such that u; € X for all 7.

3>* denotes the set of all words over X. € € ¥* denotes the empty word. The length of
u € ¥* is the number of elements in u. For u = ug - - - un we write |u| =n + 1.

Let u = wouy - -un, v = vo---vm be two words over 3. By uv we understand the
concatenation of the words u, v. That is

UV = UQUL -+ UpVOUL * * * U«

We say v is a factor of u, we write v € u, if there exist z,y € ¥* such that u = zvy. If
x = € we call v the prefiz of u.
An infinite word over ¥ is any infinite sequence of the form

w = wowiws - -+ such that w; € X for all .

We say u € ¥* is a factor of w if there exist z € ¥* and y infinite word over X such that
W = zuy.
Let ¥ = {a1,a2,...an}, w € ¥*. Then |w|e; denotes the number of occurrences of a;
in w. We define the following map
P: ¥ - N”
Y(w) = ([wlays [wlas, -+ 5 [wla,)T-

We call ¢ the Parikh map and ¢ (w) the Parikh vector of w.

2. PATTERN DEFINITIONS

Let 3 be an alphabet and k € N, k > 2. We will define the following patterns.

Powers. We say u € X* is a k-power if w = gx ...z, where x € £* \ €.

k times
Abelian Powers. We say u € X* is an abelian k-power, if u = x122...2; where z; €

* for all i and for each i,j € {1,2,...,k} we have that ¢ (z;) = ¢ (z;).

Additive powers. Let X C N be an alphabet, w € ¥*. Then S(w) = wo + w1 + - - + wy, is
called the sum of w. We say w is an additive k-power if w = z1x3---x; where each x; €
3*) |z1| = |x2| = - = |zk| and S(z1) = S(z2) = -+ = S(zk).



3. ITERATED MORPHISMS

A map ¢: X* — ¥* is a morphism if ¢ satisfies ¢(zy) = p(x)p(y) for all z,y € T*. If
there exists a € ¥ such that p(a) = az, where € X* \ €, we say ¢ is prolongable on a.
Proposition 1. If p: ¥* — X* 4s prologable on a, that is p(a) = ax for some x € ¥* \ ¢,
we have @™ (a) = axp(z)p?(z) ... " 1(z) for each n € N.

Therefore, we can define the limit c?’}(a) = lLr11 e (a) = axo(x) () 3 (x) - .

This method of iterating morphisms is very often used when constructing infinite words
avoiding some pattern.

4. ADDITIVE CUBE FREE WORDS

In 2014, a group of authors constructed the first infinite word over {0, 1, 3,4} which
avoids additive cubes. In my thesis I present a similar word with the same property which
I found by a brute force search. This word is defined below.

Let ¥ ={0,1,3,7} and ¢: ¥* — ¥* ba a morphism defined as follows:

©(0) = 03
p(l) =173
e(3)=1

»(7) =01.

_>
We put w := ¢“(0) = 0317301103737303 - - - .

Theorem 2. w avoids additive cubes.



Profinite semigroups and their importance in the theory of
regular languages

JANA BARTONOVA

In the talk we will show several different points of view to profinite semigroups, we’ll
explain their equivalence and the connection to the theory of regular languages. The talk
was prepared by use of the paper Profinite semigroups and applications (lecture notes
taken by Alfredo Costa, 2005) by Jorge Almeida who developed the theory of profinite
semigroups notably.

1. PROFINITE SEMIGROUP

Definition 1. A directed set (I,<) is a set I together with a quasiorder (i.e. a reflexive
and transitive binary relation) < on I such that every pair of elements of I has a common
upper bound.

Definition 2. A topological semigroup is a semigroup S with a topology 7 on S such that
the semigroup operation -: S x S — S is a continuous function in the topological space
(8,7).
Definition 3. Let A be a finite set. A category of A-generated topological semigroups
consists of:
e objects — functions ¢p: A — S to topological semigroups S such that the image
p(A) generates a dense subsemigroup in S,
e morphisms f: ¢ — 1 (where p: A — S and ¢: A — T are objects) — given by
continuous homomorphisms f’: S — T such that the equality f’ o ¢ = % holds.

Hereafter all finite topological semigroups will be endowed with a discrete topology.

Definition 4. Let (I,<) be a directed set. A projective/ inverse system of finite A-
generated topological semigroups consists of:

e a set of finite A-generated topological semigroups {¢;: A — S; | i € I},

e a set of connecting morphisms — a set of continuous homomorpisms {¢;;: S; —
Si |47 €I, i < j} such that

— for all ¢ € I the homomorphism ¢;; is the identity on S,

— forall 4,5,k € I, i < j <k the equality ¢;; o or; = pg; holds.
A projective/ inverse limit of this projective system is an A-generated topological semi-
group a: A — S together with a set of continuous homomorpisms {a;: S — S; | i € I'}
such that

e forall 4,5 € I, i < j the equality ¢;; o a; = oy holds,

e for every A-generated topological semigroup 5: A — T together with a set of
continuous homomorpisms {3;: T'— S; | © € I} such that foralli,j € I, i < j the
equality ¢j; o 8; = B; holds there exists a continuous homomorphism v: T" — S
such that for all ¢ € I the equality o; oy = 3; holds.

A profinite semigroup is a projective limit of a projective system of finite A-generated
topological semigroups, for some finite set A.



YA

<

2. FREE PRO-V SEMIGROUP
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Definition 5. A pseudovariety of finite semigroups is a non-empty class of finite semi-
groups closed under subsemigroups, homomorphic images and finite direct products.

Definition 6. Let A be a finite set and V be a pseudovariety of finite semigroups. A free
pro-V semigroup, denoted by 24V, is a projective limit of a projective system of all
A-generated topological semigroups from V.

Proposition 7 (Universal property of a free pro-V semigroup). Let a: A — Q4V be
a free pro-V semigroup and let p: A — S be a function to a semigroup S € V. Then
there exists a unique continuous homomorphism @: QaV — S such that o a = .

3. FREE PRO-V SEMIGROUP AS A COMPLETION OF A CERTAIN METRIC SPACE

For a finite set A and a pseudovariety of finite semigroups V we denote by Q4V the
variety of semigroups generated by V.

Definition 8. For u,v € 24V we define
d(u,v) = {2_“”’”) ifu#ov

0 ifu=w
where 7(u,v) denotes the least cardinality of a semigroup S € V such that there exists
a homomorphism ¢: Q4V — S satisfying @(u) # o(v).
Proposition 9. (Q4V,d) is a metric semigroup and its completion considered as a topo-
logical semigroup is isomorphic to QAV.
4. IMPLICIT OPERATIONS

Definition 10. A n-ary implicit operation on a pseudovariety V is a mapping w which
assigns to every semigroup S € V a n-ary operation wg: S™ — S such that for every pair
of semigroups S, T € V and for every homomorphism f: S — T the equality

fows =wro
holds where f™: S® — T™ is a homomorphism defined by f™(s1,...,sn) = (f(s1),---, f(sn)).
For every w € Q4V and every semigroup S € V we define a function wg: S4 — S by
ws(p) = P(w)
where 3: Q4V — S is the unique continuous homomorphic extension of p: A — S.

Proposition 11. Let A be a fized set of cardinality n. The mapping which assigns to
every element of Q4V a class of functions (Ws)sev is a bijection between Q 4V and a set
of all n-ary operations on V.



Euclidean proofs of Dirichlet’s Theorem about primes in
arithmetic progressions

MARTIN CECH

1. INTRODUCTION

About 300 BC, Euclid used a simple but beautiful argument to prove that there are
infinitely many prime numbers. More than 2000 years later, Dirichlet showed that there
are infinitely many primes in every arithmetic progression an 4 b with coprime a and b.
His proof was much more complicated, it used analytic arguments and the machinery of
L-functions. However, in some particular cases (e.g. the arithmetic progression 4k + 3),
it is possible to modify Euclid’s simple argument to prove Dirichlet’s theorem for this
arithmetic progression.

The topic of the talk will be to investigate to what extent is it possible to generalize
Euclid’s simple proof and give an easy condition to determine whether Euclidean proof in
our sense exists for a given progression.

2. EUCLIDEAN PROOFS

One of the main issues is to define what we actually mean by a Euclidean proof. Let
us start with the definition of prime divisors of polynomials.

Definition 1. Let f € Z[z] be a polynomial with integer coefficients. We say that a
prime number p is a divisor of f if p|f(k) for some integer k. The set of all prime divisors
of f is denoted by P(f).

Divisors of polynomials have several interesting properties. The following can be proved
using an argument similar to Euclid’s:

Theorem 2. If f € Z[xz], then P(f) is infinite.

The next theorem is more surprising and will have an important corollary for us.
Theorem 3 (Nagell). Let f,g € Z. Then P(f)N P(g) is infinite.

After several examples, we will see that the following definition is convenient.

Definition 4. Let a,b be coprime integers. We say that there exists a Euclidean proof
of Dirichlet’s Theorem for the progression an + b if there exists a polynomial f such that
with finitely many exceptions, all p € P(f) are = 1,b (mod a).

Two remarks need to be made about the definition of Euclidean proof.

First, why do we allow the prime divisors to be = 1 (mod a)? We will see that it is
not possible to get rid of this condition, i.e., every polynomial has infinitely many prime
divisors which are = 1 (mod n) for any n. This will be the important corollary of Nagell’s
theorem.

Second, it is not obvious at first glance that the existence of a Euclidean proof in our
definition actually ensures the existence of infinitely many primes in the given arithmetic
progression. However, it can be proved using a Euclidean argument together with the
Chinese remainder theorem.



3. GALOIS THEORY AND CYCLOTOMIC FIELDS

One of our main tools will be Galois theory. This section is devoted to the main
definitions and facts we are going to use.

Definition 5. Let L/Q be an extension of fields. Then Gal(L/Q) denotes the group of
all automorphisms of L (i.e., bijective homomorphisms L — L) which pointwise fix the
subfield Q.

Galois groups have several important properties:

e the only elements of L fixed by all elements of the Galois group Gal(L/Q) are
the rational numbers.

o If we pick an intermediate field Q C K C L and take those elements of Gal(L/Q)
which fix the intermediate field K, we receive a subgroup of the Galois group.
This group is called the fizing group of K.

e Vice versa to the previous case, if we are given a subgroup H of the Galois group,
we can take all elements fixed H. These elements will form an intermediate field
called the fized field of H.

27

For k € N, let ¢;, denote the primitive k*" root of unity, i.e., ¢z =e k .
Definition 6. Let k € N. Then Q((y) is called the k" cyclotomic field.

The Galois group of cyclotomic fields can be described as follows: since (j, is a generator
of that field, each of its Galois automorphism o is uniquely determined by o ((;). Because
i is a primitive kt" root of unity, o(¢x) has to be one as well. The primitive kP roots
of unity are exactly numbers of the form X7 with ¢ € Z/(kZ)* (where the last group
denotes all invertible elements modulo k).

Therefore if by oy we denote the automorphism satisfying o¢((x) = Cf;, we see that
this gives us an isomorphism Gal (Q({;)/Q) ~ Z/(kZ)*.

We will see that the condition for a Euclidean proof to exist for the progression an + b
is that {1,b} be a subgroup of Z/(aZ)*, i.e., that b> =1 (mod a).

10



Pappos’s theorem — several proofs and variations

IvANA TRUMMOVA

Introduction to a part of algebraic geometry, which is neither crucial nor very neces-
sary, but good-looking and minimalistic. The only objects involved in the statement of
Pappos’s theorem are points and lines, and the only relation needed in the formulation of
the theorem is incidence.

Key notions:

1. THE HEXAGON THEOREM OF PAPPOS

Theorem 1 (The Hexagon theorem of Pappos). Let A, B, C be three points on a straight
line and let X, Y, Z be three points on another line. If the lines AY , BZ, CX intersect
the lines BX, CY, AZ, respectively, then the three points of intersection are collinear.

Theorem 2 (A Euclidean version of Pappos’s theorem). Consider two straight lines a
and b in Euclidean geometry. Let A, B, C be three points on a and let X, Y, Z be
three points on b. Then the following holds: If AY ||BX and BZ||CY then automatically
AZ|CX.

Theorem 3 (Another Euclidean version of Pappos’s theorem). Start with a triangle A,
B, C. Draw a point P on the line AB. From there draw a parallel to AC' and form
the intersection with BC. From this intersection draw a parallel to AB and form the
intersection with AC and continue this procedure as indicated in the picture. After siz
steps you will reach point P again.

2. VARIATIONS AND GENERALIZATIONS

Theorem 4 (Variation 2: Cayley-Bacharach-Chasles theorem). Let A and B be two
curves of degree three intersecting in mine proper points. If siz of these points are on a
conic, the remaining three points are collinear.

Theorem 5 (Variation 1: Pascal’s Hexagon theorem). Let A, B, C, X, Y, Z be siz points
on a conic. If the lines AY , BZ, CX intersect the lines BX, CY , AZ respectively, then
the three points of intersection are collinear.

Theorem 6 (Variation 3: Miquel’s theorem). Consider four points A, B, C, D on a
circle. Draw four more circles C1, Ca, Cs3, Cy4 that pass through the pairs of points (A, B),
(B,C), (C,D), and (D, A), respectively. Now consider the other intersections of C; and
Cit1 fori=1,...,4 (indices modulo 4). These four intersections are again cocircular.

11



Groebner basis and solutions of a system of polynomial equations

LUKAS KUBEJ

A Groebner basis is a special basis of a polynomial ideal, that allows many important
properties of the ideal to be deduced easily. This lecture will cover basic properties of
Groebner basis, way of finding them and their use in finding solutions of a system of
polynomial equations.

1. GROEBNER BASIS

Definition 1. Let I C k[z1,..., %] be nonzero ideal. Let’s denote LT(I) the set of all
leading terms from I. Finite subset {g1,...,gs} of ideal I is called Groebner basis, if

(LT(g1), -, LT(gs)) = (LT(I)).

Lemma 2. Fiz a monomial order > on Ny and let fi1,...,fn € klz1,...,2n]. Then
every f € k[z1,...,zn] can be writen as

f=aifi+ - +anfn+r,

where r,a; € k[x1,...,2zn] and either r = 0 or r is a linear combination of monomials,
none of which is divisible by any of LT(f1),...,LT(fn). We will call v a remainder of f
on division by f1,..., fn.

Lemma 3. Let G = {g1,...,9s} be a Groebner basis of an ideal I C klzi,...,Tn]
and f € k[z1,...,zn]. Then there exists a unique r € k[z1,...,xn] with the following
properties:

e No term of r is divisible by any of LT(g1),...,LT(gs).

o There exists g € I such that f =g+ .
Lemma 4. Let f € k[z1,...,zn] and G = {g1,...,9s} be a Groebner basis of an ideal
I C klz1,...,zn]. Then f € I if and only if the reminder of f on division by G is zero.

2. ELIMINATION THEOREM

Theorem 5 (Elimination theorem). Let I C k[z1,...,zn] be an ideal and let G be a
Groebner basis of I with respect to lexicografical order where x1 > -+ > xy. Then for
every 0 < 1 <n is the set

G :Gﬁk[ml+1,...,zn]

Groebner basis of the ideal I} Nk[zj41,...,Tn].

12



Cards, Permutations and Quadratic Reciprocity

JAKUB LOWIT

Given a prime p, it is often interesting to examine the function Z, — Z;,, which
maps z — z2. Especially, one would like to find its image, the set of all quadratic residues
modulo p. This isn’t easy at all, but many general properties of the quadratic residues can
be found. In 19th century, Euler conjectured the Law of Quadratic reciprocity, which was
proved by Gauss fifteen years later. Gauss himself called this result aureum theorema, the
golden theorem, and he has published 8 different proofs. During the next two centuries,
many other unrelated proofs vere found. The goal of this lecture is to show one of them,
which is due to Zolotarev, and which is especially beautiful and magical.

During the lecture, we shall revisit few basic facts and notions about permutations, the
groups Zp and Zp* and the quadratic residues. Our reward will be an elegant algabraic
proof of the Quadratic Reciprocity Law.

1. PERMUTATIONS AND THEIR SIGNS

Our proof of Quadratic Reciprocity rests upon the notion of a sign of a permutation,
so it is only fair to restate some easy observations about them.

Lemma 1 (Equivalent definitions of signs). The sign of a permutation o € Sy equals to
the parity of

(1) the number of transpositions in any decomposition of o

(2) the number of cycles of even length in o

(3) the number of inversions of o

Lemma 2. The sign is multiplicative, and it is the only epimorphism Sy — Zs.

2. GROUPS Zp AND Zy

Concerning theese object, we only state two well-known facts in very specific form.

Lemma 3 (Chinese Remainder Theorem). For any coprime a,b € N, we have Zgp =~
Za X Zb-

Lemma 4 (Existence of Primitive Roots). For every prime p, the group Z; is cyclic.
3. QUADRATIC RESIDUES

First, let us revise some notation and basic facts about quadratic residues.

Definition 5 (Legendre symbol). Let p b a prime, a € Z. Then we define the Legendre
symbol

0, if p|a,
a
<7) =<1, if a is quadratic resdue modulo p,
p .
—1, otherwise.
a —1
Lemma 6 (Euler’s criterion). For prime p > 3 and a € Zp, we have (7> =a"z
p

From this, we see the multiplicativity of the Legendre symbol. The following lemma
is a consequence of the Euler’s criterion.

13



Lemma 7 (Gauss’s lemma). Let p > 3 be a prime, a € Z. We denote by m the number

of elements i € Zy, for which ia € {%1, ...,p—1}. Then (ﬂ) =(-1™.
p

Now, we turn from well-known facts to the approach of Zolotarev.
Lemma 8 (Zolotarev’s lemma). For prime p > 3 and a coprime with p holds the equality

(f) = [E} , where the right-hand side stands for the sign of the permutation on Zp
p p
induced by multiplication with a.

Theorem 9 (The Law of Quadratic Reciprocity). For distinct primes p, q > 3 the

following equality holds
(3) ) (g) _ (71)(17*1)4(11*1) '
q p

So, the theorem shows a connection between “p being a quadratic residue modulo ¢”
and “q being a quadratic residue modulo p”. And this connection is not complicated at
all — it only depends of the values of p and ¢ modulo 4. So, knowing p, ¢ and whether
p is quadratic residue modulo g or not, we can instantly compute whether ¢ is quadratic
residue modulo p. The Quadratic reciprocity is a great tool in elementary numer theory.
I will not include the proof itself into this abstract, but anyone interested can use the
references.

4. REFERENCES

I would like to thank to Matthew Baker for his wonderful article The Zolotarev’s Mag-
ical proof of the Law of the Quadratic Reciprocity, which was being followed throughout
the lecture.
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Four squares and universal quadratic forms

ONDREJ BINOVSKY

We shall investigate the problem of representation of positive integers by integral qua-
dratic forms. Our attention is focused especially on the sums of squares. We prove the
famous result of Lagrange concerning the representation by four squares. In addition
we describe a method for determining the number of representation of integers as a sum
of two or four squares. Finally, we mention the 15 and 290 theorems of Conway and
Bhargava and the technique of escalation.

Definition 1. A quadratic form Q(x) = Q(z1,...,2n) over the integers is called positive
definite if Q(x) > 0 whenever x # 0.

Definition 2. A quadratic form Q(x) is said to represent an integer m if there exists x
such that Q(x) = m. Q(x) is called universal if it represents every positive integer.

Theorem 3. Let p be an odd prime number. Then
p=z2+y? & p=1 (mod4),

p=22+2y> & p=1,3 (mod38),
p=x2+3y> & p=3orp=1 (mod 3).

In order to prove Theorem 3 we shall require the following two lemmas.
Lemma 4. For every x,y, z, w,n € Z we have
(12 + ny2) (z2 + nw2) = (zz F nyw)? + n (zw + yz)?
Lemma 5. Suppose that N = a? + nb? with a,b relatively prime. Let ¢ = % 4+ ny? be a
prime divisor of N. Then there exist relatively prime integers c,d such that % = c24+nd?.
Next we prove
Theorem 6 (Lagrange). Fvery positive integer is the sum of four squares.

‘We need the following identity which expresses the fact that the norm of quaternions
is multiplicative.

Lemma 7. The following identity holds

(2} + 23 + a3 + ) (W} +v3 + 3 +v3)
= (z1y1 + z2y2 + z3y3 + :v4y4)2
+ (T1y2 — T2y1 + T3ys — T4Y3)?
+ (z1y3 — T3Y1 — T2ys + Tay2)?
+ (w1ya — Tay1 + T2y3 — z3Yy2)?

We can determine the number of representation of a positive integer as the sum of two
or four squares. In fact we have

Theorem 8. The number of integral solutions (x,y), = > 0, y > 0 to the equation
22 +y? =nis 2_ajn X(d), where x(n) is the nontrivial Dirichlet character modulo 4. In

other words the number of solutions is the excess of positive divisors of n of the form
4k + 1 over those of the form 4k + 3.
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It is easily seen that the total number of representations as a sum of two squares of a
positive integer n is 43, x(d). We observe that

(S wa®) = (1425, 0) = 14455, (Syn (@) @
= 1HATE XD T, ¢ =144 (1L — i+ )

After squaring the identity and transforming the right hand side (which is nontrivial but
elementary) we obtain a formula for the number of representations of a positive integer
as a sum of four squares.

Corollary. The number of representations of a positive integer n as a sum of four squares
883 i d 01 24341, 4 oaa & according to whether n is odd or even.

Theorem 9 (15). A quadratic form with integer matriz is universal if it takes the values
1,2,...,15.

Theorem 10 (290). A positive definite quadratic form is universal if it takes the values
1,2,...,290.
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Universal quadratic forms over number fields

KRISTYNA ZEMKOVA

This talk is focused on universal quadratic forms with coefficients in the ring of integers
of a number field. After a necessary introduction, some known results will be presented;
mostly for quadratic number fields. Finally, a construction of a universal quadratic form
in Q(\/ﬁ, \/3) will be shown; the last part is a joint work with Martin Cech, Dominik
Lachman, and Josef Svoboda.

1. INTRODUCTION

By a number field K we understand any algebraic extension of Q of finite degree;
therefore, every element of K is a root of a polynomial with coefficients in Q. The ring
of integers O of a number field K consists of all algebraic integers from K, i.e. the
elements of Ok are exactly the elements of K which are roots of monic polynomials with
coefficients in Z.

Definition 1. An element « € K is said to be totally positive, denoted a > 0, if o(a) > 0
for all embeddings o: K — R. The set of totally positive elements of O is denoted by
of.

K

A quadratic form over K is a homogeneous polynomial of degree 2 with coefficients
in Ok. A quadratic form is called classical if all off-diagonal coefficients are divisible by
2 (then all the entries of the corresponding matrix are elements of O), and diagonal
if all off-diagonal coefficients are 0 (and hence the corresponding matrix is diagonal). A
quadratic form Q(x) = Y ayjxix; is totally positive definite if 0(Q)(x) = > o(ay;)xix;
is positive definite for all embeddings o: K < R.

Definition 2. A quadratic form Q(x) is universal if it represents all the elements of O;,
i.e. if for every v € O; there exist ¢; € Ok, i =1,...,n, such that v = Q(c1,...,cn).

2. KNOWN RESULTS

Theorem 3 (Siegel, 1945). Let K be a totally real number field different from Q and
Q(V5). Then 3°1 ; x2 is not universal for any n.

Theorem 4 (Kim, 2000). Let K = Q(v/n2 — 1), n? — 1 square-free, and let ¢ be the
totally positive fundamental unit. Then the octonary diagonal form

2 2 2 2 2 2 2 2
z] + x5 + x5 + xi + exy + exg + €x7 + exy

is universal over O .

Theorem 5 (Blomer-Kala, 2015). Given any positive integer M, there exist infinitely
many real quadratic fields that do not admit (classical) universal quadratic forms in M
variables.

Theorem 6 (Blomer-Kala, 2017). Let K = Q(vV'D) and denote by miaq(D) the smallest
integer m such that there exists a universal quadratic form

Q(z1,...,Tm) = a123 + -+ + ama2,, aiEO;’;.
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Then
Myiag(D) < 8Mp,

where Mp is a constant given as a sum of the coefficients of the associated continued
fraction.
Moreover, there is
Mp < ev/D(log D)?

for an absolute constant ¢ > 0.

3. UNIVERSAL QUADRATIC FORMS OVER Q(\/i, \/3)

Definition 7. An element a € O is called indecomposable if it cannot be written as
a =+~ with 8,y € (9;. Equivalently, o € O is indecomposable if there does not
exist any § € O}t’ such that 6 < a.

Proposition 8. Any classical totally positive definite universal quadratic form over

Q(\/i, \/g) has at least 4 variables.
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Applications of Cryptography in Blockchain technology

IGOR ERZIAK

The invention of blockchain has led to creation of bitcoin and other cryptocurrencies.
This was possible thanks to a couple of interesting cryptographic primitives namely hash
functions and digital signatures.

In this lecture I would like to introduce the basic building blocks of the blockchain
technology. Emphasis will be given on how cryptographic primitives can be used to build
digital assets with similar (or better) properties as physical assets.

Definition 1. Cryptographic hash function is a function h: {0,1}* — {0, 1}"™ with
following properties:
e given a hash z € {0,1}" it is hard to find a message m € {0,1}* such that
z =h(m)
e given a message m; € {0,1}* it is hard to find a different message mo € {0,1}*
such that h(m1) = h(mz)
e it is hard to find messages m1,m2 € {0,1}* such that h(m1) = h(mz)
Definition 2. Digital signature scheme is a triple (G, S, V') where:
(1) G is a key generation algorithm that, given a security parameter, outputs a
keypair (private key, public key)

(2) S is a signing algorithm that, given a message and a private key, outputs a
signature.

(3) V is a verification algorithm that, given a message, signature and a public key,
outputs true if the signature is valid and false otherwise.
Moreover it has to satisfy that:
e Verification is valid if and only if the message was signed using the private key
corresponding to the given public key
e It is hard to impersonate someone, i.e. create a valid signature in the name of
someone else without the knowledge of his/her private key
Definition 3. Blockchain is a continuously growing list of records — blocks. Each block
contains:
e data (specific to the blockchain application)
e time-stamp
e hash pointer to the previous block
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Annihilators of the minus class group of an imaginary cyclic field

PAVEL FRANCIREK

Annihilators can be very useful when solving diophantine equations. This was demon-
strated by Preda Mihailescu who proved Catalan’s conjecture in 2002. Annihilators can
also help us to obtain some information about the ideal class group. In this talk we
shall provide some tools from algebraic number theory that are needed to understand the
essence of annihilating the ideal class group. Most of the presented results are classical,
except the last theorem which is an original result of the author.

1. THE IDEAL CLASS GROUP

Definition 1. A subfield F' of the complex numbers is called a number field if the degree
[F: Q) is finite.

Definition 2. Let A C C be the ring of all algebraic integers. Let F' be a number field.
The ring of algebraic integers of F', denoted by Op, is the intersection AN F'.

The ring Op is not a UFD generally, but it has a property that is almost as good:
Proposition 3. Every ideal a of Op different from (0) and (1) admits a factorization

a=p1---pr
into nonzero prime ideals p; of O which is unique up to the order of factors.

Definition 4. A nonzero finitely generated Op-submodule of F' is called a fractional
ideal of Op. A fractional ideal with one generator is a principal fractional ideal of F'.

Note. From now on, (fractional) ideals of O will be referred as ideals of F' and principal
(fractional) ideals of O will be referred as principal ideals of F.

Let us denote Ir and Pr the set of all ideals of F' and the set of all principal ideals
of F', respectively. Two ideals of F' can be multiplied in the usual way and this operation
makes Ir into an abelian group with P being its subgroup. The group C4(F) = Ir/Pp
is called the ideal class group of F. This group is finite and its size h = |C4(F)] is called
the class number of F.

2. ANNIHILATORS OF THE IDEAL CLASS GROUP

Definition 5. A number field K is abelian if K/Q is a Galois extension whose Galois
group Gal (K/Q) is abelian. When the Galois group is also cyclic, the field K is also called
cyclic.

Proposition 6. Let K be an abelian field of degree n = [K : Q]. Let p be an arbitrary
prime number. Then there exist (unique) positive integers ek (p) and gi (p) such that

iK<p)P;K(p> . peK(P)

POk =p 9k (p)’

where P1,p2,. .., Py (p) are distinct prime ideals of K. Moreover, ex (p)gk (p) divides n.

Definition 7. We say that a prime number p ramifies in K if ex (p) > 1, otherwise p is
unramified in K.
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For any positive integer n let ¢, = e27¥/™. The n-th cyclotomic field Q(¢rn) will be
denoted by Q.

Theorem 8 (Kronecker-Weber). If K/Q is a finite abelian extension, then K C Qn for
some n.

The smallest n with this property is called the conductor of K.

Theorem 9. Let K be an abelian field, Kt its mazimal real subfield, and let h and h™
be the respective class numbers. Then ht divides h.

The quotient h~ = hl'*' is called the relative class number of K.

The Galois group Gal (K/Q) acts on ideals of K, so the ideal class group C{(K) is
actually a module over the group ring Z[Gal (K/Q)]. Elements of Z[Gal (K/Q)] that an-
nihilate C/(K), are called annihilators of the class group. In other words, an annihilator
of the class group is an element 7 such that a” is principal for every ideal a of K.

For each n € N we define Stickelberger element as

= 3 (Lot € QiGal @/,
a(mod n)
(a,n)=1

where (z) denotes the fractional part of the real number z and o, € Gal (Q,/Q) is given
by 0a({n) = ¢%. Let K be an abelian field of conductor f. We define 9} = res Qf/K0f7
where

res g, /i Q[Gal (Q7/Q)] — Q[Gal (K/Q)]

is the ring homomorphism induced by the usual restriction resq, x: Gal (Qf/Q) —
Gal (K/Q).

Theorem 10 (Stickelberger). Let a be a fractional ideal of K, let B € Z|G], and suppose
’
that (3 - 0} € Z[G]. Then a?%% is principal.

3. IMAGINARY CYCLIC FIELDS

We fix an odd prime £. Let L be an imaginary cyclic field satisfying ¢ | [L : Q]. We
can take L as the compositum of a real cyclic field K of ¢-power degree and an imaginary
cyclic field F, £{r = [F : Q]. We have [K : Q] = £* for some k € N. Let us denote f and
m the conductors of F' and K, respectively. We further assume

e ( does not ramify in L (so £t fm),

e gcd(m, f) =1 (so fm is the conductor of L).
Let p1,...,p: be the primes ramified in K/Q. We set I = {1,...,t}. Let us denote
Gal (L/Q) by G. The ¢-Sylow subgroup Cl(L); of the ideal class group of L forms a
Z¢|G]-module. The elements

1 1-—
+ = s and e = T,

2 2

e

where 7 is the complex conjugation, form a full set of orthogonal idempotents. This gives
us the following decomposition

CUL), = e~ CUL), ® et CU(L),.

21



The minus part e~ C£(L), will be denoted by C4(L), .
For each n € N we define 6], = cor L/QnNLTeSQ, /0, nLOn, where the linear map

cor g,z QGal (Qn N L/Q)] — Q[Gal (L/Q)]
is defined for o € Gal (Q, N L/Q) by
cor L/QnﬁL(g) = Z T,
TlgpnL=0

where the sum is taken over all automorphisms 7 € Gal (L/Q) whose restriction to Q,NL is
o. Let S’ be the submodule of Q[G] generated by 6/, for all n € N. We set S = Z,[G]NS’.

Theorem 11 (Sinnott). Ideal S annihilates CL(L), .
Let Z=e"S={e s;s€ S}.

Theorem 12 (Sinnott). The ideal Z has a finite index in Zy[G]™ = e~ Z¢[G]. This index
is equal to
hz — éord@(h_)7

where h™ is the relative class number of L.
The group C4(L), is also annihilated by e*Z[G], so
I ® et Z[G] C Anng, () (CL(L),).
Question: Are there any other annihilators of C£(L), ?

We managed to construct (explicitly) an ideal J,Z C J C Zy[G]~ and we proved that
J annihilates C£(L), . Morevover, we were able to compute the relative index [J : Z]:
Theorem 13. For each j € {1,...,k} and s € N we define

o9 = i € Liex(pi) > €577}, fors=1
’ max{|{i € Liex(pi) > €9, s | gr(pi)gx (pi)} — 1,0}, else.

The ideal J annihilates C£(L), and the relative index [J : I] is given by the formula
[(J - I] =%,

where

k ) n k .
ulr 7j=1 n‘ek—l j=1

—is odd n#1

For example, if there are at least two primes pi1,p2 that ramify in K, and gr(p1) =
gr(p2) = r then J is larger than Z (there are new annihilators).

Putting Theorem 12 and Theorem 13 together we obtain the following corollary:

Corollary. The relative class number of L is divisible by £*.
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Inscribing polygons into Jordan curves

ToMAS YE

In 1911, German mathematician Otto Toepltitz conjectured that on every closed, sim-
ple curve in the Euclidean two dimensional space there can be found four points which are
the vertices of a square. To this day, proving the general case or finding a counterexample
to it is an open problem. However, if we slightly weaken the conclusion, particularly, if
we only demand the four points to form a rectangle, then there exists a beautiful solution
that combines geometrical and topological reasoning in a very nontrivial manner.

1. STATING OF THE INSCRIBED RECTANGLE PROBLEM

Definition 1. Let a,b be real numbers, a < b. A map 7: [a,b] — R? is called a Jordan
curve if

(1) ~ is continuous on [a, b]

(2) v(a) =~(b)

(3) ~ is one-to-one on [a,b)

Theorem 2 (Vaughan 1977). Let v be a Jordan curve. Then in the image of vy, there
exist four distinct points which are the vertices of a rectangle.

Remark 3. The main topic of the talk will be to introduce some topological concepts and
then use them to convince the audience that the theorem stated above indeed holds true.

Remark 4. It is only assumed that « is continuous. However, there exist continuous curves
that are differentiable nowhere. Therefore, we cannot a priori assume anything about it’s
differentiability. One might think, that he does not need to limit himself only to the
general case. It seems that if one can prove the theorem for a dense enough family of well-
behaved curves, the ugly curves can be expressed as limits of sequences of nicer curves with
rectangles inscribed in them. Though it is true, that the limit of a sequence of rectangles
is a rectangle, it so far seems impossible to make sure, that the limiting rectangles do not
collapse into a single point or a line segment, even in the case of smoother curves. Hence,
the limiting arguments fails to reach the desired conclusion here. This makes the problem
unsolvable using only the tools of differential geometry. Since the only assumption we
have is continuity, it feels natural to look for help in the field of topology, because here
continuous maps are the main objects of concern.

2. TOPOLOGICAL INGREDIENTS

Remark 5. 1 do not want to bore the audience with proving abstract lemmas about
homeomorphisms. Therefore I shall only present the necessary topological facts needed
for proving Theorem 2 and omit their proofs.

Definition 6. Let X and Y be topological space. A map f: X — Y is called a homeo-
morphism if

(1) f is one-to-one and onto

(2) f is continuous (in the topological sense i.e. it preserves open sets)

(3) f~1 is continuous
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Fact 1. Let X and Y be topological spaces and let map f: X — Y to be continuous, one-
to-one and onto. If X is compact and Y is a Hassdorf space then f is a homeomorphism.

Remark 7. We will be only working with nice compact and Haussdorf manifolds, therefore
to prove a space is homeomorphic to its image through some map f, we only need to show
that f is one-to-one and continuous.

Fact 2 (Gluing lemma). Let X and Y be topological spaces and let A and B be closed
subsets of X such that X = AUB. If f: A - Y and g: B — Y are continuous and
f(z) = g(z) Vo € AN B, then the map h: X — Y defined by

_Jfx) ifzeA
h(x){g(a:) ifrxeB

is a continuous map from X to Y.

Definition 8. A topological space is called a manifold if every point has a neighborhood
homeomorphic to RF for some fixed integer k.

Pseudo-definition 9 (Manifold orientation). I am aware that here I am on somewhat
unstable grounds. Orientation of a manifold is a property that is defined precisely using
algebraic topology which is a field I am not that familiar with, yet. Intuitively, if a
manifold is smooth, having an orientation means to have a continuous choice of the unit
normal vector all over the manifold. If a manifold is closed, being orientable means that
there is a clear distinction between the interior and the exterior of the manifold.

Remark 10. For the purpose of proving Vaughan’s theorem, I will be using these two
intuitive (but nontrivial) facts about orientation.

(1) Orientability is preserved by homeomorphisms

(2) The Mobius strip is not orientable and every manifold containing a part homeo-
morphic to the Mobius strip is not orientable.

3. SKETCH OF THE PROOF

Let us reparametrize v on the interval [0, 1]. Consider the set
M={z,y]:0<x<1, 0<y<uz}.

Then M is the set of all unordered pairs {z,y} and all singletons {z} from [0, 1] (Right
angled triangle in the first quadrant). Now consider the equivalence ~ defined on the unit
interval like this: [z,0] ~ [1,z]. We are basically gluing the legs of the right triangle M in
a special way. One can show, that the M/ ~ is homeomorphic to the Mobius band. Now
consider the map

f: M/~ - R*xR

v(z) +~(y)

2 s @) =@l |-

[[zy] ]~

Because 7y is Jordan, f is well defined and continuous. Then f maps the Mobius band
M/ ~ onto some kind of a manifold in R3. The image of f is some surface in R? and its
border (the image of the line containing the point [z, z]) is glued to the curve 7.

It can be shown that if f is one to one, than we can construct a homeomorphism from
the real projective plane (which is not orientable) to a closed compact manifold in R3
which orientable is. This will be a contradiction. So f must glue together two distinct
pairs of points. Hence, we found two distinct pairs of points, such that they share a
midpoint and all have the same distance from that midpoint. Then these four points
must be the vertices of a rectangle.
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RSA in post-quantum world

JIRi PAVLU

RSA is today one of the most well-known and widely used public key cryptography
algorithms. However, with the possibility of scalable quantum computers becoming a
reality, there is a widespread belief that it will be totally destroyed (via Shor’s algorithm)
since breaking it reduces to factoring.

But is it really true? We actually only know that it would break RSA and other
currently used algorithms as they are used on the internet today. So the question needn’t
actually be: What other scheme will we use? But instead we can just ask — are we able
to tune the RSA scheme in such a way that it won’t be vulnerable to quantum attacks?
And would it still be usable?

So in the presentation following things will be discussed:

Disadvantages of Shor’s algorithm.

Other factoring algorithms.

Computational complexity of different parts of RSA scheme and the cost of break-
ing it.

The possibility of still making RSA viable thanks to fine-tuning its parameters.
The limits of such RSA scheme.

We will thus see, that maybe RSA isn’t quite dead yet. And that with very careful
analysis we can make even ”"broken” schemes still useful and safe.
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Cracking linear congruential generators

PAVEL SURY

Linear congruential generators are among the oldest and simpliest ways to generate
pseudo-random numbers. We will show that this approach is unsuitable for cryptography,
because a sequence of generated numbers provides enough information to reveal the secret
(modulus and coefficient).

Moreover, we will show that there exists a reasonably small system of hyperplanes
that contains all the sequences of n generated values (represented as points in R™), which
might come up as an issue even in Monte Carlo applications (consecutive values are not
fully random, but have a fairly simple structure).

1. DEFINITIONS

Let m € N (modulus), k € N (coefficient), ro € N,r9 < m (initial seed). We define
r; € N recursively by:

ri = kr;_1 mod m.

The sequence (r;) will be called output of the linear congruential generator. We denote
u; = r;/m € [0,1) (normalised i-th value). Now, fix n € N (dimension) and denote
i = (Ui, ..y Uitn—1) € [0,1)™ (i-th point in n-dimensional unit hypercube).

2. VALUES FALL INTO HYPERPLANES (MARSAGLIA G., 1968)

Theorem 1. Let cp,...,cn—1 be integers with the property

(1) co+cik+ceak®+- - +cn1k" 1 =0 modm.
Then, for all i, there exists z € 7 such that 7; lies in the hyperplane
(2) coxo +c1T1+ - Fen_1Tn_1 = 2.

Observation 2. There are at most |co| + - -+ + |cn—1| hyperplanes intersecting the unit
cube.
Theorem 3. There is a choice of co,...,cn—1 (some of them non-zero) such that |co| +
st len—1| < (ntm)M/m,

3. CRACKING A LINEAR CONGRUENTIAL GENERATOR

Assume we have a LCG. We consider a modulus and a coefficient as our secret, and
generate four consecutive values rg, 71,72, 73.

Observation 4. Modulus divides ¢ = |(r2 — r1)? — (r3 — r2)(r1 — r0)|.

This way, we may approximate the modulus. We can factorise ¢ (or GCD(qu,...,¢) if
we have more than four values) and check the congruential relation with Euclid’s algorithm
for each suspected m.
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When will computers master the math?

MIROSLAV OLSAK

We will discuss the artificial intelligence (neural networks), formal theorem provers and
possible future connections and challenges. We outline the basic ideas behind Alpha Go,
the computer that has beaten humans in the game of Go, convolutional neural networks
and reinforcement learning. We continue with the formal math language and ideas how
these two disciplines can be combined.

1. NEURAL NETWORKS

Neural net is a differentiable function with multiple inputs, usually multiple outputs and
many inner coefficients.

Convolutional neural net is a special type of neural net used for image recognition. The
idea of convolutional layer in neural net is to use the same function in every part of
the picture (pictures should be invariant translation).

Supervised training of a neural net is the process of setting the inner coefficient so that it
gives on average the most appropriate answers to prepared inputs.

Reinforcement learning is a process of setting the coefficients with the purpose of maxi-
mizing the returns in an environment (say a computer game) controlled by the neural
net.

2. FORMAL MATH

HOL (higher order language) is a typed language covering a basic yet general lambda
calculus. There are 4 basic types of symbols — variables, constants, abstraction symbol
and application symbol.

Application is just a simple function application — it receive a function f: A — B and an
element z € A and returns the f(z).

Lambda abstraction, on the other hand, makes functions. It receives the bounded variable
and the body of the function and returns the appropriate function. For example, the
function Ay (2z) is the function that doubles its input. So for example (A (2x))(3) = 6.

The connection-based proving goes in the following way. We start with the negation of the
statemtnt we want to prove. In every step we have a disjunction, say ¢ V .... Using
an axiom Y1 V2 V...V V ¢, we can replace ¢ by 1 Vo V...V (if k=0 we
just erase the ¢) Our goal is to eliminate all the clauses in the disjunction.
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