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Introduction

Definition (RSA cryptosystem)

Let N = pq be the product of two primes. Let e, d be two integers
satisfying

ed ≡ 1 (mod φ(N))

where φ(N) = (p − 1)(q − 1).

N . . . RSA modulus

e . . . encryption exponent

d . . . decryption exponent

〈N, e〉 . . . public key

〈N, d〉 . . . private key
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Low Exponent RSA with Related Messages

What does Marvin know?

I public key 〈N, e〉
I k ciphertexts of different messages produced using the same

public key 〈N, e〉
I polynomial relation between the messages

What is Marvin’s goal?

I to recover the plaintext messages
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Two messages with affine relation

m1,m2 ∈ Z∗N , m2 = αm1 + β, α, β ∈ Z∗N

c1 ≡ me
1 (mod N)

c2 ≡ me
2 ≡ (αm1 + β)e (mod N)

me
1 − c1 ≡ 0 (mod N)

(αm1 + β)e − c2 ≡ 0 (mod N)

Let z denote the unknown message m1:

ze − c1 ≡ 0 (mod N)

(αz + β)e − c2 ≡ 0 (mod N)

Applying Euclidean algorithm should yield the linear polynomial z −m1.

z −m1 = gcd (ze − c1, (αm1 + β)e − c2) ∈ ZN [x ]



Two messages with polynomial relation

We have p ∈ ZN [x ], m2 = p(m1), deg(p) = δ.

ze − c1 ≡ 0 (mod N)

(p(z))e − c2 ≡ 0 (mod N)

Euclidean algorithm should yield z −m1.

z −m1 = gcd (ze − c1, (p(z))e − c2) ∈ ZN [x ]



Resultant

p(x) = pmx
m + . . .+ p1x + p0, deg(p) = m

q(x) = qnx
n + . . .+ q1x + q0, deg(q) = n

Resx(p, q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pm 0 0 . . . 0 qn 0 0 . . . 0
pm−1 pm 0 . . . 0 qn−1 qn 0 . . . 0
pm−2 pm−1 pm . . . 0 qn−2 qn−1 qn . . . 0

...
...

...
. . .

...
...

...
...

. . .
...

p1 p2 p3 . . .
... q1 q2 q3 . . .

...

p0 p1 p2 . . .
... q0 q1 q2 . . .

...

0 p0 p1 . . .
... 0 q0 q1 . . .

...
...

...
...

. . . p1
...

...
...

. . . q1
0 0 0 . . . p0 0 0 0 . . . q0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Fact: The resultant of two polynomials with coefficients in an integral domain
is zero if and only if they have a common divisor of positive degree.
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Implicit polynomial relation

What if m1 and m2 satisfy an implicit polynomial relation?

p(m1,m2) ≡ 0 (mod N), deg(p) = δ

Then we have:

P1 = p(m1,m2) ≡ 0 (mod N)

P2 = me
1 − c1 ≡ 0 (mod N)

P3 = me
2 − c2 ≡ 0 (mod N)



Implicit polynomial relation

P1 = p(x , y) ≡ 0 (mod N)

P2 = xe − c1 ≡ 0 (mod N)

P3 = y e − c2 ≡ 0 (mod N)

Resultant of P1(x , y) and P2(x) with respect to the variable x will
yield a polynomial P4(y), deg(P4) ≤ δe.

gcd (P3,P4) should yield the linear polynomial y −m2

gcd (P1,P2) should yield the linear polynomial x −m1
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Wiener’s Attack

Theorem (M. Wiener)

Let N = pq with q < p < 2q. Let d < 1
3N

1
4 . Given a public key

〈N, e〉 with ed ≡ 1 (mod φ(N)), an adversary can efficiently
recover d .

ed − kφ(N) = 1 kφ(N) = ed − 1 e < φ(N) =⇒ k < d < 1
3N

1
4∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣ =
1

dφ(N)∣∣∣∣ eN − k

d

∣∣∣∣ =

∣∣∣∣ed − kφ(N) + kφ(N)− kN

Nd

∣∣∣∣ =

∣∣∣∣k(N − φ(N))− 1

Nd

∣∣∣∣ ≤
∣∣∣∣∣3k
√
N

Nd

∣∣∣∣∣ =
3k

d
√
N
≤ 1

dN
1
4

<
1

2d2



Wiener’s Attack

∣∣∣∣ eN − k

d

∣∣∣∣ < 1

2d2

=⇒ k
d is a convergent of the continued fraction expansion of e

N
(Lemma 3)
=⇒ e

N has maximum of log2N convergents
=⇒ we obtain k and d
=⇒ we obtain φ(N)
=⇒ we can factor N
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Countermeasures

1. 〈N, e〉 → 〈N, e
′
〉, e

′
= e + tφ(N) for some large t.

If e
′
> N1.5 attack cannot be mounted.

2. CRT: choose d so that

dp = d mod p − 1 and dq = d mod q − 1

are both small.

Decryption:
Mp = C dp (mod p)

Mq = C dq (mod q)

Using CRT find M ∈ ZN satisfying:

M ≡ Mp (mod p) & M ≡ Mq (mod q)

M = C d (mod N)

dp and dq are small but d mod φ(N) can be large.
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Wiener’s Attack

Boneh and Durfee: d < N0.292

Open Problem

Let N = pq and d < N0.5. If Marvin is given 〈N, e〉 with ed ≡ 1
(mod φ(N)) and e < φ(N), can he recover d?



Coppersmith’s Attack



Theorem 5

I N ∈ Z

I f ∈ Z[x ] is monic, deg(f ) = δ

I X := N
1
δ
−ε for some ε ≥ 0

Then, given 〈N, f 〉, Marvin can efficiently find all integers |x0| < X
satisfying

f (x0) ≡ 0 (mod N)

The running time is dominated by the time it takes to run the LLL
algorithm on a lattice of dimension O(w) with
w = min(1ε , log2(N)).
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Lemma 6

Let h(x) ∈ Z[x ] be a polynomial of degree δ, and let X be a
positive integer. Suppose ‖h(xX )‖ < N√

δ
. If |x0| < X satisfies

h(x0) ≡ 0 (mod N) then h(x0) = 0 holds over the integers.

Theorem (Cauchy-Schwarz)

For each u1, . . . , un ∈ C and v1, . . . , vn ∈ C:

n∑
i=1

∣∣∣uTi vi ∣∣∣ ≤ n∑
j=1

|uj |2
n∑

k=1

|vk |2
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f (x0) ≡ 0 mod N

f (x0)k ≡ 0 mod Nk

gu,v (x) := Nm−vxuf (x)v

where 0 ≤ v ≤ m and 0 ≤ u.
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GOAL Find an integer linear combination h(x) of
polynomials gu,v (x) such that ‖h(xX )‖ < Nm√

deg(h)
.

How to find h(x)?
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Lattices

Definition
Let u1, . . . , uω ∈ Zω be linearly independent vectors. A (full-rank)
lattice L spanned by 〈u1, . . . , uω〉 is defined as:

L := a1u1 + · · ·+ aωuω ∈ Z.

det(L) := det

− u1 −
...

− uω −





LLL Algorithm

INPUT b1, . . . , bω - basis of L (L is spanned by 〈b1, . . . , bω〉)
OUTPUT b′1, . . . , b

′
ω - basis of L satisfying:

‖b′1‖ ≤ ‖b′2‖ ≤ · · · ≤ ‖b′i‖ ≤ 2
ω(ω−1)
4(ω+1−i) det (L)

1
ω

‖b′1‖ ≤ 2
ω
4 det (L)

1
ω
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Our case

We view polynomials gu,v (x) as vectors and study the lattice L
spanned by them.
We let:

v = 0, . . . ,m

u = 0, . . . , δ − 1

Hence the lattice has dimension ω = δ(m + 1).



Some big matrix called G

gu,v (x) := Nm−vxuf (x)v v = 0, . . . ,m u = 0, . . . , δ − 1
ω = δ(m + 1)



1 x1 x2 · · · xδ−1 xδ · · · xδ(m+1)−1

g0,0(xX ) Nm

g1,0(xX )
... NmX

g2,0(xX )
...

. . . NmX 2

...
...

. . .
. . .

gδ−1,0(xX )
...

. . . NmX δ−1

g0,1(xX )
...

. . . Nm−1X δ

...
...

. . .
. . .

gδ−1,m

... . . . . . . . . . . . . . . . . . . X δ(m+1)−1



det(G) = N
1
2
δm(m+1)X

1
2
(δ(m+1)−1)(δ(m+1)) = N

1
2
mωX

1
2
(ω−1)ω
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Applying the LLL algorithm on matrix the G we obtain a
polynomial h(xX ) ∈ L:

‖h(xX )‖ ≤ 2
ω
4 det(G )

1
ω =

= 2
ω
4 N

1
2
mX

1
2
(ω−1) ≤ Nm

√
ω
. . . for large enough m

Let h(x) ∈ Z[x ] be a polynomial of degree δ, and let X be a
positive integer. Suppose ‖h(xX )‖ < N√

δ
. If |x0| < X satisfies

h(x0) ≡ 0 (mod N) then h(x0) = 0 holds over the integers.
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ω
4 det(G )

1
ω =
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ω
4 N
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1
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√
ω
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Let h(x) ∈ Z[x ] be a polynomial of degree δ, and let X be a
positive integer. Suppose ‖h(xX )‖ < N√

δ
. If |x0| < X satisfies

h(x0) ≡ 0 (mod N) then h(x0) = 0 holds over the integers.



Applications of Coppersmith’s Theorem



Håstad’s Broadcast Attack





















Håstad’s Broadcast Attack

Suppose ei = 3 ∀i ∈ {1, 2, . . . , k}, k ≥ 3.
Marvin obtains: C1,C2,C3 where:

C1 ≡ M3 (mod N1)

C2 ≡ M3 (mod N2)

C3 ≡ M3 (mod N3)

Then from CRT we have:

C
′ ≡ M3 (mod N1N2N3) M3 < N1N2N3

=⇒ M =
3
√
C ′
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Håstad’s Broadcast Attack

Suppose that for each participant Pi , Bob has a fixed polynomial
fi ∈ ZNi

[x ].

M → (fi (M))ei = Ci

Suppose that Marvin learns Ci .
Håstad showed that if enough parties are involved, Marvin can
recover M.



Håstad’s Broadcast Attack

Theorem (Håstad)

Let N1, . . . ,Nk be pairwise relatively prime integers, and set
Nmin = mini (Ni ). Let gi ∈ ZNi

[x ] be k polynomials of maximum
degree δ. Suppose there exists a unique M < Nmin satisfying

gi (M) ≡ 0 (mod Ni ) for all i = 1, . . . , k .

Under the assumption that k > δ, Marvin can efficiently find M
given 〈Ni , gi 〉ki=1.



Håstad’s Broadcast Attack

Proof.

N̄ := N1N2 · · ·Nk

WLOG, gi is monic and deg gi = δ ∀i = {1, 2. . . . , k}.

g(x) :=
k∑

i=1

Tigi (x),

Ti =

{
1 mod Nj , i = j

0 mod Nj , i 6= j

g is monic (mod N̄), g(M) = 0 (mod N̄)

M < Nmin ≤ N̄
1
k < N

1
δ
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Håstad’s Broadcast Attack

Conclusion - Use random padding !



Coppersmith’s Short Pad Attack

Suppose e = 3;R,R
′

random pads such that R
′

= R + r , where

|r | < N
1
9 ; M ∈ Z∗N

c ≡ m3 ≡ (2kM + R)3 (mod N)

c
′ ≡ (m

′
)3 ≡ (2kM + R

′
)3 ≡ (m + r)3 (mod N)

Eliminating m:
Resm(m3 − c, (m + r)3 − c

′
) =

r9 + (3c − 3c
′
)r6 + (3c2 + 21cc

′
+ 3(c

′
)2)r3 + (c − c

′
)3 ≡ 0

(mod N)

|r | < N
1
9 → recover r with Coppersmith’s method

And then use Franklin-Reiter method to recover m.
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Partial Key Exposure

Suppose we have obtained 300 least significant bits of d; e = 216 + 1

We want to factorize N.

ed − kφ(N) = 1, k < e

ed − k(N − p − q + 1) = 1

ed − k(N − p − q + 1) ≡ 1 (mod 2l), for l ∈ 1, · · · , 300

ped − k(pN − p2 − N + 1) ≡ p (mod 2l)

→ obtain 300 least significant bits of p
p = rx + t, where r = 2300, t known

We compute r−1 (mod N)

r−1p = x + r−1t ≡ 0 (mod p)

f (x) := x + r−1t ≡ 0 (mod N)
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Thank you for your attention!
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