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Tomáš Sladovńık
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British Elevator – Part I

Jan Butora

In this talk we’ll focus on some concepts needed to understand one of the easy algo-
rithms for computing discrete logarithm on elliptic curves of certain properties. Firstly
we introduce p-adic numbers, their representation and some of their properties. In the
second part we take a brief introduction into formal groups and formal logarithm.

1. p-adic numbers

Throughout the talk, we’ll always assume p is prime and fixed and R is a ring.

Definition 1 (p-adic valuation). If 0 6= x ∈ Z, the p-adic valuation of x is

vp(x) = max{r : pr | x} ≥ 0

For a/b ∈ Q, the p-adic valuation of a/b

vp
(a
b

)
= vp(a)− vp(b)

We also introduce the convention that vp(0) =∞.

Lemma 2. If x, y ∈ Q, the vp has the following properties:

(1) vp(x) =∞ if and only if x = 0;

(2) vp(xy) = vp(x) + vp(y);

(3) vp(x+ y) ≥ min{vp(x), vp(y)} with equality if vp(x) 6= vp(y).

Definition 3 (p-adic norm). For x ∈ Q, let the p-adic norm of x be given by

|x|p =

{
p−vp(x) if x 6= 0,

p−∞ = 0 if x = 0.

Now let (an)n≥1 be a sequence of elements in R, a ring with norm |·|p. We define the
limit of a sequence and Cauhy sequences in same way as in real numbers, using p-adic
norm instead of absolute value.

Definition 4 (Complete ring). A ring with norm |·|p is complete with respect to the

norm |·|p if every Cauchy sequence has a limit in R with respect to |·|p. Denote R̂ the
completion of R with respect to the norm |·|p.

Definition 5 (p-adic numbers). The ring of p-adic numbers is the completion Q̂ of Q
with respect to |·|p; we will denote it Qp.

Definition 6 (p-adic integers). The unit ball about 0 ∈ Qp is the set of p-adic integers,

Zp = {α ∈ Qp : |α|p ≤ 1} = {α ∈ Qp : vp(α) ≥ 0}.
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2. Formal groups

Definition 7 (Formal group). A (one-dimensional) formal group F over a commutative
ring R is a power series F (X,Y ) ∈ R[[X,Y ]], such that

(1) F (X,Y ) = X + Y+ terms of higher degree

(2) F (X,F (Y, Z)) = F (F (X,Y ), Z) (associativity)

(3) F (X,Y ) = F (Y,X) (commutativity)

(4) ∃! power series i(T ) ∈ R[[T ]], such that F (T, i(T )) = 0 (inverse)

(5) F (X, 0) = X and F (0, Y ) = Y

We call F (X,Y ) the formal group law.

Definition 8. Let R be a complete local ring with maximal ideal M and F a formal
group defined over R, with formal group law F (X,Y ). The group associated to F/R,
denoted by F (M ), is the set M endowed with the group operations.

x⊕F y = F (x, y) (addition) for x, y ∈M ,

	Fx = i(x) (inversion) for x ∈M .

Definition 9. The formal additive group, denoted by Ĝa, is defined by

F (X,Y ) = X + Y.

Definition 10. An invariant differential on a formal group F/R is a differential form

ω(T ) = P (T )dT ∈ R[[T ]]dT

satisfying
ω ◦ F (T, S) = ω(T ).

Writing this out, ω(T ) = P (T )dT is an invariant differential if it satisfies

P (F (T, S))FX(T, S) = P (T )dT,

where FX(T, S) is the partial derivative of F with respect to its first variable. An invariant
differential is said to be normalized if P (0) = 1.

Definition 11 (Formal logarithm). Let R be a torsion-free1 ring, let K = R ⊗ Q, let
F/R be a formal group, and let

ω(T ) = (1 + c1T + c2T
2 + · · · )dT

be the normalized invariant differential on F/R. The formal logarithm of F/R is the
power series

logF (T ) =

∫
ω(T ) = T +

c1

2
T 2 +

c2

3
T 3 + · · · ∈ K[[T ]].

Proposition 12. Let R be a torsion-free ring and let F/R be a formal group. Then

logF : F → Ĝa

is an isomorphism of formal groups over K = R⊗ Q.

1The assumption that R has no torsion elements means that if n ∈ Z and α ∈ R satisfy nα = 0,
then either n = 0 or α = 0. Equivalently, the natural map R→ K = R⊗ Q is an injection.
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British Elevator – Part II

Tomáš Sladovńık

This lecture will continue in Jan’s talk about p-adic numbers, formal groups and formal
logarithm. In the first half we will continue in background preparation. We will talk about
arithmetic on elliptic curves, mainly we will focus on subgroups of an elliptic curve over
the field of p-adic numbers, and reduction modulo p. In the second half we will construct
linear algorithm for discrete logarithm on a special type of elliptic curve, which has trace
of Frobenius over Zp equal 1.

1. Elliptic curves

Definition 1 (Projective space). Let K be a field and n ∈ N. The projective n-space
over K, denoted by Pn(K), is the set of nonzero vectors in Kn+1.

Pn(K) = {〈v〉 | v ∈ Kn+1 \ {o}}

In our case we’ll work with the field Zp where p is a fixed prime number greater than 3.

Definition 2. The set of points of an elliptic curve over field K, denoted by E(K), is
the set of solutions of the cubic equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

in P2(K). The equation can be reduced to the form y2 = x3 +Ax+B and the solutions
of

F (x, y, z) = x3 +Axz2 +Bz3 − y2z
are points (x : y : 1), where (x, y) is a solution of cubic equation and the point at infinity
O = (0 : 1 : 0).

Definition 3. The group law on E(Zp) for points P,Q ∈ E(Zp) is defined by O and
the chord-tangent law of composition PQ with relation P + Q = O(PQ). By group of
points of an elliptic curve we mean an additive group

(E(Zp),+,−,O).

In our case we will work with nonsingular elliptic curve in the form

E : y2 = x3 +Ax+B,

where A,B ∈ Zp and discriminant ∆ = −16(4A3 + 27B2) 6= 0.

2. Expansion Around O
In the above described elliptic curve substitute

z = −x
y

and w = − 1
y

, in other words x = z
w

and y = − 1
w
,

the O is now in (0, 0), because (x : y : z) 7→ (x : z : −y) and the curve has transformed to
the form

w = z3 +Azw2 +Bw3.
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3. En

Definition 4 (Reduction modulo p). Reduction modulo p is defined as the mapping

π : Ẑp → Zp

x0 + x1p+ x2p
2 + · · · 7→ x0,

where Ẑp is the set of p-adic integers.

Definition 5 (Sets En). Let E(Qp) be a set of points on an elliptic curve E over a field
of p-adic numbers and n ∈ N then

En(Qp) = {P ∈ E(Qp) : υp(x(P )) 6 −2n} ∪ {O},

where P = (xP : yP : zP ) and x(P ) = xP . For nonsingular curve is

E0(Qp) = E(Qp).

Theorem 6. For all n ∈ N: En(Qp) is a subgroup of E(Qp).

Theorem 7. For all n ∈ N: En(Qp)/En+1(Qp) ∼= Z+
p .
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Persistent Homology – Part I

Peter Kálnai

In our session we present persistent homology as a mathematical formalism which
extracts topological information from samples of a geometric object, in particular finite
sets of points equipped with a distance function, so called point clouds. It leads to a large
number of applications in data analysis when methods like classification, recognition,
parametrisation or clustering are of interest. The method leads to qualitative knowledge
about data sets, while quantitative values provided by various distances are ignored. This
is appropriate in case when there is no particular metrics justified or coordinates of data
samples are not natural, i.e. they carry no intrinsic meaning.

Moreover, we show that applied topological methods can produce a kind of visualisation
of data sets, not by embedding them in an Euclidean space but rather by generating their
representation in a form of a so called barcodes.

1. Algebraic Topology

Definition 1. Let K be a set and for all v ∈ K, let the singleton {v} be called a vertex
of K. Let S be collection of subsets of K. A subset of a set in S is called a face. A
simplicial complex (K,S) is the set K with a collection S that contains all vertices and
all faces. An element σ of the collection S is called a k-simplex if the cardinality of the
set σ is k + 1.

Definition 2. The kth chain group of a simplicial complex (K,S) is the free abelian
group on its set of oriented k-simplices. An element of this group is called a k-chain.

The boundary operator δk : Ck → Ck−1 is a map acting on a k-simplex σ = [v0, . . . , vk]
as follows:

δk(σ) =

k∑
i=0

(−1)i[v0, v1, . . . , v̂j , . . . , vk]

where the hat over a vertex indicates that it was omitted from the sequence. The map δk
is Z-linearly extended to all simplicial complexes.

A chain complex is a sequence of chain groups connected with boundary operators.
There are two associated subgroup with a chain complex:

• the cycle group Zk := ker δk

• the boundary group Bk := δk+1(Ck+1)

• the kth homology group Hk := Zk/Bk

A simplicial complex may be viewed as a union of polytopes in R|K|, where the po-
lytopes are formed from the standard basis vectors that are in bijective correspondence
with the vertices of the simplicial complex.

Definition 3. Let (X, d) denote a metric space and let Br(x) denote an open d-ball
centered at the point x ∈ X with radius r. Let X0 := {x0, x1, . . . , xl} be a point cloud.
We can form a union Br = ∪li=0Br(xl) of balls aroud the point cloud.

The Čech complex for the set of balls Br(xi), i = 0, . . . , l, denoted by C(X, r) is the
simplicial complex whose vertex set consists of singletons from X0 and whose k-simplicis
correspond to k + 1-balls with non-empty intersection.
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The Vietoris-Rips complex for (X, d) parametrised by r, denoted by V R(X, r) is the
simplicial complex whose vertex set is X, and where {x0, x1, . . . , xk} spans a k-simplex if
and only if d(xi, xj) ≤ r for all 0 ≤ i, j ≤ k.

Lemma 4. For any finite point cloud X0 in the Rd, for any parameter r ≥ 0, Cr(X0) ⊆
V R2r(X) ⊆ C2r(X0)

Theorem 5 (Structure theorem of PIDs). Let D be a principal ideal domain. Let M be
a finitely generated D-module. Then

M ' Dβ ⊕
(

m⊕
i=1

D/diD

)

where β ∈ Z, di ∈ D, i = 0, 1, . . . ,m.
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Persistent Homology – Part II

Michal Hrbek

1. Persistent modules

Definition 1. Let k be a field and (P,<) a totally ordered poset with a dense countable
subset. We naturally view the poset P as a category. A (P-)persistence module M is a
functor from P to the category of k-vector spaces. We say that M is pointwise finite-
dimensional if M(p) is finite-dimensional for any p ∈ P .

Let I be an interval I in P . A simple example of a persistent module is the interval
module corresponding to interval I defined as follows:

• M(p) =

{
k, p ∈ I
0, p 6∈ I ,

• M(p < q) =

{
Idk, p, q ∈ I
0, otherwise 6∈ I

Theorem 2 (Carlsson, Crawley-Boevey). Under a mild finiteness conidition (which holds
e.g. if M is pointwise finite-dimensional), a persistence module M is isomorphic to a
direct sum of interval modules.

General idea of the method for a point cloud X ⊆ Rd:

• Given ε ∈ R, construct a simplicial complex Cε from the point cloud X using e.g.
the Čech or the Vietoris-Rips method.

• Since the point cloud is finite, there are 0 = ε0 < ε1 < · · · < εn < εn+1 = ∞
such that Cεj = Cε for any εj < ε < εj+1.

• Computing the homology in degree k, we obtain an N-persistent module

Hk(Cε1 )→ Hk(Cε2 )→ · · · → Hk(Cεn )→ · · · ,

where the maps are induced by inclusions Cεj → Cεj+1 .

• By Carlsson’s theorem, this module decomposes into a direct sum of interval

modules
⊕l
i=1M(Ii), where Ii is a interval of R of form [εj , εj′ ] for some 0 ≤

j < j′ ≤ n.

The complete set of topological data obtained by this method can be faithfully interpreted
by a collections of barcodes. A barcode is nothing else then a multiset of intervals of form
as above. Intuitively, each interval marks a birth and death of a non-zero homology cycle
in dimension k. Simple heuristic is then to interpret short intervals in barcodes as noise
and long intervals as topologically significant.
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Modular forms

Josef Svoboda

In this lecture, we will introduce Gelfand correspondence of compact (Hausdorf) spa-
ces and commutative C∗-algebras and explaint the (dis)similarities with classical algebraic
geometric correspondence between algebraic varietes and finitely generated reduced alge-
bras.

1. Basic definitions

Definition 1. Banach algebra is an associative unital algebra A over C which is also a
complete normed space such that the algebra multiplication and the norm are related by
the following inequality

∀x, y ∈ A : ‖xy‖ ≤ ‖x‖‖y‖.
A homomorphism of Banach algebras A and B is a bounded linear map ϕ : A → B which
satisfies φ(xy) = φ(x)φ(y) for all x, y ∈ A.
Definition 2. Let A be a Banach algebra with the identity element e. If x ∈ A then
spectrum σ(x) is a set of all λ ∈ C such that λe− x is not invertible.

Definition 3. C∗-algebra is a Banach algebra A together with a map ∗ : A → A sa-
tysfying for all x, y ∈ A and λ ∈ C the following conditions:

• x∗∗ = x

• (x+ y)∗ = x∗ + y∗

• (λx)∗ = λ̄x∗

• (xy)∗ = y∗x∗

• ‖xx∗‖ = ‖x‖‖x∗‖.
A homomorphism of C∗-algebras A and B is a homomorphism of Banach algebras ϕ :
A → B which satisfies φ(x∗) = φ(x)∗ for all x ∈ A.

Definition 4. Let A be a commutative Banach algebra. Then Gelfand spectrum σ(A) is
a set of nonzero homomorphisms from A to C.

Note. Gelfand spectrum can be naturally endowed by a weak∗ topology as a subspace
of the unit sphere of A∗. With this topology, Gelfand spectrum becomes a compact
topological space.

Theorem 5. Let A be a Banach algebra in which every nonzero element is invertible.
Then A ∼= C.

Corollary. Gelfand spectrum is in bijection with the set SpecM of maximal ideals of
algebra A.

Definition 6. Gelfand transform of an element x ∈ A is a function x̂ ∈ C(σ(A)) defined
by x̂(h) = h(x) for every homomorphism h ∈ σ(A). The mapˆ: A → C(σ(A)) is called
Gelfand transformation and denoted by ΓA.

Proposition 7. Gelfand transformation is a homomorphism of Banach algebras. Image
of x̂ is σ(x). If x and e generate algebra A, then σ(A) and σ(x) are homeomorphic.
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2. Correspondence of C*-algebras and compact spaces

Let Comp be the category of compact spaces and continuous maps. Let Ban be the
category of Banach algebras and homomorphisms and C∗Alg be the full category of all
C∗-algebras. We consider contravariant functors:

C : Comp→ Ban

X 7→ C(X)

which assigns to every compact topological space its algebra of continuous complex fucti-
ons and

S : Ban→ Comp

A 7→ σ(A)

which assigns to every C∗-algebra its Gelfand spectrum.

Proposition 8. The functor S is a right adjoint to the functor C, with Gelfand transform
as a counit nad a natural “evaluation” homomorphism as a unit.

Theorem 9 (Gelfand - Naimark). If A is a commutative C∗-algebra, then Gelfand
transformation ΓA is an isometric isomorphism from A to C(σ(A)).

Corollary. The restriction of the functor C to C∗Algop and the functor S form an
equivalence of categories C∗Algop and Comp.
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Undirected loop conditions

Miroslav Olšák

Universal algebra studies various conditions for algebra classification. Particular at-
tention is given to Maltsev conditions claiming existence of some terms satisfying given
equations. It was discovered in 2010 that in the case of finite algebras, there is a weakest
Malstev condition of a very special form: If a finite algebra satisfy a Malstsev condition
then it contain a 6-ary term operation s satisfying s(a, b, a, c, b, c) = s(b, a, c, a, c, b). We
will show that the existence of s is also the weakest without finiteness assumption but
among much smaller range of conditions.

Algebra is a set (universe) A provided with several operations o1, o2, . . ., written
(A, o1, o2, . . .). These operations can be composed into term operations. More precisely,
term is a syntactically correct finite string using symbols of variables v1, v2 . . ., operations
o1, o2, . . . and parenthesis. Term operation is an operation tA : An → A described by a
term t. For any choice of variables v1, . . . , vn ∈ A the value tA(v1, . . . , vn) equals the
calculated value of t.

For example, in rings (R,+,−, ·, 0, 1), terms are formal polynomials and term ope-
rations are polynomial functions. In groups, an example of a term (operation) is the
Maltsev term m(x, y, z) = (x · y−1) · z. Even a set (S) without any operations can be
considered as an algebra. In this case, term operations are just projections, for example
π2(u, v, x, y) = v.

Absolutely free algebra (in a language Σ) over a set of generators X has as its universe
the set of all terms using elements ofX as variables. Operations (from Σ) act in the natural
way. The free algebra over X modulo a set of equations S is a quotient of the absolutely
free algebra over X, where s and t are identified if and only if s ≈ t is a consequence of
S. For example, the free commutative ring over two generators x, y generator is the ring
of polynomials: Z[x, y].

(Directed) graph is a pair (V,E) where V is a set of vertices and E ⊂ V 2 is the
set of oriented edges – ordered pairs (a, b) where a, b ∈ V . Consider an algebra A =
(A, o1, o2, . . .) and a directed graph (A,E) with the same universe. We say that the graph
(A,E) is compatible with the algebra if E is a subalgebra of A2. In other words, for any
k-ary operation oi and any edges (a1, b1), (a2, b2), . . . , (ak, bk) ∈ E the graph contain the
edge

(oi(a1, a2, . . . , ak), oi(b1, b2, . . . , bk)).

Loop condition is a condition for algebras of the form: The algebra possesses a term
operation t satisfying the equation

t(variables)

= t(variables).

The arity of t and concrete choice of variables are given by concrete loop conditions.
Examples of loop condition are the existence of a commutative term c and the existence
of a Maltsev term m satisfying

c(x, y) m(x, y, y)

= c(y, x), = m(z, z, x).

12



Any group satisfies the existence of Maltsev term and any lattice satisfies the existence of
commutative term.

For every loop condition, there is a graph associated with it. The set of vertices is the
set of variables used in the equation. Edges are defined to be the columns in the equation.
For example, the graph associated with the existence of a commutative term is just one
both-sided edge. The oriented graph associated with the existence of Maltsev term has
three vertices x, y, z and three oriented edges yx, xz, yz.

Graph homomorphism from G = (VG, EG) to H = (VH , EH) is a mapping f : VG →
VH such that for any (a, b) ∈ EG the image (f(a), f(b)) ∈ EH .

Proposition 1. Loop conditions with isomorphic associated graphs are equivalent.

Proposition 2. Assume an algebra A satisfying a loop condition associated with graph
G. Consider a graph H compatible with A. If there is a graph homomorphism G → H
then H contains a loop.

Proposition 3. Consider a loop conditions C, D with associated graphs

GC = (VC , EC), GD = (VD, ED)

respectively. Let A be a free algebra over generators VD modulo equation C. Consider
the minimal supergraph of GD compatible with A. The graph contains a loop if and only
if the condition C implies the condition D.

Proposition 4. Consider a loop conditions C, D with associated graphs GC , GD re-
spectively. If there is a graph homomorphism GC → GD then C implies D.

Let G = (V,E) be a graph associated with a loop condition. If for each edge (a, b) ∈ E
the graph contain the reverse edge (b, a) we consider it as an undirected graph and call
the loop condition undirected. For example the loop condition mentioned in introduction
paragraph is the undirected loop condition associated with a triangle.

The talk will lead to following result.

Theorem 5. There are just three different (pairwise non-equivalent) loop conditions,
associated with

(1) Bipartite grahs

(2) Non-bipartite graphs without loops

(3) Graphs containing a loop

Moreover (1) ⇒ (2) ⇒ (3) and every nontrivial (directed) loop condition imply (2).
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Attacking RSA

Barbora Hudcová and Igor Eržiak

1. Introduction

In this talk, we will present various attacks on RSA which mainly focus on retrieving
the secret message without factorization of the modulus N . We will introduce the low-
exponent attack with related messages, Wiener’s attack, Coppersmith’s attack and their
applications. Each topic will be accompanied by a practical example in Python code.

2. Basic notions

Definition 1 (RSA cryptosystem). Let N = pq be the product of two primes. Let e, d
be two integers satisfying

ed ≡ 1 (mod ϕ(N))

where ϕ(N) = (p − 1)(q − 1). We call N the RSA modulus, e the encryption exponent
and d the decryption exponent.

A message is an integer M ∈ Z∗N . To encrypt M , one computes C ≡ Me (mod N).

To decrypt the ciphertext C, the legitimate reciever computes Cd (mod N). Indeed, from
Euler’s theorem it follows that

Cd ≡Med ≡M (mod N).

3. Low-Exponent Attack With Related Messages

Given encryptions of k messages under the same RSA public key with exponent e,
together with knowledge of polynomial relation of degree δ among the messages, the goal
is to recover all messages.

4. Wiener’s Attack

Theorem 2 (M. Wiener). Let N = pq with q < p < 2p. Let d < 1
3
N

1
4 . Given public key

〈N, e〉 with ed ≡ 1 (mod ϕ(N)), an adversary can efficiently recover d.

Lemma 3. Suppose that GCD(a, b) = GCD(c, d) = 1 and

∣∣∣a
b
− c

d

∣∣∣ < 1

2d2
.

Then c
d

is one of the convergents of the continued fraction expansion of a
b

.
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5. Coppersmith’s Attack

Lemma 4 (LLL). Let L be a lattice spanned by 〈u1, . . . , uw〉, where u1, . . . , uw ∈ Rn.
When 〈u1, . . . , uw〉 are given as input, then the LLL algorithm outputs a point v ∈ L
satisfying

‖v‖ ≤ 2
w
4 det(L)

1
w .

The running time of the LLL algorithm is quartic in the length of the input.

Theorem 5 (Coppersmith). Let N be an integer and f ∈ Z[x] be a monic polynomial

of degree d. Set X = N1/d−ε for some ε ≥ 0. Then, given 〈N, f〉, an adversary can
efficiently find all integers |x0| < X satisfying f(x0) ≡ 0 (mod N). The running time is
dominated by the time it takes to run the LLL algorithm on a lattice of dimension O(w)

with w = min( 1
ε
, log2(N)).

Lemma 6. Let h(x) ∈ Z[x] be a polynomial of degree d, and let X be a positive integer.

Suppose ‖h(xX)‖ < N√
d

. If |x0| < X satisfies h(x0) ≡ 0 (mod N) then h(x0) = 0 holds

over the integers.

Theorem 7 (H̊astad). Let N1, . . . , Nk be pairwise relatively prime integers, and set
Nmin = mini(Ni). Let gi ∈ ZNi

[x] be k polynomials of maximum degree d. Suppose
there exists a unique M < Nmin satisfying

gi(M) ≡ 0 (mod Ni) for all i = 1, . . . , k.

Under the assumption that k > d, one can efficiently find M given 〈Ni, gi〉ki=1.
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Hidden Field Equations

Adolf Středa

Hidden Field Equations (HFE) is a public key cryptosystem proposed by Patarin back
in 1996. It is a part of a larger group of cryptosystems based on an MQ-problem – a
problem of finding solutions to Multivariate Quadratic equations.

The basic HFE cryptosystem was broken by a wide range of attacks – ranging from
simple linear algebra techniques to Gröbner bases. Thus it was necessary to introduce
small changes to the HFE cryptosystems giving us variants of HFE such as HFEm, HFE-,
HFE⊥.

1. MQ-problem and HFE

Definition 1. Let p1, . . . , pm be a system of m ∈ N polynomials in n ∈ N variables over
a field F:

pk(x, . . . , xn) =

n∑
i,j=1

αk,i,jxixj +

n∑
i=1

βk,ixi + γk

αk,i,j , βk,j , γk ∈ F for 1 ≤ i, j ≤ n and 1 ≤ k ≤ m
Given an arbitrary vector ~y = (y1, . . . , ym) ∈ Fm we denote a problem of solving

yk = pk(x1, . . . , xn) for every 1 ≤ k ≤ m

as the MQ-problem.

Lemma 2. Let F ≤ E be a field extension of a degree n ∈ N. Then the carrier set of E
with an addition and a multiplication by an element from F is isomorphic to the vector
space Fn. Let us denote it by EF.

Definition 3. Let Fq be a finite field with q elements, E its algebraic extension of a degree
n ∈ N and let ψ be an isomorphism, ψ : E → Fn, from the preceeding lemma. Then a
polynomial vector P is in a HFE-shape if there exists a polynomial

P (X) =

d∑
i,j=0

Ai,jX
qi+qj +

d∑
i=0

BiX
qi + C, Ai,j , Bi, C ∈ E, X ∈ E

such that P = ψ ◦P ◦ψ−1, d ∈ N. The polynomial P is called the HFE polynomial, terms

Ai,jX
qi+qj are called quadratic terms, BiX

qi are linear terms and C is a constant term
of the HFE polynomial.

2. HFE Cryptosystem

Since a HFE cryptosystem is not required to be bijective, we might need to add some
redundancy to a plaintext in order to select the right plaintext from the affine subspace of
all possible pre-images of given a ciphertext with a sufficiently high probability. As error
correcting codes give too much information to the attacker cryptographically secure hash
functions are preferred.
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input = (x1, . . . , xn)

~x

~x′ public: P

y′

output = (y1, . . . , ym)

private: S

private: P

private: T

Figure 1. HFE Encryption

input = (y1, . . . , ym)

~y

~y′

x′

output = (x1, . . . , xn) = (M ||h(M))

private: T

private: P

private: S

Figure 2. HFE Decryption

3. HFE Modifications

• HFE⊥ – two affine transformations, multiple HFE polynomials (in parallel)

• HFEm – we forget some coordinates from the first transformation’s output

• HFE+ – a projection of an input into a vector space of a smaller dimension

• HFEs – using sparse polynomials for the secret key
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