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Kristýna Zemková
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Another Introduction to Modern Cryptography

Miloslav Homer

1. Introduction

In this talk, an introduction to cryptography will be presented. Firstly, basic notions
such as split to symmetric and asymmetric cryptography, goals of cryptography and types
of security will be shown. Secondly, we shall look at Impagliazzo’s Five Worlds – based
on his article A Personal View of Average-Case Complexity describing few implications
based on truthfullness of P = NP and other such problems. And finally, we will focus on
cryptographic models and present few key definitions and examples.

2. Basic notions

Encryption, Decryption, Key – Symmetric/Asymmetric Cryptography. Goals of Cryp-
tography.

Definition 1 (One-way function). Let f : A→ B be a function. We say that f is one-way
if and only if there exists polynomial time algorithm computing f , but any polynomial
randomized algorithm computing f−1 succeeds with negilible probability.

3. Impagliazzo’s Five Worlds

(1) Algorithmica – P = NP or at least some fast probabilistic algorithms solving
NP .

(2) Heuristica – NP problems are hard in the worst case, but easy on average.

(3) Pessiland – NP problems are hard on average and we cannot create hard NP
problems with known solutions, ie no one-way functions exists.

(4) Minicrypt – One-way functions exist, but public cryptography does not.

(5) Cryptomania – It is possible for two parties to agree on a secret message using
only publicly accessible channels.

4. Cryptographic Models

Definition 2 (Zero knowledge proof). We say that a protocol is zero-knowledge if there
exists a simulator (that does not have access to a prover) that can simulate a malicious
verifier’s output after interaction with a prover.

Definition 3 (Random Oracle). We call f : A → B a random oracle if and only if f
responds to every unique a ∈ A with a uniformly chosen random b ∈ B. If a ∈ A is
repeated, f responds with the same b.

Definition 4 (Common Reference String). By common reference string we mean a public
(ie all parties have access to it) uniformely randomly selected string chosen before any
protocol interaction starts.
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Zeta- and L-functions and prime numbers

Adam Stejskal

In this lecture we will introduce the Riemann zeta function and Dirichlet’s L-functions.
Then we will present the sketch of proof of Dirichlet’s theorem on arithmetic progressions.
Finally, we will discuss the requirements for a general L-function.

1. Riemann zeta function

Definition 1. The Riemann zeta function is defined by

ζ(s) =
∑
n∈N

1

ns
,

where s ∈ C, such that Re(s) > 1.

Lemma 2 (Euler product). For each s ∈ R, s > 1, the following holds:

ζ(s) =
∑
n∈N

1

ns
=
∏
p∈P

1

1− p−s
.

Definition 3. Let f be a holomorphic function defined on an open set U 6= ∅ ⊂ C and
let V is an open set, such that U ⊂ V , and F is a holomorphic function on V , such that

F (z) = f(z), ∀z ∈ U.

Then F is called analytic continuation of f to V .

Definition 4. We define the Gamma function for t ∈ C,Re(t) > 0 by integral

Γ(t) =

∫ ∞
0

xt−1e−tdt.

The integral converges absolutely and satisfies the functional equation

Γ(t+ 1) = tΓ(t).

Moreover, we can uniquely extend the Gamma function by putting Γ(t) = t−1Γ(t+ 1) to
whole complex plane except integers t ≤ 0, where the Gamma function has simple poles.

Theorem 5 (Riemann 1859). The completed zeta function

ξ(s) = π−
s
2 Γ(

s

2
)ζ(s)

has analytic continuation to s ∈ C, except points s = 0, 1, where it has simple poles.
Moreover ξ(s) satisfies the functional equation

ξ(s) = ξ(1− s).
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2. Dirichlet L-functions

Definition 6. Let N ∈ N. We say that χ : Z→ C is a Dirichlet character modulo N iff
the following holds:

• χ(n) = χ(n+N) for all n ∈ Z;

• χ(n) = 0 if and only if gcd(n,N) > 1;

• χ(1) = 1;

• χ(mn) = χ(m)χ(n) for all m,n ∈ Z.

Definition 7. Let χ be a Dirichlet character. Then we define a Dirichlet L-function to
be

L(s, χ) =
∑
n∈N

χ(n)

ns

for s ∈ C, Re(s) > 1.

Note. The Dirichlet L-function can be, like the Riemann zeta function, written as Euler
product. It is

L(s, χ) =
∑
n∈N

χ(n)

ns
=
∏
p∈P

1

1− χ(p)p−s
.

Moreover, one can also find the analytic continuation of L(s, χ) to whole complex plane
(now it is actually whole complex plane, whenever χ is a nontrivial character).

The choice of a Dirichlet character in L(s, χ) allow us to distinguish between numbers
of different residue classes. It will be useful in the proof of the following theorem.

Theorem 8 (Dirichlet theorem on aritmethic progressions). Let n ∈ N, a ∈ Z such that
gcd(a, n) = 1. Then there exist infinitely many prime numbers p satisfying the congruence

p ≡ a(mod n).

3. General L-functions

Let X = (an)n∈N be a sequence of complex numbers and put

L(s,X) =
∑
n∈N

an

ns
.

Furthermore suppose that following holds:

• L(s,X) is absolutely convergent for Re(s) > k, k ∈ N
• L(s,X) has analytic continuation to C
• L(s,X) = γ(s,X)L(k − s,X′) for some ”elementary” function γ, k ∈ N
• L(s,X) =

∏
p∈P F (p−s)−1 where F is a polynomial.

It is conjectured, that analysis of such L(s,X) should yield some information about an
object associated with X, as it does in case of Dirichlet L-functions. This L(s,X) is called
a (general) L-function.
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Modular forms

Josef Svoboda

In this lecture we will introduce special complex functions called modular forms and
discuss their basic properties. Then we will suggest a connection with theory of L-functions
and elliptic curves.

1. Basic definitions

Definition 1. The upper half-plane H is set of complex numbers with positive imaginary
part. Let SL2(Z) be a group of 2 × 2-matrices over Z. This group has an action on H
defined by (

a b
c d

)
z =

az + b

cz + d

Lemma 2. Group G of all fractional transformations is isomorphic to SL2(Z)/{−1, 1}.
It is generated by elements T (z) = z + 1 and S(z) = − 1

z
.

Definition 3. The set D of complex numbers z with |z| ≥ 1 and −1/2 ≤ Re(z) ≤ 1/2 is
called fundamental domain for action of SL2(Z) on the half plane H.

Definition 4. Function f on H is called modular form of weight 2k if it satisfies following
conditions:

(1) f(z) = (cz + d)−2kf

(
az + b

cz + d

)
for

(
a b
c d

)
∈ SL2(Z).

(2) f is holomorphic on H.

(3) f is holomorphic at ∞.

Modular form is called cusp form if it satisfies also

(4) f(∞) = 0.

Lemma 5. Let q = e2πiz. Every modular form f can be written as a series f(z) =∑∞
n=0 anq

n which converges for |q| < 1 (i.e. for Im(z) > 0).

Definition 6. Eisenstein series is defined by

Ek(z) =
∑

(m,n)6=(0,0)∈Z2

1

(mz + n)2k

Proposition 7. Let k be an integer ≥ 2. The Eisenstein Ek(z) is a modular form of
weight 2k.

2. Spaces of modular forms

Definition 8. Define ∆ function as

∆(z) = (60E2(z))3 − 27(140E3(z))2

It is a cusp form of weight 12.

Definition 9. Modular forms (resp cusp forms) of weight 2k form a C−vector space,
which we denote by Mk (resp. Sk).
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Theorem 10. (1) We have Mk = 0 for k < 0 and k = 1.

(2) For k = 0, 2, 3, 4, 5, Mk is a vector space of dimension 1 with basis 1, E2, E3,
E4, E5; we have Sk = 0.

(3) Multiplication by ∆ defines an isomorphism of Mk−6 onto Sk.

Corollary. We have

dimMk =

{
b k

6
c if k ≡ 1 (mod 6), k ≥ 0

b k
6
c if k 6≡ 1 (mod 6), k ≥ 0

Corollary. Space Mk has for basis the family of monomials Eα2 E
β
3 with α, β ∈ N0 and

2α+ 3β = k.

3. from modular forms to L-functions

Definition 11. Let f(z) =
∑∞
n=0 anq

n is a modular form. L-function for f is defined by

L(s, f) =
∑
n

an

ns

Theorem 12. Function L(s, f) satisfies the following conditions:

(1) L(s, f) is absolutely convergent for Re(s) > 2k, k ∈ N
(2) L(s, f) has analytic continuation to C
(3)

L(s, f) =
∏
p∈P

1

1− app−s + p2k+1−2s

(4) Let L̃(s, f) = (2π)−sΓ(s)L(s, f). Then

L̃(s, f) = (−1)kL̃(2k − s, f)

Note. To an elliptic curve E we can associate an L-function L(s, E) whose coefficients
are the numbers of solutions mod p. The importance of modular forms comes from the
fact that for each E there is a modular form f such that L(s, E) = L(s, f).
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Partitions and modular forms

Kristýna Zemková

At first we will introduce the partition function and its arithmetic properties. After
that we will repeat some basic facts about modular forms and will define the Ramanujan
function. At the end we will briefly look at the connection between modular forms and
the partition function.

1. Partitions

Definition 1. A partition of a positive integer n is any nonincreasing sequence λ1, . . . , λr
of positive integers such that n = λ1 + · · ·+ λr. The number of partitions of n is denoted
by p(n) (by convention is p(0) = 1 and p(−n)=0 for each n > 0).

Lemma 2 (Generating function).

∞∑
n=0

p(n)xn =

∞∏
n=1

1

1− xn

Theorem 3 (Euler’s Pentagonal Number Theorem).

∞∏
n=1

(1− xn) =
∞∑

k−∞
(−1)kx(3k2−k)/2 = 1− x− x2 + x5 + x7 − x12 − . . .

Corollary.

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + · · ·

Theorem 4 (Ramanujan’s congruences).

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11)

2. Modular forms

Definition 5. Let z be a complex number with strictly positive imaginary part. For
an integer k ≥ 2 we define the Eisenstein series of index k by the following series:

Ek(z) =
∑

(m,n)∈Z2\(0,0)

1

(mz + n)2k
.

Then we put

∆ = 216 000E3
2 − 529 200E2

3 .
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Definition 6. The Ramanujan function is the function τ : N → Z defined as the nth
coefficient of the cusp form F (z) = (2π)−12∆(z). Thus

∞∑
n=1

τ(n)qn = q

∞∏
n=1

(1− qn)24,

where q = e2πiz .

Theorem 7 (Properties of τ(n)).

(i) τ(n) = O(n11/2+ε) for every ε > 0,

(ii) τ(mn) = τ(m)τ(n) if GCD(m,n) = 1,

(iii) τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for p prime, n > 1.

3. A modular form for the partitition function

Theorem 8.
∞∑
n=1

τ(n)qn−1 =
1(∑∞

n=1 p(n)qn
)24

,

where again q = e2πiz and p(n) denotes the partition function.

Theorem 9. For any prime l ≥ 5, there exist infinitely many congruences of the form

p(An+B) ≡ 0 (mod l).
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An application of algebraic geometry
to a combinatorial problem

Michal Szabados

1. Motivation

We are interested in the study of colorings of the infinite two-dimensional square grid
by finitely many colors. Such a coloring is periodic if there exists a non-zero vector such
that any two positions which differ by the vector have the same color.

We can impose local restrictions on the coloring: we can say that only a few patterns
of certain size are allowed. Intuitively, the smaller number of patterns allowed, the more
restricted the coloring is. The question is, what restrictions imply that the coloring is
necessarily periodic?

Morse-Hedlund theorem answers such a question in one dimension. We are interested
in its natural generalization to two dimensions, called Nivat’s conjecture.

Theorem 1 (Morse and Hedlund, 1938). Let A be a finite set and c : Z→ A a bi-infinite
sequence of “symbols” from A. Denote P (n) the number of distinct subwords of length n
occuring in c. Then c is periodic iff ∃n : P (n) ≤ n.

Conjecture 2 (Nivat, 1997). Let A be a finite set and c : Z2 → A a two-dimensional
array of “symbols” from A. Denote P (m,n) the number of distinct rectangular m × n
patterns occuring in c. If ∃m,n : P (m,n) ≤ mn then c is periodic.

New partial results to Nivat’s conjecture have been obtained recently:

Theorem 3 (Cyr and Kra, 2013). If ∃m,n : P (m,n) ≤ mn/2 then c is periodic.

Theorem 4 (Kari and S., 2015). If there exist infinitely many pairs m, n such that
P (m,n) ≤ mn then c is periodic.

We will present an algebraic method introduced in the proof of Theorem 4.

2. Colorings as Formal Power Series

Definition 5. A configuration c is a formal power series in variables x, y with complex
coefficients:

c(x, y) =
∑

(i,j)∈Zd

cijx
iyj where cij ∈ C.

A configuration is integral if ∀i, j : cij ∈ Z and it is finitary if there are only finitely many
distinct coefficients cij .

A configurations can be multiplied by a polynomial or a Laurent polynomial to obtain
another configuration. For the next definition denote by 0 the all-zero configuration.

Definition 6. An annihilator polynomial is a polynomial f ∈ C[x, y] such that

f(x, y)c(x, y) = 0.

An annihilator ideal is

Ann(c) =
{
f ∈ C[x, y]

∣∣ f(x, y)c(x, y) = 0
}
.
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It is clear that by choosing an integer representation of colors we can represent a
coloring as a finitary integral configuration. Notice that a configuration is periodic iff
xayb − 1 is an annihilator polynomial for some non-zero (a, b) ∈ Z2. Let us show the
connection to Nivat’s conjecture. Define Pc(m,n) to be the number of rectangular m× n
patterns in the coloring represented by a configuration c.

Lemma 7. If ∃m,n : Pc(m,n) ≤ mn then Ann(c) 6= {0}.

3. Let’s Do Some Algebra

In what follows we fix c to be a finitary integral configuration with a non-trivial anni-
hilator ideal.

Lemma 8. Configuration c has an annihilator polynomial f ∈ Z[x, y].

Lemma 9. There exists r ∈ N such that if f ∈ Z[x, y] is an annihilator polynomial of
configuration c, then also f(xkr+1, ykr+1) is for any k ∈ N0.

Theorem 10. There is a Laurent polynomial of the form (xa1yb1 − 1) · · · (xanybn − 1)
for some non-zero (ai, bi) ∈ Z2 which annihilates configuration c.

Following tools are needed to prove our goal theorem.

Definition 11. The support of a polynomial f =
∑

(i,j)∈Z2 aijx
iyj ∈ C[x, y] is

supp(f) = { (i, j) ∈ Z2 | aij 6= 0 }.

A polynomial f is a line polynomial if | supp(f)| ≥ 2 and the points from supp(f) are
collinear.

Definition 12. Recall some algebraic notions about ideals in a commutative ring R.

• An ideal A is prime if ab ∈ A⇒ a ∈ A ∨ b ∈ A.

• The radical of an ideal is
√
A = { a ∈ R | ∃m : am ∈ A }. An ideal is radical if

A =
√
A.

• Ideals A and B are comaximal if A+B = R, or equivalently if 1 ∈ A+B.

Theorem 13 (Commutative algebra course).

(i) If A1, . . . , An are pairwise comaximal then A1 ∩ · · · ∩An = A1 · · ·An.

(ii) Proper prime ideals in C[x, y] are principal ideals generated by irreducible poly-
nomials and maximal ideals.

(iii) Let A ∈ C[x, y] be proper. Then
√
A can be uniquely written as a finite inter-

section of prime ideals P1 ∩ · · · ∩ Pn where Pi 6⊂ Pj for i 6= j.

The goal of the talk is to prove the following:

Theorem 14. Ann(c) is radical.
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Gabriel’s theorem – Part I

Ondřej Draganov

In this part we will introduce basic definitions, lemmas and theorems needed for
the proof of Gabriel’s theorem.

1. Motivation

Let V be a vector space (of a finite dimension) and U,W ≤ V be subspaces of V
as depicted on the figure 1.

V

⊆ ⊆
U W

Figure 1

•

• •

Figure 2

It is an interesting problem from linear algebra to classify how can these two subspaces
be included in V . It is known that there are up to an isomorphism only finitely many
indecomposable cases how can two subspaces be included in a vector space of a finite
dimension. At this point we will not discuss in what sense “up to an isomorphism” and
“indecomposable”. This also holds for three subspaces. However for four subspaces there
are infinitely many indecomposable cases.

We will generalize this idea and present the Gabriel’s theorem, which tells us when do
we have “only finitely many indecomposable cases up to an isomorphism”.

2. Basic definitions

Let K be a field. We fix that field throughout the text. When we talk about a vector
space, we mean vector space over K.

Definition 1 (Quiver). A quiver is a directed graph with multiple edges (arrows) and
loops. We assume quivers to be finite. More precisely it is a quadruple Q = (Q0, Q1, s, t),
where Q0 is a finite set of vertices, Q1 is a finite set of arrows and s, t : Q0 → Q1 are two
maps which denotes where does the arrow start and terminate. For an arrow α ∈ Q1 we
sometimes write α : s(α)→ t(α).

An example of a very simple quiver is the figure 2, which is in a sense a scheme for
the situation on a figure 1. For fixed vector spaces V, U,W , the situation on figure 1 is a
representation of the quiver on figure 2.

Definition 2 (Representation). Let Q be a quiver. A representation of Q is a collection

X = (Xi, Xα)i∈Q0,α∈Q1

consisting of a vector space Xi for each vertex i and a linear map Xα : Xs(α) → Xt(α)

for each arrow α.

If we have two representations of the same quiver, we would like to say for example
when those two are “similar”, i.e. isomorphic. We would therefore like to define some
“maps” between representations.

12



Definition 3 (Morphism). Let Q be a quiver and let X,Y be its representations. A mor-
phism φ : X → Y of these representations is a collection of linear maps φi : Xi → Yi
for each vertex i, such that Yαφs(α) = φt(α)Xα for each arrow α, that is such that the
following diagram commutes:

Xs(α)

Xt(α)

Ys(α)

Yt(α)

Xα Yα

φs(α)

φt(α)

We can now carry various concepts defined for vector spaces and linear maps over to
representations and morphisms by applying the vector space definitions point-wise, that
is, for each vertex i. For example a morphism φ of representations is an isomorphism if φi
is an isomorphism for each vertex i. Or a representation X is finite dimensional if each
Xi is finite dimensional.

Similarly we can define a direct sum of representations X and Y as a representation
Z = X ⊕ Y , where Zi = Xi ⊕ Yi for each vertex i and the maps Zα are defined accord-
ingly. A representation is called indecomposable if it cannot be written as a direct sum of
representations. By Krull-Schmidt theorem, every finite dimensional representation can
be decomposed into a direct sum of finitely many indecomposable representations. This
decomposition is unique (in a natural sense).

Definition 4 (Finite representation type). We say a quiver Q is of finite representa-
tion type if there exist (up to an isomorphism) only finitely many indecomposable finite
dimensional representations of Q.

For a quiver Q we denote Γ an underlying graph, which is Q without an orientation.
The main goal of both parts of this presentation is to prove the Gabriel’s theorem. The
following statement is actually a corollary of the theorem.

Theorem 5 (Gabriel). Let Q be a connected quiver. Then there are up to an isomorphism
only finitely many indecomposable finite dimensional representations of Q if and only if
the underlying graph Γ of Q is Dynkin diagram (see figure 3).

• • . . . • •An

•

•
• . . . • •Dn

• • • • •

•

E6

• • • • • •

•

E7

• • • • • • •

•

E8

Figure 3. Dynkin diagrams
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Gabriel’s Theorem – Part II

Peter Kálnai

Following [Assem, Simson, Skowronski: ”Elements of the Representation Theory of
Associative Algebras”, Volume 1 Techniques of Representation Theory, 2006, Chapter
VII], we try to shed some light on both combinatorial and categorical techniques behind
the following theorem:

Theorem 1 (Gabriel’s Theorem, 1972). Let Q be a finite, connected, and acyclic quiver;
let K be an algebraically closed field; and repK(Q) be the category of all finite-dimensional
K-linear representations of Q.

Then repK(Q) is of finite-representation type if and only if the underlying graph Q of
Q is one of the Dynkin graphs An, Dn, with n ≥ 4, E6, E7 or E8.

The underlying graph Q of a quiver Q is obtained from Q by forgetting the orientation
of the arrows. The index in the Dynkin graphs always refers to the number of points in
the graph, whereas in the so-called Euclidean graphs and denoted as the Dynkin ones but
with added˜ , it refers to the number of points minus one. In fact, a Euclidean graph can
be constructed from the corresponding Dynkin graph by adding one point and could be
considered in a sense as minimal non-Dynkin graphs.

1. Necessity for the representation-finiteness of repK(Q)

We solve the implication partially. As the next two lemmas show, if we want to
prove that non-Dynkin graphs escape the representation-finiteness of the corresponding
category, it is enough to prove that Euclidean graphs do so:

Lemma 2. Let Q be a finite, connected and acyclic quiver. If the underlying graph Q of
Q is not a Dynkin graph, then Q contains a Euclidean graph as a subgraph.

Lemma 3. Let Q be a finite, connected and acyclic quiver. If Q′ is a subquiver of Q
such that repK(Q′) is representation-infinite, repK(Q) is representation-infinite.

If the underlying graph Q of a finite, connected and acyclic quiver Q is one of Ãm,
m ≥ 1, then repK(Q) is representation-infinite. While the latter fact handles completely
one scheme of Euclidean graphs, we prove a similar result for just some quivers of the

remaining graph types, namely D̃n, n ≥ 4 and Ẽ6, Ẽ7, Ẽ8.

2. Sufficiency for the representation-finiteness of repK(Q)

Let Q be a quiver whose underlying graph is a Dynkin graph. We show that the assign-
ment X 7→ dimX induces a bijection between the isomorphism classes of indecomposable
representations of Q and the positive roots corresponding to the graph of Q. In particular,
there are only finitely many isomorphism classes of indecomposable representations.

Lemma 4. The number of roots of a Dynkin graph over n vertices (i.e. the number of
n-tuples of integers for which the (positive definite) quadratic form is less or equal one)
is finite.

For every vertex a of a quiver Q, we define a new quiver σa(Q) as the quiver Q with
all the arrows having a as source or as target are reversed and all other arrows remain
unchanged.

14



• A vertex i of a quiver Q is called a sink (resp. source) if there is no arrow in Q
starting (resp. ending) at i.

• Given any vertex i, the quiver σi(Q) is obtained from Q by reversing all arrows
which start or end at i.

• A sequence (i1, i2, · · · , in) of the vertices of Q is called admissible sequence of
sinks if the vertex ip is a sink in the quiver σip−1 (· · · (σi1 (Q)) · · · ) for each
p = 2, · · · , n.

Lemma 5. There exists an admissible sequence of sinks of a quiver Q if and only if there
are no oriented cycles in Q.

Definition 6 (Reflection functor S+
i resp. S−i of a sink resp. a source i). (This concept

will be explained in the presentation.)

Lemma 7. Let i be a sink in a finite, connected and acyclic quiver Q with at least two
points; let i be a sink in Q;and let X be an indecomposable representation of Q. Then
the reflection functors S+

i : repK(Q)→ repK(σi(Q)) and S−i : repK(σi(Q))→ repK(Q)
satisfy

(i) the functor S−i is left adjoint to S+
i

(ii) if X is indecomposable representation of Q then the following is equivalent:

(1) S+
i (X) 6= 0

(2) X is not isomorphic to the simple representation of the vertex i

Moreover, if this is the case, then S−i (S+
i (X)) ' X.

(iii) if Y is indecomposable representation of σi(Q) then the following is equivalent:

(1’) S−i (Y ) 6= 0

(2’) Y is not isomorphic to the simple representation of the vertex i

Moreover, if this is the case, then S+
i (S−i (Y )) ' Y .
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Combinatorics on words and automated proving I – Basic
definitions and examples

Jan Fǐser

Definition 1. An alphabet is a nonempty finite set, its elements are called letters, and
sequences of letters are called words. As usual, we define the length |w| of a word w as
the number of letters of w, the empty word ε as the word of length 0, and concatenation
uv of two words u and v. We denote A∗ the set of all (finite) words. We say that v is a
factor of w if w = u1vu2 for some u1, u2, v, w ∈ A∗.

Definition 2. A square is a word of the form ww where w is a nonempty word. An
overlap is a word of the form awawa where a ∈ A is a letter and w ∈ A∗ a (possibly
empty) word.
We say that a word is square-free if it contains no square factor. Similarly, a word is
overlap-free if it has no overlapping factor.

Definition 3. Considering a mapping a : N→ A, we define an infinite word as the infinite
sequence a(0)a(1)a(2) . . . of letters of the alphabet A, usually written as a0a1a2 . . . .
The set of all infinite words over A is denoted by Aω . We say that an infinite word has a
property P if all its factors do.

From now on, let A = {a, b} be the alphabet. Over such alphabet, we obtain the
complement w of a word w by exchanging a’s and b’s.

An interesting example of an overlap-free infinite word is the Thue-Morse sequence
(word).

Definition 4. We define the Thue-Morse word as the limit

t = lim
n→∞

Un

where
U0 = a, Un = Un−1Un−1 for n ≥ 1.

Explicitly, t = abbabaabbaababba . . . .

Proposition 5. The Thue-Morse word is overlap-free.

Proposition 6. Squares of the Thue-Morse word have length either 2n or 3 ·2n for some
n ∈ N.

Another well-known infinite word is the (infinite) Fibonacci word.

Definition 7. The Fibonacci word is the infinite word obtained as the limit

S∞ = lim
n→∞

Sn

where
S0 = a, S1 = ab, Sn = Sn−1Sn−2 for n ≥ 2.

Explicitly, S∞ = abaababaabaab . . . .
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Combinatorics on words and automated proving II – Theory
behind the prover

Jan Butora

At first we’ll focus on automatic sequences, their representation by finite automata
and some of their properties. In the second part we take a brief introduction into theory
that allows us to purely mechanically extract information about automatic sequences.

1. Automatic sequences

Definition 1 (Finite automaton). A finite automaton is a 5-tuple (Q,Σ, δ, q0, F ), where

(i) Q is finite set called the states

(ii) Σ is a finite set called the alphabet

(iii) δ : Q× Σ→ Q is the transition function

(iv) q0 ∈ Q is the start state, and

(v) F ⊆ Q is the set of accept states.

Definition 2. Let B be finite alphabet. We denote by B∗ the set of all words written
with letters of B, including the empty word ε. We say that L ⊆ B∗ is recognizable if it is
the set of words accepted by some finite automaton.

Definition 3 (k-automatic sequence). An infinite sequence a = (an)n≥0 over a finite
alphabet is said to be k-automatic if there exists a deterministic finite automaton (with
output associated with the states) such that after completely processing the input n
expressed in base k, the automaton reaches some state q with output an.

2. Logic

Definition 4 (Presburger arithmetic). Let ω = N∪ {0}. Than by Th(ω,+) we mean set
of all true first-order sentences in the logical theory of the natural numbers with addition.
We call this set Presburger arithmetic.

Example. Any element of ω can be defined in the language (ω,+). For x = 1, it is the
following formula

(¬(x = 0)) ∧ ((∀y)(¬(y = 0))→ (x ≤ y)) .

Presburger arithmetic was proved to be decidable (that is, there exists an algorithm
that, given a sentence in the theory, will decide its truth). However, even more is true. If
we add the function Vk : ω → ω to Presburger arithmetic, where Vk(x) = kn, and kn is
the largest power of k dividing x, it is still decidable. That gives us the ability to decide
many questions about automatic sequences. Thus we have

Theorem 5. There is an algorithm that, given a predicate phrased using only the uni-
versal and existential quantifiers, indexing into a given automatic sequence a, addition,
subtraction, logical operations, and comparisons, will decide the truth of that proposition.

17



Combinatorics on words and automated proving III – Walnut

Dominik Lachman

In this talk, we present Walnut prover, programmed by Hamoon Mousavi. We learn its
commands and then we let Walnut to prove some properties of Thue-Morse and Fibonacci
words. Walnut, together with a manual and many examples, is available on the website
of Jeffrey O. Shallit https://cs.uwaterloo.ca/~shallit/papers.html.

1. Example of using Walnut

input: command eval example ”b=a+1”
output: 2 files describing the resultant automaton: example.txt (table-form descrip-

tion) and example.gv (graph-form description)

(a,b): b=a+1

0

(0,0)
(1,1)

1
(0,1)

(1,0)

The automaton expects two binary words a and b. It stars at state 0 and at step n it
moves to a new state, following an arrow labeled (a[n], b[n]).

In Walnut, binary base is not the only one we can work with. All bases of orders
n ∈ N, n > 1 are possible. We can even use Fibonacci base.

2. Some theorem that can be proved by Walnut

Definition 1. Let Σ = {0, 1} and µ, ϕ : Σ∗ → Σ∗ be morphisms such that µ maps
0→ 01, 1→ 10 and ϕ maps 0→ 01, 1→ 0. Then the fixed point of µ:

t = µω(0) = 0110100110010110 · · ·

is called the Thue-Morse infinite word. And the fixed point of ϕ:

f = ϕω(0) = 010010100100101001010 · · ·

is called the infinite Fibonacci word.

Using Walnut, we can purely mechanically prove these theorems:

Theorem 2. The Thue-Morse infinite word is overlap-free.

Theorem 3. Infinite Fibonacci word is not ultimately periodic, that is there are no words
u, v ∈ {0, 1}∗, such that f = uvω.

Theorem 4. There exist palindromes of every lenght ≥ 0 in the infinite Fibonacci word.

18



Pairing-based cryptography I – Pairing basics

Radka Luňáčková

Definition 1 (Discrete logarithm problem (DLP), additive notation). DLP in group
G = 〈P 〉 of order n is the problem, given P andQ, of finding the integer x ∈ {0, 1, ..., n− 1}
such that Q = xP .

Definition 2 (Diffie-Hellman problem (DHP), additive notation). DHP in group G = 〈P 〉
of order n is the problem, given P, aP and bP , of finding abP , where a, b ∈ {0, 1, ..., n− 1}.

Definition 3 (Bilinear pairing). Let n be a prime number. LetG1 = 〈P 〉 be an additively-
written group of order n with identity O and let GT be a multiplicatively-written group
of order n with identity 1. A bilinear pairing on (G1, GT ) is a mapping

ê : G1 ×G1 → GT

that satisfies the following conditions:

(i) bilinearity:
ê(R+ S, T ) = ê(R, T )ê(S, T )

ê(R,S + T ) = ê(R,S)ê(R, T )

for all R,S, T ∈ G1,

(ii) non-degeneracy: ê(P, P ) 6= 1,

(iii) computability: ê can be efficiently computed.

Definition 4 (Bilinear Diffie-Hellman problem (BDHP)). Let ê be a bilinear pairing on
(G1, GT ). The BDHP is the problem of computing ê(P, P )abc, given P, aP, bP and cP .

Definition 5 (Elliptic curve). Let K be an algebraically closed field and assume that K
has characteristic different from 2 and 3. Then we can define elliptic curve E over K by
equation

y2 = x3 + ax+ b,

where a, b ∈ K and 4a3 + 27b2 6= 0. The set of points of E over K is denoted E(K) and
defined by

E(K) =
{

(x, y) ∈ K ×K : y2 = x3 + ax+ b
}
∪ {O} .

Note: E(K) forms a group, (E(K),+,−,O).

Definition 6 (Weil pairing). Let E be an elliptic curve over K and let m > 0 be an integer
prime to characteristic of K. The Weil pairing is a mapping w : E [m]×E [m]→ K defined
by

w(P,Q) = (−1)m
fP (Q)

fQ(P )
.

Note: E [m] = {P ∈ E(K) : mP = O} and fP , fQ ∈ K(x, y) and the definition will be
in presentation.
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Pairing-based cryptography II – Applications

David Kubát

1. Identity-Based Encryption

The idea of Identity-Based Encryption (IBE) is to allow users of Public-Key Cryp-
tosystems to use any string as a public key.

Definition 1. The four algorithms defining any IBE scheme are as follows:

• Setup algorithm: S(λ)→ (MK,PP )
given a security parameter λ it outputs a master key MK and public parameters
PP

• Extract key: K(MK, ID)→ skID
given a user’s public key ID it outputs user’s private key skID

• Encrypt: E(PP, ID,M)→ C
encrypts a message M using public key ID (and PP )

• Decrypt: D(skID, C)→M

2. Attribute-Based Encryption

The goal of Attribute-Based Encrytion (ABE) is to encrypt data in such a way, that
those able to decrypt it are exactly the users matching a set of attributes specified while
encrypting.

We distinguish between Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-
ABE). In KP-ABE messages are encrypted with respect to subsets of attributes and an
acces policy is encoded into the users secret key.

In CP-ABE, the roles of attributes sets and acces formulas are flipped, (i.e. users
keys are associated with sets of attributes and messages are encrypted with respect to
formulas). In this talk, we will only be concerned with KP-ABE.

Definition 2 (KP-ABE specification). There are four algorithms defining a KP-ABE
scheme:

• Setup(λ, U):
Given a security parameter λ and an attribute universe U , it generates public
parameters PP and a master key MK

• KeyGen(Policy,MK):
Generates a user key SK for a given policy

• Encrypt(PP,M, S ⊆ U):
Encrypts message M under attribute set S

• Decrypt(C, SK):
Decrypts ciphertext using a key
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Visual Cryptography

Tereza Hrubešová

Visual Cryptography is a technique that allows information (images, text, diagrams,
etc.) to be encrypted using an encoding system that can be decrypted by the human
vision.

The technique was proposed by Moni Naor and Adi Shamir in 1994. The basic model
consists of a printed page of ciphertext and a printed transparency (which serves as a secret
key). The original cleartext is revealed by placing the transparency with the key over the
page with the ciphertext, even though each one of them is indistinguishable from random
noise. The system is similar to a one time pad in the sense that each page of ciphertext is
decrypted with a different transparency. Due to its simplicity, the system can be used by
anyone without any knowledge of cryptography and without performing any cryptographic
computations.

This basic model can be extended into a visual variant of the k out of n secret sharing
problem: Given a written message, we would like to generate n transparencies so that
the original message is visible if any k (or more) of them are stacked together, but totally
invisible if fewer than k transparencies are stacked together (or analysed by any other
method). The original encryption problem can be considered as a 2 out of 2 secret sharing
problem.

Definition 1. A solution to the k out of n visual secret sharing scheme consists of two
collections of n × m Boolean matrices C0 and C1. To share a white pixel, the dealer
randomly chooses one of the matrices in C0, and to share a black pixel, the dealer ran-
domly chooses one of the matrices in C1. The chosen matrix defines the colour of the m
subpixels in each one of the n transparencies. The solution is considered valid if
the following three conditions are met:

(i) For any S in C0, the ”OR” operation of any k out of n rows of S is a vec-
tor v, that satisfies wH(v) ≤ d − αm (for some fixed threshold 1 ≤ d ≤ m)
where wH(v) is the Hamming weight of the vector v, m is the pixel expansion
of the scheme and α is the ”contrast” of the scheme.

(ii) For any S in C1, the ”OR” operation of any k out of n rows of S is a vector v,
that satisfies wH(v) ≥ d.

(iii) For any subset {i1, i2, . . . , iq} of {1, 2, . . . , n} with q < k, the two collections
of q ×m matrices Dt for t ∈ {0, 1} obtained by restricting each n ×m matrix
in Ct (t ∈ {0, 1}) to rows i1, i2, . . . , iq are indistinguishable in the sense that
they contain the same matrices with the same frequencies.

The parameters of a scheme:

• m – the number of pixels in a share

• α – the relative difference in weight between combined shares that come from
a white pixel and a black pixel in the original picture

• r – the size of the collections C0 and C1, log r represents the number of random
bits needed to generate the shares
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Cryptography is not just encryption – Obfuscation

Martin Mach

Definition 1 (Obfuscator of circuits under Virtual Black Box security). O is an obfus-
cator of circuits if

(i) Correctness: ∀c circuit , O(c) ≡ c.
(ii) Efficiency: ∀c circuit, |O(c)| ≤ poly(|c|).

(iii) VBB: ∀A,A is bounded, ∃S PPT simulator s.t. ∀c circuit, ∃µ negligible func-
tion.: ∣∣∣Pr [A(O(c)) = 1]− Pr

[
Sc
(

1|c| = 1
)]∣∣∣ ≤ µ (|c|) .

Theorem 2. Obfuscators of circuits under VBB security do not exists.

Some of the weaker variants of Obfuscation

Definition 3 (Indistinguishability Obfuscator for circuits). We call iO an indistinguisha-
bility obfuscator for a circuit class {Cλ} if

(i) Corretness: ∀λ ∈ N security parametr, ∀C ∈ Cλ, ∀x input, we have that

Pr
[
C′(x) = C(x) : C′ ← iO(λ,C)

]
= 1.

(ii) Polynomial slowdown: ∃p polynom s.t. ∀C ∈ Cλ, we have |C′| ≤ p(|C|), where
C′ = iO(λ,C).

(iii) Computational indistinguishability: For any PPT adversaries Samp,D, ∃µ a
negligible function s.t.: if Pr

[
∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1λ)

]
>

1− µ(λ) then we have:

|Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−

− Pr
[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]
| ≤ µ(λ).

Definition 4 (Differing-inputs circuit family). A circuit family C together with PPT Sam-
pler is called differing-inputs circuit family if for every PPT adversary D, ∃µ a negligible
function s.t.:

Pr
[
C0(x) 6= C1(x) : (C0, C1, σ)← Samp(1λ), x← D(1λ, C0, C1, σ)

]
≤ µ(λ).

Definition 5 (Differing-inputs Obfuscator for circuits). We call diO a Differing-inputs
obfuscator for a differing-inputs circuit class C = {Cλ} if

(i) Corretness: ∀λ ∈ N security parametr, ∀C ∈ C, ∀x input, we have that

Pr
[
C′(x) = C(x) : C′ ← diO(λ,C)

]
= 1.

(ii) Polynomial slowdown: ∃p polynom s.t. ∀C ∈ C circuit, we have |C′| ≤ p(|C|),
where C′ = diO(λ,C).
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(iii) Differing-inputs: For any PPT distinguisher D, ∃µ a negligible function s.t.:
∀λ ∈ N security parametr, for (C0, C1, σ)← Samp(1λ), holds:

|Pr [D(diO(λ,C0), σ) = 1]− Pr [D(diO(λ,C1), σ) = 1]| ≤ µ(λ).

Usage of Obfuscation

Functional encryption. The task is to learn a function of encrypted data if we have
decryption key.

Definition 6 (Functionality). A functionality F defined over (K,X) is a function F : K×
X → {0, 1}∗. The set K is called the key space, the set X is called the plaintext space.
The space key K contains a special key called the empty key denoted ε.

Definition 7 (Functional encryption scheme). A functional encryption scheme FE for
a functionality F defined over (K,X) is a tuple of four PPT algorithms (Setup, Key,
Encrypt, Decrypt) satysfying:

(i) Correctness: ∀k ∈ K,∀x ∈ X:

• generate a public and master key pair: (pk,mk)← Setup(1λ),

• generate secret key for k: sk ← Key(mk, k),

• encrypt message x: c← Encrypt(pk, x),

• compute functionality: y ← Decrypt(sk, c),

Then we require: Pr [y = F (k, x)] = 1.

Punctured programs.

Definition 8 (Puncturable family of pseudo-random functions). A puncturable family
of pseudo-random functions (PRFs) F mapping is given by a triple of programs (KeyF ,
PunctureF , EvalF ), and a pair of computable functions n(·) and m(·) satysfying:

(i) Functionality preserved under puncturing: for every PPT adversary A such that

A(1λ) outputs a set S ⊆ {0, 1}n(λ), then ∀x ∈ {0, 1}n(λ) where x /∈ S, we have

Pr
[
EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1λ),KS = PunctureF (K,S)

]
= 1.

(ii) Pseudorandomness at punctured points: For every PPT adversary (A1, A2) s.t.

A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, let us consider an experiment,
where

• K ← KeyF (1λ),

• KS = PunctureF (K,S).

Then we have for µ a negligible function:∣∣Pr [A2(σ,KS , S,EvalF (K,S)) = 1]− Pr
[
A2(σ,KS , S, Um(λ)·|S|) = 1

]∣∣ ≤ µ(λ).

Theorem 9. If one-way functions exists, then for all efficiently computable functions
n(λ), m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.
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Fully Homomorphic Encryption:
A Holy Grail of Cryptography

Jakub Klemsa

In 1977, RSA was publicly announced. A year later, Rivest, Adleman and Dertouzos
proposed the basic concept of so called Fully Homomorphic Encryption which had been
inspired by the following property of RSA encryption:

E(a · b) = E(a) · E(b),

i.e. RSA encryption is a multiplicative homomorphism. However, the same does not hold
for addition.

The main point was that if some encryption scheme was homomorphic with respect
to both, it would be possible to perform arbitrary computation with ciphertexts only!
Nowadays you can imagine that a tiny device sends some encrypted data to an untrusted
cloud, it performs some demanding computation and sends the result back while the cloud
does not learn anything about your data. A formal definition of Fully Homomorphic
Encryption follows.

Definition 1. Fully Homomorphic Encryption (FHE) is a public key encryption scheme
which consists of 4 polynomial-time algorithms (K,E,D, V ) where

• given a security parameter λ, K outputs a keypair (pk, sk),

• given pk and a message m ∈M, E outputs randomized encryption of m,

• given sk and c ∈ C, an encryption of m, D outputs m,

• given pk, a polynomial-time evaluable function f : Mt → M and c1, . . . , ct,
encryptions of m1, . . . ,mt, respectively, V outputs ciphertext c which is an en-
cryption of f(m1, . . . ,mt).

Over 30 years FHE was not even known to exist, a positive answer was given by
Gentry in 2009. A plenty of new schemes has emerged since then but there is still not any
practically usable. We will mainly focus on a specific FHE scheme framework by Nuida
and study its practical usability.
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Introduction to ECC implementations on embedded devices

Lukáš Pohanka

With the Internet of Things era we are witnessing an outbreak of plethora of new
devices and platforms. Most of these devices are small-sized, being limited both compu-
tationally and storage-wise. For applications that are not required to run in real-time, it is
often more important to optimize for size than performance. This is more than desirable
for cryptographic libraries, as they should bring reasonable security and occupy as little
space as possible, so it could be more effectively utilized by other applications. In such
case, it is obvious to switch to asymmetric cryptosystems based on elliptic curves over
fields of large characteristic. They achieve standard levels of security with much smaller
primes than RSA.

There are already well-known and standardized elliptic curves usable with ECDSA
signature scheme or ECIES. However, in case of ECC there is a long way from a scheme
description to the actual implementation – for most of the embedded devices the im-
plementation has to be done from scratch. Another concern is the side-channel security
of such implementation, as physical access to an IoT device is usually easier compared
to a server in a data warehouse. The NIST standardized elliptic curves are very tricky
to implement properly with respect to side-channel security. One of the reasons is that
their group law is not unified, nor complete, which leads to additional code branches and
implementation pit-falls. This results to a somewhat large code size when implemented
properly, wasting precious memory resources of the target device. Another problem arises
when going to the higher level – e.g. the ECDSA signature scheme requires a per-message
randomness for every signature. On an embedded device, entropy is typically a scarcer
resource than memory.

In this presentation, we will take a look at twisted Edwards curves, which are an
equivalent representation of a large portion of elliptic curves. Twisted Edwards curves
can solve most of the drawbacks of ordinary elliptic curves and make implementation a
lot easier and more compact. However, not all coordinate systems of twisted Edwards
curves are suitable for memory optimized implementations. We will analyze a signature
scheme based on a particular twisted Edwards curve: from the lowest level of modular
arithmentic, all the way to the final memory optimized implementation and discuss all
the threats waiting for the implementors.
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Concatenation hierarchies of star-free languages

Jana Bartoňová

A star-free language is a regular language which can be constructed by means of a reg-
ular expression without any use of iteration and with a possible use of complementation
instead. More precisely, a star-free language is a language which can be constructed from
languages consisting of one one-letter word by means of finitely many applications of the
following operations: union, concatenation and complementation.

A concatenation hierarchy of star-free languages arises from sequential applications
of concatenation and Boolean operations (i.e. union, intersection, complementation) to
a basic class of languages, which constitutes level 0 of this hierarchy. Other levels of the
hierarchy are obtained by alternating the so-called polynomial closure and the Boolean
closure.

The polynomial closure of the class of languages V consists of all finite unions of
languages of the form L0a1L1a2 . . . akLk where L0, L1, . . . Lk ∈ V and a1, . . . , ak ∈ A
for any finite alphabet A. The Boolean closure of a class of languages is a closure under
Boolean operations.

For every natural number n, level n+ 1
2

of the hierarchy is obtained by the polynomial

closure of level n and level n + 1 is obtained by the Booolean closure of level n + 1
2

. In
this manner one constructs an infinite hierarchy of star-free languages.

If level 0 of a concatenation hierarchy creates the so-called variety of regular languages
(i.e. is closed under certain ”reasonable” operations) then the whole hierarchy can be
built in terms of so-called pseudovarieties of finite monoids, which correspond to varieties
of regular languages due to Eilenberg’s theorem.

The pseudovariety of monoids is an analogy to the variety of monoids for the case when
only finite monoids are considered. It’s a class of finite monoids closed under submonoids,
homomorphic images and finite direct products.

Another way to investigate such a hierarchy is in terms of the first-order logic over
words. The levels of the hierarchy are obtained by an alternating use of an existential
quantifier and Boolean combinations (i.e. disjunction, conjuction, negation) to formulas.

The main problem concerning concatenation hierarchies is for a given level of a given
hierarchy to find an algorithm which enables to decide whether a given language belongs
to this level. Such a level of a hierarchy is called decidable.

The simplest basis, level 0, is in the so-called Straubing–Thérien hierarchy. The level 0
of this hierarchy consists only of the empty language and the language A∗ (i.e. the
language of all words over A) for every finite alphabet A.

Up to now levels 0, 1
2
, 1, 3

2
, 2, 5

2
, 7

2
of the Straubing–Thérien hierarchy have been known

to be decidable. Some of these results are very recent. The decidability of levels 2 and
5
2

was proven in 2014, the decidability of level 7
2

was proven in 2015. All proofs of these
latest results were done in terms of the first-order logic over words.
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Coextensions of totally ordered monoids

Jiř́ı Janda, Thomas Vetterlein

1. Introduction

A totally ordered monoid (M ; ·,≤, 1) (or shortly a tomonoid) is an algebraic structure
such that (M ; ·, 1) is a monoid and ≤ is a total order compatible with the operation ·. A
homomorphism f : M1 → M2 between tomonoids M1,M2 is an isotone homomorphism
f : M1 → M2 between underlining monoids M1,M2. We say that tomonoid (M ; ·,≤, 1)
is negative if 1 is the top element w.r.t. ≤. By a coextension of an algebraic structure A
we mean the same type structure C such that A is a factorization of C, i.e. there exists a
surjective homomorphism f : C → A (in some literature, C is denoted as an extension).

There exist classical approaches for studying particular classes of coextensions of semi-
groups (see e.g. [Gri], [CP], [Pet]). Our aim is to apply some of these approaches also
on the ordered case, resp. the case of tomonoids. A motivation for studying tomonoids
comes from the field of fuzzy logic, particularly from describing t-norms and finding new
ways of their constructions.

2. Coextensions by a system of tomonoids

The type of coextension considered in this part has been motivated by so called coex-
tension by a direct system of groups (G, γ) of a monoid S [Gri]. For the unordered case
it encapsulates an idea of attaching a group Ga to every element a ∈ S of the monoid
S in a way that groups Ga form congruence classes of a coextension E of S. Using
negative tomonoids Ma instead of groups Ga, we present an analogous construction for
commutative tomonoids.

Theorem 1. Let (S; ·,≤, 1) be a negative commutative tomonoid. Let (M,ϕ) be a di-
rect system of commutative tomonoids over (S,≤H), where ≤H is the Green’s order.
Moreover, let σ = (σa,b)a,b∈S where σa,b ∈Mab for every a, b ∈ S.

We define E[S,M, σ] as a set of all ordered pairs (a, x), x ∈Ma, a ∈ S with operation
given for every (a, x), (b, y) ∈ E[S,M, σ] by

(2.1) (a, x)(b, y) := (ab, ϕaab(x) + ϕbab(y) + σa,b)

and a relation ≤E lexicographically i.e.

(2.2) (a, x) ≤E (b, y) if a ≤ b or a = b and x ≤a y.

Then E[S,M, σ] is a negative tomonoid coextension of S if and only if the following
conditions are satisfied for all a, b, c ∈ S

(M1) σa,b = σb,a,

(M2) ϕababcσa,b + σab,c = σa,bc + ϕbcabcσb,c,

(M3) σ1,a = 0,

(M4) M1 is negative tomonoid,

(M5) if a < b and ca = cb, then ϕaca(x) + σa,c ≤ca ϕbcb(y) + σa,b.
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3. Ideal coextensions

An ideal coextension E of semigroup T is a coextension of T such that there exists an
ideal S ⊆ E, E/S ∼= T . This type of coextension has been constructively described for
an arbitrary semigroup (e.g in [Pet]). More precisely, if we have a semigroup with zero T
and a semigroup S, S ∩ T = ∅, there has been given necessary and sufficient conditions
for existence of an ideal coextension E of T such that E = S ∪ (T − {0}) and E/S ∼= T .

This result has been extended for the case of partially ordered semigroups by Kehayop-
ulu and Tsingelis in [KT]. However, in their case the theorem has aside from the definition
of operation 13 conditions.

A different approach has been chosen by Petŕık and Vetterlein in [PV]. They gave the
constructive description for all one element ideal extension E of a given finite negative
tomonoid T .

Our aim is to use this two approaches together for finding a description of arbitrary
finite coextensions of finite negative tomonoids.
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