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Cyclic subgroups

The Rubik’s cube group contains cyclic subgroups of 73 different
orders.

Example

I 〈R〉 ' Z4

I 〈R2U2〉 ' Z6 & Z3

I 〈RU−1〉 ' Z63 & Z21 & Z7

I 〈RU〉 ' Z105 & Z5

I The largest cyclic subgroup of G has order 1260,
〈RU2D−1BD−1〉 ' Z1260.
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The two squares group

Definition
The group 〈R2,U2〉 is called the two squares group.

Fact
The dihedral group of order 12 has presentation

D6 = 〈 a, b | a6 = 1, b2 = 1, abab = 1 〉.

Proposition
The two squares group is isomorphic to D6.

Proof.
Let a = R2U2 and b = R2. Then

I 〈a, b〉 = 〈R2,U2〉 is of order 12 and

I a and b satisfy the relations given above.



Quaternion group

Definition
The group

Q = {±1,±i ,±j ,±k}, where i2 = j2 = k2 = ijk = −1,

is called the quaternion group.

Fact
The quaternion group has presentation

Q = 〈 a, b | a2 = b2, aba = b 〉.



Quaternion group Q = 〈 a, b | a2 = b2, aba = b 〉
a = F 2MRU−1M−1R U−1MRUM−1R UF 2

b = FU2F−1U−1L−1B−1U2BUL

a · b



Quaternion group Q = 〈 a, b | a2 = b2, aba = b 〉
1 a2 = b2

a

a−1 = a3

b

b−1 = b3

ab

(ab)−1



The superflip

The superflip is a configuration of the Rubik’s cube such that

I all subcubes are in their solved positions,

I the corner pieces are correctly oriented,

I every edge piece is flipped.

Theorem (Reid, 1995)
The superflip requires 20 face moves to solve.

Example
U R2 F B R B2 R U2 L B2 R U−1 D−1 R2 F R−1 L B2 U2 F 2



The superflip is as hard as it gets

Theorem (Rokicki, Kociemba, Davidson, Dethridge,
2010)
Every valid configuration of the Rubik’s cube can be solved in 20
face moves or less.

Proof.
Some group theory and 35 CPU-years of idle computer time
donated by Google.



Fundamental theorem of cube theory

Theorem
Let v ∈ Z8

3, w ∈ Z12
2 , r ∈ SV , s ∈ SE . Then (v, r ,w, s)

corresponds to a legal move of the Rubik’s cube if and only if all
of the following conditions hold:

(P) sgn(r) = sgn(s),

(F) w1 + · · ·+ w12 ≡ 0 (mod 2),

(T) v1 + · · ·+ v8 ≡ 0 (mod 3).

If we represent two elements of G as

(v, r ,w, s), (v′, r ′,w′, s ′) ∈ Z8
3 × SV × Z8

3 × SE

then the group operation is be given by

(v, r ,w, s) · (v′, r ′,w′, s ′) = (v + P(r)v′, rr ′,w + P(s)w′, ss ′),

where P(r) and P(s) are permutation matrices corresponding to
r and s.



The center of the Rubik’s cube group

Definition
The center of a group G , denoted Z (G ), is the set of elements
that commute with every element of G , i.e.

Z (G ) = { z ∈ G : ∀g ∈ G , zg = gz }.

Proposition
The center of the Rubik’s cube group consists of two elements:
the identity and the superflip element.

Proof.

I Let G = 〈L,R ,F ,B ,U ,D〉 be the Rubik’s cube group.

I For any g ∈ G denote the corresponding 4-tuple by
(vg , rg ,wg , sg ).



Proof (continued).

I Let z ∈ Z (G ).

I For any g ∈ G we have

(vg , rg ,wg , sg )·(vz , rz ,wz , sz) = (vz , rz ,wz , sz)·(vg , rg ,wg , sg ).

That is

( vg + P(rg )vz , rg rz , wg + P(sg )wz , sg sz )

=( vz + P(rz)vg , rzrg , wz + P(sz)wg , szsg ).

rg rz = rzrg for all g ∈ G implies rz = id.

sg sz = szsg for all g ∈ G implies sz = id.

vg + P(rg )(vz) = vz + vg for all g ∈ G implies that vz is
invariant under permutation of its coordinates.

wg + P(sg )(wz) = wz + wg for all g ∈ G implies that wz is
invariant under permutation of its coordinates.



Proof (continued).

I vz ∈ {(0, 0, . . . , 0), (1, 1, . . . , 1), (2, 2, . . . , 2)} ⊂ Z8
3

I wz ∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)} ⊂ Z12
2

I By the fundamental theorem, (vz , id,wz , id) corresponds to
a legal move if and only if

I the coordinates of vz sum up to 0 modulo 3 and
I the coordinates of wz sum up to 0 modulo 2.

I Thus vz = 0.

I The center of G consists of

1. (0, id, (0, 0, . . . , 0), id) and
2. (0, id, (1, 1, . . . , 1), id).



The slice group H

Definition
The group H = 〈MR ,MU ,MF 〉 is called the slice group of the
Rubik’s cube.

Questions

I Does H act transitively on the center pieces of the cube?
Yes.

I Does H act transitively on the edge pieces of the cube?
No.

I What are the orbits of the edge pieces under the action
of H?
The edge pieces fall into three orbits ELR, EUD, EFB

corresponding to the three slices.



The action of H on the subcubes

I Denote by C the set of all center pieces.

I Each element of H determines a permutation of ELR, EUD,
EFB and C .

I The permutation of ELR can be characterised by an element
of Z4. (The same goes for permutations of EUD and EFB.)

I The permutation of C is equivalent to a rotational
symmetry of a cube.
Therefore it can be characterised by an element of S4.

I Thus we have a homomorphism

f : H → Z3
4 × S4.

I Is f injective?

(In other words, does the permutation of the

subcubes determine their orientation uniquely?)

Yes.



The order of H

Lemma
The order of the slice group is at least 768.

Proof.

I The natural projection p : H → S4 is surjective.

I By the first isomorphism theorem H/ ker p ' S4.

I There exists a subgroup 〈g1, g2, g3〉 ≤ ker p of order 32.
(See next slide for details.)

I Thus |H | = |S4| · |ker p| ≥ 24 · 32 = 768.



The subgroup 〈g1, g2, g3〉 ≤ ker p of order 32

g1 = MRMFMUM−1F

f (g1) = (1, 1, 0, id)

g2 = MFM−1R MUMR

f (g2) = (0, 1, 1, id)

g3 = MFM−1U M−1R MUMFMUMRM−1U

f (g3) = (0, 0, 2, id)



The slice group

Theorem
Let s : Z3

4 × S4 → {±1} be a homomorphism such that

s : (x , y , z ,w) 7→ (−1)x+y+z · sgn(w).

Then H is isomorphic to ker s.

Proof.

I Observe that

s(f (MR)) = 1, s(f (MU)) = 1, s(f (MF )) = 1.

Thus f (H) ⊆ ker s.

I The kernel of s has order 768, since 43 · 4!/|ker s| = 2.

I We know that H has order at least 768.

I Therefore f (H) = ker s.

I Since f is injective, H ' ker s.



The slice group

Corollary
The order of the slice group is 768.

Corollary
An element (x , y , z ,w) ∈ Z3

4 × S4 corresponds to an element of
the slice group if and only if (−1)x+y+z = sgn(w).


