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Symmetry group
Let W be a subset of Rn, then the symmetry group of W is
defined as

Sym(W) = {ϕ ∈ Isom(Rn) : ϕ(W) = W}

Translation subgroup
For a v ∈ Rn we denote the map τv (x) = x + v . The set of all
such isometries forms a subgroup T.

Sym(W) ∩ T = {τ ∈ Sym(W) : τ is a translation.}

is called the translation subgroup of Sym(W)
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Wallpaper group

Definition (Wallpaper pattern)
A subset W of R2 is a wallpaper pattern if the translation subgroup
of the symmetry group Sym(W) is a two-dimensional lattice. The
symmetry group of a wallpaper pattern is then a wallpaper group.
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Patterns with isomorphic wallpaper groups
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Types of isometries of the plane R2

Translations
Reflections
Rotations
Glide reflexions
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Properties of isometries

Defining property
Isometry f in coordinates: ‖f (u)− f (v)‖ = ‖u − v‖ for all
u, v ∈ Rn. Special isometries g that fix the origin: g(0) = 0.

Consequences of fixing the origin
‖f (v)‖ = ‖u‖ for all v ∈ Rn

g(u) · g(v) = u · v for all u, v ∈ Rn

g is a linear transformation.
g(x) = Ax where A an n × n matrix satisfying AT A = In
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The Orthogonal Group

Definition
The set of n × n matrices A satisfying AT A = In is the orthogonal
group denoted On(Rn).

It is isomorphic to the subgroup H of isometries fixing the origin
via the map

σ : On(Rn)→ H

σ(A) = x 7→ Ax
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The Orthogonal Group

Special orthogonal group
The condition AT A = In forces the determinant to be ±1

Matrices with positive determinant form the special
orthogonal group denoted SO2(R)
[O2(R) : SO2(R)] = 2
Elements of SO2(R) are rotations and elements of
O2(R) \ SO2(R) are reflections.
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The Group Structure of Isometries

Special isometries in G = Isom(Rn)

Translations τ ∈ T.
Isometries fixing the origin g ∈ H
Every isometry can be written as a composition of a isometry
fixing the origin and a translation.
f linear isometry, τv (x) = x + v a translation. Then
f ◦ τv ◦ f −1 = τf (v)
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The Group Structure of Isometries

Group theoretic perspective
G = H · T.
T is normal in G .
H ∩ T = {id}
G is a semi-direct product of T and H.

G is isomorphic to (Rn×On(R), ·) where the operation is defined
as

(u,A) · (v ,B) = (u + Av ,AB)
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Finite subgroups of O2(R)

Proposition
Let G be a finite subgroup of O2(R). Then it is isomorphic to
either a cyclic group of order n, or to a dihedral group of order 2n.

Proof.
The group N = G ∩ SO2(R) consists of rotations.

Since it is finite, it contains a rotation r ∈ N of minimal angle
θ. Let r ′ ∈ N be another rotation by φ. There exists an
integer m such that θm ≤ φ < θ(m + 1) .
First equality has to hold, as otherwise r ′r−m is a rotation by
an angle 0 < φ−mθ < θ .
Either [G : N] = 1 and G = N, or [G : N] = 2 and G ∼= Dn.
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The Point Group

Definition
Let G be a wallpaper group. The point group of G0 of G is the set{

A ∈ O2(R) : (A, b) ∈ G for some b ∈ R2
}

Proposition
Let G be a wallpaper group with a translation lattice T and a
point group G0. Then G0 ∼= G/T
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The Point Group

Lemma (Finiteness of the Point Group)
The Point Group G0 of a Wallpaper group G is finite.

Proof.
There is only a finite number of points of a lattice in a circle.
Hence only finite number of pairs is possible as images under the
action of G0. An element of G0 is determined by its action on the
lattice.

Daniel Kucera Group cohomology and wallpaper groups - Part I



The Point Group

Lemma (Finiteness of the Point Group)
The Point Group G0 of a Wallpaper group G is finite.

Proof.
There is only a finite number of points of a lattice in a circle.
Hence only finite number of pairs is possible as images under the
action of G0. An element of G0 is determined by its action on the
lattice.

Daniel Kucera Group cohomology and wallpaper groups - Part I



The Point Group

Proposition
Let G0 be a point group of a wallpaper group G. Then G0 is
isomorphic to one of the following groups:

{C1,C2,C3,C4,C6,D1,D2,D3,D4,D6}

Proof.
N = G ∩ SO2(R) is a cyclic group generated by an element
rotation r of minimal angle.

We express the rotation in two basis(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∼
(

a b
c d

)

for a, b, c, d ∈ Z.
A necessary condition 2 cos(θ) = a + d gives us the only
possible n = 1, 2, 3, 4, 6.
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Action of G0 on T

Action and Group Representation of G0

We have 9 possible non-isomorphic groups for the point group.
Even though C2 ∼= D1, they will be distinguished by their
action.
By fixing a basis for {t1, t2} we have an isomorphism T ∼= Z2.
This action induces a homomorphism
G0 → Aut(Z2) ∼= Gl2(Z).

Types of lattices
Our task now is to determine possible types of lattices with respect
to the G0-action. There are five types of lattices: parallelogram,
rectangular, square, rhombus, and hexagonal.
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The Parallelogram Lattice

C1 =

〈(
1 0
0 1

)〉
C2 =

〈(
−1 0
0 −1

)〉
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Lemma
Suppose G0 contains a rotation r about an angle 2π/n for n ≥ 3.
If t is a vector of minimal length, then {t, r(r)} is a basis for the
lattice T .

Proof.
Let {t1, t2} be a basis for T . It is possible to express
t1 = at + br(t) where a, b ∈ Q. We round the numbers to obtain
an element of the lattice s = αt + βr(t). We have rounded to the
nearest integer, so |ε| = |a−α| ≤ 0.5 as well as |ε′| = |b−β| ≤ 0.5

‖t1− s‖ = ‖εt + ε′r(t)‖ < ‖εt‖+‖ε′r(t)‖ ≤ 1
2(‖t‖+‖r(t)‖) = ‖t‖
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Square Lattice

C4 =

〈(
0 −1
1 0

)〉
D4 =

〈(
0 −1
1 0

)
,

(
1 0
0 −1

)〉
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Hexagonal Lattice

C3 =

〈(
0 −1
1 −1

)〉
C6 =

〈(
1 −1
1 0

)〉
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Hexagonal Lattice

Two different actions for D3

D3,l =
〈(

0 −1
1 −1

)
,
( 1 0

1 −1
)〉

D3,s =
〈(

0 −1
1 −1

)
,
(

1 −1
0 −1

)〉
Later on, we will see that two wallpaper groups having different
point group actions cannot be isomorphic.
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A suitable basis for D1, D2

Problem: Lemma is not applicable, there is no rotation by less
than π. We obtain a suitable basis in a different way: we have a
reflection f .

Take a nonzero vector t from the lattice not parallel with the
line of reflection.
t + f (t) is fixed by f , hence lies on the line of reflexion.
t − f (t) is multiplied by −1, hence perpendicular to the line
of reflection.
Take minimal vectors s1, s2 in these directions . There exist
mt , nt ∈ Z such that:

t + f (t) = mts1 and t − f (t) = nts2

Solving these two equations yields: t = mt
2 s1 +

nt
2 s2
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Rectangular Lattice

If nt ,mt both even, {s1, s2} is a basis of the lattice with a very
good property: s1 is fixed by f and s2 is perpendicular.

D1,p =

〈(
1 0
0 −1

)〉
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Rhombic Lattice

Otherwise nt ,mt both odd and we can set: t1 = 1
2(s1 + s2) and

t1 = 1
2(s1 − s2). {t1, t2} is a basis whose elements are

interchanged by f .

D1,c =

〈(
0 1
1 0

)〉
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D1,c and D1,p are not conjugate in Gl2(Z)

(
a c
b d

)
·
(

1 0
0 −1

)
=

(
0 1
1 0

)
·
(

a c
b d

)

a, b, c, d integers satisfying ad − bc = ±1
Multiplying we obtain c = a and d = −b
−2ab = ±1
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Thank you!
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