
Secure multiparty computation - Part III

Josef Barta

Autumn School of Algfebra, 2014

Josef Barta Secure multiparty computation - Part III

Boolean circuit [1]

Definition
Let B be a basis. A Boolean circuit over B with n inputs and m
outputs is a tuple C = (V ,E , α, β, ω), where (V ,E) is a finite
directed acyclic graph, α : E → N is an injective function,
β : V → B ∪ {x1, ..., xn}, and ω : V → {y1, ..., ym} ∪ {∗}, such that
the following conditions hold:

I If v ∈ V has in-degree 0, then β(v) ∈ {x1, ..., xn} or β(v) is a
0-ary Boolean function (i.e. a Boolean constant) from B.

I If v ∈ V has in-degree d > 0, then β(v) is a d-ary Boolean
function from B or a family of Boolean functions from B.

I For every i , 1 ≤ i ≤ n, there is at most one node v ∈ V such
that β(v) = xi .

I For every i , 1 ≤ i ≤ m, there is at most one node v ∈ V such
that ω(v) = yi .

Josef Barta Secure multiparty computation - Part III

Boolean circuit [1]

If v ∈ V has in-degree d0 and out-degree d1, then we say: v is a
gate in C with fan-in d0 and fan-out d1. If v is a gate in C then
we also write v ∈ C instead of v ∈ V . If e = (u, v) ∈ E then we
say: e is a wire in C ; more specifically we say that e is an input
wire of v and an output wire of u; and that u is a predecessor gate
of v . If β(v) = xi for some i then v is an input gate or input node.
If ω(v) 6= ∗ then v is an output gate or output node.

Josef Barta Secure multiparty computation - Part III

AND and OR gate

Tables with values for respective gate:

u v w = u AND v w = u OR v

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Example

Josef Barta Secure multiparty computation - Part III

Garbled circuit [3]

Definition
Let C be a Boolean circuit that receives two inputs x , y ∈ {0, 1}n
and outputs C (x , y) ∈ {0, 1}n (for simplicity, we assume that the
input and output have the same length, n, as well as the security
parameter). Each wire has a random value assigned as key for one
and zero respectively and every gate is encrypted, so that given
one key for each input wire, we can compute the appropriate key
on the output wire. We also assume that if a circuit output wire
comes from a gate g , then gate g has no wires that are input to
other gates.

Josef Barta Secure multiparty computation - Part III

Garbled AND gate [2]

Table for an AND gate with garbled values and for a garbled AND
(gAND) gate:

g(u) g(v) g(w) = g(u) AND g(v) g(w) = g(u) gAND g(v)

k0u k0v k0w Ek0
u
(Ek0

v
(k0w))

k0u k1v k0w Ek0
u
(Ek1

v
(k0w))

k1u k0v k0w Ek1
u
(Ek0

v
(k0w))

k1u k1v k1w Ek1
u
(Ek1

v
(k1w))

Josef Barta Secure multiparty computation - Part III

Garbled OR gate [2]

Table for an OR gate with garbled values and for a garbled OR
(gOR) gate:

g(u) g(v) g(w) = g(u) OR g(v) g(w) =g(u) gOR g(v)

k0u k0v k0w Ek0
u
(Ek0

v
(k0w))

k0u k1v k1w Ek0
u
(Ek1

v
(k1w))

k1u k0v k1w Ek1
u
(Ek0

v
(k1w))

k1u k1v k1w Ek1
u
(Ek1

v
(k1w))

Josef Barta Secure multiparty computation - Part III

Output translation [2]

For each output wire we get a decoding table:

[(0, k0w), (1, k1w)]

Josef Barta Secure multiparty computation - Part III

Constructing a garbled circuit [2]

I given a Boolean circuit
I assign garbled values to all wires
I construct garbled gates using the garbled values

I central property
I given a set of garbled values, one for each input wire, we can

compute the entire circuit and obtain garbled values for the
output wires

I with a translation table for the output wires we can obtain
output

I nevertheless, nothing but the output is learned

Example

Josef Barta Secure multiparty computation - Part III

Computing a garbled circuit [2]

I even with a wrong key, symmetric encryption can return a
seemingly correct result

I in the next few slides we present two possibilities how to
ensure correctness

I Option 1: PRF-based encryption with a redundant block of
zeros

I Option 2: signal bit to show which ciphertext to decrypt

Josef Barta Secure multiparty computation - Part III

Computing a garbled circuit - Option 1 [2]

I Ek(m) = [r ,Fk(r)⊕ (m||0n)]

I since F is a PRF, the probability of obtaining n consecutive
zeros is negligible

Josef Barta Secure multiparty computation - Part III

Computing a garbled circuit - Option 2 [2]

I for every wire a random control bit is chosen

I the control bits indicate which keys are to be used in order to
decrypt the output

(0, 0)→ Ek1
u
(Ek0

v
(k0w ||1))

(1, 1)→ Ek0
u
(Ek1

v
(k0w ||1))

(0, 1)→ Ek1
u
(Ek1

v
(k1w ||0))

(1, 0)→ Ek0
u
(Ek0

v
(k0w ||1))

The advantage of this option is that the circuit requires just two
decryptions per gate, instead of an average of 5 otherwise.

Josef Barta Secure multiparty computation - Part III

Yao’s protocol [2]

I input: x and y of length n
I P1 generates a garbled circuit G (C)

I k0
L , k1

L are the keys on wire wL

I let w1, ...,wn be the input wires of P1 and wn+1, ...,w2n be the
input wires of P2

I P1 sends P2 the strings kx11 , ..., k
xn
n

I P1 and P2 run n oblivious transfers in parallel
I P1 inputs k0

n+i , k
1
n+i

I P2 inputs yi
I given all keys, P2 computes G (C) and obtains C (x , y)

I P2 sends result to P1

Josef Barta Secure multiparty computation - Part III

Proof of security - P1 corrupted [3]

I P1 sees only the messages from the oblivious transfer and the
message sent by P2 at the end

I by the correctness of the construction of the garbled circuit,
P2 obtains the correct output f (x , y), except with negligible
probability

I ⇒ P1 receives at the end of the real execution a message
that almost certaintly equals f (x , y)

⇒
I a simulator that is given (x , f (x , y)) can simulate the

complete view of P1:
I simulates view of P1 in the oblivious transfer
I writes f (x , y) at the end of the transcript

Josef Barta Secure multiparty computation - Part III

Proof of security - P2 corrupted [3]

I we construct a simulator S2 that is given input (y , f (x , y))
and generates the view of P2 in the protocol

I since P2 expects to receive a garbled circuit, so S2 has to
generate such

I the circuit must return f (x , y) to P2 when executed according
to protocol instructions

I but S2 does not know x , so it cannot generate the circuit
honestly (S2 cannot without knowing x possibly know, which
keys to hand to P2)

Josef Barta Secure multiparty computation - Part III

Proof of security - P2 corrupted [3]

I ⇒ the garbled circuit generated by S2 is a fake one that
always evaluates to f (x , y), without any regard to the keys
used

I we achieve this by using gate tables in which all four entries
encrypt the same key

I ⇒ the values of the input wires do not affect the value on the
output wire

Josef Barta Secure multiparty computation - Part III

Proof of security - P2 corrupted - Hybrid argument [3]

I real execution of the oblivious transfer protocol is
indistinguishable from a hybrid distribution HOT (x , y)

I next we consider a series of hybrids Hi (x , y) in which one gate
at a time is replaced in the real garbled circuit by a fake one

I H0(x , y) contains the real garbled circuit
⇒ H0(x , y) = HOT (x , y)

I H|C |(x , y) contains the same fake circuit as constructed by S2

Josef Barta Secure multiparty computation - Part III

Proof of security - P2 corrupted - Indistinguishability [3]

I by a standard hybrid argument, it follows, that a distinguisher
between H0(x , y) and H|C |(x , y) can be used to distinguish
between two successive hybrids

I however, the security of the encryption scheme that is used for
generating the gate tables ensures that neighboring hybrids are
computationally indistinguishable

I thus we conclude that H0(x , y) is indistinguishable from
H|C |(x , y), and so S2(y , f (x , y)) is indistinguishable from the
view of the real P2 participating in the real protocol

Example

Josef Barta Secure multiparty computation - Part III

References

Heribert Vollmer: Introduction to Circuit Complexity: A
Uniform Approach, Springer Science & Business Media, 1999.

Yehuda Lindell: The Yao construction and Its Proof of
Security, Winter School on Secure Computation and Efficiency,
Department of Computer Science, Bar-Ilan University, 2011.

Yehuda Lindell and Benny Pinkas: A Proof of Yao’s Protocol
for Secure Two-Party Computation, Cryptology ePrint Archive,
Report 2004/175, 2004, http://eprint.iacr.org/.

Josef Barta Secure multiparty computation - Part III

http://eprint.iacr.org/

