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Section 1

Introduction and motivation
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(Self)-distributivity

Let A be a set with binary operations ∗ and +.

Why should the identity (a ∗ b) ∗ c = a ∗ (b ∗ c) hold?

Can we find another nice property instead of associativity?
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(Self)-distributivity

The operation ∗ can be distributive with respect to +:
a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

Can we use it even when we have no +?

What about the identity a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) (left
self-distributivity)?
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Self-distributive structures

Where does self-distributivity appear in mathematics?
theory of symmetric spaces
set theory
low-dimensional topology: knots and tangles
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Tangles

Given strings with orientation.
We want to label them by labels from set A s. t. for each crossing
with upper string a, ”right”string b and ”left”string c it holds that
c = a ∗ b.
The labeling should be invariant with respect to Reidemeister
moves, i.e. ”basic manipulations with strings”:
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Quasigroups

How can non-associative ”group”look like?
We have a structure (A, ∗).
We want to have something like a−1 but we don’t have
associativity.

We want to have a unique solutions to the equations a ∗ x = b and
y ∗ a = b.
Let us denote x = a�b (left division) and y = b�a (right division).
A quasigroup is a set where those equations have unique solutions.
I.e. the multiplication table of ∗ is a latin square.
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Section 2

Basic examples and properties
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Self-distributive operations
Examples

Group conjugation:
Let (G, ·,−1 ) be a group and let us define an operation
a ∗ b = aba−1.
This operation is left self-distributive:
a ∗ (b ∗ c) = abcb−1a−1 = aba−1aca−1ab−1a−1 = (a ∗ b) ∗ (b ∗ c).
(G, ∗) is rarely a quasigroup (but the equation a ∗ x = b has
a unique solution).
Moreover, ∗ is idempotent, i.e. a ∗ a = a.
Idempotent, left self-distributive structure with unique left division is
called a quandle.
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Self-distributive operations
Examples

Reflection in euclidean geometry:
Let a, b be two points and let us define a ∗ b to be the reflection of b
over a.
This gives us also a quandle (but not necessarily a quasigroup, e.g.
for reflection on a sphere).
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Self-distributive operations
Examples

Convex combination:
Given a, b (elements of real vector space) we can define
a ∗s b = sa+ (1− s)b for s ∈ [0, 1).
This operation is left self-distributive:
a ∗s (b ∗s c) = sa+ (1− s)(sb+ (1− s)c) =
s2a+ s(1− s)b+ (1− s)sa+ (1− s)2c = (a ∗s b) ∗s (a ∗s c).
This gives us a quandle once more, and for s 6= 0 it is also
a quasigroup. Quandle that is at the same time a quasigroup is
also called a latin quandle.
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How hard is it to study basic properties?

Given a distributive quasigroup (e.g. self-distributive from both
sides).

Does the identity (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) (mediality) always
hold?
No, the least counterexample has 81 elements.

How many (non-isomorphic) self-distributive quasigroups of a
given size exist? (enumeration)
How many such quasigroups satisfying some other properties
(e.g. non-medial) exist?
We want to find a correspondence between self-distributive
quasigroups and some other algebraical structures that are
easier to describe.
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Section 3

Loops and representation theorems
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Quasigroups and quandles

A quasigroup is said to be left self-distributive if the identity
a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) holds.
It is said to be distributive if it is both right and left self-distributive.
It is said to be medial if the identity
(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) holds.
It is said to be (left)-involutory if the identity a ∗ (a ∗ b) = b holds.
It is said to be idempotent if the identity a ∗ a = a holds.
A structure (Q, ∗) is said to be a quandle if it is
left-selfdistributive, idempotent and the equation a ∗ x = b has
a unique solution for all a, b ∈ Q.
We say that a quandle is latin if it is also a quasigroup.
For a quandle (Q, ∗) we define LMlt(Q) = 〈La|a ∈ Q〉, where
La(b) = a ∗ b.

(All identities are universally quantified.)
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Quasigroups and quandles

Those statements follow easily from the definitions:
Left self-distributive quasigroup is a quandle.
Idempotent medial quasigroups are self-distributive.

16/33 Tomáš Nagy Self-distributive quasigroups



Loops

Definition.

A loop is a quasigroup (A, ·) that has a unit element 1 such that a · 1 =
1 · a = a for all a ∈ A.

A loop is said to be (left) Bol if the identity (x · yx)z = x(y · xz)
holds.
It is said to be Moufang if the identity (xy · x)z = x(y · xz) holds.
It is said to be uniquely 2-divisible if the mapping x 7→ x2 is
a bijection.
It is said to have automorphic inverse property if the identity
(xy)−1 = x−1y−1 holds.
It is said to be a left Bruck loop if it is a Bol loop with automorphic
inverse property.
Let (Q1, ·) and (Q2, ∗) be two loops. An isotopy between them is
a triple of bijective mappings α, β, γ such that
α(a) · β(b) = γ(a ∗ b).

(All identities are universally quantified.)
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Correspondence between quasigroups and loops
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Quasigroups affine over a loop

Let (Q, ·) be a loop.
A permutation ϕ of Q is called affine over (Q, ·) if there exist an
automorphism ϕ̃ and q ∈ Q such that ϕ(a) = q · ϕ̃(a) or
ϕ(a) = ϕ̃(a) · q for all a ∈ Q.
A quasigroup (Q, ∗) is called affine over loop (Q, ·) if for every
a, b ∈ Q it holds that a ∗ b = ϕ(a) · ψ(b), where ϕ,ψ are affine
mappings over (Q, ·) such that ϕ̃ψ̃ = ψ̃ϕ̃.

Theorem.

Let (Q, ∗) be a quasigroup. Then, the following are equivalent:
1 (Q, ∗) is medial,
2 (Q, ∗) is affine over an abelian group.
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Latin quandles affine over a group

Theorem.

Let (Q, ∗) be a quasigroup. Then, the following are equivalent:
1 (Q, ∗) is medial,
2 (Q, ∗) is affine over an abelian group.

If we know this theorem, what does it mean for a latin quandle
(idempotent quasigroup) that it is affine over an abelian group?

We call such a quandle an affine quandle and we denote it by
Aff(G, f) (for abelian group G).
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Polynomial equivalence of structures

Given an algebraical structure (A, f1, f2, · · · ).
Term operation is any operation that can be obtained by
composition of basic operations f1, · · · .
Polynomial operation is obtained from term operation by
substituting constants for some variables.
Two structures are called polynomially (term) equivalent if they
have the same polynomial (term) operations.
Term equivalent⇒ polynomially equivalent.
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Affine quandles

A structure is called affine if it is polynomially equivalent to some
module.
Medial idempotent quasigroup Aff(Q,ϕ) = (Q, ∗,�,�) is
polynomially equivalent to (Q,+,−, 0, ϕ, ϕ−1, (1− ϕ), (1− ϕ)−1).

Why?

(Q,+,−, 0, ϕ, ϕ−1, (1− ϕ), (1− ϕ)−1) is term equivalent to the
module over the ring of Laurent polynomials Z[t, t−1, s, s−1] with
underlying structure (Q,+).

t · u is defined by ϕ(u),
s · u is defined by (1− ϕ)(u)
· · · .
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Belousov-Onoi loops

Let (Q, ·) be a loop and ψ ∈ Aut(Q). We will call (Q, ·, ψ)
a Belousov-Onoi (BO) module if the identity
ϕ(ab) · ψ(ac) = a · ϕ(b)ψ(c) holds (ϕ is defined
by ϕ(a) = a�ψ(a)).
Every group with its automorphism ψ is a BO-module, every
Bruck loop with ψ(x) = x−1 is a BO-module.

Theorem.

Let (Q, ·, ψ) be a BO-module and let us define an operation ∗ on Q by
a ∗ b = ϕ(a)ψ(b). Then, (Q, ∗) is a quandle. It is a quasigroup if and
only if ϕ is a permutation.
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Belousov-Onoi loops

If (Q, ·, ψ) is a BO-module and ϕ (defined as above) is
a permutation, then (Q, ·) is called a Belousov-Onoi loop with
respect to ψ. If ϕ is an automorphism, the representation of
(Q, ∗) over (Q, ·) is called right linear.

Theorem.

The following are equivalent for a quasigroup (Q, ∗):
1 it is left self-distributive,
2 it is right linear over a BO-loop.
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Section 4

Enumeration
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Coset quandles

Let G be a group and let f ∈ Aut(G).
Let H ≤ Fix(f) = {g ∈ G|f(g) = g}.
Let us define an operation ∗ on G/H by aH ∗ bH = af(a−1b)H.
Then, (G/H, ∗) is a quandle, called the coset quandle. And is
denoted by QHom(G,H, f).
For an abelian group G, Aff(G, f) = QHom(G, 1, f)
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Connected quandles

A quandle (Q, ∗) is called connected if LMlt(Q) acts transitively
on Q.
Latin quandles are connected, QHom(G,H, f) is connected.
A quandle envelope is a pair (G, ζ) where G is a transitive group
and ζ ∈ Z(Ge) such that 〈gζg−1|g ∈ G〉 = G.
We have the following correspondence between connected
quandles and quandle envelopes:

Fix set Q and e ∈ Q.
Let (Q, ∗) be a connected quandle. Then, (LMlt(Q), Le) is
a quandle envelope.
Let (G, ζ) be a quandle envelope. Then, QHom(G,Ge, fζ) (with
fζ(a) = ζaζ−1) is a connected quandle.
Moreover, those mappings are mutually inverse.
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Enumeration of distributive quasigroups

Theorem.

Let (Q, ∗) be a finite distributive quasigroup of order pk1
1 , · · · , pkn

n ,
where p1, · · · , pn are pairwise different primes. Then, Q ' Q1 × · · · ×
Qn, where |Qi| = pki

i and if Qi is not medial, then pi = 3 and ni ≥ 4.

The smallest non-medial distributive quasigroup is of size 81.
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Enumeration

The correspondence between transitive groups and connected
quandles allows us to enumerate all left self-distributive
quasigroups of size ≤ 47.
Let us denote by LD(n) the number of non-medial left
self-distributive quasigroups up to isomorphism.
ILD(n) denotes the number of non-medial involutory left
self-distributive ones.
MI(n) denotes the number of medial idempotent quasigroups.
The previous theorem gives us that MI(k · l) =MI(k) ·MI(l) for
k, l coprime.
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Enumeration
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(Non-medial) latin quasigroups

There is no left self-distributive quasigroup of order 4k + 2, k ≥ 0.
Every connected quandle with p or p2 elements, p prime, is
medial.
First example of non-medial left self-distributive quasigroup of
order is due to Onoi in 1970, k = 16. This was also the first
example of a distributive quasigroup that is not istopoic to any
Bol loop (the smallest quasigroup with this property is of size 15).
We can ask ourselves what is the least k for that there exists
non-medial left self-distributive quasigroup of size 2k.
There is no such quasigroup for k ≤ 5.
We were able to find such quasigroup of size 2k for all k ≥ 6,
k 6= 7.
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Open problems

There are still many open problems in this field:
Enumeration of certain classes of self-distributive quasigroups (e.g.
of order pq, p, q primes).
Non-idempotent generalization of left self-distributive quasigroups:
describe quasigroups that are right affine over BO-loops.
”Non-associative modules”: affine representation over some
generalization of modules.
...
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Thank you for your attention!
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