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Diffie-Hellman

Private key exchange over public channel. Let (G , ·,−1 , 1) be a

group, g ∈ G fixed.

AlicE
Chooses a

Computes ga

Gets gb

Computes (gb)a

BOB
Chooses b

Computes gb

Gets ga

Computes (ga)b

public
channel

Attacker sees ga and gb. Diffie-Hellman’s problem (to obtain gab

from these) is classically hard for some groups G . 3
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Elliptic curves

Elliptic curve is a non-singular curve over finite field F defined by

equation

y2 = x3 + ax + b

It is possible to define a group structure on the set of solutions.

We also need to consider the ∞ point on the curve so that every

line intersects the curve in exactly three points including

multiplicity (algebraic geometry).
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Elliptic curves

If we represent the group of elliptic curves additively:
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Elliptic curves

Let (E ,+,−, 0) be the group of elliptic curves and P a fixed point.

AlicE
Chooses a

Computes aP

Gets bP

Computes abP

BOB
Chooses b

Computes bP

Gets aP

Computes baP

public
channel

This way, Alice and Bob can publicly choose a secret point on the

curve.
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Quantum mechanics

Particles are in a superposition of states.

• Bit: 0 or 1.

• Quantum bit: α · 0 + β · 1, where α, β ∈ C.

We will require that qubits have norm 1, so α2 + β2 = 1.
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Quantum mechanics

When measured, the bit collapses to 0 with probability α2, and to

1 with probability β2.

α

β

Everything works linearly, transitions between the states are unitary.
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Quantum computation

Working on superpositions can be beneficial for computation.

• can do the Fourier transform quickly,

• so they can find the periods of functions quickly,

• so they can decide the orders of elements in groups,

• so they can break RSA / ECC / standard Diffie-Hellman.
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Quantum computation

• 2330-qubit computer could break a 256-bit elliptic curve,

• 4098-qubit computer could break 2048-bit RSA key,

• but in practice, we have only 10-qubit computers so far.
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Quantum computation

The biggest problem in quantum computation is noise. Two

possible scenarios:

• Optimistic: We can realize any quantum computation with

bounded error probability (independent on number of qubits).

• Pessimistic: Computation error (noise) grows with the number

of qubits at least linearly.
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Post-quantum cryptography

• Algorithms resistant to known quantum attacks started to

emerge.

• American NIST called for proposals (deadline of November

30, 2017).

15



Contents (part 5)

1. Classic Diffie-Hellman (briefly)

2. Elliptic curves (briefly)

3. Quantum mechanics (briefly)

4. Quantum computation (briefly)

5. Supersingular Isogeny Diffie-Hellman Protocol
(actually, also briefly)

16



Supersingular Isogeny Diffie-Hellman

Uses not only one elliptic curve, but multiple ones - it uses a walk

on supersingular isogeny graph.

Underlying problem is not discrete logarithm, but finding a

connection between two elliptic curves E and E ′.
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Supersingular Isogeny Diffie-Hellman

The Diffie-Hellman would end up like this:

AlicE
Chooses φA

Computes φA(E0)

Gets φB(E0)

Computes φAφB(E0)

BOB
Chooses φB

Computes φB(E0)

Gets φA(E0)

Computes φBφA(E0)

public
channel

We will construct something similar, yet a bit different.
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Supersingular elliptic curves

For security reasons, we need to use supersingular elliptic curves

(for normal ones, the underlying problem is easier).

Definition
Elliptic curve E is supersingular, if the endomorphism ring End(E )

has rank 4. (normal elliptic curves have endomorphism ring of rank

1 or 2).

Definition
j-invariant of an elliptic curve is j(E ) = 1728 4a3

4a3+27b2
.

When j(E ) ∈ {0, 1728}, E is supersingular. This happens iff a = 0

or b = 0.

19



Isogenies

Isogenies are morphisms between elliptic curves ϕ : E1 → E2 such

that the point at infinity in E1 is mapped to the point at infinity in

E2.

Isogeny is uniquely determined by Ker(ϕ). When we know E1 and

Ker(ϕ), there is a set of formulas (Velu’s formulas) that

determine ϕ(x) for any x ∈ E1.

20



Algorithm (idea)

1. Alice and Bob agree on a pool of curves and a starting curve

E0.

2. Alice applies a secret random sequence of two-isogenies,

resulting in an elliptic curve EA = ϕA(E0).

3. Bob secretly walks a random trail of three-isogenies in order

to end up at a curve EB = ϕB(E0).

4. They exchange curves EA and EB , and reapply the isogenies

on the received curve.

5. They both end up with the same curve, EAB .
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(gif)
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Algorithm (more technically)

Public paramters: Curve E0 and points PA,QA,PB ,QB .

Alice’s real point of view

1. Alice chooses scalars mA, nA.

2. Alice calculates a point RA = (mA)PA + (nA)QA.

3. This uniquely determines isogeny ϕA such that Ker(ϕA) = RA.

4. Alice sends EA, ϕA(PB) and ϕA(QB) to Bob.

5. Alice receives EB , ϕB(PA) and ϕB(QA).

6. Alice calculates ϕ′A as isogeny with kernel

(mA)ϕB(PA) + (nA)ϕB(QA).

7. Alice gets EAB = ϕ′A(EB), which is isomorphic to Bob’s

EBA = ϕ′B(EA).

8. They choose j(EAB) as their shared secret.
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Algorithm (idea)

two-isogenies

three-isogenies
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Final notes

• Each party works with different isogenies.

• Set up during the choice of PA, PB , QA, QB .

• Choose primes lA, lB (most often 2 and 3).

• Choose p prime such that p = (leAA )(leBB )f − 1.

• We choose the field F = Fp2 .

• There are (p + 1)2 = (leAA leBB f )2 points on the curve.

• Alice can use only isogenies s. t. Ker(ϕ) is a leAA -torsion

subgroup.
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SIDH explained in a sci-fi manner https://gist.github.com/
defeo/163444a53252ba90cca6a3b550e6dd31 with a lot of

spaceships
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Thank you for your attention

Main source:

• David Urbanik’s lecture ”Introduction to the Post-Quantum

Supersingular Isogeny Diffie-Hellman Protocol” at University

of Waterloo:

https://www.youtube.com/watch?v=PW5Vsu57o9I

Other sources:

• https://blog.quantummadness.com/posts/

supersingular-isogenies

• https://blog.cloudflare.com/sidh-go/

• https://crypto.anarres.info/2017/sidh

• https://www.esat.kuleuven.be/cosic/

elliptic-curves-are-quantum-dead-long-live-elliptic-curves/
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