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About me & this presentation

@ Currently: 1st year of PhD in Number theory (under Vita Kala)
@ Today’s talk: Nontraditional number systems

e My former topic (as part of research group TIGR at FNSPE
CTU (*Jaderka™)

e The last part — joint results with A. Kovacs, Budapest

e It’s going to be easy: Feel free to ask!



Outline

@ GNSs in the complex plane

© GNSs in lattices

© Infinitely many GNSs with the same radix
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GNSs in the complex plane

Number systems in Z

Examples of number systems in Z:
@ The binary system: radix 2, alphabet {0,1}. Represents all
nonnegative integers.

@ The decimal system: radix 10, alphabet {0,1,...,9}.
Represents all nonnegative integers.

Definition

Having a nonzero radix § € Z and a finite alphabet A C Z
containing 0: The pair (5,.A) is a GNS in Z if every element
0 # x € Z has a unique representation of the form

N
X:Zakﬁk, NGNo,akEA,aN#O.
k=0
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GNSs in the complex plane

Number systems in Z

Examples of number systems in Z:

@ The binary system: radix 2, alphabet {0,1}. Represents all
nonnegative integers. Not a GNS.

@ The decimal system: radix 10, alphabet {0,1,...,9}.
Represents all nonnegative integers. Not a GNS.

Definition

Having a nonzero radix § € Z and a finite alphabet A C Z
containing 0: The pair (5,.A) is a GNS in Z if every element
0 # x € Z has a unique representation of the form

N
X:Zakﬁk, NGNo,akEA,aN#O.
k=0
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GNSs in the complex plane

Number systems in Z

Further examples of number systems in Z:
@ Negabinary system (Vittorio Griinwald, 1885): Radix —2,
alphabet {0,1}. A GNS in Z.
o Weighted ternary system: Radix 3, alphabet {—1,0,1}. A
GNS in Z.

Definition

Having a nonzero radix § € Z and a finite alphabet A C Z
containing 0: The pair (53,.4) is a GNS in Z if every element
0 # x € Z has a unique representation of the form

N
X:Zakﬁk, NENo,akGA,aN;&O.
k=0
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GNSs in the complex plane

A peek into other rings

7 can be replaced by any ring R. For us mostly R C C, discrete.
The main example: Gaussian integers Z[i] = {a+ bi | a,b € Z}.

Definition
Having a nonzero radix § € R and a finite alphabet A C R
containing 0: The pair (53,.4) is a GNS in R if every element
0 # x € R has a unique representation of the form

N
X:Zakﬁk, NENo,akEA,aN;&O.
k=0

@ The system (—2,{0,1,i,1+i}) is a GNS in Z[i].
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GNSs in the complex plane

A peek into other rings

7 can be replaced by any ring R. For us mostly R C C, discrete.
The main example: Gaussian integers Z[i] = {a+ bi | a,b € Z}.

Definition
Having a nonzero radix § € R and a finite alphabet A C R
containing 0: The pair (53,.4) is a GNS in R if every element
0 # x € R has a unique representation of the form

N
X:Zakﬁk, NENo,akEA,aN;&O.
k=0

@ The system (—2,{0,1,i,1+i}) is a GNS in Z[i].
@ Penney, 1965: (—1+1i,{0,1}) is a GNS in Z[i].
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GNSs in the complex plane

A peek into other rings

7 can be replaced by any ring R. For us mostly R C C, discrete.
The main example: Gaussian integers Z[i] = {a+ bi | a,b € Z}.

Definition
Having a nonzero radix § € R and a finite alphabet A C R
containing 0: The pair (53,.4) is a GNS in R if every element
0 # x € R has a unique representation of the form

N
X:Zakﬁk, NENo,akEA,aN;&O.
k=0

@ The system (—2,{0,1,i,1+i}) is a GNS in Z[i].
@ Penney, 1965: (—1+1i,{0,1}) is a GNS in Z[i].
o —1=(11101)_14 = (= 1+i)*+(=14i)>+(—1+i)2+(—1+i)°.
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GNSs in the complex plane

A peek into other rings

7 can be replaced by any ring R. For us mostly R C C, discrete.
The main example: Gaussian integers Z[i] = {a+ bi | a,b € Z}.

Definition
Having a nonzero radix § € R and a finite alphabet A C R
containing 0: The pair (53,.4) is a GNS in R if every element
0 # x € R has a unique representation of the form

N
X:Zakﬁk, NENo,akEA,aN;&O.
k=0

@ The system (—2,{0,1,i,1+i}) is a GNS in Z[i].
@ Penney, 1965: (—1+1i,{0,1}) is a GNS in Z[i].

o —1=(11101)_14 = (= 1+i)*+(=14i)>+(—1+i)2+(—1+i)°.
e However, (+1 +1i,{0,1}) is not a GNS in Z[i].
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GNSs in the complex plane

Necessary conditions for a GNS

Proposition
If (8,.A) is a GNS in R, then:
o A is a complete residue system modulo S,
o |B]#0,1,
o [1—B|#1.
These conditions are not sufficient! The decimal system satisfies
them all.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;

e find the representation of o(x).
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;
e find the representation of o(x).
Example: Compute the representation of 1 in (3,{—11,0,5}).

o x=1.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;
e find the representation of o(x).
Example: Compute the representation of 1 in (3,{—11,0,5}).
o x=1.

e x=1=-11 (mod 3). o(x) =(1—-(-11))/3 =4.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;
e find the representation of o(x).

Example: Compute the representation of 1 in (3,{—11,0,5}).

o x=1.
e x=1=-11 (mod 3). o(x) =(1—-(-11))/3 =4.
o ¢(x) =4 =11 (mod 3). (x)= (4 - (~11))/3=5.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;
e find the representation of o(x).
Example: Compute the representation of 1 in (3,{—11,0,5}).
o x=1.
e x=1=-11 (mod 3). o(x) =(1—-(-11))/3 =4.
o p(x) =4 =11 (mod 3). P?(x) = (4 — (~11))/3 =5.
o V*(x)=5=5 (mod 3). ©»3¥(x) =(5—-5)/3=0. End.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;
e find the representation of o(x).

Example: Compute the representation of 1 in (3,{—11,0,5}).

e x=1.
e x=1=-11 (mod 3). p(x) =(1—(-11))/3 =4.
° p(x) =4=—11 (mod 3). Y?(x) = (4 — (~11))/3 =5.

o ©*(x) =5=5 (mod 3). 3(x)
@ We have found the representation
1= (5(—11)(—11)), = 5-3% + (—11) - 3+ (—11).

(5—5)/3 = 0. End.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;
e find the representation of o(x).

Example: Compute the representation of 1 in (3,{—11,0,5}).

e x=1.
e x=1=-11 (mod 3). p(x) =(1—(-11))/3 =4.
° p(x) =4=—11 (mod 3). Y?(x) = (4 — (~11))/3 =5.

o ©*(x) =5=5 (mod 3). 3(x)
@ We have found the representation
1= (5(—11)(—11)), = 5-3% + (—11) - 3+ (—11).

(5—5)/3 = 0. End.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)
e Find the last digit a (by congruence);
o compute the successor o(x) := (x — a)B7L;
e find the representation of o(x).

Example: Compute the representation of 1 in (3,{—11,0,5}).

e x=1.
e x=1=-11 (mod 3). p(x) =(1—(-11))/3 =4.
° p(x) =4=—11 (mod 3). Y?(x) = (4 — (~11))/3 =5.

o ©*(x) =5=5 (mod 3). 3(x)
@ We have found the representation
1= (5(—11)(—11)), = 5-3% + (—11) - 3+ (—11).
Example 2: In (-1 +1,{0,1}), we have —1 = (11101)_;;.

(5—5)/3 = 0. End.
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GNSs in the complex plane

Algorithm for finding the representation of x € R

(Supposing A is a CRS modulo £.)

e Find the last digit a (by congruence);

o compute the successor o(x) := (x — a)B7L;

e find the representation of o(x).
Example: Compute the representation of 1 in (3,{—11,0,5}).

o x=1.

e x=1=-11 (mod 3). o(x) =(1—-(-11))/3 =4.

o o(x) =4=-11 (mod 3). p?(x) = (4 — (-11))/3 =5.

o ©*(x) =5=5 (mod 3). 3(x) =(5-5)/3=0. End.

@ We have found the representation

1= (5(—11)(—11)), = 5-3% + (—11) - 3+ (—11).

Example 2: In (-1 +1,{0,1}), we have —1 = (11101)_;;.
Example 3: There is no representation of —16 in the decimal
system.
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GNSs in the complex plane

Corollaries of the algorithm:
o If Ais a CRS modulo 3, then every x € R has at most one
representation.
@ The system (3,.A) is a GNS iff the algorithm terminates for
every x € R.
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GNSs in the complex plane

Corollaries of the algorithm:
o If Ais a CRS modulo 3, then every x € R has at most one
representation.
@ The system (3,.A) is a GNS iff the algorithm terminates for
every x € R.

Proposition

If Ais a complete residue system modulo 8 and |3| # 0,1, then
(8,.A) is a GNS if and only if there exist a representation of all
elements of the testing set

K
T=¢xeR: x| <———=7, where K := max |al.
’,3‘ -1 acA
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GNSs in the complex plane

Corollaries of the algorithm:
o If Ais a CRS modulo 3, then every x € R has at most one
representation.
@ The system (3,.A) is a GNS iff the algorithm terminates for
every x € R.

Proposition

If Ais a complete residue system modulo 8 and |3| # 0,1, then
(8,.A) is a GNS if and only if there exist a representation of all
elements of the testing set

K
T=¢xeR: x| <———=7, where K := max |al.
’,3‘ -1 acA

o Idea of the proof: If x ¢ T, then |p(x)| < |x|.

J. Krasensky Number systems in the complex plane and in lattices



GNSs in the complex plane

Corollaries of the algorithm:
o If Ais a CRS modulo 3, then every x € R has at most one
representation.
@ The system (3,.A) is a GNS iff the algorithm terminates for
every x € R.

Proposition

If Ais a complete residue system modulo 8 and |3| # 0,1, then
(8,.A) is a GNS if and only if there exist a representation of all
elements of the testing set

K
T=¢xeR: x| <———=7, where K := max |al.
’,3‘ -1 acA

o Idea of the proof: If x ¢ T, then |p(x)| < |x|.
@ Furthermore: If x € T, then p(x) € T. Therefore all periodic
points of ¢ lie inside of T.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:
O Fully characterise GNSs with a given radix.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:

O Fully characterise GNSs with a given radix.
o Open even for R=7, 8 =3.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:

O Fully characterise GNSs with a given radix.
o Open even for R=7, 8 =3.
@ Examine a given type of alphabet for all radices.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:
O Fully characterise GNSs with a given radix.
o Open even for R=7, 8 =3.
@ Examine a given type of alphabet for all radices.
e {0,1,...,|8] — 1} gives a GNS in Z iff 5 < —2.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:
O Fully characterise GNSs with a given radix.
o Open even for R=7, 8 =3.
@ Examine a given type of alphabet for all radices.
e {0,1,...,|8] — 1} gives a GNS in Z iff 5 < —2.
o {—1,0,...,|8] —2} gives a GNS in Z iff 3 # —1,0,1,2.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:
O Fully characterise GNSs with a given radix.
o Open even for R=7, 8 =3.
@ Examine a given type of alphabet for all radices.
e {0,1,...,|8] — 1} gives a GNS in Z iff 5 < —2.
o {—1,0,...,|8] —2} gives a GNS in Z iff 3 # —1,0,1,2.
© Characterise all possible radices in the given ring.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:
O Fully characterise GNSs with a given radix.
o Open even for R=7, 8 =3.
@ Examine a given type of alphabet for all radices.
e {0,1,...,|8] — 1} gives a GNS in Z iff 5 < —2.
o {—1,0,...,|8] —2} gives a GNS in Z iff 3 # —1,0,1,2.
© Characterise all possible radices in the given ring.
o In Z the conditions |3] # 1, |1 — 3| # 1 suffice.
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GNSs in the complex plane

Crutial note: If R is discrete, then it is simple to check the GNS
property for any given (5, A).

Questions:
O Fully characterise GNSs with a given radix.
o Open even for R=7, 8 =3.
@ Examine a given type of alphabet for all radices.
e {0,1,...,|8] — 1} gives a GNS in Z iff 5 < —2.
o {—1,0,...,|8] —2} gives a GNS in Z iff 3 # —1,0,1,2.
© Characterise all possible radices in the given ring.
o In Z the conditions |3] # 1, |1 — 3| # 1 suffice.
@ Many other questions of various flavours: algoritmisation,
topology, dynamical systems, ...
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GNSs in the complex plane

Answers in Z[i]:
© Fully characterise GNSs with a given radix.

@ Examine a given type of alphabet for all radices.

© Characterise all possible radices in the given ring.

@ Some other questions ...
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GNSs in the complex plane

Answers in Z[i]:
© Fully characterise GNSs with a given radix.
o Hopeless.

@ Examine a given type of alphabet for all radices.

© Characterise all possible radices in the given ring.

@ Some other questions ...
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GNSs in the complex plane

Answers in Z[i]:
© Fully characterise GNSs with a given radix.
o Hopeless.

@ Examine a given type of alphabet for all radices.

Theorem (Katai, Szabé, 1975)

The canonical alphabet {0,1,..., k — 1} gives a GNS with the
radix B € Z[i| iff 5= —n=+i forne N.

© Characterise all possible radices in the given ring.

@ Some other questions ...
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GNSs in the complex plane

Answers in Z[i]:
© Fully characterise GNSs with a given radix.
o Hopeless.

@ Examine a given type of alphabet for all radices.

Theorem (Katai, Szabé, 1975)

The canonical alphabet {0,1,..., k — 1} gives a GNS with the
radix B € Z[i| iff 5= —n=+i forne N.

© Characterise all possible radices in the given ring.

Theorem (Steidl, 1989;

Let B € Z[i]. Then there exists an alphabet A such that (3, .A) is a
GNS if and only if |B| #1, |1 — | # 1.

@ Some other questions ...
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GNSs in the complex plane

Answers in Z[i]:
© Fully characterise GNSs with a given radix.
o Hopeless.

@ Examine a given type of alphabet for all radices.

Theorem (Katai, Szabé, 1975)

The canonical alphabet {0,1,..., k — 1} gives a GNS with the
radix B € Z[i| iff 5= —n=+i forne N.

© Characterise all possible radices in the given ring.

Theorem (Steidl, 1989; Katai, 1994)

Let B € Z[i]. Then there exists an alphabet A such that (3, .A) is a
GNS if and only if || # 1, |1 — B| # 1. The same holds in Ok
where K is any imaginary quadratic field.

@ Some other questions ...
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GNSs in the complex plane

Answers in Z[i]:
© Fully characterise GNSs with a given radix.
o Hopeless.

@ Examine a given type of alphabet for all radices.

Theorem (Katai, Szabé, 1975)

The canonical alphabet {0,1,..., k — 1} gives a GNS with the
radix B € Z[i| iff 5= —n=+i forne N.

© Characterise all possible radices in the given ring.

Theorem (Steidl, 1989; Katai, 1994)

Let B € Z[i]. Then there exists an alphabet A such that (3, .A) is a
GNS if and only if || # 1, |1 — B| # 1. The same holds in Ok
where K is any imaginary quadratic field.

@ Some other questions ...
e Behold the next slide!
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GNSs in the complex plane

0.5-

-0.5¢

-1 -0.5 0 0.5 1 1.5

Figure: Tiling of the complex plane generated by the Penney system
(-1+1i,{0,1}).
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GNSs in lattices

A more general setting: lattices

o A lattice (Z9);
e a radix L € 79%4;

e a finite alphabet A C Z9 containing zero.
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GNSs in lattices

A more general setting: lattices

o A lattice (Z9);
e a radix L € 79%4;

e a finite alphabet A C Z9 containing zero.

The pair (L, A) is a GNS in Z9 if every nonzero element x € Z¢
has a unique representation of the form

N
X:ZLkak, NENo,akE.A,aN#O.
k=0
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GNSs in lattices

A more general setting: lattices

o A lattice (Z9);
e a radix L € 79%4;

e a finite alphabet A C Z9 containing zero.

Definition

The pair (L, A) is a GNS in Z9 if every nonzero element x € Z¢
has a unique representation of the form

N
X:ZLkak, NENo,akE.A,aN#O.
k=0

If a ring R has an integral basis, it is isomorphic to a lattice; L can
be chosen by the operator of multiplication by 3.
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GNSs in lattices

Necessary conditions

@ The alphabet A must be a complete residue system modulo L;
o the radix L must be expansive, i.e. p(L™1) < 1 (Vince, 1993);
o det(/ — L) # %1 (the “unit condition”).

Proposition

Suppose L € Z9%9 is expansive and A is a CRS modulo L. Take
any vector norm satisfying r := HL_lH* < 1 and denote

K := maxge4 ||d||,. Then the pair (L,.A) is a GNS in Z? if and
only if there exists a representation for every element of the testing
set

K
T.— {xGZd:HXH*S s }
1—r
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GNSs in lattices

Classical question: Given a radix L € Z9%9, does there exist an
alphabet such that (L, .A) is a GNS?

Theorem (Steidl, 1989; Katai, 1994)

Let B € Z[i]. Then there exists an alphabet A such that (3, .A) is a
GNS if and only if |B| #1, |8 — 1| # 1.
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GNSs in lattices

Classical question: Given a radix L € Z9%9, does there exist an
alphabet such that (L, .A) is a GNS?

Theorem (Steidl, 1989; Katai, 1994)

Let B € Z[i]. Then there exists an alphabet A such that (3, .A) is a
GNS if and only if |B| # 1, |8 — 1| # 1. The same holds in Ok
where K is any imaginary quadratic field.

The used digits lie in a parallelogram around the origin.
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GNSs in lattices

Classical question: Given a radix L € Z9%9, does there exist an
alphabet such that (L, .A) is a GNS?

Theorem (Steidl, 1989; Katai, 1994)

Let B € Z[i]. Then there exists an alphabet A such that (3, .A) is a
GNS if and only if |B| # 1, |8 — 1| # 1. The same holds in Ok
where K is any imaginary quadratic field.

The used digits lie in a parallelogram around the origin.

Theorem (German, Kovacs, 2007)

If p(L=1) < 1/2, then there always exists an alphabet such that
(L, A) is a GNS.

They use the dense alphabet, i.e. the smallest representative (in a
certain vector norm) from every congruence class.
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GNSs in lattices

Classical question: Given a radix L € Z9%9, does there exist an
alphabet such that (L, .A) is a GNS?

Theorem (Steidl, 1989; Katai, 1994)

Let B € Z[i]. Then there exists an alphabet A such that (3, .A) is a
GNS if and only if |B| # 1, |8 — 1| # 1. The same holds in Ok
where K is any imaginary quadratic field.

The used digits lie in a parallelogram around the origin.

Theorem (German, Kovacs, 2007)

If p(L=1) < 1/2, then there always exists an alphabet such that
(L, A) is a GNS.

They use the dense alphabet, i.e. the smallest representative (in a
certain vector norm) from every congruence class.
Reminder: p(L™1) < 1 is a necessary condition.
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Infinitely many GNSs with the same radix

Question 1: Given a radix L € Z9*9, how many alphabets for this
radix do exist?
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Infinitely many GNSs with the same radix

Question 1: Given a radix L € Z9*9, how many alphabets for this
radix do exist?
So far known:

@ Radix is not expansive or the unit condition det(/ — L) # +1
fails = there is no such alphabet.
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Infinitely many GNSs with the same radix

Question 1: Given a radix L € Z9*9, how many alphabets for this
radix do exist?
So far known:

@ Radix is not expansive or the unit condition det(/ — L) # +1
fails = there is no such alphabet.

e For —2 in Z, only the alphabets {0,1} and {0, —1} are
suitable.
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Infinitely many GNSs with the same radix

Question 1: Given a radix L € Z9*9, how many alphabets for this
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Infinitely many GNSs with the same radix

Question 1: Given a radix L € Z9*9, how many alphabets for this
radix do exist?
So far known:

@ Radix is not expansive or the unit condition det(/ — L) # +1
fails = there is no such alphabet.

e For —2 in Z, only the alphabets {0,1} and {0, —1} are
suitable.

e Similarly, for —1 + i in Z[i] there are only four good alphabets.

e Matula, 1982: In Z, for every [ with |3] > 3 there are
infinitely many alphabets.

Theorem (K., 2017)

Let L be an operator on 79 satisfying p(L™') < 1/2 for which 2 is
not an eigenvalue. There always exist infinitely many GNSs with
radix L except for the case d < 2.
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Sparse alphabets

Question 2: Can all the digits be far away from the origin?
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Infinitely many GNSs with the same radix

Sparse alphabets

Question 2: Can all the digits be far away from the origin?

Definition

Given a radix L € Z9%9, a sequence of alphabets (A,),en is called
a family of arbitrarily sparse alphabets if for any given ball B
around the origin, there exists an ng such that for n > ng we have

A, B = {0}

Equivalently we can require that for any finite 0 ¢ S C Z9, the
alphabets A,, do not use any digits from S for n > ns.

If (L,.Ap) is a GNS for every n, we have a family of arbitrarily
sparse GNSs.
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Infinitely many GNSs with the same radix

The first result in this direction:
Theorem (Kovacs, K., 2017)

Suppose that p(L=1) < 1/2 and 2 is not an eigenvalue of L. Then
there exists a family of arbitrarily sparse GNSs
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The first result in this direction:

Theorem (Kovacs, K., 2017)

Suppose that p(L=1) < 1/2 and 2 is not an eigenvalue of L. Then
there exists a family of arbitrarily sparse GNSs except for the case
when every eigenvalue of L is either an integer or a non-real
algebraic number of degree 2, and has geometric multiplicity 1.

l.e.: problems arise only if all factors of the characteristic
polynomial have degree less than 3.
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Infinitely many GNSs with the same radix

The first result in this direction:

Theorem (Kovacs, K., 2017)

Suppose that p(L=1) < 1/2 and 2 is not an eigenvalue of L. Then
there exists a family of arbitrarily sparse GNSs except for the case
when every eigenvalue of L is either an integer or a non-real
algebraic number of degree 2, and has geometric multiplicity 1.

l.e.: problems arise only if all factors of the characteristic
polynomial have degree less than 3.

For comparison:

Theorem (German, Kovacs, 2007)

If p(L=1) < 1/2, then there always exists an alphabet such that
(L, A) is a GNS.
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Infinitely many GNSs with the same radix

Thank you for your attention.

Especially for any questions!
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Starting point:

Theorem (German, Kovacs, 2007)
If p(L71) < 1/2, then a GNS always exists.

Results:

Suppose that p(L™') < 1/2 and 2 is not an eigenvalue of L. There
always exist infinitely many GNSs with radix L except for the case
where d = 2 and L has complex eigenvalues (where we do not
know), and the case of radix —2 in 7, where only two GNSs exist.

Suppose that p(L™1) < 1/2 and 2 is not an eigenvalue of L. Then
there exists a family of arbitrarily sparse GNSs except for the case
when every eigenvalue of L is either an integer or a non-real
algebraic number of degree 2, and has geometric multiplicity 1.
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