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Basic model

Left and right action
Let G be a group. We have the canonical left and right action on G,
Ly(9) =99, Ry(9')=9'9, Vg.9' € G.

> The left and right actions commute, Ly, o Ry, = Ry, o Lg,.

» These two actions are balanced, i.e. the left action exhausts the full
set of commuting maps for the right action and vice versa.
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set of commuting maps for the right action and vice versa.

Coset space
Further let H < G be a subgroup and consider the left coset space
M = G/H together with the canonical projection p: G — M.

» The left action Ly projects down yielding L,: M — M.
> The right action R, does not project down to M.
» H acts simply transitively on the cosets gH from the right.

If we consider (G — M, Ry for g € G) to be the “given structure” on M
then the left action L, gives all its symmetries (= automorphisms).



Smooth manifolds

Let M be a smooth manifold. We have:

» The associative and commutative algebra C(M) of smooth
(= infinitely differentiable) real functions on M.

» The C(M)-module X(M) of vector fields = derivations in C(M)
= R-linear maps X : C(M) — C(M) satistying the Leibniz rule,

X(ff) =X f+ XS, Vf.f" € CM).
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» The associative and commutative algebra C(M) of smooth
(= infinitely differentiable) real functions on M.

» The C(M)-module X(M) of vector fields = derivations in C(M)
= R-linear maps X: C(M) — C(M) satisfying the Leibniz rule,

X(ff) =X f+ XS, Vf.f" € CM).

» At each point x € M the vector space 7(M) of tangent vectors
= R-linear maps v: C(M) — R satisfying the Leibniz rule at x,

o(f f7) = o(f) f'(x) + f(x) o(f), Vf.f" € C(M).

We identify the “geometric” notion of tangent vector with the
corresponding directional derivative.

» Evaluating a vector field X at x yields a tangent vector Xy,

Xa(f) = (X)), VfeCM).



Lie groups and infinitesimal actions

Tangent map

From now on we assume all manifolds and maps between them smooth.
The tangent map (= differential) of a map F: M — N is a collection of
linear maps between the tangent spaces dFy : 7x(M) — Tr(x)(N),

(dF(0))(f) = o(f o F), Vx € M,v € Tx(M), f € C(N).



Lie groups and infinitesimal actions

Tangent map

From now on we assume all manifolds and maps between them smooth.
The tangent map (= differential) of a map F: M — N is a collection of
linear maps between the tangent spaces dFy : 7x(M) — Tr(x)(N),

(dF(0))(f) = o(f o F), Vx € M,v € Tx(M), f € C(N).

Lie group

= a smooth manifold G with a smooth group structure. Let us denote
» g = 7.(G), the tangent space at the identity element e € G,
> and further consider a left action A: G XM — M.

Now we differentiate the partially evaluated map A(-,x): G — M and
define the infinitesimal action as a linear map 1”: g — X(M),

A (V)x = dAG,x)e(V), VV € g,x € M.

Similarly we define p’: g — X(M) for a right action p: M X G — M.



Lie algebras

= A vector space a with a bilinear bracket [, ]: a X a — a which is

1. alternating and hence anti-commutative,
[a,a] =0, = [a,b] = —[b,a], Va,b € a;

2. and satisfies the Jacobi identity,

—

a,[b,c]] + [c,[a, b]] + [, [a,c]] =0, or equivalently,
la, [b,cl] = [[a, b], c] + [b, [a, c]], Va,b,c € a.

Note how the second form of the identity resembles the Leibniz rule.
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Examples

» An associative algebra A equipped with the commutator,
[a,b] =ab—ba, VYa,b € A.

» The space Der(A) of derivations in any algebra A, in particular,
the vector fields X(M) on a smooth manifold M.



Invariant vector fields

Let G be a Lie group and recall the left and right actions of G on itself.
We consider the infinitesimal actions L', R’: ¢ — X(G) which assign
vector fields to each V € g.

> The left and right actions commute hence R’(V) is preserved by L,.
= We call the vector fields R’(V) left-invariant and vice versa.

= The left and right invariant fields themselves commute.
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> Moreover, R’(g) are all the vector fields invariant with respect to L,
and the invariance is preserved by the bracket in X(G).

= g becomes a Lie algebra by pulling back the bracket from X(G),
[U, V], = RH(R'(U), R (V)]x), YU,V €.

called the Lie algebra of G.
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Let G be a Lie group and recall the left and right actions of G on itself.
We consider the infinitesimal actions L', R’: ¢ — X(G) which assign
vector fields to each V € g.
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The left and right actions commute hence R’(V) is preserved by L.
We call the vector fields R’(V') left-invariant and vice versa.
The left and right invariant fields themselves commute.

Moreover, R'(g) are all the vector fields invariant with respect to L,
and the invariance is preserved by the bracket in X(G).

g becomes a Lie algebra by pulling back the bracket from X(G),
[U, V], = RH(R'(U), R (V)]x), YU,V €.

called the Lie algebra of G.

Any infinitisemal right action p’: g — X(M) preserves the bracket
= p’ is a Lie algebra homomorphism.

In particular, the conjugation in G induces the so called adjoint
representation Ad: G — Aut(g) of G on g.



Principal bundles
Let M be a manifold and H be a Lie group. An H-principal bundle over M
is a manifold P together with
1. aprojection p: P — M such that dp,, is surjective for all u € P;

2. a simple right action Ry of H on P such that the orbits of Ry, are
exactly the fibers P, = p~!(x), x € M.

Note that P — M is a generalization of the left coset space G — G/H.
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Tensorial quantities

Let P — M be an H-principal bundle and A: H — Autg(V) a representation
of H on a vector space V. We consider H-invariant V-valued functions on P,

CPV'={f:P>V|foR,'=Ah)o f, Vhe H}.

Such functions correspond to “tensorial quantities of type A” on M.

» An element u € P, can be understood as a frame of reference
= an infinitesimal coordinate system at x € M.

> This corresponds to the classical description of tensors as quantities
which transform in an appropriate way under coordinate change.



Cartan geometries

Let H be a Lie group, ) its Lie algebra and g another Lie algebra such that
h < g is its subalgebra. A Cartan geometry of type (g, H) on M is a triple
(M, P, r) where

1.

Lol

5.

P is a principal H-bundle over M with right action Rp;
r: ¢ — X(P) is a R-linear map such that
the corestriction on 7;(P) is a linear isomorphism for each u € P;

it is transformed by R}, according to the adjoint representation
dRy(r(V)u) = r(Ad(h) ™ V)R, (u), VVegheHueP;

and its restriction on } is just the infinitesimal action R’.

The homogeneous model is the quotient G — G/H with the infinitesimal
right action of g where G is a suitable Lie group with Lie algebra g.
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P is a principal H-bundle over M with right action Rp;
r: ¢ — X(P) is a R-linear map such that
the corestriction on 7;(P) is a linear isomorphism for each u € P;

it is transformed by R}, according to the adjoint representation
dRy(r(V)u) = r(Ad(h) ™ V)R, (u), VVegheHueP;

and its restriction on } is just the infinitesimal action R’.

The homogeneous model is the quotient G — G/H with the infinitesimal
right action of g where G is a suitable Lie group with Lie algebra g.

» This notion covers a wide class of sufficiently rigid geometric

structures, e.g. Riemannian, conformal or projective geometry.

> The vector fields r(V') are not projectable down to M.

> On the homogeneous model r is a Lie algebra homomorphism.



Tractors

The condition that r is an isomorphism on the fibers allows us to identify
the vector fields ¢ € X(P) with functions f € C(P, g),

& =r(f(W)u, Vu € P.

» We call the inverses w, = (r,)"': 7,(G) — g Cartan connection.

» The vector fields on P which are projectable down to M are exactly
the subspace A(M) = X(P)" < X(P) of Ry,-invariant vector fields.

» These invariant vector fields are tensorial of type Ad, they are called
adjoint tractors.
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» The tangent vector fields X(M) on the base X are tensorial of type
Ad: H — Autr(g/b).

» We have a projection IT: A(M) — X(M) given by dp. On the fibers it
corresponds to the canonical projection z: g — g/b.

» In general, tractors are tensorial quantities of type A: H — Autg(V)
such that A’: h — Endg(V) can be extended to the whole g.
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