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The “H-coefficients” technique in a nutshell
Miloslav Homer

The H-coefficients technique by Patarin is an abstract way of upper bounding a deter-
ministic distinguisher advantage. A high-level overview of reasoning behind this technique
will be presented in this talk.

Let D be a deterministic distinguisher, let Real,Random be oracles (chosen from sets
ΩReal,ΩRandom). Denote DR that D has access to oracle R, denote DR = 1 the event of
D claiming that oracle R is Real. We also say that D finished experiment with oracle R
deciding R is Real.

Definition 1. Define advantage of D as

Adv(D) = Pr
[
DReal = 1

]
− Pr

[
DRandom = 1

]
.

Definition 2. Define view as set of queries for R that D made during the experiment.
Let the number of queries be q. Define the view ν as

ν = { (Pi, Ci) | i ≤ q } .

Denote V the set of all views obtainable by distinguisher D. Denote X the probability
distribution on views induced by Real oracles and Y for Random oracles (functions ΩReal →
V and ΩRandom → V respectively). Denote Pr [X = ν] probability that D produced view ν.
Denote (the so-called statistical distance)

∆(X,Y ) =
1

2

∑
ν∈V

|Pr [X = ν]− Pr [Y = ν]| .

Proposition 3. For fixed distinguisher D:

∆(X,Y ) ≥ Adv(D).

Lemma 4.
∆(X,Y ) = 1− Eν∼Y

[
min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]
.

Proposition 5. Let V1 ∪ V2 = V and V1, V2 be disjoint. Let ϵi be such that:

∀ν ∈ Vi :
Pr [X = ν]

Pr [Y = ν]
≥ 1− ϵi.

Then
∆(X,Y ) ≤ Pr [Y ∈ V1] ϵ1 + Pr [Y ∈ V2] ϵ2.

Moreover, if ϵ1 is small and ϵ2 is large while Pr [Y ∈ V1] is large and Pr [Y ∈ V2] is
small, then:

Adv(D) ≤ ϵ1 + Pr [Y ∈ V2] .

Definition 6. We call view ν compatible with oracle R if for any (P,C) ∈ ν it holds that
R(P ) = C. Given view ν denote compΩ(ν) set of oracles of Ω that are compatible with
view ν.
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Given ν a possible transcript of D (either Pr [X = ν] > 0 or Pr [Y = ν] > 0) it holds
that:

Pr [X = ν] =

∣∣∣compΩReal
(ν)

∣∣∣
|ΩReal|

and Pr [Y = ν] =

∣∣∣compΩRandom
(ν)

∣∣∣
|ΩRandom|

.

Consequently:
(1) The order in which queries appear in a view ν does not affect the probability of

ν occuring, only the set of queries does.
(2) If two different deterministic distinguishers can obtain ν with nonzero probability

they would obtain ν with equal probability (even if the order of queries differs).

4



Cobham’s Theorem

Barbora Hudcová

1. Introduction

This talk will be an introduction to the topic of automatic sequences. More specifically,
I will introduce finite automata with output as well as some basic operations on words. The
main goal of this talk will be to show the correspondence between k-automatic sequences
and fixed points of k-uniform morphisms.

2. Alphabets and Words

Definition 1 (Alphabet). Let Σ be a finite, nonempty set called an alphabet. The
elements of Σ are referred to as letters. By Σk we understand the alphabet {0, 1, . . . , k−1}.

Definition 2 (Words). A finite word over an alphabet Σ is any finite sequence of letters
from Σ. The empty word will be denoted by ϵ. By Σ∗ we understand the set of all finite
words over Σ.

Let N = {0, 1, 2, . . .}. An infinite word is a map from N to Σ. If w is an infinite word,
we often write w = w0w1w2 . . . where each wi ∈ Σ.

Definition 3 (Morphism). Let Σ be an alphabet. A map h : Σ∗ −→ Σ∗ is called a
morphism if h satisfies h(xy) = h(x)h(y) ∀x, y ∈ Σ∗.

If there exists a constant k such that |h(a)| = k ∀a ∈ Σ, we say h is k-uniform. A
1-uniform morphism is called a coding.

Let h : Σ∗ −→ Σ∗ be a morphism. A finite or infinite word satisfying h(w) = w is said
to be a fixed point of h.

If there exists a ∈ Σ such that h(a) = ax for some x ∈ Σ∗ such that h(x) ̸= ϵ, we say
h is prolongable on a. In this case, the sequence of words a, h(a), h2(a), . . . converges, in
the limit, to the infinite word

−→
hω(a) := axh(x)h2(x)h3(x) . . .

which is a fixed point of h.

3. Numeration System Notation

Definition 4 (Base-k expansion). Let n ∈ {0, 1, 2, . . .}, k ≥ 2 an integer. By (n)k we
understand the unique base-k expansion of n. More formally: (n)k = atat−1 . . . a1a0 such
that n =

∑t
i=0 aik

i.
Let k ≥ 2 be an integer, w ∈ Σk = {0, 1, . . . , k − 1}; w = atat−1 . . . a1a0. Then we

define [w]k :=
∑t

i=0 aik
i.
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4. Finite Automata with Output

Definition 5 (Finite automaton with output). A deterministic finite automaton with
output, or DFAO is a 6-tuple M = (Q,Σ, δ, q0,∆, τ) where

• Q is a finite set of states
• Σ is the finite input alphabet
• δ : Q× Σ → Q is the transition function
• q0 ∈ Q is the initial state and
• ∆ is the finite output alphabet
• τ : Q → ∆ is the output function.

Moreover, when the input alphabet Σ = Σk for an integer k ≥ 2, we call a DFAO a
k-DFAO.

Definition 6 (k-automatic sequence). We say the sequence (an)n≥0 over a finite al-
phabet ∆ is k-automatic if there exists a k-DFAO M = (Q,Σk, δ, q0,∆, τ) such that
an = τ(δ(q0, w)) for all n ≥ 0 and all w with [w]k = n.

5. Cobham’s Theorem

Theorem 7 (Cobham’s Theorem). Let k ≥ 2. Then a sequence u = (un)n≥0 is k-
automatic if and only if it is the image, under a coding, of a fixed point of a k-uniform
morphism.

6. Sequences

Definition 8 (Thue-Morse sequence). Thue-Morse sequence t = (tn)n≥0 is defined as:
• tn = 0 if the number of 1’s in (n)2 is even
• tn = 1 if the number of 1’s in (n)2 is odd

Definition 9 (Thue-Morse morphism). The Thue-Morse morphism is a morphism

µ : Σ∗
2 −→ Σ∗

2

where µ(0) = 01 and µ(1) = 10.

Definition 10 (Rudin-Shapiro sequence). Rudin-Shapiro sequence r = (rn)n≥0 is defined
by the following:

• rn = 1 if the number of (possibly overlapping) occurences of the block 11 in (n)2
is even

• rn = −1 otherwise.
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Very transitive groups and geometries
Pavel Surý

This presentation introduces a family of groups, which act multiply transitively on
a finite set. By definition, a group action is k-transitive if for every two k-tuples of
distinct points there exists a group element that maps the first tuple to the second one.
Particularly, we show that there are infinite classes of 3-transitive groups and suggest
a way to construct the only four non-trivial finite permutation groups with a degree of
transitivity higher than 3.

1. Introduction

Definition 1. Let G act on X.
• A subset Orb(x) = { g(x) ∈ X | g ∈ G } is called orbit of point x.
• A subgroup Stab(x) = { g ∈ G | g(x) = x } is called stabilizer of point x.

Theorem 2 (orbit-stabilizer property). Let G act on X. For all x ∈ X we have
|Orb(x)| = |G : Stab(x)| (or |Orb(x)| |Stab(x)| = |G| if G is finite).
Definition 3. Let G act on X. The actions is

• transitive, if for all x, y ∈ X there is g ∈ G such that g(x) = y.
• k-transitive, if for all x1 ̸= · · · ̸= xk, y1 ̸= · · · ̸= yk ∈ X there is g ∈ G such that

g(xj) = yj for all 1 ≤ j ≤ k.
Theorem 4. Let G act k-transitively on X and |X| = n. Then n(n− 1) . . . (n− k + 1)
divides |G|.
Example. • Sn is n-transitive on {1, . . . , n}.

• An is (n− 2)-transitive on {1, . . . , n}.
• Dn is 1-transitive on {1, . . . , n}.

Lemma 5. Let G act on X. The action is k-transitive, iff:
(1) G acts transitively on X.
(2) Every point stabilizer Stab(x) acts (k − 1)-transitively on X \ {x}.

The condition (2) can be equivalently replaced with
(2’) Some point stabilizer Stab(y) acts (k − 1)-transitively on X \ {y}.

2. Affine and projective groups

Example. Let X = (V,E) be a graph. If Aut(X) is 2-transitive, then X = Kn or
X = K̄n.
Example. GLn(Fq) acts transitively on Fq \ {0}. The action is 2-transitive only in cases

(1) q = 3 a n = 1,
(2) q = 2 a n > 1.

Example. AGLn(Fq) acts 2-transitively on Fq . The action is 3-transitive only in cases
from previous example.
Example. PGLn(Fq) acts 2-transitively on projective space and acts 3-transitively, iff
n = 2.
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Steiner system Parameters Blocks Automorphism group
W11 (4,5,11) 66 M11

W12 (5,6,12) 132 M12

W23 (4,7,23) 253 M23

W24 (5,8,24) 759 M24

Table 1. Mathieu groups

3. Steiner systems

Definition 6. A structure S(Ω,B), where Ω is a finite set and B is a system of subsets
(blocks), is called a Steiner system if

(1) all blocks have the same size k,
(2) for some t ∈ N, every subset of size t lies in exactly on block.

Such Steiner system has parameters S(t, k, v), where v = |Ω|.

Example. Affine space over Fq is a S(2, q, qd) Steiner system for q > 2. Its automorphism
group is AΓLd(Fq), which equals AGLd(Fq) for q prime.

Example. Projective space over Fq is a S(2, q + 1, (qd − 1)/(q − 1)) Steiner system. Its
automorphism group is PΓLd+1(Fq), which equals PGLd+1(Fq) for q prime.

We show that number of blocks is determined by parameters (they do not depend on
particular Steiner system).

Theorem 7. Let S(Ω,B) be a S(t, k, v) Steiner system.
(1) There are r =

(v−1
t−1

)
/
(k−1
t−1

)
block containing a particular point.

(2) There are b = vr
k

blocks.

It’s possible to show that there exist unique Steiner systems of parameters denoted in
Table 1. Groups M11, M12, M23 and M24 are constructed as their automorphism groups.

Theorem 8. Let G act faithfully k-transitively on X with k ≥ 4, where X is finite. Then
either G ∼= Sn (for n ≥ 4), G ∼= An (n ≥ 6) or G ∼= Mn (n ∈ {11, 12, 23, 24}).
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Almost Perfect Nonlienear Permutations

Dáša Krasnayová

Existence of Almost Perfect Nonlinear (APN) permutations in fields with even dimen-
sion has been an interesting problem for many years now. In this talk I would like to
present some results from my master thesis and the research that followed.

Definition 1 (Boolean function). A boolean function is a function from Fn
2 to F2 for some

non-negative integer n. A function from Fn
2 to Fm

2 , where n ≥ m ≥ 1, n,m non-negative
integers, is called a vectorial boolean function.

Definition 2 (APN function). A function F : F2n = F → F is called Almost Perfect
Nonlinear (APN) if equation F (x)+F (x+a) = b has two or zero solutions x ∈ F for every
a, b ∈ F, a ̸= 0. Equivalently, F is APN if and only if |DaF | = |{DaF (x) : x ∈ F}| = |F|/2
for every a ∈ F∗, where DaF (x) = F (x) + F (x+ a) + F (a) + F (0) is a derivative of F .

The first and the only example of an APN function in even dimension so far was
presented by Dillon et al., in 2009. The function is known as the Kim function or κ
function and is defined as

κ(x) = x3 + x10 + ux24,

where u is a primitive element of F26 whose minimal polynomial over F2 is x6+x4+x3+
x+ 1.

Main technique used to solve equations in my master thesis is simplifying them using
so-called Trace-0/Trace-1 decomposition. We define

T1 =
{
g ∈ Fq2 : Tr

n
m(g) = gq + g = 1

}
∪ {1}

a set of all Trace-1 elements and 1. Moreover, we can notice that elements of the sub-field
Fq are exactly all Trace-0 elements of Fq2 , i.e. Fq = {X ∈ Fq2 : Tr

n
m(X) = 0}.

Every element of Fq2 can then be written using elements of T1 and Fq in two ways
presented in following propositions.

Proposition 3. Every X ∈ F∗
q2

can be uniquely written as X = xg, where x ∈ F∗
q and

g ∈ T1.

Proposition 4. For every g ∈ T1 \ {1}, any X ∈ Fq2 can be uniquely written as
X = xg + y, where x, y ∈ Fq.

These propositions were proven in a paper by Faruk Göloğlu in 2015.

1. Our research

We studied a family of the functions which can be written in a form

F (x) = x3 + bx3q + cx2q+1 + dxq+2,

where q = 2m and b, c, d ∈ Fq . Functions from this family are a special case of functions
introduced in a talk at BIRS Workshop by Petr Lisoněk in 2014. The Kim function is
CCZ-equivalent to a member of this family.
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In my master thesis we found equivalent conditions on b, c, d for F to be APN. The
most complicated condition is:

Trm1

(
∆(T∆+ c+ d)(T 2∆2 + bd+ c)

(T∆2 + bc+ d)2

)
= 1,

for every T such that Trm1 (T ) = 1, ∆T+1+b ̸= 0, T∆2+bc+d ̸= 0 and ∆2T 2+bd+c ̸= 0.
We were able to simplify this condition to

Trm1

(
(T∆+ c+ d)(bd+ c+ c2 + d2)(bd+ c+ b2 + 1)

∆(T∆2 + bc+ d)

)
= 0

for every T such that Trm1 (T ) = 1, ∆T+1+b ̸= 0, T∆2+bc+d ̸= 0 and ∆2T 2+bd+c ̸= 0.
We managed to prove that this is not possible in larger fields unless one of the ex-

pressions (bd + c + c2 + d2) and (bd + c + b2 + 1) is equal zero. If this happens, F is
CCZ-equivalent to a function which is not CCZ-equivalent to a permutation.

2. Conclusion

There are no new APN functions equivalent to a permutation in the chosen family of
functions.
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Building Carmichael numbers with large number of prime factors

Ivana Trummová

This lecture will be based on a paper written by Dominique Guillaume and François
Morain, who extend the method of Günther Löh and Wolfgang Niebuhr for the generation
of Carmichael numbers with a large number of prime factors to other classes of pseudo-
primes. I will present the algorithm used for building Carmichael numbers and several
improvements and remarks.

1. Carmichael numbers

Definition 1. A Carmichael number C is a composite integer for which the identity

aC−1 ≡ 1 (mod C)

holds for all values of a prime to C.

Theorem 2 (Korselt’s criterion). A Carmichael number C is an odd squarefree composite
number, C = p1 ∗ · · · ∗ pr, with r ≥ 3 such that

C − 1 ≡ 0 (mod (pi − 1)) for 1 ≤ i ≤ r.

Alternatively:
λ(C) | C − 1

where λ denotes Carmichael function:

Definition 3. Carmichael function of a positive integer n, denoted λ(n), is defined as the
smallest positive integer m such that am ≡ 1 (mod n) for every integer a that is prime
to n.

Using these facts, we will look for Carmichael numbers with a large number of prime
factors.

2. The Algorithm

We want to search for Carmichael numbers C with a fixed value of Λ = λ(C). Let

S(Λ) = { p, p prime, p ∤ Λ, p− 1 | Λ }

=⇒ a squarefree product N of elements of S(Λ) satisfies

λ(N) | Λ

as well as the property
pj ̸≡ 1 (mod pi)

for 1 ≤ i < j ≤ r.
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Suppose one wants to find Carmichael numbers with r factors built up with the primes
of S := S(Λ).

• It is enough to look for r distinct elements p1, . . . , pr such that

C = p1 ∗ · · · ∗ pr ≡ 1 (mod Λ)

• If this is the case, we have C ≡ 1 (mod λ(C)) since λ(N) | Λ.
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Circular units of abelian fields with four ramified primes

Vladimír Sedláček

1. Introduction

Circular units appear in many situations in algebraic number theory, because in some
sense they are a good approximation of the full group of units of a given abelian field,
which is very hard to describe explicitly. They are also closely related to the class group
of the respective field, which was already known to E. Kummer. For abelian number
fields which are not cyclotomic, there are even several possible definitions with different
properties.

The problem is that a Z-basis of the group of circular numbers is known only in a
few very special cases, for example when the abelian field is cyclotomic, has at most two
ramified primes, or has three ramified primes and satisfies some other conditions. The
aim of this talk is to explore the case of an abelian field with four ramified primes under
another assumptions, and to present a recent result of the author of this talk.

2. Preliminaries

Definition 1. An abelian field is a finite Galois extension of Q with an abelian Galois
group. The genus field (in the narrow sense) of an abelian field is its maximal abelian
extension (i.e., finite Galois extension with an abelian Galois group) unramified at all
(finite) primes.

Theorem 2 (Kronecker-Weber). Every abelian field is a subfield of some cyclotomic
field.

Definition 3. Let k be an abelian field. The least number f ∈ N such that k ⊆ Q(ζf ) is
called the conductor of k.

Definition 4. Let G be any group. The (integral) group ring Z[G] is the free Z-module
with basis G, which is made into a ring by using the group law on G and extending
linearly.

3. The case of four ramified primes

Let k be a fixed real abelian field ramified at exactly four primes p1, p2, p3, p4 with genus
field K, with G := Gal(K/Q) and H := Gal(K/k). Also let Ki be the maximal subfield of
K ramified only at pi and let Ti = Gal(K/KjKlKh) be the inertia subgroup of G for the
prime pi (so that G ∼= T1×T2×T3×T4). We will assume that H is cyclic and all the Ti’s are
cyclic, generated by σi. Finally, let m := |H|, ai := [Ki ∩ k : Q], ri := [K : kKi], ni :=

m
ri

,
as can be seen in the following diagram.
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K

kKi

k Ki

k ∩Ki

Q

ri

ni

ai

Definition 5. The non-torsion part D+ of the group of circular numbers of k (using
Lettl’s modification of Sinnott’s definition) is a Z[G]-module with one generator for each
nonempty subset of the set of ramified primes of k. More specifically,

D+ = ⟨η, η123, η124, η134, η234, η12, η13, η14, η23, η24, η34, η1, η2, η3, η4⟩Z[G],

where

η = NQ(ζf )/k(1− ζf )

ηijl = NQ(ζfijl
)/(KiKjKl∩k)(1− ζfijl )

ηij = NQ(ζfij
)/(KiKj∩k)(1− ζfij )

ηi = NQ(ζfi
)/(Ki∩k)(1− ζfi )

and f, fijl, fij , fi are the conductors of K,KiKjKl,KiKj ,Ki, respectively.
The non-torsion part C+ of the group of circular units of k is D+ ∩E(k), where E(k)

are all units of k.

Lemma 6. The Z-rank of D+ is [k : Q] + 3.

Lemma 7. We have

Gal(k/Q) ∼= {
(
σx1
1 σx2

2 σx3
3 σx4

4

)∣∣
k

; 0 ≤ x1 < a1n1, 0 ≤ x2 < a2
n2

gcd(r3, r4)
,

0 ≤ x3 < a3
n3

r4
gcd(r3, r4), 0 ≤ x4 < a4},

where each automorphism of k determines the quadruple (x1, x2, x3, x4) uniquely.

Let

Ri =

ai−1∑
u=0

σu
i , Ni =

ni−1∑
u=0

σ
uai
i ∈ Z[G].

Then RiNi is a norm operator from k to a maximal subfield ramified at three primes. We
will use this a lot, since a basis of the non-torsion part of the group of circular numbers of
an real abelian field with three ramified primes has (under some conditions) already been
constructed.

In the talk, we will see how to construct a Z-basis of D+ (in quite a geometric way)
in a special subcase.
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Goldwasser-Killian primality test

Jiří Pavlů

Goldwasser-Killian test is one of the first primality proving algorithm, that at the same
time:

• can be used for arbitrary natural number,
• runs in polynomial time,
• can actually prove a number is a prime,
• its correctness does not depend on any unproven conjecture.

In this lecture Goldwasser-Killian test will be presented, along with some basic intro-
duction to algebraic concepts behind it – mainly elliptic curves. We will see how it works
and why it works. Some modifications and their advantages will also be mentioned.

1. Elliptic curve group law

Definition 1. Let F be a field, char(F) ̸= 2, 3. We will define an elliptic curve over F
((A,B)) as an ordered pair (A,B) such that A,B ∈ F and 4A3 + 27B2 ̸= 0.

Definition 2. Let F be a field and (A,B) an elliptic curve over F. We will define its
set of points (EA,B(F)) as a set of ordered pairs (x, y) such that x, y ∈ F and
y2 = x3 +Ax+B along with a special point I.

Definition 3. Let EA,B(F) be a set of points of an elliptic curve. For P = (xp, yp),
Q = (xq , yq) ∈ EA,B(F) we define addition in a following way:

• P + I = P for every P ∈ EA,B(F)
• if xp = xq and yp = −yq , then P +Q = I

• otherwise we define P + Q as a point (xres, yres), where xres = s2 − xp − xq ,
yres = s(xp − xres)− yp, where s is defined as:

– s =
3xp+A

yp
if P = Q

– s =
xp−xq

yp−yq
if P ̸= Q.

Note. The formulas can be used even if we take an elliptic curve over a ring (and not
a field), they just sometimes fail.

2. Important theorems

Theorem 4. Let (A,B) be an elliptic curve over F. Let |EA,B(F)| = 2q, for some
odd prime number q. Then EA,B(F) is isomrphic to group Z2q.

Proof. Divisors of 2q are only numbers: 1, 2, q, 2q. So because of its cardinality and
the divisibility of its order it must be isomorphic to Z2q ≃ Zq ⊕ Z2. □

Theorem 5 (Hasse). Let (A,B) be an elliptic curve over Fp, and EA,B(Fp) its set of points.
Then

∣∣∣∣EA,B(Fp)
∣∣− p− 1

∣∣ ≤ 2
√
p.
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Theorem 6 (Lenstra). Let p > 5 be a prime, S ⊆
[
p+ 1− ⌊√p⌋, p+ 1 + ⌊√p⌋

]
. If

(A,B) an ellipic curve over Fp is chosen uniformly randomly, then the probability

P
[∣∣EA,B(p)

∣∣ ∈ S
]
>

c

log(p)
∗

|S| − 2

2⌊√p⌋+ 1
.

Theorem 7. Let n ∈ N , GCD(6, n) = 1. Let (A,B) be an elliptic curve over Zn,
P ̸= I ∈ EA,B(Zn). Then if qP = I for some prime number q > n1/2 + 2n1/4 + 1, then
n is a prime.
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The automorphism tower of a group
Michal Hrbek

Let G be a group. We denote by the Aut(G) the group of all automorphisms of G.
Then there is a natural group homomorphism

πG : G → Aut(G),

assigning to an element g ∈ G the inner automorphism ig : h 7→ g−1hg. Note that this
forces πG(g) = IdG for any g from the center of the group G. In particular, πG is a trivial
homomorphism whenever G is abelian.

On the other hand, if the center of G is trivial (i.e., G is centerless), then the map πG

is an embedding, and Aut(G) is also centerless.
The automorphism tower of G is defined by transfinite iteration. Explicitly, we define

by induction on ordinals α a sequence of groups Gα and group homomorphisms πα : Gα →
Gα+1:

G0 = G,

πGα =: πα : Gα → Gα+1 := Aut(Gα),

Gλ = lim−→
α<λ

Gα, when λ is a limit ordinal.

(Note: In case of G being centerless, all the maps πα are embeddings, and the direct
limit in a limit step λ is just a union

∪
α<λ Gα.)

(Another note: The non-centerless case can be a bit non-intuitive. E.g., consider
G = D8. Then Aut(D8) = D8, and thus Gn ≃ D8 for all n < ω. The image πn is always
a quotient of D8 over its center – a Klein subgroup of D8. By the limit construction,
Gω ≃ Z2, and Gω+1 is the trivial group. Hence, the automorphism tower of D8 terminates
at step ω + 1, but not at ω.)

Problem. Does the automorphism tower terminate for any group G? That is, is there
for any G an ordinal β such that Gα = Gβ for all α > β?

Theorem 1 (Wielandt, 1939). If G is finite and centerless, then the automorphism tower
of G terminates after finitely many steps.

Theorem 2 (Thomas, 1985). If G is infinite and centerless, then the automorphism
tower of G terminates after at most (2|G|)+ steps.

Theorem 3 (Hamkins, 1998). The automorphism tower of any group terminates.

I will try to explain the (rather short and very elegant!) proofs of Theorems 2 and 3.
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Manim – the tool of 3blue1brown
Miroslav Olšák

1. Introduction

There are 3 basic classes (types of objects):
• Mobject = An object in the scene. It can be for instance square, TEX symbol or

a group of such things.
• Scene = The main object containing all the mobject which are supposed to be

drawn on the screen. The video itself is coded in a method of a successor of
Scene.

• Animation = An auxiliary object providing a fluent movement of an Mobject or its
fluent deformation into another. In our examples it is substituted by Transform,
its successor.

2. Example code

Add the number of vertices and change color

class RegPolygons(Scene):
def construct(self):

for i in range(3, 100):
polygon = RegularPolygon(i)
polygon.set_color(rgb_to_color([i/99.0, (100-i)/99.0, 0]))
self.add(polygon)
self.update_frame()
self.add_frames(self.get_frame())
self.remove(polygon)

First circle, then square

class CircleSquare1(Scene):
def construct(self):

circle = Circle()
square = Square()
self.add(circle)
self.dither()
self.remove(circle)
self.add(square)
self.dither()

Transformation: Triangle+square → vice versa. There are two versions, the former
transforms the objects while the latter switches them.

class CircleSquare2(Scene):
def construct(self):

begin = VGroup(Circle(), Square())
end = VGroup(Square(), Circle())
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begin[0].shift([-2,0,0])
begin[1].shift([2,0,0])
end[0].shift([-2,0,0])
end[1].shift([2,0,0])
self.play(Transform(begin, end))

class CircleSquare3(Scene):
def construct(self):

begin = VGroup(Circle(), Square())
end = VGroup(Circle(), Square())
begin[0].shift([-2,0,0])
begin[1].shift([2,0,0])
end[0].shift([2,0,0])
end[1].shift([-2,0,0])
self.play(Transform(begin, end))

Colored TEXt

class ColorBinom(Scene):
def construct(self):

binom = TexMobject('\\binom nk')
self.add(binom)
binom[1].set_color(YELLOW)
binom[2].set_color(BLUE)
self.dither()

3. Links

• The manim library code: https://github.com/3b1b/manim
• 3blue1brown videos: https://www.3blue1brown.com/
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