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1 Introduction

Natural proofs introduced by Razborov and Rudich [11] can be used to ob-
tain a conditional unprovability of circuit lower bounds in theories admitting
certain interpolation properties. Similar interpolation properties are known
to hold in intuitionistic logic. We discuss what consequences this has for the
provability of circuit lower bounds in intuitionistic theories.

2 Formalization

We work in first-order theories with the usual language of arithmetic con-
taining symbols 0, S, +, ·, =, ≤. To encode reasoning about computation it
is natural to consider also symbols bx/2c, |x| for the length of binary repre-
sentation of x, and # with the intended meaning x#y = 2|x|·|y|. All theories
we consider contain a set of BASIC axioms capturing the usual properties of
these symbols, cf. [2].

One of the most important theories we investigate is S1
2 which is a fragment

of Peano arithmetic consisting of BASIC axioms and polynomial induction:

A(0) ∧ ∀x(A(bx/2c)→ A(x))→ ∀xA(x)

for all Σb
1-formulas A.

Here Σb
1-formulas are formulas constructed from sharply bounded formulas by

means of ∨,∧, sharply bounded, and existential bounded quantifiers where

∗The major part of this research was done during a special MALOA semester in Logic
and Complexity in Prague, 2011.
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sharply bounded quantifiers are ∃x ≤ |t| or ∀x ≤ |t| for x not occurring
in term t, existential bounded quantifiers are ∃x ≤ t for x not occurring in
t, and sharply bounded formulas are formulas with all quantifiers sharply
bounded. Analogously, Πb

1-formulas are negations of Σb
1-formulas. All NP

resp. coNP properties are Σb
1-definable resp. Πb

1-definable, see [7, 13, 14].

For any k, denote by Comp|y|k(C,w, y) → C(y) 6= x a sharply bounded
formula with free variables C,w, x, y defining the relation ”If C encodes an
|y|k-size circuit with |y| inputs, one output and w is computation of C on
input y, then C on y does not output x”. See Appendix for the details.

Then for any k we define LBtt(f, n
k) as

∀C,W ∃y ≤ |f | (Comp|y|k(C, [W ]y, y)→ C(y) 6= f(y))

where f is a free variable representing truth table of a function on n = |y|
variables, so |f | = 2n, f(y) is fy, the y-th bit of f , and [W ]y is the y-th
element of a sequence of strings encoded in W (possibly computations of C
on all inputs of size ||f ||).

Next, we write LBtt(SAT, n
k) for

∀C,W ∃y ≤ |f | ((f(y) = 1↔ ∃z, |z| ≤ |y|SAT (y, z))→
(Comp|y|k(C, [W ]y, y)→ C(y) 6= f(y)))

where SAT (y, z) says that ”y encodes a propositional formula satisfied by
z”. All quantifiers in SAT (y, z) can be bounded by |f |, see Appendix. Anal-
ogously define LBtt(f ⊕ SAT, nk).

LBtt(f, n
k) is universal closure of a sharply bounded formula. Moreover,

∀C, ∀W are bounded quantifiers. The same is true for LB(SAT, nk) and
LBtt(f ⊕SAT, nk). Note also that even subexponential circuit lower bounds
(with the precise bound depending on the details of the encoding of cir-
cuits) can be expressed in this way as universal closured of sharply bounded
formulas by choosing different bounds on size of C,W .
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3 Feasible interpolation and feasible disjunc-

tion property

We say that a first-order theory T admits feasible interpolation property
(FIP) if whenever T ` A(x) ∨ B(x) for Πb

1-formulas A,B with free variable
x, there are poly-size circuits Cn, n ≥ 1 which for each a of size |a| = n find
a true statement among A(a), B(a).

Theorem 1 (Razborov [10], Kraj́ıček [8]). 1 If there is a strong pseudoran-
dom generator, then for any sufficiently big k, no sufficiently strong theory
admitting FIP proves LBtt(SAT, n

k).

For a definition of strong pseudorandom generator see [11]. By a sufficiently
strong theory we mean a theory that can

1. define x⊕ y (the bit-wise sum mod 2) from x and y
2. prove that if circuit C outputs y and circuit D outputs x⊕ y then circuit
C ⊕D outputs x

The second condition means that we can concatenate two strings (the instruc-
tions of C ⊕D are the instructions of C concatenated with the instructions
of D and finitely many instructions defining the output of the form x⊕ y) so
that the i-th bit of C ⊕D is the i-th bit of C if i ≤ |C| and the (|C|+ i)-th
bit of C ⊕D is the i-th bit of D if i ≤ |D|. Again, the precise formulation
depends on the encoding of circuits.

To obtain a sufficiently strong theory it suffices to have the least number
principle for sharply bounded formulas with BASIC or simply extend the
language by symbol ⊕ and a symbol for concatenation together with adding
basic axioms defining their properties.

Kraj́ıček-Pudlák [9] (Theorem 1) showed that if S1
2 has FIP then factoring is

easy. Therefore, it might be useful to consider a different form of interpola-
tion:

A first-order theory T admits feasible disjunction property (FDP) if
there is a polynomial p s.t. whenever T ` A(x) ∨B(x) for Πb

1-formulas A,B
with free variable x, then for each a there is a p(|a|)-size T -proof of A(Ia)
or a p(|a|)-size T -proof of B(Ia) where Ia is the binary numeral for a, i.e.
I0 = 0, I2n = 2In and I2n+1 = 2In + 1.

1This is a simplified version capturing the essence of Razborov’s result who obtained
it for theory S2

2(α). Kraj́ıček [8] found a simpler proof using FIP.
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Theorem 2 (Rudich [12]). 2 If there is a super-bit, then for any sufficiently
big k, no sufficiently strong theory admitting FDP proves LBtt(SAT, n

k).

In order to use FDP Rudich needed to assume the existence of super-bits:

A P/poly function gn : {0, 1}n 7→ {0, 1}n+1 is a super-bit if and only if for
some ε, for all non-deterministic circuits C of size S ≤ 2nε :

Proby[C(y) = 1]− Probx[C(gn(x)) = 1] < 1/S

It is not known whether FDP (e.g. in S1
2) breaks any hardness assumption.

The mentioned unprovability results use Razborov’s trick which says that
if we know that SATn does not have nk size circuits, then for any function
f on n variables we know that f or f ⊕ SATn is hard for nk/3-size circuits
where f ⊕SATn is bitwise sum of the truth table of f and the truth table of
SATn. Therefore, at least half of functions f on n variables need circuit of
size > nk/3.

If the trick is performed in any theory T with FIP resp. FDP, then

T ` LBtt(f, n
k/3) ∨ LBtt(f ⊕ SAT, nk/3)

implies that we have P/poly resp. NP/poly circuits which for at least half of
functions f represented by their truth tables recognize that f /∈SIZE(nk/3)
and never accept f in SIZE(nk/3). Such properties are called P/poly resp.
NP/poly natural against SIZE(nk/3), [11, 12]. Proofs that imply the exis-
tence of such properties are informally called natural proofs. By [11] and
[12], if k is sufficiently big, their existence breaks pseudorandom generators
resp. super-bits what leads to the conditional unprovability.

4 Intuitionism

FDP is similar to disjunction property which usually holds in intuitionistic
theories. In fact, whenever A(x)∨B(x) is provable in intuitionistic predicate
logic, for each a we can efficiently extrapolate an intuitionistic proof of A(a)
or an intuitionistic proof of B(a):

2Originally formulated in terms of propositional logic with nlogn bound on SAT.
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Theorem 3 (Disjunction property). If A ∨ B is provable in intuitionistic
predicate logic, then at least one of A and B is derivable in it (even if A,B
share variables).

Corollary 1. Intuitionistic predicate logic admits FDP and FIP.

Proof: If d is a proof of A(x) ∨B(x) in intuitionisti predicate logic, then
there is a proof of A(x) or of B(x). It might be much longer than d but
it is fixed. W.l.o.g. assume it proves A(x), then for each a of size n
we obtain a proof of A(a) just by substitution, hence in linear time.

Intuitionistic predicate logic can be extended by certain admissible rules that
do not help to derive new theorems. One of them is Kreisel-Putnam rule
which having ¬T → A ∨ B allows us to derive (¬T → A) ∨ (¬T → B).
Therefore, we have FDP in intuitionistic theories where any proof can be seen
as a derivation in intuitionistic predicate logic from some axioms of the form
¬T . This does not give us FDP in interesting intuitionistic theories which
do not seem to have this property, see e.g. iS1

2 below. Also T → (A ∨ B)
does not seem to imply (T → A) ∨ (T → B) in intuitionistic predicate logic
even if A,B are sharply bounded and do not share any variables.

Nevertheless, we have FIP in intuitionistic S1
2 , shortly IS1

2 , which is defined
as S1

2 but with intuitionistic predicate logic and polynomial induction only
for Σb+

1 -formulas: Σb
1-formulas that do not contain implication or negation

signs, cf.[4].

Theorem 4 (Buss [4], Cook-Urquhart [6]). 3 If IS1
2 ` ∃yA(x, y) where A is

an arbitrary formula, then there is a p-time function f such that A(x, f(x))
holds for any x. Moreover, there is a Σb+

1 formula B(x, y) such that IS1
2

proves:
(1) ∀x, y(B(x, y)→ A(x, y))
(2) ∀x, y, z(B(x, y) ∧B(x, z)→ y = z)
(3) ∀x∃yB(x, y)
and there are poly-time functions f, g such that for each n, g(n) s the Godel
number of an IS1

2 proof of A(Ia, If(a)). Here the Godel number is efficient
meaning that the length of the Godel number of a proof is bounded by a
polynomial in the length of the proof.

3Buss proved the theorem without the ”moreover” part which was obtained by Cook
and Urquhart.
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S. Buss also pointed out that IS1
2 admits FIP and E. Jeřábek noticed that

IS1
2 admits FDP too (private communication).

Corollary 2. IS1
2 has FIP and FDP.

Proof: If IS1
2 ` A(x) ∨B(x) then

IS1
2 ` ∃y ≤ 1(y = 0→ A(x)) ∧ (y 6= 0→ B(x)) because

IS1
2 ` A(x)→ ∃y ≤ 1(y = 0→ A(x)) ∧ (y 6= 0→ B(x)) and

IS1
2 ` B(x)→ ∃y ≤ 1(y = 0→ A(x)) ∧ (y 6= 0→ B(x)). Therefore, Buss’s

theorem gives us a p-time function witnessing y and FIP in IS1
2 .

Moreover, according the Cook-Urquhart part of Theorem 4
there is a Σb+

1 -formula C(x, y) such that
IS1

2 ` C(x, y)→ (y = 0→ A(x)) ∧ (y 6= 0→ B(x))
and there are poly-time functions f, g such that for each a,
g(a) is an IS1

2 proof of C(Ia, If(a)). It follows that for each a
there is a p(|a|)-size IS1

2 -proof of A(Ia) or p(|a|)-size IS1
2 proof of B(Ia)

where p is some polynomial.

Consequently, if there is a strong pseudorandom generator, then for suffi-
ciently big k,

IS1
2 6` LBtt(f, n

k) ∨ LBtt(f ⊕ SAT, nk)

If we want to derive the unprovability of LBtt(SAT, n
k) we need to perform

Razborov’s trick in IS1
2 . In other words, the question is how to do Razborov’s

trick constructively.

For this, it would be sufficient to have Πb
1-conservativity of S1

2 over IS1
2 ,

what might remind us of similar results obtained for stronger fragments of
arithmetic: PA is Π0

2-conservative over intuitionistic PA. However, if the
conservativity held, S1

2 would admit FIP and thus factoring would be easy.
Nevertheless, in [1] it is shown that S1

2 is ∀Σb
1-conservative over IS1

2 . This
is not sufficient for Razborov’s trick where the conservativity is needed for
a disjunction of Πb

1-sentences, but as LBtt(SAT, n
k) is universal closure of a

sharply bounded formula, it tells us that

Lemma 1. If IS1
2 6` LBtt(SAT, n

k), then S1
2 6` LBtt(SAT, n

k).

We can find many derivation rules that would allow us to perform Razborov’s
trick in IS1

2 augmented by such rules but unless factoring is easy, we do not
have them in IS1

2 alone. Consider for example the following:
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Definition 1 (Derivation rule R). If ∀x ≤ t(A(x) ∨ B) where A is sharply
bounded, B is Πb

1-formula and x does not occur in B, then ∀x ≤ tA(x) ∨B
Denote IS1

2 with this rule by IS1
2∗.

Proposition 1. If IS1
2∗ = IS1

2 and there is a strong pseudorandom generator
then for any sufficiently big k, S1

2 6` LBtt(SAT, n
k).

Proof: If S1
2 ` LBtt(SAT, n

k), then since Razborov’s trick is doable in S1
2

S1
2 ` ∀C,W,C ′,W ′ (∃y ≤ |f | (Comp|y|k(C, [W ]y, y)→ f(y) 6= C(y))∨

∃y ≤ |f | ((f ⊕ SAT (y) = 1↔ h(y) = 1)→
(Comp|y|k(C

′, [W ′]y, y)→ h(y) 6= C ′(y))))
By ∀Σb

1-conservativity IS1
2 proves the same thing and since IS1

2 = IS1
2∗,

we can now use rule R in IS1
2 to derive

IS1
2 ` LBtt(f, n

k/3) ∨ LBtt(f ⊕ SAT, nk/3)
Finally, FIP in IS1

2 produces P/poly natural property against SIZE(nk/3).

Similar argument shows also that if IS1
2 = IS1

2∗, S1
2 admits FIP. We could

try to obtain the unprovability directly in IS1
2∗ without using IS1

2 . The
problem is that witnessing by p-time functions seems to be broken in IS1

2∗.
Maybe, however, the following kind of NP/poly witnessing analogous to FDP
remains.

Definition 2 (NP/poly witnessing in IS1
2∗). If IS1

2∗ ` ∃y ≤ 1A(x, y) for
Πb

1-formula A, then there are P/poly circuits C s.t. for any x, A(x, 1) holds
if and only if there is z s.t. C(x, z) = 1.

Proposition 2. If IS1
2∗ admits NP/poly witnessing and there is a super-bit,

then for any sufficiently big k, S1
2 6` LBtt(SAT, n

k).

Proof: Assume S1
2 ` LBtt(SAT, n

k). As in the previous proof we get
IS1

2∗ ` LBtt(SAT, n
k/3) ∨ LBtt(f ⊕ SAT, nk/3) and as in Corollary 2

IS1
2∗ ` ∃y ≤ 1(y = 0→ LBtt(SAT, n

k/3))∧ (y 6= 0→ LBtt(f ⊕SAT, nk/3))
By NP/poly witnessing we now obtain NP/poly property against SIZE(nk/3)
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Appendix

We define here a sharply bounded formula Comp|y|k(C,w, y) → C(y) 6= x
which stands for the relation ”If C encodes an |y|k-size circuit with |y| inputs,
one output and w is computation of C on input y, then C on y does not
output x”. C will represent a directed graph on |w| vertices.

Let EC(i, j) be C[i,j] for pairing function [i, j] = (i + j)(i + j + 1)/2 + i.
EC(i, j) = 1, i, j < |w| means that there is an edge in circuit C going from
the i-th vertex to the j-th vertex. For k < |w|, let NC(k) be the tuple of
bits (C[|w|,|w|]+2k, C[|w|,|w|]+2k+1) encoding the connective in the k-th node of
circuit C, say (0, 1) be ∧, (1, 0) be ∨, and (1, 1) and (0, 0) be ¬. Therefore,
|C| = [|w|, |w|] + 2|w|. Then let Circ(C, y, w) be the formula stating that C
encodes a |w|-size circuit with |y| inputs:

∀j < |w|, j ≥ |y|
(NC(j) = (1, 0) ∨NC(j) = (0, 1)→ ∃i, k < j i 6= k∀l < j, l 6= k, l 6= j

(EC(i, j) = 1 ∧ EC(k, j) = 1 ∧ EC(l, j) = 0))∧
(NC(j) = (1, 1) ∨NC(j) = (0, 0)→ ∃i < j∀l < j, k 6= i

(EC(i, j) = 1 ∧ EC(l, j) = 0))

which means that if the j-th node of C is ∧ or ∨, there are exactly two
previous nodes i, k of C with edges going from i and k to j, if the j-th node
of C is ¬, there is exactly one previous node i with an edge going from i to
j.

Comp|y|k(C,w, y)→ C(y) 6= x says that if Circ(C, y, w), |w| ≤ |y|k, for each
i < |y| the value of wi is the value of the i-th input bit of y and each wj is an
evaluation of the j-th node of circuit C given wk’s evaluating nodes connected
to the j-th node, then the output of C which is chosen as w|w|−1 differs from x:

Circ(C, y, w) ∧ |w| ≤ |y|k ∧ ∀i < |y| yi = wi ∧ ∀j, k, l < |w|[
(NC(j) = (1, 0)∧EC(k, j = 1)∧EC(l, j) = 1→ (wj = 1↔ wk = 1∧wl = 1))∧
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(NC(j) = (0, 1)∧EC(k, j) = 1∧EC(l, j) = 1→ (wj = 1↔ wk = 1∨wl = 1))∧
((NC(j) = (0, 0) ∨NC(j) = (1, 1)) ∧ EC(k, j) = 1→ (wj = 1↔ wk = 0))]
→
(w|w|−1 = 1 ∧ x 6= 1) ∨ (w|w|−1 = 0 ∧ x 6= 0)

SAT (y, z) can be defined similarly, moreover with the evaluation w of y such
that w ≤ y.
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