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Abstract: We investigate the unprovability of NP 6⊆P/poly in various fragments of
arithmetic. The unprovability is usually obtained by showing hardness of propo-
sitional formulas encoding superpolynomial circuit lower bounds.
Firstly, we discuss few relevant techniques and known theorems. Namely, natural
proofs, feasible interpolation, KPT theorem, iterability, gadget generators etc.
Then we prove some original results. We show the unprovability of superpoly-
nomial circuit lower bounds for systems admitting certain forms of feasible in-
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These results are obtained by proving the hardness of the Nisan-Wigderson gen-
erators in corresponding proof systems.
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Introduction
A potential approach for separating P and NP is to show that there is an NP
problem that cannot be solved by polynomial-size boolean circuits. In this thesis
we investigate the unprovability of the nonuniform version of P 6=NP, that is of
NP 6⊆P/poly.

The most convenient way how to obtain the unprovability of superpolyno-
mial circuit lower bounds in relatively strong mathematical theories like bounded
arithmetics is to prove that propositional formulas encoding superpolynomial
circuit lower bounds are hard (i.e. do not have short proofs) in corresponding
propositional proof systems.

Razborov [29, 31] studied the proof complexity of formulas encoding circuit
lower bounds and considered them as good candidate hard formulas for as strong
proof systems as Extended Frege (EF).

Using known translations to bounded arithmetic the hardness of superpoly-
nomial circuit lower bounds for EF would imply the unprovability of superpoly-
nomial circuit lower bounds in S1

2 . This theory is a fragment of Peano arithmetic
(with induction schema restricted to a subclass of bounded formulas) which cap-
tures a lot of contemporary complexity theory.

All in all, an interesting phenomenon occurs here. While the approach to prove
the unprovability of superpolynomial circuit lower bounds is, in fact, positive in
the sense that it looks for a possibility of the existence of efficient algorithms for
hard problems, it is actually realized by looking for potential hard tautologies.
That is, even if we obtained the unprovability result it would not have to be clear
if this is because there are efficient algorithms for hard problems or because the
non existence of such algorithms is demonstrated already by the hardness of these
propositional formulas.

In the first chapter we describe in more details the relation between first-order
theories of bounded arithmetic and propositional proof systems.

Then we present proof complexity generators used to express circuit lower
bounds as propositional formulas and mention some known conditional hardness
results based on feasible interpolation and natural proofs.

Subsequently, we discuss techniques like iterability, gadget generators and
some general strategies for obtaining hardness of circuit lower bounds.

In the second part of the thesis we present some original results concerning
the Nisan-Wigderson (NW) generators. We prove that the NW-generators are
hard for proof systems with feasible interpolation [25], and that superpolynomial
circuit lower bounds are hard for proof systems with formula interpolation prop-
erty (assuming the existence of P/poly functions hard for subexponential size
formulas).

Next we prove the hardness of the NW-generators and also the hardness of
superpolynomial circuit lower bounds for certain systems that might be roughly
described as tree-like Frege systems working with formulas depending only on a
small fraction of lines of the given generator.

The last part of the thesis is dedicated to a scaled-down version of Krajíček’s
result from [19]. Namely, we show that a theory corresponding to Frege systems
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cannot separate P and NP by proving circuit lower bounds. This result, how-
ever, does not yield superpolynomial lower bounds on Frege because we use an
unsuitable encoding of formulas. Nevertheless, it is an interesting result with a
potential for further improvement.

We assume basic knowledge of computational complexity and mathematical
logic.

2



1 Bounded Arithmetic and Propositional proof
systems

In mathematics we usually express our statements and proofs in terms of first-
order logic. However, interesting statements like NP 6⊆P/poly can be often cap-
tured in a sequence of propositional formulas.

The existence of short proofs of such sequences of formulas in certain propo-
sitional proof systems corresponds to the provability of original first-order state-
ments in certain fragments of arithmetic. This reduces the investigation of pred-
icate logic to the investigation of propositional logic which is often considered as
a simpler mathematical concept.

1.1 Propositional proof systems

The formal definition of propositional proof systems we use comes from the sem-
inal paper of Cook and Reckhow [8]. Here, {0, 1}n denotes the set of all binary
strings of length n, {0, 1}∗ =

⋃
n{0, 1}n, Rng(f) denotes the range of a function

f and TAUT stands for the set of all tautologies. As tautologies can be naturally
encoded into binary strings, we see TAUT as a subset of {0, 1}∗.

Definition 1 (Cook-Reckhow [8]). A propositional proof system is a poly-time
function P : {0, 1}∗ 7→ {0, 1}∗ such that Rng(P ) = TAUT . Any x such that
P (x) = y is called P -proof of y.

This complexity theoretic definition allows Cook and Reckhow [8] to show
that NP=coNP is equivalent to the existence of the so called p-bounded proof
system, a propositional proof system with poly-size proofs of all tautologies.

While the propositional logic might seem to be quite simple, propositional
proof systems can be very complex.

Any usual first-order theory T containing some arithmetic can be seen as a
propositional proof systems PT . A proof of a formula in PT is just a T -proof of
the statement formalizing that the formula is tautology. As proofs in any usual
theory T are poly-time recognizable, PT is computable in poly-time.

The converse holds in some sense too. Whenever we have a propositional proof
system, we can use it as a part of a formalization of mathematics. Consequently,
ZFC or any theory formalizing currently used mathematics, is practicaly the
strongest propositional proof system we can obtain.

We are, however, interested in much simpler and more usual proof systems,
e.g. Hilbert calculus. This is because for such systems we have the mentioned cor-
respondence between the existence of short proofs and the provability of universal
statements in the relevant fragments of arithmetic.

Definition 2 (Cook-Reckhow [8]). A Frege rule is a k + 1-tuple of formulas
A0, ..., Ak such that any truth assignment satisfying all formulas A0, ..., Ak−1 sat-
isfies also Ak. A Frege rule where k = 0 is called a Frege axiom.

Let F be a finite set of Frege rules. A Frege proof of φ from A1, ..., Al is a
finite sequence ψ1, ..., ψk of formulas such that ψk = φ and each φi is either one
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of A1, ..., Al or it is derived from previous formulas by application of a Frege rule
from a finite set of Frege rules.

A Frege proof system F is given by any finite set of Frege rules which is
sound (every formula with an F -proof is a tautology) and implicationally complete
(whenever a set of formulas X entails a formula φ, there is an F -derivation of φ
from X).

The Frege systems satisfy the formal definition of propositional proof systems
because Frege-proofs are poly-time recognizable. In each step of the proof one
needs to check just a finite set of derivation rules.

If we restrict the rules to work only for formulas of constant depth we obtain a
natural restriction of Frege systems, constant depth Frege systems. On the other
hand, we can extend the Frege systems in the following way.

Definition 3 (Cook-Reckhow [8]). An Extended Frege system (EF) is any Frege
system which can in addition use inference rules of the form

q ≡ B

where atom q does not appear in B, it does not appear in any previously derived
formulas, nor in the last formula of the proof.

Another well studied proof system is resolution.

Definition 4. Resolution is a proof system operating with clauses of literals (i.e.
disjunctions of variables and their negations) and with one derivation rule which
given two clauses C ∨ x and B ∨ ¬x infers clause C ∨ B. A resolution proof of
a (DNF) formula φ is a resolution derivation of empty clause from ¬φ expressed
by a set of clauses (in a CNF form).

Resolution is much weaker system than Frege. It does not prove PHP (the
pigeonhole principle) efficiently [10] while Frege does [5]. On the other hand, it
is possible to extend resolution naturally by a rule allowing to "name formulas"
by new variables into a system which is as strong as Extended Frege.

Also, while it is known that constant depth Frege does not prove PHP ef-
ficiently [1] there are no non-trivial lower bound for Frege systems or for any
stronger system.

1.2 Feasible provability

We will now present the corresponding theories of arithmetic and briefly describe
theirs relation to the propositional counter parts. The detailed description can
be found in [4], [7] or [14].

The corresponding theory for EF is S1
2 . This theory introduced by Buss

[4] captures feasible proofs in the sense that the Σb
1 definable functions in the the-

ory are precisely the poly-time functions. Thus, roughly speaking, intermediate
constructions in S1

2 proofs are feasible.
The language of S1

2 is {0, S,+, ·,#, |x|, b1
2
xc,=,≤} where S is the successor

function, |x| is the length (of binary representation) of x, and x#y = 2|x|·|y|.
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Let sharply bounded quantifiers be those of the form ∀x ≤ |t| or ∃x ≤ |t| where
x does not occur in the term t. The class Σb

1 consists of the formulas containing
only existential bounded quantifiers (like ∃x ≤ t) and sharply bounded quantifiers
of both kinds.

The axioms for S1
2 consists of universal sentences defining the symbols of LS1

2

together with the following restricted induction scheme:

[φ(0) ∧ ∀x(φ(b1/2xc)→ φ(x))]→ ∀φ(x)

where φ(x) is any Σb
1 formula.

Buss [4] showed that the functions Σb
1 definable in S1

2 are precisely the poly-
time functions.

Let A(x) be a Σb
0 formula. That is a formula where only sharply bounded

quantifiers are allowed. Then, there is a natural translation of ∀xA(x) into a
sequence of propositional formulas a1, a2, .. where an expresses validity of A on
inputs of length n, cf [14]. It is known that such ∀xA(x) theorems of S1

2 can be
translated into propositional formulas with poly-size EF-proofs, cf [7], [14].

To get the theory corresponding to Frege it is convenient to go to the
two-sorted setting, cf [7].

The two-sorted language L2 has number variables that range over N (natural
numbers), and string variables that range over finite subsets of N (interpreted
as finite binary strings). Further, it contains usual functions and predicates for
numbers: 0, 1,+,×,=,≤ and set membership t ∈ X (or simplyX(t)), set equality
=2 and string length |X| which is 0 if X is empty, and 1 + max{z; z ∈ X}
otherwise. (So |X| is roughly the length of the binary string corresponding to
X.)

The class ΣB
0 consists of formulas whose only quantifiers are bounded number

quantifiers while free string variables are allowed.

V 0 is axiomatized by defining axioms for symbols in L2 together with the
comprehension axiom scheme for ΣB

0 formulas

∃X ≤ y∀z < y(X(z)↔ φ(z))

where φ(z) is any ΣB
0 formula. Here, ∃X ≤ yφ stands for ∃X(|X| ≤ y ∧ φ).

Let A(x,X) be a ΣB
0 formula. Then if ∀x∀XA(x,X) is a theorem of V 0, it

can be translated into tautologies with poly-size proofs in constant depth Frege.

V NC1 is an extension of V 0 by an axiom describing a poly-time algorithm
evaluating a balanced Boolean formula.

Consider a monotone Boolean formula represented as a binary tree H with
2a− 1 nodes (a leaves and a− 1 inner nodes). The a leaves of H are numbered
a, ..., 2a − 1, and the two children of an inner node x are 2x and 2x + 1. Each
inner node x (1 ≤ x ≤ a− 1) is labeled with either ∧ or ∨. Therefore to encode
H we need just a string G of length ≤ a so that G(x) encodes label of node x of
H. Let G(x) hold if and only if node x of H is an ∧-gate. Then define

δ(a,G, I, Y ) ≡ ∀x < a (Y (x+ a)↔ I(x)) ∧ [0 < x⇒
Y (x)↔ [(G(x) ∧ Y (2x) ∧ Y (2x+ 1)) ∨ (¬G(x) ∧ (Y (2x) ∨ Y (2x+ 1))]]
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V NC1 is the theory over L2 which is axiomatized by V 0 and

∀a∀G∀I∃Y δ(a,G, I, Y )

Let A(x,X) be a ΣB
0 formula. Then, if ∀x∀XA(x,X) is a theorem of V NC1,

it can be translated into tautologies with poly-size proofs in Frege system, cf [7].

1.3 Ajtai’s method

Propositional translations of universal theorems have polynomial-size proposi-
tional proofs (in suitable theories and propositional systems). The other direction
holds in some sense too.

Propositional translations of universal sentences that are not provable (in a
specific way expressed in the following theorem) have no poly-size propositional
proofs (again, in relevant proof systems). This gives us the so called Ajtai’s
method [1] for proving lower bounds on propositional proof systems.

Let TNC1 be the true universal theory of N (natural numbers) in the language
LNC1 that consists of all NC1 functions and relations. According to a certain
RSUV isomorphism (see [7]) it can be seen as an extension of V NC1.

Let M be a non-standard model of true arithmetic in the language LNC1 . Let
n ∈ M be a non-standard number and define Mn to be the substructure of M
consisting of numbers whose bit length is less than nk for some standard k ∈ N.
Note that Mn is closed on NC1 functions, in particular the following relations
are in Mn

Fla(x, y): y encodes formula of poly-size in x

PrfFrege(x, z, y): z encodes Frege-proof of y of size ≤ poly(x)

Sat(x, a, y): truth assignment a satisfies formula y; a, y ≤ poly(x)

RefFrege(x, z, y, a): (Fla(x, y) ∧ PrfFrege(x, z, y))→ Sat(x, a, y))

Theorem 1 ([20]). Let Tk be tautologies of size kO(1), for all k ∈ N. Assume
that for an arbitrary choice of non-standard n there is a model N of TNC1 that is
a cofinal extension of Mn such that there is a truth assignment w ∈ N to atoms
of Tn that falsifies the formula in N , i.e. Sat(n,w,¬Tn) is valid in N .

Then tautologies Tk do not have poly-size Frege proofs.

This theorem can be generalized in various ways. Scaling-up model Mn to
consist of elements of subexponential size (as well as bounds on size of formulas
Fla, PrfFrege,...) would lead to subexponential lower bounds.

More importantly, the theorem holds also for other corresponding theories of
bounded arithmetic and propositional proof systems. For example, PV and EF.
The crucial thing is that PV is closed on poly-time functions and proves RefEF .
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2 Proof complexity generators
Proof complexity generators were independently introduced by Alekhnovich, Ben-
Sasson, Razborov and Wigderson [2] and by Krajíček [16]. They allow us to
encode circuit lower bounds as propositional formulas. Moreover, they give us
a good framework for exploration of various modifications and generalizations of
circuit lower bounds.

Definition 5. A proof complexity generator g : {0, 1}∗ 7−→ {0, 1}∗ is a func-
tion computed by mO(1)-size circuits {Cn} representing restrictions of g, gn :
{0, 1}n 7−→ {0, 1}m for some injective function m = m(n) > n.

For a proof complexity generator g and any string b ∈ {0, 1}m define the τ -
formula τ(Cn)b as b 6≡ Cn(x). The variables of τ(Cn)b are x1, ..., xn for inputs of
Cn, and y1, ..., ymO(1) for gates of Cn.

τ(Cn)b is a tautology iff b /∈ Rng(Cn). We shall denote the formulas simply
τ(g)b because circuits Cn are though as canonically determined by g.

Definition 6. A generator g is a hard proof complexity generator for a propo-
sitional proof system P iff there is no polynomial size P -proof of any τ(g)b (for
m tending to infinity), i.e. for any sequence b1, b2, ... (|b1| < |b2| < ...) formulas
τ(g)bi do not have poly-size P -proofs.

In order to prove a superpolynomial lower bound for a proof system P it would
be sufficient to prove the hardness of τ(g)b just for one sequence of b’s but we
believe that for generators of interest this τ -formulas are hard for all b’s.

Now, using τ -formulas we can encode circuit lower bounds. Firstly, recall that
a circuit of size s can be encoded by O(s log s) bits.

Definition 7. Let s ≥ k ≥ 1. The truth table function tts,k takes as input
O(s log s) bits describing a size ≤ s circuit C with k inputs, and outputs 2k bits:
the truth table of the function computed by C. tts,k is equal to zero string at inputs
that do not encode a size ≤ s circuit with k inputs.

For any boolean function f on k variables represented by its truth table, 2O(k)-
size formulas τ(tts,k)f say that f has no s-size circuits. Of course, this makes sense
only if s is not ridiculously big, like 2O(k). In particular, formulas τ(tts,k)f , for
s = kω(1), expressing superpolynomial circuit lower bounds on f are well defined.

It is an interesting question whether one could similarly capture the P6=NP
statement. Obviously, we could take care only about hardness of NP functions.
However, it is not known how to encode the uniformity of Turing machines into
a sequence of propositional formulas.
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3 General strategy and known techniques
We want to prove the hardness of circuit lower bounds. Therefore, we can assume
that these circuit lower bounds are true. Otherwise, they would be trivially
unprovable.

More generally, our intention is to take a fundamental assumption that there
is no efficient way how to solve hard problems, like NP6⊆P/poly or similar, and
use it to show that there is no efficient proof of say NP 6⊆P/poly in a natural proof
system.

Conversely, the crucial task here is to extract a useful computational infor-
mation from a given proof.

3.1 Natural proofs

The well-known natural proofs barrier by Razborov and Rudich [32] exhibits the
same kind of flip: one can use existence of a certain kind of proofs of superpoly-
nomial circuit lower bounds to construct an efficient computational test breaking
strong pseudorandom generators.

Informally, a circuit lower bound proof is called P/poly-natural against P/poly
(resp. NP/poly-natural against P/poly) if it implies the existence of a set of
boolean functions C, s.t.

• any sequence of functions from C is hard for P/poly.

• deciding membership (of functions represented by theirs truth tables) in C
is in P/poly (resp. in NP/poly)

• for any n there are at least 22n−O(n) functions on n inputs in C

Furthermore, let us define a strong pseudorandom generator (SPRNG) as a
sequence of functions Gn : {0, 1}n 7→ {0, 1}2n such that for some ε > 0 there are
no circuits C of size S < 2n

ε such that

|Px[C(Gn(x) = 1)]−Py[C(y) = 1]| ≥ 1/S

where x is taken at random from {0, 1}n, and y is random from {0, 1}2n (using
uniform distribution).

Theorem 2 (Razborov-Rudich [32]). If there exists a SPRNG, then there is no
P/poly-natural proof against P/poly.

Razborov and Rudich [32] also showed that known circuit lower bounds on
restricted classes of circuits are natural (this is not true for the recent result of
Williams [34] that is based on diagonalization). Thus, theirs result is considered
as a strong barrier against possible separation of P and NP.

Rudich [33] later attempted to extend the natural proofs barrier into the
context of non-deterministic circuits. He proved that if the so called super-bits
exist, then there are no NP/poly-natural properties against P/poly.
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Here, super-bit is a sequence of P/poly functions gn : {0, 1}n 7→ {0, 1}n+1 such
that for some ε > 0 there are no non-deterministic circuits C of size S < 2n

ε such
that

Py[C(y) = 1]−Px[C(gn(x)) = 1] ≥ 1/S

where y is taken at random from {0, 1}n+1 and x is random from {0, 1}n.
The order of the probabilities is important. While a nondeterministic circuit

can simply guess the right seed x and verify its consistency with the observed
string, it is now also forced to prove with a significant success if y is outside of
the range of gn.

It can be shown that the existence of super-bits is stronger than NP6=coNP
but it is still considered by Rudich as a plausible assumption.

The attempt to prove the unprovability of P6= NP in strong mathematical
theories can be seen as an approach to extend the natural proofs barrier. Al-
though, it is incorrect to say that as, hypothetically, any proof (of whatsoever)
can be P/poly natural against P/poly. Nevertheless, the best known way how to
employ natural proofs in the context of proof complexity works only for systems
with the so called feasible interpolation.

3.2 Feasible interpolation

Feasible interpolation is a technique from proof complexity proposed by Krajíček
[15]. It allows to extrapolate efficient circuits for certain problem using just
existence of short propositional proofs.

Definition 8. A proof system P admits feasible interpolation (EIP) iff there is a
polynomial p(x) such that for any disjunction A(x, y) ∨ B(x, z) (where x are the
only common variables of A and B) with P -proof of size m there is a p(m)-size
circuit C(x) that for each assignment a to x outputs a tautology from the set
{A(a, y), B(a, z)}.

Proof systems like Resolution and Cutting Planes admit EIP, as proved by
Krajíček [15] and by Pudlák [26] respectively.

Feasible interpolation can be employed to transform natural proofs barrier to
a different kind of unprovability result, the hardness of tt-generators.

Theorem 3. If there exists a SPRNG, then tts,k, where s = kω(1), is hard for
any proof systems that admits feasible interpolation.

This theorem comes from Krajíček [20] who mentioned that it uses a trick
invented by Razborov [29].

Using stronger assumptions Rudich [33] extended the hardness of circuit lower
bounds to potentially stronger systems that admit just a disjoint interpolation
property 1, DIP: a proof system P admits DIP iff there exists a proof system
R which have short proof of A(x) or short proof of B(y) whenever P proves
efficiently A(x) ∨B(y) (where x and y are disjoint tuples of variables).

1existential interpolation property in [33]
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Theorem 4 (Rudich [33]). If super-bits exist then tts,k, where s = kω(1), is hard
for any proof system with DIP.

Actually, Rudich does not use the whole power of DIP (see Theorem 29.2.3 in
[20]). To prove the hardness of tt3s,k, it is sufficient to assume just a circuit lower
bound interpolation, CLB(s)-interpolation: a proof system P admits CLB(s)-
interpolation iff for any τ(tts,k)f ∨ τ(tts,k)g with poly-size proof in P there is a
poly-size P -proof of τ(ttt,k)f or a poly-size P -proof of τ(ttt,k)g for some t = kω(1).

If for any f /∈P/poly there is t = kω(1) such that proof system P proves τ(ttt,k)f
efficiently, then the system trivially admits CLB(s)-interpolation for s ≥ kω(1).
In fact, it implies the existence of an NP-natural property against P/poly. This
observation yields the following fact.

Theorem 5. If super-bits exist then for any proof system P there exists f /∈P/poly
such that τ(tts,k)f , where s = kω(1), is hard for P .

In other words, assuming the existence of super-bits, for any proof system
there is a function f /∈P/poly such that proving superpolynomial lower bounds
for f is hard for the proof system. It would be even more interesting if we obtained
a more specific f , e.g. f = SAT . We will see in section 3.4 that the hardness of
SAT/∈P/poly for all proof systems would imply NP⊆P/poly.

Feasible interpolation is nice, one could say canonical, example of extraction
of a computation from short proofs. However, EF does not admit EIP unless
the RSA cryptosystem is not secure [21]. And it is plausible that obtaining
small interpolant from short proofs even in as weak systems as Res(2) (a natural
extension of resolution working with 2-DNF formulas) would produce efficient
algorithms for problems considered to be hard.

Therefore, it seems that one will need to investigate more subtle modifications
of feasible interpolation if he wants to use it for systems like EF. For example, it
is still open whether EF admits DIP (even under reasonable assumptions).

3.3 KPT theorem

Another technique from proof complexity, the so called KPT theorem takes ad-
vantage of the power of the completeness theorem from first-order logic and pro-
duces a certain kind of useful computations from first-order proofs.

In the last chapter of the thesis we will see that it can be used to obtain the
unprovability of superpolynomial circuit lower bounds in the theory TNC1 .

The KPT theorem was proven by Krajíček, Pudlák and Takeuti in [23].

Theorem 6 (KPT). Let T be a universal theory over a language L which con-
tains at least one constant or function symbol. Let φ(x, y, z) be an open L-
formula and suppose T proves ∀x∃y∀zφ(x, y, z). Then there exists a finite se-
quence t1(x), t2(x, z1), ..., tk(x, z1, ..., zk−1) of L-terms (containing only the dis-
played variables) such that

T ` ∀x∀z1, .., zk φ(x, t1(x), z1) ∨ φ(x, t2(x, z1), z2) ∨ ... ∨ φ(x, tk(x, z1, ..., zk−1), zk)
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In particular, if L consists of functions that are efficiently computable then
assuming provability of ∀x∃y∀zφ(x, y, z) the KPT theorem gives us efficiently
computable functions t1, ..., tk that can find in a certain sense the witness for the
existence of y.

More precisely, on the input x, t1(x) produces a witness for y (such that for
all z1’s φ(x, t1(x), z1) is true) or t1 makes a mistake and there exists z1 such that
¬φ(x, t1(x), z1) but then having this z1 t2 produces a potential witness for y etc.
After finitely many steps one of the functions t1, ..., tk will certainly succeed.

This can be seen as an interactive protocol and it is indeed very useful as we
will see in the last chapter.

3.4 Formulas hard for all proof systems

We mentioned that the existence of super-bits implies that for any proof system
there is a function f /∈P/poly such that proving f /∈P/poly is hard for P .

By definition of propositional proof systems the reasonable computational
assumption NP6=coNP itself implies the existence of hard tautologies (for any
proof system). In fact, it implies the existence of a sequence of tautologies hard
for all propositional proof systems.

To see this let Pi be the i-th propositional proof system in the enumeration of
all propositional proof systems and ti,j be a sequence of hard tautologies for Pi
which exists according the assumption. Then tautologies ti = t1,i ∧ ... ∧ ti,i must
be hard for all proof systems.

This can be seen also as a generalization of the trivial observation: if the
hardest tautologies for a specific system P are easy then P is p-bounded.

As ti’s encode in a sense all tautologies they are obviously the hardest ones.
We, however, need a more specific example of hard tautologies, circuit lower
bounds.

It is indeed an emerging question whether we can somehow transform arbitrary
hard tautologies into hard circuit lower bounds and next sections present some
techniques with a partial success in this direction.

However, if superpolynomial circuit lower bounds are really hard for all proof
systems, then NP⊆P/poly:

If SAT is not in P/poly, then for some s = kω(1) formulas τ(tts,k)χSATk where
χSATk is the characteristic function of SAT restricted to inputs of length k, have
short proofs in the following proof system: the proof system upon receiving a
formula τ(tts,k)b where b is a string of length 2k checks whether b is or is not
equal to χSATk . If so, it accepts τ(tts,k)b as a tautology, otherwise it proceeds
as, say, EF. Deciding this property of b can be done in poly(2k)-time, hence this
system is a proof system in the sense of Cook and Reckhow.

Therefore, proof of the hardness of NP 6⊆P/poly for all proof systems, resp.
proof of this specific kind of its unprovability, already implies the existence of
efficient circuits for hard problems.

On the other hand, using derandomization arguments it is possible to show
that NEXP⊆P/poly implies hardness of superpolynomial circuit lower bounds for
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all proof systems as proved in [20]. Similarly, assuming BPP6⊆NP, this is the case
for exponential circuit lower bounds as independently observed by Impagliazzo
(see a footnote in [17] Section 1) and by Alekhnovich (see [31] Section 1.1). Of
course, these arguments use unreasonable assumptions (for our purpose) but one
could think how to make them weaker e.g. assume that BPP contains problems
that are hard for constant-depth Frege and obtain the hardness of τ -formulas just
for constant-depth Frege systems.

3.5 Iterability

While hardness of superpolynomial circuit lower bounds for all proof systems
would have strong consequences the task of converting arbitrary hard formulas
into hard circuit lower bounds is not hopeless. Krajíček already invented a tech-
nique of iterability which allows him to prove that tt-generators are in a sense
the hardest generators, i.e. it allows him to transform arbitrary generator that is
hard in a certain way into hard tt-generators.

Definition 9. Function g : {0, 1}n 7→ {0, 1}m is (exponentially) iterable for proof
system P iff no disjunction of the form

τ(gn)bi(x
1) ∨ ... ∨ τ(gn)bt(n)

(xt(n))

has P -proof of polynomial (resp. 2n
Ω(1)) size in n. Here xi’s in the notation

τ(gn)bi(x
i) are disjoint n-tuples of atoms standing for inputs of gn in correspond-

ing τ(gn)bi formulas, t(n) is arbitrary function, and b1, ..., bt(n) are m-tuples of
variables and constants such that:

◦ b1 ∈ {0, 1}m

◦ variables occurring in bi are among x1, ..., xi−1, for i ≤ t(n)

Note that (exponential) iterability implies hardness form = poly(n) (resp.m ≤
2O(nΩ(1))) as one can take t(n) = 1.

Theorem 7 (Krajíček[17]). Assume that proof system P simulates resolution and
that there exists a g exponentially-iterable for P . Then, there is c > 0 such that
the truth table function ttnc,n is hard for P .

Now, if we want to prove the hardness of superpolynomial circuit lower bounds
it is sufficient to find an exponentially-iterable generator.

3.6 Gadget generators

As a next partial result in the attempt to transform arbitrary hard tautologies into
hard (or even iterable) generators we present another construction by Krajíček
[18]. It produces a generator hard for any proof system which cannot prove PHP
efficiently.

Definition 10. Let k, t ≥ 1 be any parameters such that t > k(k + 1). Put
n = k(k + 1 + t) and m = (k + 1)t. Hence m > n.

12



Map gk,t : {0, 1}n 7→ {0, 1}m is defined as follows. Input string x of length n
interpret as

x = (v, u1, ..., ut)

where v = (vi,j)i∈[k+1],j∈[k] and us = (usj)j∈[k] for s = 1, ..., t.
The output string y of length m is defined as y = (y1, ..., yt) where

ysi =
∨
j∈[k]

(vi,j ∧ usj)

for s = 1, ..., t.

This construction can be generalized so that ys is defined by a more compli-
cated function. The string v is called a gadget. In our case v is supposed to be
interpreted as a graph of a function between [k] and [k + 1]. Then it yields the
following.

Theorem 8 (Krajíček [18]). Let d ≥ 2, k ≥ 1 and t = k2 + k + 1. Then, with
n = k(k + 1 + t) as above, the map

gk,t : {0, 1}n → {0, 1}n+1

is an exponentially hard proof complexity generator for constant depth Frege. In
fact, it is hard generator even for all stronger systems for which PHP is hard.

It seems doable to improve this result to iterability of the generator gk,t. Con-
sequently, this would imply the hardness of superpolynomial circuit lower bounds
for all systems that cannot prove PHP efficiently. In particular, for constant depth
Frege.

As producing hard generators for a system P just from hard formulas might
be hard it could be helpful to assume in addition e.g. the existence of a stronger
system Q. Then P does not prove soundness of Q efficiently, cf [14]. Furthermore,
we could assume that there are no hard generators for Q etc. Unfortunately, we
do not see now how to use those properties even in the case of constant depth
Frege (=P ) which is known to be weaker than Frege (=Q).

On the other hand, it is possible to employ a hardness assumption in the
following tricky way. Jeřábek [12] introduced a system WF extending EF by a
rule simulating the dual weak PHP. Although WF is a quite natural system one
can say that in a sense it captures the power of generators. Then, if EF does not
simulate WF, generators are hard for EF. Details can be found in [17].

3.7 The best known hardness result for circuit lower bounds

We have presented few techniques converting various computational assumptions
to the hardness of superpolynomial circuit lower bounds. However, one can say
that the best known hardness results concerning circuit lower bounds in proof
complexity are unconditional.

Raz [27] and Razborov [30] proved the hardness of circuit lower bounds for
resolution. They were, however, using a different formalization in which the
formulas are easy even for constant-depth Frege systems.
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Razborov [31] later obtained also unconditional hardness of ttnω(1),n even for
systems that are not known to admit feasible interpolation, Res(εlogn), a res-
olution working with εlogn-DNF formulas (instead of clauses). Here ε > 0 is a
sufficiently small constant.

His result is based on proving the hardness of NW-generators. We will not
go into details of his proof but we dedicate the rest of the thesis to investigation
of the NW-generators. We will see that they in fact give us another elegant way
how to employ hardness assumptions to produce hard tautologies.
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4 Nisan-Wigderson generators
As Razborov pointed out in [31], to prove the hardness of τ(ttt(n),n)f in a proof
system, it is sufficient to show that there exists a generator g : {0, 1}t0(n) 7−→
{0, 1}2n with arbitrary t0(n) ≤ 2O(n) and such that g is

1. constructive: for every x ∈ {0, 1}t0(n), there is a t(n)-size circuit computing
y-th bit of g(x) from y ∈ {0, 1}n

2. hard: it is hard to prove f /∈ Rng(g) in the given proof system

Condition 1. means that for each x ∈ {0, 1}t0(n), the function given by the truth
table g(x) is computable by t(n)-size circuits. Therefore, since by 2. it is hard to
prove that f differs from all g(x), it is also hard to prove that it is not computable
by a t(n)-size circuit.

A promising example of a constructive generator in the above sense is inspired
by the Nisan-Wigderson generators (shortly NW-generators), cf. [24].

Definition 11. Let n < m and A be an m × n 0-1 matrix with l ones per row.
Ji(A) := {j ∈ [n] = {1, ..., n}|Aij = 1}. Let f : {0, 1}l 7−→ {0, 1} be a Boolean
function. Define function NWA,f : {0, 1}n 7−→ {0, 1}m as follows: The i-th bit
of the output is computed by f from the bits x|Ji(A), these are xk’s such that
k ∈ Ji(A).

We speak about these functions as about NW-generators but in computational
complexity the term NW-generator usually refers to the construction where f is
a suitably hard function and A is in addition a (d, l) combinatorial design. The
design property means that Ji(A)∩ Jk(A) has size ≤ d for any two different rows
i, j.

Assuming that the NW-generators are based on the combinatorial designs
with the same parameters as in the seminal paper [24], Razborov proposed,

Conjecture 1 (Razborov [31]). Any NW-generator based on any poly-time func-
tion that is hard on average for NC1/poly, is hard for the Frege proof system.

Conjecture 2 (Razborov [31]). Any NW-generator based on any function in
NP ∩ coNP that is hard on average for P/poly, is hard for Extended Frege.

The parameters are actually not specified more precisely in [31]. In the main
construction of design matrices in Lemma 2.5 in [24] we have d = logm ≤ l and
n = O(l2).

It is also not clear what exactly it means to be hard on average but it is not
important. The idea is obvious. We want to use functions that are hard maybe
even in some weaker sense. In the next section we will see an example of such
hardness.

Note that if logm =
√
n it is like to have a generator sending strings of

length n2 to strings of length 2n. Thus in the view of the above discussion if
there are poly(n)-size circuits computing the set Ji(A) from given i (and the
designs constructed in Lemma 2.5 in [24] have this property), then the NW-
generators based on functions computed by poly(n)-size circuits are constructive
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(for a polynomial t(n)). Therefore, the hardness of such NW-generators implies
the hardness of superpolynomial circuit lower bounds.

Intuitively, there are two main properties that could make NW-generators
hard: locality and pseudorandomness.
Locality: If the base matrix A is a combinatorial design then the prover at-
tempting to prove b /∈ Rng(NWA,f ) has to show that the system of equations
f(x(Ji)) = bi, 1 ≤ i ≤ m has no solution. But as the tuples of equations have
small number of common variables the system might look consistent. In terms of
Buss-Pudlák games, cf [6], this could allow Sam to cheat Pavel. In section 4.3 we
show a situation where this can be indeed achieved. Also already known results
use designs, resp. expanders (see next section).
Pseudorandomness: NW-generators based on suitably hard functions are good
pseudorandom generators in the sense that certain computational models can
hardly distinguish theirs outputs from the random ones. If the range of the
generator looks random it might be also hard to determine (for certain proof
systems) whether the given string is outside of the range. Now, note that a
non-deterministic guessing of the right seed can easily determine elements inside
the range but it does not seem so easy to determine elements that are outside.
This is in fact expressed in the Rudich’s super-bit conjecture (the existence of
super-bits).

4.1 Previous results

In [2] Alekhnovich et al. proved that the NW-generators are hard for resolution
in terms of width (size of the biggest clause in the proof).

Theorem 9 (Alekhnovich et al. [2] (oversimplified)). Let A be an m × n (d, l)-
design, f be PARITY function on l variables (i.e. it is 1 on input x if x contains
even number of ones), and b ∈ {0, 1}m. Then every resolution proof of τ(NWA,f )b
(encoded in a specific way) must have width > r(l−rd)

2l
(for any r).

Typically, we have parameters like l =
√
n, r = d = n1/6, so the width is

> n1/6/2 − 1/2. By Ben-Sasson and Wigderson [3] this says that there are no
subexponential-size proofs of τ(NWA,f )b in tree-like resolution.

Theirs result gives also the hardness for resolution (and as they show even for
the system PCR, a natural extension of Polynomial Calculus and resolution) but
only for the NW-generators stretching n bits to ≤ o(n2) bits. This input/output
ratio hindered to obtain hardness of superpolynomial circuit lower bounds for
resolution.

However, as we already mentioned, Razborov [31] established the hardness
of the NW-generators even for certain Res(k) systems, resolution working with
k-DNF formulas. He obtained various forms of the following statement.

Theorem 10 (Razborov [31]). Let A be an m × n (r,d)-lossless expander, and
assume that

mini∈[m]|Ji(A)| ≥ Cd(k + logm)

for a sufficiently large constant C > 0. Let ≤ be an arbitrary ordering of A
and b ∈ {0, 1}m. Then, every Res(k) refutation of τ≤(A, b) must be of size ≥
exp(r/2O(kd)).
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Again, if we oversimplify it and apply the right parameters, this says that
for f = PARITY and A a suitable expander (a version of design matrix the
existence of which he also proved) formulas τ(NWA,f )b encoded in a specific way
are hard for Res(k) where k depends on the choice of parameters. Razborov then
shows that this gives the hardness of superpolynomial circuit lower bounds for
Res(ε log n) where ε > 0 is sufficiently small.

We will not describe this result in more details. Instead we will show how
to obtain the hardness of the NW-generators with big input/output ratio for
systems with forms of feasible interpolation. In particular, for resolution or tree-
like resolution. This result will not use design properties of the base matrix but
a hardness of base functions.

Then, in section 4.3 we will show the hardness of the NW-generators with
big input/output ratio for systems roughly described as tree-like Frege systems
working with formulas using only a small fraction of variables of the given NW-
generator. Here we use locality properties captured in design matrices.

The big input/output ratio allow us to interpret these lower bounds as the
hardness of superpolynomial circuit lower bounds.

4.2 NW-generators in proof systems with EIP

We will now show that the NW-generators based on certain computationally hard
functions are hard for proof systems admitting feasible interpolation [25].

There is a simple idea illustrating this result. Consider tautology f(x) 6=
0 ∨ f(x) 6= 1 where f is a boolean function. Assume that it can be expressed
by a poly-size formula (e.g. f ∈ NP ∩ coNP is a sufficient condition for this).
If there was a poly-size proof of this tautology in a proof system with feasible
interpolation, there would exist a poly-size circuit C that could decide for every
assignment a to x whether f(a) 6= 0 or f(a) 6= 1, hence it would compute function
f . This means that if f ∈ NP ∩ coNP is not in P/poly, tautology f(x) 6=
0 ∨ f(x) 6= 1 is hard for any proof system with EIP.

This idea can be extended into the context of NW-generators. We show how
to do it, firstly, in the case there is an additional condition on the base matrix A,
uniformity.

Definition 12. Let A be an m×n 0-1 matrix with l ones per row. Ji(A) = {j ∈
[n]|Ai,j = 1}. A is l-uniform iff there is a partition of [n] into l sets such that
there is exactly one element of each Ji(A) in each set of the partition.

Note that m × n (logm, l) design matrices with l =
√
n ones per row con-

structed in the proof of Lemma 2.5 in [24] are
√
n-uniform.

Theorem 11. Any NW-generator based on

1. any m× n l-uniform matrix A with l ones per row

2. any function f : {0, 1}l 7−→ {0, 1} in NTime(mO(1)) ∩ coNTime(mO(1))
such that f does not have mO(1)-size circuits

is hard for any proof system P with EIP.
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Before we give the proof let us say that the assumption f ∈ NTime(mO(1))∩
coNTime(mO(1)) (which already appeared in a stronger form in the second Razborov’s
Conjecture) allows us to express formula τ(NWA,f )(b1,...,bm) as mO(1)-size formula∨

i≤m

¬αbi(x|Ji(A), vi)

using NTime(mO(1))-definitions of f(x|Ji(A)) = ε, for ε = 0, 1:

f(x|Ji(A)) = ε iff ∃v (|v| ≤ mO(1) αε(x|Ji(A), v)

where αε is a polynomial time relation. The tuples of variables vi in the disjunc-
tion are disjoint.

Proof. Assume that there is a proof system P with EIP and mO(1)-size proof of
some τ(NWA,f )b. This τ(NWA,f )b can be expressed in a form∨

i

¬α0(x|Ji(A), vi) ∨
∨
j

¬α1(x|Jj(A), vj)

where ¬α0(x|Ji(A), vi) encodes f(x|Ji(A)) 6= 0 and ¬α1(x|Jj(A), vj) encodes
f(x|Jj(A)) 6= 1.

By EIP, there exists an mO(1)-size circuit C that for every assignment a to x
finds out which of

∨
i ¬α0(a|Ji(A), vi),

∨
j ¬α1(a|Jj(A), vj) is true.

Denote now by S a partition of [n] certifying that A is l-uniform. Define a
linear order on S by the smallest elements of its blocks: K < L for K,L ∈ S iff
minK < minL. An mO(1)-size circuit computing f proceed as follows.

It extends input a ∈ {0, 1}l to a ∈ {0, 1}n where ai for i ∈ Kj, Kj the j-th
smallest block of S, has the same value as aj. Then it uses the circuit C to find
out which of

∨
i ¬α0(a|Ji(A), vi),

∨
j ¬α1(a|Jj(A), vj) is true. If it is the former

one, then it outputs 1, otherwise 0.
This circuit finds the true value of f(a) because the uniformity of A implies

that if
∨
i ¬α0(a|Ji(A), vi) then all ¬α0(a|Ji(A), vi)’s hold, resp.

if
∨
j ¬α1(a|Jj(A), vj) then all ¬α1(a|Jj(A), vj)’s hold.

In order to obtain the unprovability of superpolynomial circuit lower bounds
we need to scale down the previous result.

Define a formula interpolation property, FIP, as EIP where the resulting cir-
cuit C is in fact a formula. For the reader who is familiar with the proof of feasible
interpolation for resolution it is easy to see that tree-like resolution admits FIP.
Here, tree-likeness means that each intermediate formula in a proof can be used
at most once in subsequent derivations.

Theorem 12. Any NW-generator based on any m× n l-uniform matrix A with
l ones per row, and on any poly-time function in l which does not have poly-size
formulas in m is hard for any proof system P with FIP.

Proof. If we replace EIP by FIP in proof of Theorem 11, we obtain a poly-size
formula computing f .
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Theorem 12 implies a conditional hardness of superpolynomial circuit lower
bounds.

Firstly, note that it is easy to construct anm×n l-uniform matrix form = 2n
δ ,

where δ < 1. The resulting NW-generator based on poly-time functions are con-
structive in the following sense: for any x ∈ {0, 1}n1/δ the function represented
by the truth table NW (x) is computable by poly-size circuits in n. Therefore,
Theorem 12 implies that if there exists a poly-time function hard for subexpo-
nential size formulas, then it is hard to prove any superpolynomial circuit lower
bound (i.e. formulas τ(ttt(n),n)f for any superpolynomial function t(n) and for
any function f) in proof systems with FIP.

This applies e.g. to tree-like resolution.

Next we show how to obtain the hardness of the NW-generators even with-
out the uniformity assumption. We, however, need to use a stronger form of
interpolation, CIP.

Definition 13. A proof system P admits constructive interpolation property
(CIP) iff there is a family of polynomial size circuits {Cn}∞n=1 such that for any
disjunction A(x, y) ∨ B(x, z) (where x are the only common variables of A and
B) with P -proof π of size m there is a circuit C(x, π) ∈ {Cn}∞n=1 that for each as-
signment a to x outputs an O(m)-size proof for a tautology in {A(a, y), B(a, z)}.
Note that the input of the circuit C contains π, so it has polynomial size size in
the length of π.

Krajíček’s [15] proof that resolution admits EIP actually gives also CIP.
Pudlák [26] later gave a different proof of CIP with better bound on proofs:
the constructed proof is of size ≤ m.

Theorem 13. Any NW -generator based on

1. any m×n 0-1 matrix A with l ones per row (not necessarily a combinatorial
design)

2. any function f : {0, 1}l 7−→ {0, 1} in NTime(mO(1)) ∩ coNTime(mO(1))
such that for any mO(1)-size circuit C, |Px∈{0,1}l [C(x) = f(x)]− 1

2
| < 1

2m

is hard for any proof system P with CIP.

Proof. Assume that there is a proof system P with CIP and s = mO(1)-size P-
proof of some τ(NWA,f )(b1,...,bm). We will describe an mO(1)-size circuit C such
that |Px∈{0,1}l [C(x) = f(x)]− 1

2
| ≥ 1

2m
.

Our f is in NTime(mO(1))∩ coNTime(mO(1)). As we noted, this means that
τ(NWA,f )(b1,...,bm) can be expressed as∨

i≤m

¬αbi(x|Ji(A), vi)

CIP implies that there is an mO(1)-size circuit which for any assignment a to
the variables x outputs proof of one of the disjunctions

k∨
i=1

¬αbi(a|Ji(A), vi),
m∨

i=k+1

¬αbi(a|Ji(A), vi)
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where k =
⌊
m
2

⌋
. The new proof has the size at most O(s). Therefore, we can

iterate the usage of CIP logm times and get the true value of some f(a|Ji(A)).
The resulting circuit C ′ consisting of all circuits given by CIP remains mO(1)-size
and for any input a it outputs the true value of some f(a|Ji(A)).

Fix an i ∈ [m] such that C ′ outputs the value of f(a|Ji(A)) for at least 2n

m

a′s ∈ {0, 1}n. Now, let C be an mO(1)-size circuit which uses C ′ to check whether
given input leads to the fixed value of f(a|Ji(A)). If it does, then it outputs the
value of f(a|Ji(A)), otherwise it outputs always zero or always one, whichever is
better on the remaining inputs. Therefore,

Px∈{0,1}n [C(x) = f(x|Ji(A))] ≥ 1− 1/m

2
+

1

m
=

1

2
+

1

2m

Since f(x|Ji(A)) does not depend on all bits of x = x1, ..., xn we can rewrite
Px∈{0,1}n [C(x) = f(x|Ji(A))] as the average over all possible choices of values of
bits from [n] \ Ji(A) of the same expression where only x|Ji(A) are chosen at
random. It follows that for some particular choice of these additional values the
circuit C preserves the advantage.

Note that we could obtain analogous results if we weakened EIP to allow bigger
size of the resulting circuit. Then we would need to assume just the existence of
computationally harder base functions (whose hardness would depend on the size
of the circuits allowed by such a modification of EIP) for the NW-generators.

4.3 NW-generators in strongly-sound local systems

The previous result is based on the hardness of base functions. Here we show
another one which relies on the combinatorial designs of NW-generators. In fact,
it could be presented as a strategy for Sam to cheat Pavel in certain Buss-Pudlák
games but we prefer more straightforward presentation of our argument suggested
by Krajíček.

The hardness result holds for proof systems that actually do not have to be
proof systems in Cook-Reckhow sense. This is because theirs proofs do not have
to be efficiently verifiable. However, these systems are restricted in other ways.
Mainly, they work with formulas that depend somehow only on a small fraction
of the base matrix of the given NW-generator.

Definition 14. Consider an NW-generator based on a matrix A and a function
f . A formula C is s-local if it is disjunction of formulas (not necessarily literals)
Fi such that for each Fi there are some formulas f(x|Jjk(A)) = bjk k = 1, ..., s
containing every variable of Fi that occurs in some f(x|Jj(A)) = bj.

Definition 15. A derivation rule allowing to derive an s-local formula F from
s-local formulas G,H is strongly-sound if it is sound and whenever a partial
assignment of variables of G,H satisfies some disjunct in G and some disjunct
in H, it satisfies also some disjunct in F .

For example, the resolution rule deriving C ∨ B from C ∨ x and B ∨ ¬x is
strongly sound. Whenever you have a partial assignment satisfying some literal
in C ∨ x and some literal in B ∨ ¬x it has to satisfy also some literal in B ∨ C.

20



On the other hand, if a rule is sound it does not have to be strongly-sound.
A sound rule might derive a tautology A from formulas B and C while no partial
assignment of variables of B and C satisfies a disjunct in A.

Definition 16. An SL(s)-proof of τ(NWA,f )b is any derivation of empty clause
from clauses representing ¬τ(NWA,f )b consisting of s-local formulas and using
strongly-sound derivation rules.

Say that SL(s) proof of any other tautology is a Frege proof. Then, in particu-
lar, we can see SL(s)-proofs as Frege proofs restricted only in proving τ(NWA,f )b
formulas to work only with disjunctions of formulas depending on at most s lines
of given generator.

We prove the hardness of the NW-generators for tree-like version of this SL(s)
system. More precisely, if the NW-generator is based on an m × n matrix then
we have s = n1/2−ε. This system is probably not very strong. It is almost like
tree-like (1/2 − ε)logn-depth Frege working with formulas with connectives of
bounded arity. But it can be shown that short tree-like proofs in such Frege
system can be simulated by small width Resolution proofs and consequently by
short Resolution proofs as Razborov pointed out to me.

We say that a boolean function f is robust if any partial assignment that does
not assign all input variables of f has two extensions a and b such that f(a) = 1
and f(b) = 0. An example of a robust functions is PARITY.

Theorem 14. Any NW-generator based on any m×n (logm,
√
n) combinatorial

design and on any robust function f is hard for tree-like SL(n1/2−ε). In fact,
it requires SL(n1/2−ε)-proofs of size > (3/2)n

ε. Here ε > 0 is arbitrary and
m < 2n

ε/2.

Note that the result is unconditional as robust functions and (logm,
√
n)

designs exist.

Proof. For the sake of contradiction, assume there is a (3/2)n
ε-size tree-like

SL(n1/2−ε)-proof π0 of τ(NWA,f )b for some b.

By Spira Lemma we can pick a formula C1 in the proof such that the size of
tree-like derivation of C, a subproof π1 of π0, is between 1/3|π0| and 2/3|π0|.

If there is a formula Fi in C =
∨
i Fi which can be satisfied by solving some

≤ n1/2−ε equations f(x|Ji(A)) = bi, denote the partial assignment of all variables
in τ(NWA,f )b by a1 and go to π0 − π1 (the proof π0 without the derivation π1).
Otherwise, let a1 be empty and go to π1.

In i-the step, we are in a subproof πi−1 of π0 and have an assignment ai−1
solving some ≤ (i − 1)n1/2−ε lines of the generator. In πi−1 we pick again a
formula Ci such that the size of tree-like derivation of Ci, a subproof πi of πi−1,
is between 1/3|πi−1| and 2/3|πi−1|. If there is an extension ai of ai−1 solving
some ≤ in1/2−ε lines of the generator and satisfying some disjunct of Ci we go to
πi−1 − πi. Otherwise, proceed to πi.

Design property and robustness guarantee existence of an assignment solving
any n1/2−ε new lines of the generator even after nε/2−1 iterations: any assignment
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c solving some k < n1/2−ε/2 equations f(x|Ji(A)) = bi assigns at most k logm <
n1/2 variables from x|Jj(A) for arbitrary new equation f(x|Jj(A)) = bj . Thus,
there is a free variable in x|Jj(A) which by robustness of f can be set so that the
resulting assignment extending c solves also f(x|Jj(A)) = bj.

Each axiom is a clause from representation of an equation f(x|Ji(A)) = bi so
it can be satisfied in any step i ≤ nε/2 of our construction. On the other hand,
empty clause cannot be satisfied.

Therefore, as the proof is short, after nε/2 iterations we will find a tripleA,B,C
of n1/2−ε-local formulas where C is derived by a strongly-sound rule from A and
B such that a partial assignment a satisfies a disjunct in A and a disjunct in B
while no Fi from C =

∨
i Fi is satisfied by an extension of some subassignment of

a. This is contradiction because by strongly-sound rule a satisfies a formula Fi
in C.

As m can be as large as 2n
Ω(1) and the base function (PARITY) is in P/poly

we obtain the hardness of superpolynomial circuit lower bounds for SL(n1/2−ε).
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5 NW-generators in strong proof systems
Ajtai’s method of proving lower bounds requires to show a certain kind of unprov-
ability of a universal statement (∀zSat(n, z, Tn)). Naturally, it might be easier
to prove the unprovability of a statement with the higher quantifier complexity.
Indeed, Krajíček found out that in the case of NW-generators it can be done.

His technique applies for the theory TPV which is the true universal theory of
N in the language LPV that consists of all poly-time functions and relations. The
theory TPV proves RefP for any other proof system. Thus, if one could modify
it to work for universal statements it would prove that NW-generators based on
hard functions are hard for all proof systems.

Definition 17. Let AHf (l, k) (approximating hardness) be the minimal s such
that there is a size s circuit C with l inputs such that

Pu∈{0,1}l [C(u) = f(u)] ≥ 1/2 + l−k

Theorem 15 (Krajíček [19]). Let An be an (n+1)×n (log(n+1), l) combinatorial
design. Assume that f is an NTime(nO(1)) ∩ coNTime(nO(1)) function on l
variables with unique witnesses. Further, let M be a non-standard model of true
arithmetic, n ∈ M its non-standard element, and let b ∈ M be any string of
length n+ 1 that is outside of the range of NWAn,f .

If, for all fixed k ≥ 1, AHf (l, k) is a super-polynomial function of l then there
exists a model N of TPV that is a cofinal extension of Mn and a string w ∈ N of
length n such that in N it holds:

∀i ∈ [n+ 1] f(w(Ji)) = bi

The model N obtained above certifies the unprovability of the statement

∀x(|x| = n)∃i ∈ [n+ 1]∀y(|y| ≤ nO(1))¬Abi(x(Ji(A)), y) (∗)

In order to obtain a super-polynomial lower bound on EF (or even all proposi-
tional proof systems) we need to derive a contradiction from the assumption that
there are short proofs of b /∈ Rng(NWA,f ), i.e. from the assumption that PV
(resp. TPV ) proves

∀x(|x| = n)∀y(y = (y1, ..., yn+1))∃i ∈ [n+ 1]¬Abi(x(Ji(A)), yi)

One could accomplish that by showing that the following collection schema
holds in N :

∀i∃yiB(yi)→ ∃y = (y1, ..., ym)∀iB(yi)

where i is sharply bounded bym, yi, y are bounded and B is an open LPV formula.
Cook and Thapen [9], however, showed that provability of the collection

scheme in TPV would imply the existence of an efficient algorithm for factoring.
We discuss this in more details in the section 5.2.

As we are interested in the unprovability of superpolynomial circuit lower
bounds we want to reformulate Theorem 15 into the context of the first Razborov’s
conjecture, i.e. we want f to be P/poly instead of NP∩coNP function and m to
be as large as 2n

Ω(1) .
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Denote by TFla(m) the true universal theory of N in the language LFla(m)

that consists of all functions and relations computable by poly(m)-size formulas.
(This is a natural generalization of TNC1 .) Then the following statement is the
reformulation we wanted. It can be interpreted as the unprovability of P 6=NP by
proving circuit lower bounds in T

Fla(2n
Ω(1)

)
.

Theorem 16. Let An be an m×n (logm, l) combinatorial design where n < m ≤
2n

ε
, ε < 1. Assume that f is a function on l variables computable by poly(n)-size

circuits. Further, let M be a non-standard model of true arithmetic, n ∈ M its
non-standard element, and let b ∈M be any string of length m that is outside of
the range of NWAn,f .

If there are no poly(m)-size formulas computing f on at least a fraction of
1
2

+ 1
mO(1) of all inputs then there exists a model N of TFla(m) that is a cofinal

extension of Mn and a string w ∈ N of length n such that in N it holds:

∀i ∈ [m] f(w(Ji)) = bi

Krajíček’s proof of Theorem 15 gives us proof of this Theorem as well. One
just needs to observe that in his proof the provability of (∗) in TPV yields P/poly
circuits approximating f in the same way as the provability of (*) (properly
expressed) in TFla(m) yields poly(m)-formulas approximating f .

To express the statement (∗) properly in TFla(m) (or in TNC1) we can use the
observation that for any function f ∈P/poly there are NC1 predicates A1 and
A0 such that for a = 0, 1

f(u) = a iff ∃y(|y| ≤ |u|O(1) ∧ Aa(u, y)) (1)

Here, the witnesses y might be e.g. computations of P/poly circuits of f on inputs
u.

Again, if we obtained the collection scheme in TFla(m), the argument of Cook
and Thapen [9] would give us an efficient algorithm for inverting Fla(m) functions
(in a certain sense), see the section 5.2.

5.1 Interactive communication and KPT theorem

The key observation in the proof of Theorem 16 is that non-existence of the
desired model N together with the KPT theorem gives us a specific interac-
tive communication solving certain computational task described in the following
paragraphs.

The interactive communication model is interesting on its own. It can be
shown that hard functions produce a computational task which is hard for this
model. Thus, there is a potential for its further independent use.

Let A be an m × n 0-1 matrix with l ones per row where n < m and f be a
function on l variables computed by poly(m)-size circuits. Fix b = (b1, ..., bm) ∈
{0, 1}m any string outside of the range of NWA,f . In this situation Krajíček [19]
defines the following task.
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Computational Task (T): Given x ∈ {0, 1}n find i ∈ [m] such that i-th bit of
NWA,f (x) differs from bi.

Then, there is a specific interactive model for solving (T) introduced in [23] as
an interpretation of Herbrand theorem, and formalized in terms of computational
classes in [22]. The model in which two players, a computationally limited Student
and an unrestricted Teacher, interact proceeds as follows. In the first step:

• The Student, upon receiving an input x ∈ {0, 1}n, computes his first can-
didate solution i1 ∈ [m]

• If i1 solves (T) the computation stops

• If i1 fails to solve (T) the Teacher sends to the Student a witness y1 to
f(x(Ji1(A)) = bi1

In general, in the k-th step the Student computes a candidate solution ik ∈ [m]
from x and from the witnesses y1, ..., yk−1 he has received from the Teacher in the
previous k − 1 steps. If ik solves (T) the computation stops, if not the Teacher
sends to the Student a witness yk certifying the incorrectness, i.e. witnessing
f(x(Jik(A))) = bik .

For c ≥ 1 we say that a Student solves (T) in c steps if the computation with
any (honest) Teacher stops in at most c steps on every input x ∈ {0, 1}n.

Such a Student is determined by c functions

S1(x), S2(x, y1), ..., Sc(x, y1, ..., yc−1)

Sk computing the k-th candidate solution ik from x and from the witnesses
y1, ..., yk−1 received from the Teacher in earlier rounds.

The following theorem shows that the computational task (T) is in a sense
hard assuming hardness of the base function f in the construction of the NW-
generator. It is a simple reformulation of Theorem 2.2 from [19].

Theorem 17. Assume that f is a function on l variables computed by poly(m)-
size circuits with unique witnesses in the representation (1). Let c ≥ 1 be a
constant.

If there are poly(m)-size formulas computing moves of Student solving (T) in
c steps then there are poly(m)-size formulas computing f on at least a fraction of

1

2
+

1

cmc

of all inputs.

Using Theorem 17 it is easy to obtain Theorem 16. Roughly speaking, as-
suming that the desired model N does not exist, the KPT theorem produces an
efficeint interactive model solving (T).
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5.2 Collection schema

The following argument taken from Cook and Thapen [9] shows that if a universal
theory with function symbols for all functions from a natural computational class
C (AC0, NC1 etc.) proves sharply bounded collection scheme, then functions in
C are in a sense easy to invert. Therefore, provability of such a collection scheme
would give us not just lower bounds on all proof systems but also an efficient
algorithm for e.g. factoring (in the case of TPV , C =P).

Let T be a universal theory in a language LT containing symbols for all func-
tions from a class C and let f ∈ C. Denote by [x]i the i-th element of the sequence
coded by x. For simplicity assume that we have the function [x]i in LT .

The collection scheme has the form

∀i ≤ |a|∃x < aB(i, x)→ ∃w∀i < |a|B(i, [w]i)

where B is an open formula.

Suppose T proves the following instance of this scheme where a and y are
parameters, and m = |a|:

∀i < m∃u < af(u) = [y]i → ∃w∀j < mf([w]j) = [y]j

This can be rewritten as

∃i < m∃w∀u < a(f(u) = [y]i → ∀j < mf([w]j) = [y]j)

Applying the KPT theorem, we get functions g1, ..., gk, h1, ..., hk ∈ C for k ∈ N
such that T proves

∀z < a(f(z1) = [y]g1(y) → ∀j < mf([h1(y)]j) = [y]j)

∨(f(z2) = [y]g2(y,z1) → ∀j < mf([h2(y, z1)]) = [y]j)

...

∨(f(zk) = [y]gk(y,z1,...,zk−1) → ∀j < mf([hk(y, z1, ..., zk−1)]j) = [y]j)

This gives us an algorithm which on input y (considered as a sequence
[y]0, ..., [y]m−1), will ask for a pre-image of f on at most k elements of y and then
it will output a number w coding a sequence of pre-images of all m elements y.

The algorithm is as follows. Let w = h1(y). If ∀j < mf([w]j) = [y]j then
output w and halt. Otherwise calculate g1(y) and ask for a pre-image of [y]g1(y);
store the answer as z1. Then let w = h2(y, z1). If ∀j < mf([w]j) = [y]j then
output w and halt. Otherwise calculate g2(y, z1) and ask for a pre-image of
[y]g2(y,z1); store the answer as z2, and so on. By our assumption the algorithm
will run for at most k steps of this form before it outputs a suitable w.

We can now fix a such that |a| = m > k, and choose a sequence [x]0, ..., [x]m−1 <
a. Let y encode the pointwise image of x under f . Run the algorithm above, and
reply to queries with elements of x. We will end up with w encoding a sequence
of pre-images of y. If f is not an injection and x was chosen at random, then w
is probably different from x.

Thus, in a sense we can compute the inverse of f . Moreover, the resulting
algorithm is still in C assuming C is a natural class like AC0, NC1 satisfying
basic closure properties. As Cook and Thapen [9] show, this can be used e.g. to
factor efficiently if T = PV and C =P.
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Conclusion
We surveyed some known and proved some new results concerning the unprov-
ability of superpolynomial circuit lower bounds. Unfortunately, we did not obtain
the hardness for strong systems like Frege. Nevertheless, there were many points
during the exposition asking for further improvement.

For example, we saw that systems with disjoint interpolation property cannot
prove superpolynomial circuit lower bounds efficiently (assuming the existence of
super-bits) but it is not known whether systems like EF belong among these sys-
tems (even under any reasonable assumptions). It would be interesting to inves-
tigate also other possible modifications of interpolation (e.g. CLB-interpolation)
that could hold in stronger proof systems.

The existence of super-bits implies that for any proof system P there is
f /∈P/poly such that superpolynomial circuit lower bound for f are hard for
P . Could we show that SAT/∈P/poly must be hard as well? As we know that
the hardness of SAT/∈P/poly for all proof systems implies NP⊆P/poly and the
existence of super-bits implies NP 6⊆P/poly, this would mean that super-bits do
not exist. On the other hand, it seems plausible that the efficient provability
of SAT/∈P/poly (maybe in Frege) implies efficient provability of f /∈P/poly for
many f ’s, more precisely, an NP natural property against P/poly.

We mentioned that assuming there are BPP problems hard for NP, exponen-
tial circuit lower bounds are hard for all proof systems. Maybe it is possible to
weaken the assumption to ask for the existence of BPP problems that are hard
just for very specific NP algorithms and then derive the hardness of exponential
circuit lower bounds, e.g. for Frege systems.

Next, we saw the gadget technique producing hard generators for all systems
where PHP is hard. It seems quite achievable to improve this result to the
exponential iterability of the resulting generators. Consequently we would obtain
the hardness of superpolynomial circuit lower bounds for constant depth Frege
systems.

We also saw the hardness of the NW-generators for a tree-like SL system. It
would be very interesting to get rid of the tree-likeness condition. That is, to get
the hardness for a form of Frege system working with local formulas of unbounded
depth. Buss-Pudlák games give us a procedure constructing tree-like proofs from
dag-like proofs. Maybe one can modify the construction in such a way that the
resulting tree-like proofs have a nice structure useful for proving lower bounds.

In the last chapter we presented the unprovability of superpolynomial circuit
lower bounds in theory TFla(m). This could not be translated into the hardness
for propositional proof systems because of the unsuitable encoding of the circuit
lower bounds. Is it possible to use a specific property of V NC1 theory which
is considerably weaker than TFla(m) and obtain the hardness of superpolynomial
circuit lower bounds for Frege systems?

Interestingly, during the whole time we were trying more or less to prove the
hardness of f /∈P/poly for arbitrary f . We did not use any specific properties of
functions f . It is possible that for such a hardness result one needs to consider only
say NP functions f (like in the speculations about super-bits). One could even
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speculate how to use the uniformity property assuming that P6=NP is expressible
by propositional formulas.

All in all, the quest of proving the unprovability of superpolynomial circuit
lower bounds offers many interesting questions and promising directions for fur-
ther research.
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