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We prove that the Nisan-Wigderson generators based on computationally hard functions and suitable matrices
are hard for propositional proof systems that admit feasible interpolation.
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1 Introduction

Proof complexity generators are used to define candidate hard tautologies for strong proof systems like Frege
proof system or Extended Frege. They were independently introduced by Krajı́ček [3] and by Alekhnovich,
Ben-Sasson, Razborov, and Wigderson [1].

Roughly speaking, the tautologies encode the fact that b /∈ Rng(g) for an element b outside of the range of a
generator g : {0, 1}n 7−→ {0, 1}m, where m > n, defined by a circuit of size mO(1).

If g : {0, 1}t(n)O(1) 7−→ {0, 1}2n sends codes of t(n)-size circuits with n inputs to the truth tables of functions
they compute, then the tautologies f /∈ Rng(g) say that f has no t(n)-size circuits. Denote such a formula by
¬Circuitt(n)(f). The hardness of such tautologies can be interpreted as the hardness of proving circuit lower
bounds. This captures an element of self-reference in the P vs NP problem.

As Razborov pointed out in [7], to prove the hardness of ¬Circuitt(n)(f) in a proof system, it is sufficient to
show that there exists a generator g : {0, 1}t0(n) 7−→ {0, 1}2n with arbitrary t0(n) ≤ 2O(n) and such that g is

1. constructive: for every x ∈ {0, 1}t0(n), there is a t(n)-size circuit computing y-th bit of g(x) from y ∈
{0, 1}n

2. hard: it is hard to prove f /∈ Rng(g) in the given proof system

Condition 1. means that for each x ∈ {0, 1}t0(n), the function given by the truth table g(x) is computable by
t(n)-size circuits. Therefore, since by 2. it is hard to prove that f differs from all g(x), it is also hard to prove
that it is not computable by a t(n)-size circuit.

A prominent example of a constructive generator in the above sense is the Nisan-Wigderson generator (based
on functions computable by t(n)-size circuits), cf. [5]. Razborov [7] conjectured that the Nisan-Wigderson
generator with the original parameters as in [5] based on any poly-time function that is hard on average for
NC1/poly is hard for the Frege proof system. We prove a weak version of the conjecture, namely that it holds
for proof systems that admit certain form of interpolation.

2 Background and definitions

Symbol P always refers to probability with respect to the uniform distribution. For a natural number n, [n] :=
{1, ..., n}. We write x for a sequence of variables x1, ..., xn where n is a number determined by the context
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(analogously for y, z..). If S ⊆ [n], then x|S denotes all variables xi’s such that i ∈ S. For an assigment a to
x, a|S is a restricted to x|S. When we write a formula A(x, y) ∨ B(x, z) we understand that x = x1, ..., xn are
the only common variables of A and B and that y = y1, ..., ym, z = z1, ..., zl are some of (not necessarily all)
additional variables in the respective formulas.

Definition 2.1 A proof complexity generator g : {0, 1}∗ 7−→ {0, 1}∗ is a function computed by mO(1)-size
circuits {Cn} representing restrictions of g, gn : {0, 1}n 7−→ {0, 1}m for some injective function m = m(n) >
n.

For a proof complexity generator g and any string b ∈ {0, 1}m define the τ -formula τ(Cn)b as b 6≡ Cn(x).
The variables of τ(Cn)b are x1, ..., xn for inputs of Cn, and y1, ..., ymO(1) for gates of Cn.
τ(Cn)b is a tautology iff b /∈ Rng(Cn). We shall denote the formulas simply τ(g)b because circuits Cn are

though as canonically determined by g.
Definition 2.2 A generator g is a hard proof complexity generator for a propositional proof system P iff there

is no polynomial size P -proof of any τ(g)b (for m tending to infinity).
A promising class of proof complexity generators is inspired by the Nisan-Wigderson generators (shortly

NW-generators), cf. [5].
Definition 2.3 Let n < m and A be an m× n 0-1 matrix with l ones per row. Ji(A) := {j ∈ [n]|Aij = 1}.

Let f : {0, 1}l 7−→ {0, 1} be a Boolean function. Define function NWA,f : {0, 1}n 7−→ {0, 1}m as follows:
The i-th bit of the output is computed by f from the bits x|Ji(A).

We speak about these functions as about NW-generators but in computational complexity the term NW-
generator usually refers to the construction where f is a suitably hard function and A is in addition a (d, l)
combinatorial design. The design property means that Ji(A) ∩ Jk(A) has size ≤ d for any two different rows
i, j.

Assuming that the NW-generators are based on the combinatorial designs with the same parameteres as in the
seminal paper [5], Razborov proposed,

Conjecture 2.4 (Razborov [7]) Any NW-generator based on any poly-time function that is hard on average
for NC1/poly, is hard for the Frege proof system.

Conjecture 2.5 (Razborov [7]) Any NW-generator based on any function in NP ∩ coNP that is hard on
average for P/poly, is hard for Extended Frege.

The parameters are actually not specified more precisely in [7]. We prove

◦ (in Proposition 3.5:) Any NW-generator based on a combinatorial design as the one constructed in the proof
of Lemma 2.5 in [5], and on any poly-time function in n hard for formulas of poly-size in m, is hard for any
proof system with the formula interpolation.

◦ (in Proposition 3.2:) Any NW-generator based on any function such that for any mO(1)-size circuit C,
|P[C(x) = f(x)] − 1

2 | <
1

2m , (and on a matrix that is not necessarily a combinatorial design), is hard for
any proof system with the constructive interpolation.

Definition 2.6 A proof system P admits

- effective interpolation (EIP) iff there is a polynomial p(x) such that for any disjunction A(x, y) ∨ B(x, z)
with P-proof of size m there is a p(m)-size circuit C(x) that for each assigment a to x outputs a tautology
from the set {A(a, y), B(a, z)}.

- constructive interpolation (CIP) iff there is a family of polynomial size circuits {Cn}∞n=1 such that for any
disjunction A(x, y) ∨ B(x, z) with P-proof π of size m there is a circuit C(x, π) ∈ {Cn}∞n=1 that for each
assigment a to x outputs an O(m)-size proof for a tautology in {A(a, y), B(a, z)}. Note that the input of
the circuit C contains π, so it has polynomial size in the length of π.

- formula interpolation (FIP) iff P admits EIP but the circuit C(x) is in fact a formula.

These interpolations are not believed to hold in strong proof systems. Krajı́ček [2] however proved that
resolution admits EIP and one of his proofs gives also CIP. Pudlák [6] later gave a different proof of CIP with
better bound on proofs: the constructed proof is of size ≤ m. It is also not hard to see that tree-like resolution
admits FIP.
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3 Results of the paper

The idea behind using feasible interpolation for proving lower bounds on the lengths of proofs is to find a pair of
disjoint NP sets that is not possible to separate by a set in P/poly: The tautologies expressing the disjointness of
the pair cannot have short proofs in any proof system with EIP.

We now observe that this idea can be captured via the τ -formulas.
Denote [f(x) 6= 0 ∨ f(x) 6= 1] the tautology τ(NWA,f )(0,1) where A is a 2× n matrix with all entries being

1 and f ∈ NP ∩ coNP (so the tautologies say that for any x, f(x) 6= 0 or f(x) 6= 1).
Conditions f(x) = 0 and f(x) = 1 define two NP sets and the formula [f(x) 6= 0 ∨ f(x) 6= 1] asserts their

disjointness.
Proposition 3.1 [f(x) 6= 0∨f(x) 6= 1] based on a function f ∈ NP ∩coNP which does not have nO(1)-size

circuits is hard for any proof system P with EIP.

P r o o f. For the sake of contradiction assume that there is a proof system P with EIP and nO(1)-size P-proof
of the given tautology. By EIP there is an nO(1)-size circuit that can decide for every assigment a to x whether
f(a) 6= 0 or f(a) 6= 1, hence it determines the value of f(a), contradicting complexity of f .

Note that we need the assumption f ∈ NP ∩ coNP to express the tautology τ(NWA,f )(0,1) as an nO(1)-size
formula. Analogously, the assumption f ∈ NTime(mO(1)) ∩ coNTime(mO(1)) for m ≥ nO(1) allows to
express τ(NWA,f )(b1,...,bm) based on an m× n matrix A as mO(1)-size formula∨

i≤m

¬αbi(x|Ji(A), vi)

using NTime(mO(1))-definitions of f(x|Ji(A)) = ε, for ε = 0, 1:

f(x|Ji(A)) = ε iff ∃v (|v| ≤ mO(1)) αε(x|Ji(A), v)

where αε is a polynomial time relation. The tuples of variables vi in the disjunction are disjoint.
We use this in the following weak version of Conjecture 2.5.
Proposition 3.2 Any NW -generator based on

1. any m× n 0-1 matrix A with l ones per row (not necessarily a combinatorial design)

2. any function f : {0, 1}l 7−→ {0, 1} in NTime(mO(1)) ∩ coNTime(mO(1)) such that for any mO(1)-size
circuit C, |Px∈{0,1}l [C(x) = f(x)]− 1

2 | <
1

2m

is hard for any proof system P with CIP.

P r o o f. Assume that there is a proof system P with CIP and s = mO(1)-size P-proof of some τ(NWA,f )(b1,...,bm).
We will describe an mO(1)-size circuit C such that |Px∈{0,1}l [C(x) = f(x)]− 1

2 | ≥
1

2m .
Our f is in NTime(mO(1)) ∩ coNTime(mO(1)). As we noted, this means that τ(NWA,f )(b1,...,bm) can be

expressed as ∨
i≤m

¬αbi(x|Ji(A), vi)

CIP implies that there is an mO(1)-size circuit which for any assigment a to the variables x outputs proof of
one of the disjunctions

k∨
i=1

¬αbi(a|Ji(A), vi),
m∨

i=k+1

¬αbi(a|Ji(A), vi)

where k =
⌊
m
2

⌋
. The new proof has the size at most O(s). Therefore, we can iterate the usage of CIP logm

times and get the true value of some f(a|Ji(A)). The resulting circuit C ′ consisting of all circuits given by CIP
remains mO(1)-size and for any input a it outputs the true value of some f(a|Ji(A)).
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Fix an i ∈ [m] such that C ′ outputs the value of f(a|Ji(A)) for at least 2n

m a′s ∈ {0, 1}n. Now, let C be an
mO(1)-size circuit which uses C ′ to check whether given input leads to the fixed value of f(a|Ji(A)). If it does,
then it outputs the value of f(a|Ji(A)), otherwise it outputs always zero or always one, whichever is better on
the remaining inputs. Therefore,

Px∈{0,1}n [C(x) = f(x|Ji(A))] ≥
1− 1/m

2
+

1

m
=

1

2
+

1

2m

Since f(x|Ji(A)) does not depend on all bits of x = x1, ..., xn we can rewrite Px∈{0,1}n [C(x) = f(x|Ji(A))]
as the average over all possible choices of values of bits from [n] \ Ji(A) of the same expression where only
x|Ji(A) are choosen at random. It follows that for some particular choice of these additional values the circuit C
preserves the advantage.

We can weaken the assumption of CIP to EIP but this will require an additional property of the matrices A in
the NW-generators.

Definition 3.3 Let A be an m × n 0-1 matrix with l ones per row. Ji(A) = {j ∈ [n]|Ai,j = 1}. A is
l-uniform iff there is a partition of [n] into l sets such that there is exactly one element of each Ji(A) in each set
of the partition.

Note that m× n (logm, l) design matrices with l =
√
n ones per row constructed in the proof of Lemma 2.5

in [5] are
√
n-uniform.

Proposition 3.4 Any NW-generator based on

1. any m× n l-uniform matrix A with l ones per row

2. any function f : {0, 1}l 7−→ {0, 1} in NTime(mO(1)) ∩ coNTime(mO(1)) such that f does not have
mO(1)-size circuits

is hard for any proof system P with EIP.

P r o o f. Assume that there is a proof system P with EIP and mO(1)-size proof of some τ(NWA,f )b. This
τ(NWA,f )b can be expressed in a form∨

i

¬α0(x|Ji(A), vi) ∨
∨
j

¬α1(x|Jj(A), vj)

where ¬α0(x|Ji(A), vi) encodes f(x|Ji(A)) 6= 0 and ¬α1(x|Jj(A), vj) encodes f(x|Jj(A)) 6= 1.
By EIP, there exists anmO(1)-size circuitC that for every assigment a to x finds out which of

∨
i ¬α0(a|Ji(A), vi),∨

j ¬α1(a|Jj(A), vj) is true.
Denote now by S a partition of [n] certifying that A is l-uniform. Define a linear order on S by the smallest

elements of its blocks: K < L for K,L ∈ S iff minK < minL. An mO(1)-size circuit computing f proceed as
follows.

It extends input a ∈ {0, 1}l to a ∈ {0, 1}n where ai for i ∈ Kj , Kj the j-th smallest block of S, has the same
value as aj . Then it uses the circuit C to find out which of

∨
i ¬α0(a|Ji(A), vi),

∨
j ¬α1(a|Jj(A), vj) is true. If

it is the former one, then it outputs 1, otherwise 0.
This circuit finds the true value of f(a) because the uniformity of A implies that if

∨
i ¬α0(a|Ji(A), vi) then

all ¬α0(a|Ji(A), vi)’s hold, resp. if
∨
j ¬α1(a|Jj(A), vj) then all ¬α1(a|Jj(A), vj)’s hold.

To derive a weak version of Conjecture 2.4 we need to consider the strong form FIP of the interpolation
property.

Proposition 3.5 Any NW-generator based on any m× n l-uniform matrix A with l ones per row, and on any
poly-time function in l which does not have poly-size formulas in m, is hard for any pps P with FIP.

P r o o f. If we replace EIP by FIP in proof of Proposition 3.4, we obtain a poly-size formula computing f .
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Let us mention a few direct applications of previous propositions.
Recall that resolution satisfies CIP (see [6]) and therefore tautologies τ(NWA,f )b where b /∈ Rng(NWA,f )

based on any matrix A and on any function f satisfying assumptions of Proposition 3.2 are hard for resolution,
according to Proposition 3.2.

Further, Proposition 3.5 implies certain conditional hardness of proving superpolynomial circuit lower bounds.
Firstly, note that it is easy to construct an m × n l-uniform matrix for m = 2n

δ

, where δ < 1 (in the proof
of Lemma 2.5 in [5], Nisan and Wigderson constructed 2n

δ × n
√
n-uniform matrices that are also (nδ,

√
n)

designs). Our Propositions hold for such largem too. Moreover, the resulting NW-generators based on poly-time
functions are constructive in the sense that for any x ∈ {0, 1}n1/δ

the function represented by the truth table
NW (x) is computable by poly-size circuits in n. Therefore, according to the discussion from the introduction,
Proposition 3.5 implies that if there exists a poly-time function hard for subexponential size formulas, then it is
hard to prove any superpolynomial circuit lower bound (i.e. formulas ¬Circuitt(n)(f) for any superpolynomial
function t(n) and for any function f ) in proof systems with FIP. This applies e.g. to tree-like resolution because a
straightforward modification of the second proof of Theorem 6.1 in [2] (which proves that resolution admits EIP)
actually shows that tree-like resolution proofs yield interpolants that are in fact formulas, i.e. tree-like resolution
admits FIP.

Let us note in the end that if NP = coNP , then there is a function f ∈ NTime(2O(l)) ∩ coNTime(2O(l))
such that (∗): for any 2Ω(l)-size circuit C, |P[C(x) = f(x)]− 1/2| < 1/2Ω(l) (see Theorem 3.1 in [4]).

If we set m = 2l (and e.g. l =
√
n) in Proposition 3.5, then its assumptions require a function such that

|P[C(x) = f(x)] − 1/2] < 1/2O(l) for any 2O(l)-size circuit C. Of course, such function does not exist. If we
could slightly weaken this assumption to ask for a function such that (∗), then NP = coNP would imply that
there is no polynomially bounded proof system with CIP, hence (unconditionally) P 6= NP .
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