Data Depth

Stanislav Nagy

Department of Probability and Mathematical Statistics
Charles University in Prague

This work was supported by Czech Science Foundation (grant P402/12/G097)
1 Depth Measure and its Smoothness for Multivariate Data
 - Smoothness of Halfspace Depth Contours

2 Functional Data Depth: Theory
 - Functional Band Depths
 - Consistency
 - Counterexample
 - Fixing the Continuousness
 - Integral and Vector Depths

3 Functional Data Depth: Practice
 - Problem of Functional Data Classification
 - Using Depth for Classification
 - Simulation Study

4 Conclusions
Outline

1. Depth Measure and its Smoothness for Multivariate Data
 - Smoothness of Halfspace Depth Contours

2. Functional Data Depth: Theory
 - Functional Band Depths
 - Consistency
 - Counterexample
 - Fixing the Continuousness
 - Integral and Vector Depths

3. Functional Data Depth: Practice
 - Problem of Functional Data Classification
 - Using Depth for Classification
 - Simulation Study

4. Conclusions
Data Depth

Consider a random variable $X \sim P \in \mathcal{P}(\mathbb{R}^d)$.
Consider a random variable $X \sim P \in \mathcal{P}(\mathbb{R}^d)$.

How to define ordering of these data?
Consider a random variable $X \sim P \in \mathcal{P}(\mathbb{R}^d)$.

Using data depth!
According to Zuo and Serfling [13], **Statistical depth** is a function possessing:

- **affine transformation invariance**
- **maximality at the center of symmetry** of the distribution for the class of symmetric distributions
- **monotonicity** relative to the point with the highest depth
- **vanishing** at infinity
According to Zuo and Serfling [13], **Statistical depth** is a function possessing:

- **affine transformation invariance**
- **maximality at the center of symmetry** of the distribution for the class of symmetric distributions
- **monotonicity** relative to the point with the highest depth
- **vanishing** at infinity

We obtain a function recognizing “typical” and “outlier” observations, **a generalization of quantiles** for multivariate data.
Halfspace depth \((\text{Tukey [11]})\, HD\) of an observation from \(\mathbb{R}^d\)

\[
HD(x; P) = \inf_{H \in \mathcal{H}(x)} P(X \in H)
\]
Halfspace depth (Tukey [11]) \(HD \) of an observation from \(\mathbb{R}^d \)

\[
HD(x; P) = \inf_{H \in \mathcal{H}(x)} P(X \in H)
\]
Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Halfspace Depth

\(HD(x; X_1, \ldots, X_n) = \) least ratio of observations in a halfspace containing \(x \)
Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Halfspace Depth

$$HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x$$
Halfspace Depth

$HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x$
Depth Measure and its Smoothness for Multivariate Data
Functional Data Depth: Theory
Functional Data Depth: Practice
Conclusions

Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Halfspace Depth

\[HD(x; X_1, \ldots, X_n) = \text{least ratio of observations in a halfspace containing } x \]
Simplicial depth \((\text{Liu} \ [7])\) \(SD\) of an observation from \(\mathbb{R}^d\)

\[
SD(x; P) = P \left(x \in \mathbb{S}_{X_1, \ldots, X_{d+1}} \right)
\]
Simplicial Depth

Simplicial depth (Liu [7]) \(SD \) of an observation from \(\mathbb{R}^d \)

\[
SD(x; P) = P \left(x \in S_{X_1, \ldots, X_{d+1}} \right)
\]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

$$SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}}$$
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Simplicial Depth

\[SD(x; X_1, \ldots, X_n) = \frac{\text{number of simplices containing } x}{\text{total number of simplices}} \]
Characterization of Distribution

Is $P \in \mathcal{P}(\mathbb{R}^d)$ characterized by $\{HD(x; P) \mid x \in \mathbb{R}^d\}$?
Is $P \in \mathcal{P}(\mathbb{R}^d)$ characterized by $\{HD(x; P) \mid x \in \mathbb{R}^d\}$? **Yes**, if

- P is an **empirical measure** (Struyf and Rousseeuw 1999),
- P is **a.c. with a compact support** (Koshevoy 2001),
- P is **atomic** (Koshevoy 2002)
- P has a $C^{(2)}$ **density** (Hassairi and Regaieg 2008),
- the **HD contours are smooth** (Kong and Zuo 2010).
Is $P \in \mathcal{P}(\mathbb{R}^d)$ characterized by $\{HD(x; P) \mid x \in \mathbb{R}^d\}$?

Yes, if

- P is an empirical measure (Struyf and Rousseeuw 1999),
- P is a.c. with a compact support (Koshevoy 2001),
- P is atomic (Koshevoy 2002)
- P has a $C^{(2)}$ density (Hassairi and Regaieig 2008),
- the HD contours are smooth (Kong and Zuo 2010).

When are HD contours smooth?
Theorem:

Let \(P \in \mathcal{P}(\mathbb{R}^d) \) be contiguous and \(x \in \mathbb{R}^d \). Then the halfspace depth contours are smooth at \(x \) if and only if there exists a unique halfspace \(H \in \mathcal{H}(x) \) such that

\[
HD(x; P) = P(X \in H).
\]
When are Halfspace Depth Contours Smooth?

Theorem:

Let \(P \in \mathcal{P}(\mathbb{R}^d) \) be contiguous and \(x \in \mathbb{R}^d \). Then the halfspace depth contours are smooth at \(x \) if and only if there exists a unique halfspace \(H \in \mathcal{H}(x) \) such that

\[
HD(x; P) = P(X \in H).
\]

As a corollary, a point \(x \) from the hyperspace of reflectional symmetry \(R \) of \(P \) is depth regular (depth contours at at \(x \) are smooth) if and only if \(HD \) is attained only at a halfspace orthogonal to \(R \).
Example 1: Gaussian Distributions Mixture

A **strictly unimodal** distribution and non-smooth *HD* contours.
Example 2: Gaussian Distributions Mixture

Another **strictly unimodal** distribution.
Example 2: Gaussian Distributions Mixture

Another **strictly unimodal** distribution.

Is non-smooth **only for** $\sigma_1^2 > \sigma_2^2(2 + \sqrt{3})$.
Example 3: Rectangle

A distribution with non-smooth \(HD \) contours.
Example 3: Rectangle

A distribution with non-smooth HD contours.
Example 4: L^4 symmetrical distribution

An L^4 symmetrical distribution with non-smooth HD contours.
Example 4: L^4 symmetrical distribution

An L^4 symmetrical distribution with non-smooth HD contours.
Example 5: quasi-concave distribution 1

A **quasi-concave** distribution with non-smooth *HD* contours.
Example 6: quasi-concave distribution 2

A strictly quasi-concave distribution with non-smooth HD contours.
Example 6: quasi-concave distribution 2

A *strictly quasi-concave* distribution with non-smooth HD contours.
Conclusion

Not even the density smoothness, strict quasi-concavity and reflectional symmetry suffices for the halfspace depth contours to be smooth at every point of \mathbb{R}^d.
Conclusion

Not even the density smoothness, strict quasi-concavity and reflectional symmetry suffices for the halfspace depth contours to be smooth at every point of \mathbb{R}^d.

Can this be guaranteed at least for even smaller classes of distributions?

- angularly symmetrical and strictly quasi-concave, or merely
- L^p symmetrical and strictly quasi-concave?

For further discussion, see Nagy [9].
$X \sim P \in \mathcal{P}(C([0,1]))$ and X_1, \ldots, X_n a r.s. from P. Consider the depth of functional observations w.r.t. P (or P_n)

$$D : C([0,1]) \times \mathcal{P}(C([0,1])) \to [0,1].$$
López-Pintado and Romo [8] for $J = 2, 3, \ldots$

$$BD^J(x; P) = \frac{1}{J-1} \sum_{j=2}^{J} P[G(x) \subset B(X_1, X_2, \ldots, X_j)],$$

where $G(x)$ is the graph of a function x and $B(x_1, x_2, \ldots, x_j)$ is a band of functions x_1, x_2, \ldots, x_j.
The sample version is a **U-statistic of order** J.

$$BD^J(x; P_n) = \frac{1}{J-1} \sum_{j=2}^{J} \binom{n}{j}^{-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} \mathbb{I} \left[G(x) \subset B \left(X_{i_1}, X_{i_2}, \ldots, X_{i_j} \right) \right].$$
Band Depth

The sample version is a **U-statistic of order** J.

$$BD^J(x; P_n) = \frac{1}{J-1} \sum_{j=2}^{J} \binom{n}{j}^{-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} \mathbb{I} \left[G(x) \subset B(X_{i_1}, X_{i_2}, \ldots, X_{i_j}) \right].$$
Band Depth

The sample version is a U-statistic of order J.

$$BD^J(x; P_n) = \frac{1}{J-1} \sum_{j=2}^{J} {n \choose j}^{-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_j \leq n} \mathbb{I}[G(x) \subset B(X_{i_1}, X_{i_2}, \ldots, X_{i_j})].$$
Strong Consistency

Depth D is on a set $S \subset C([0, 1])$ consistent pointwise if

$$D(x; P_n) - D(x; P) \xrightarrow{a.s. \ n \to \infty} 0 \text{ for all } x \in S,$$
Strong Consistency

Depth D is on a set $S \subset C([0, 1])$ consistent

- pointwise if

 $$D(x; P_n) - D(x; P) \xrightarrow[n \to \infty]{} 0 \text{ for all } x \in S,$$

- uniformly if

 $$\sup_{x \in S} |D(x; P_n) - D(x; P)| \xrightarrow[n \to \infty]{} 0,$$
Depth D is on a set $S \subset C([0, 1])$ **consistent**

- **pointwise** if
 \[
 D(x; P_n) - D(x; P) \xrightarrow{a.s. \ n \to \infty} 0 \text{ for all } x \in S,
 \]

- **uniformly** if
 \[
 \sup_{x \in S} |D(x; P_n) - D(x; P)| \xrightarrow{a.s. \ n \to \infty} 0,
 \]

- **universally** if
 \[
 \sup_{x \in S} |D(x; P_n) - D(x; P)| \xrightarrow{a.s. \ n \to \infty} 0 \text{ for all } P \in \mathcal{P}(C([0, 1])),
 \]
Strong Consistency

Depth D is on a set $S \subset C([0,1])$ consistent

- **pointwise** if
 \[D(x; P_n) - D(x; P) \xrightarrow{a.s. \ n \to \infty} 0 \quad \text{for all } x \in S, \]

- **uniformly** if
 \[\sup_{x \in S} |D(x; P_n) - D(x; P)| \xrightarrow{a.s. \ n \to \infty} 0, \]

- **universally** if
 \[\sup_{x \in S} |D(x; P_n) - D(x; P)| \xrightarrow{a.s. \ n \to \infty} 0 \quad \text{for all } P \in \mathcal{P}(C([0,1])), \]

- **\mathcal{P}-uniformly** if
 \[\sup_{P \in \mathcal{P}(C([0,1]))} \sup_{x \in S} |D(x; P_n) - D(x; P)| \xrightarrow{a.s. \ n \to \infty} 0. \]
Band Depth

Band Depth (L-P López-Pintado, R Romo):

- L-P, R: Depth-based classification for functional data (DIMACS 2006)
- L-P, R: Depth-based inference for functional data (CSDA 2007)
- L-P, Jornsten: Functional analysis via extensions of the band depth (IMS Lecture Notes, 2007)
- **L-P, R: On the Concept of Depth for Functional Data (JASA 2009)**
- L-P, R: Robust depth-based tools for the analysis of gene expression data (Biostatistics 2010)
- L-P, R: A half-region depth for functional data (CSDA 2011)
- ...
López-Pintado and Romo [8, Thm 4]

Theorem:

Let $P \in \mathcal{P}(C([0,1]))$ with a.c. marginals. Then BD^J is uniformly consistent on every equi-continuous set S, i.e.

$$\sup_{x \in S} \left| BD^J(x; P_n) - BD^J(x; P) \right| \xrightarrow{a.s.} 0.$$
Band Depth Consistency: Proof

Proof: As \(\lim_{\|x\| \to \infty} BD_J(x; P) = 0 \), consider only \(\{\|x\| < M\} \) for \(M > 0 \). According to Arzéla-Ascoli’s Theorem, a uniformly bounded set of equi-continuous functions is totally bounded. Because \(BD_J(\cdot; P) \) is for \(P \) with a.c. marginals an **continuous** functional, it is enough to prove for \(N \in \mathbb{N} \) fixed

\[
\max_{\{x_i\}_{i=1}^N \subset S} \left| BD_J(x_i; P_n) - BD_J(x_i; P) \right| \xrightarrow{a.s.} n \to \infty 0.
\]

This holds, since \(BD_J(\cdot; P_n) \) is a bounded U-statistic. \(\square \)
Why the Proof Does Not Work?

$BD^J(\cdot; P)$ is continuous, but $BD^J(\cdot; P_n)$ is not!
Why the Proof Does Not Work?

\[BD^J(.; P) \] is continuous, but \[BD^J(.; P_n) \] is not!
Why the Proof Does Not Work?

\[
\max_{\{x_i\}_{i=1}^N \subset S} \left| BD_J^p (x_i; P_n) - BD_J^p (x_i; P) \right| \xrightarrow{\text{a.s.}} n \to \infty 0
\]

does not give uniform convergence!
Why the Proof Does Not Work?

\[
\max_{\{x_i\}_{i=1}^N \subset S} \left| BD_J^J(x_i; P_n) - BD_J^J(x_i; P) \right| \xrightarrow{\text{a.s.}} n \to \infty 0
\]

does not give uniform convergence!
Why the Proof Does Not Work?

\[
\max_{\{x_i\}_{i=1}^N \subset S} \left| BD^J (x_i; P_n) - BD^J (x_i; P) \right| \xrightarrow{a.s., n \to \infty} 0
\]

does not give uniform convergence!

![Graph showing the behavior of the depth measure and its convergence](image-url)
Is Band Depth Consistent?

Starting from the theory of empirical processes (for $J = 2$):

- The validity of
 \[\dim_{VC} \{(x_1, x_2) | G(x) \subset B(x_1, x_2)\}_{x \in S} = \infty \]
 for $S \subset C([0, 1])$ compact suggests, that the depth is not \mathcal{P}-uniformly consistent (Assouad’s Thm - [3, Thm 6.4.5]).

- The existence of boolean σ-independent sequence of functions in the class
 \[\{(x_1, x_2) | G(x) \subset B(x_1, x_2)\}_{x \in S} \]
 suggest, that the depth is not universally consistent (van Handel’s Thm - [12, Thm 1.3]).
Define $X \sim P \in \mathcal{P}(C([0, 1]))$ as follows:

- $P(X(t) = 0$ for all $t \in [0, 1]) = 0.5$.

![Graph showing a horizontal line at 0.5]
Define $X \sim P \in \mathcal{P}(C([0, 1]))$ as follows:

- Divide the interval $[0, 1]$ “diadically” into disjoint subintervals I_j of lengths $\left\{2^{-j}\right\}_{j \in \mathbb{N}}$.

```
0.0 0.5
0 0.5 0.75 1
```

Stanislav Nagy
Band Depth Consistence: Counterexample

Define $X \sim P \in \mathcal{P}(C([0, 1]))$ as follows:

- If $X \not\equiv 0$, set X zero on every I_j with probability 0.5 or have a jump with probability 0.5. The jumps occur independently.
Let x_j be a function with a single jump on the interval I_j, 0 otherwise. Then:

\[BD^2(x_j; P) = 0.25 \text{ for all } j \in \mathbb{N} \]
Band Depth Consistence: Counterexample

Let x_j be a function with a single jump on the interval I_j, 0 otherwise. Then:

- $BD^2(x_j; P) = 0.25$ for all $j \in \mathbb{N}$
- Let n be even. If there exists $j_n \in \mathbb{N}$ such that exactly $n/2$ functions have a jump on I_{j_n} and $n/2$ functions is zero at $[0, 1]$, then x_{j_n} lies in

$$\binom{n}{2} - 2\binom{n/2}{2} = \frac{n^2}{4}$$

bands.
Band Depth Consistence: Counterexample

Let x_j be a function with a single jump on the interval I_j, 0 otherwise. Then:

- $BD^2(x_j; P) = 0.25$ for all $j \in \mathbb{N}$
- Let n be even. If there exists $j_n \in \mathbb{N}$ such that exactly $n/2$ functions have a jump on I_{j_n} and $n/2$ functions is zero at $[0, 1]$, then x_{j_n} lies in

$$\left(\begin{array}{c} n \\ 2 \end{array} \right) - 2 \left(\begin{array}{c} n/2 \\ 2 \end{array} \right) = \frac{n^2}{4}$$

bands.
- For such a j_n we have

$$BD^{J}(x_{j_n}; P_n) = \frac{n^2}{\left(\begin{array}{c} n \\ 2 \end{array} \right)} = \frac{n}{2(n-1)} \xrightarrow{n \to \infty} 0.5.$$
Band Depth Consistence: Counterexample

Let x_j be a function with a single jump on the interval I_j, 0 otherwise. Then:

- $BD^{2j} (x_j; P) = 0.25$ for all $j \in \mathbb{N}$
- Let n be even. If there exists $j_n \in \mathbb{N}$ such that exactly $n/2$ functions have a jump on I_{j_n} and $n/2$ functions is zero at $[0, 1]$, then x_{j_n} lies in

$$\binom{n}{2} - 2 \binom{n/2}{2} = \frac{n^2}{4}$$

bands.
- For such a j_n we have

$$BD^{j_n} (x_{j_n}; P_n) = \frac{n^2}{\binom{n}{2}} = \frac{n}{2(n-1)} \xrightarrow{n \to \infty} 0.5.$$
Band Depth Consistence: Counterexample

Let x_j be a function with a single jump on the interval I_j, 0 otherwise. Then:

- $BD^2(x_j; P) = 0.25$ for all $j \in \mathbb{N}$
- Let n be even. If there exists $j_n \in \mathbb{N}$ such that exactly $n/2$ functions have a jump on I_{j_n} and $n/2$ functions is zero at $[0, 1]$, then x_{j_n} lies in

 $$\binom{n}{2} - 2\binom{n/2}{2} = \frac{n^2}{4}$$

 bands.

- For such a j_n we have

 $$BD^J(x_{j_n}; P_n) = \frac{n^2}{4 \binom{n}{2}} = \frac{n}{2(n-1)} \xrightarrow{n \to \infty} 0.5.$$

But does exist infinitely many of such couples (n, j_n)?
Band Depth Consistence: Counterexample

But does exist \textit{infinitely many} of such couples \((n,j_n)\)? \textbf{Yes!}

- Almost surely there is infinitely many \(n\) such that exactly \(n/2\) functions if zero on \([0,1]\) \textit{(state 0 is permanent in a symmetric random walk)}.

Stanislav Nagy
Band Depth Consistence: Counterexample

But does exist infinitely many of such couples \((n,j_n)\)? Yes!

- Almost surely there is infinitely many \(n\) such that exactly \(n/2\) functions if zero on \([0,1]\) (state 0 is permanent in a symmetric random walk).

- For every such \(n\) a.s. exists \(j_n\) such that all the \(n/2\) functions with jumps have on the interval \(I_{j_n}\) a jump (Borel-Cantelli).
Band Depth Consistence: Counterexample

But does exist **infinitely many** of such couples \((n,j_n)\)? **Yes!**

- Almost surely there is infinitely many \(n\) such that exactly \(n/2\) functions if zero on \([0,1]\) (**state 0 is permanent in a symmetric random walk**).

- For every such \(n\) a.s. exists \(j_n\) such that all the \(n/2\) functions with jumps have on the interval \(l_{j_n}\) a jump (**Borel-Cantelli**).

- We get infinitely many \(n\) such that for each of them there exists a function \(\{x_j\}_{j \in \mathbb{N}}\) for which \(BD^2) (x_{j_n}; P_n) \approx 0.5\). Hence, for every \(\varepsilon > 0\) and infinitely many \(n \in \mathbb{N}\) a.s. holds

\[
\sup_{j \in \mathbb{N}} \left| BD^2 (x_j; P_n) - BD^2 (x_j; P) \right| > 0.25 - \varepsilon
\]
Band Depth Consistence: Counterexample

But does exist **infinitely many** of such couples \((n,j_n)\)? **Yes!**

- Almost surely there is infinitely many \(n\) such that exactly \(n/2\) functions if zero on \([0,1]\) (**state 0 is permanent in a symmetric random walk**).

- For every such \(n\) a.s. exists \(j_n\) such that all the \(n/2\) functions with jumps have on the interval \(I_{j_n}\) a jump (**Borel-Cantelli**).

- We get infinitely many \(n\) such that for each of them there exists a function \(\{x_j\}_{j \in \mathbb{N}}\) for which \(BD^2) (x_{j_n}; P_n) \approx 0.5\). Hence, for every \(\varepsilon > 0\) and infinitely many \(n \in \mathbb{N}\) a.s. holds

\[
\sup_{j \in \mathbb{N}} \left| BD^2) (x_j; P_n) - BD^2) (x_j; P) \right| > 0.25 - \varepsilon
\]
But does exist **infinitely many** of such couples \((n,j_n)\)? **Yes!**

- Almost surely there is infinitely many \(n\) such that exactly \(n/2\) functions if zero on \([0, 1]\) (**state 0 is permanent in a symmetric random walk**).

- For every such \(n\) a.s. exists \(j_n\) such that all the \(n/2\) functions with jumps have on the interval \(I_{j_n}\) a jump (**Borel-Cantelli**).

- We get infinitely many \(n\) such that for each of them there exists a function \(\{x_j\}_{j \in \mathbb{N}}\) for which \(BD^2) (x_{j_n}; P_n) \approx 0.5\). Hence, for every \(\varepsilon > 0\) and infinitely many \(n \in \mathbb{N}\) a.s. holds

\[
\sup_{j \in \mathbb{N}} \left| BD^2) (x_j; P_n) - BD^2) (x_j; P) \right| > 0.25 - \varepsilon
\]

Thus, \(BD^2)\) is **not uniformly consistent** w.r.t. \(P\).
Fixing the Continuousness

The problem of López-Pinado and Romo’s proof was that the depth $BD^J(\cdot; P_n)$ was not (uniformly) continuous. Instead of measuring the outlyingness of a function from a band by an indicator, let’s measure distance from a band, i.e. for a metric d on $C([0,1])$ use

$$E[1 - w(d(x; B(X_1, X_2)))]$$

instead of

$$P[G(x) \subset B(X_1, X_2)] = E[\mathbb{I}[G(x) \subset B(X_1, X_2)]]$$

where $w: [0, \infty) \rightarrow [0, 1], w(0) = 1, \lim_{t \rightarrow \infty} w(t) = 0$ is equi-continuous smoothing function, e.g. e^{-t}.

Consider supremum and L_1 metric for simplicity.
Fixing the Continuousness

Theorem:

Let w be a smoothing function and $S \subset C([0,1])$ relatively compact. Then the band depths smoothed by w

$$BD^J) (x; w, d) : C([0,1]) \times \mathcal{P} (C([0,1])) \rightarrow [0,1]$$

are for supremum norm, as well as for L_1 norm \mathcal{P}-uniformly consistent on S.

Proof: A strengthened version of López-Pintado and Romo’s proof is used. It is proved that the class

$$\left\{ BD^J) (x; P, w, d) \mid x \in C([0,1]), P \in \mathcal{P} (C([0,1])) \right\}$$

is uniformly continuous and the properties of U-statistics are utilized (Borovskich a Koroljuk [6, Thm 2.1.4]).
Fraiman-Muniz Type of Depth

Fraiman and Muniz [4]

\[ID(x; P) = \int_0^1 D(x(t); P_t) \, dt, \]

where \(D \) is univariate “depth” like

- **halfspace depth**

\[D(x(t); P_t) = \min \{ F_t(x(t)), 1 - F_t(x(t)) \}, \]

- **simplicial depth**

\[D(x(t); P_t) = F_t(x(t)) (1 - F_t(x(t))). \]
The idea of Fraiman and Muniz may be easily generalized to vector-valued functions

\[ID(x; P) = \int_0^1 D(x(t); P_t) \, dt, \]

where \(D \) is usual multivariate depth,

\[x = (x_1, \ldots, x_K), \text{ where } x_k : [0, 1] \rightarrow \mathbb{R} \]

and \(P \in \mathcal{P}(C([0, 1])^K) \).

This is how we define \textbf{K-vector depths} and by application to differentiable functions also \textbf{K-derivatives depths} (Hlubinka and Nagy [5]).
Integral Depths Consistency

Theorem:

Let the sample version of a depth $D : \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \rightarrow [0, 1]$ have a form of a U-statistic and be universally consistent. Then the depth for vector-valued functions

$$ID(x; P) = \int_0^1 D(x(t); P_t) \, dt$$

is universally consistent on $C([0, 1])^d$, under some measurability assumptions.

Proof: Utilizing Lebesgue dominated convergence Theorem we obtain weak universal consistency, which is for U-processes equivalent to (strong) universal consistency (cf. de la Peña a Giné [2, p.227]). □

The Theorem can be applied for example for simplicial depth as D. Stanislav Nagy
A range of other properties of integral depth for vector-valued functions can be proved (Nagy and Hlubinka [10]):

- **measurability** as a functional on \(C([0,1])^K \times \mathcal{P}(C([0,1])^K) \).
A range of other properties of integral depth for vector-valued functions can be proved (Nagy and Hlubinka [10]):

- **measurability** as a functional on $C([0,1])^K \times \mathcal{P}(C([0,1])^K)$,
- functional version of **affine invariance** for ID and dID.

Stanislav Nagy

Depth
A range of other properties of integral depth for vector-valued functions can be proved (Nagy and Hlubinka [10]):

- **measurability** as a functional on $C([0,1])^K \times \mathcal{P}(C([0,1])^K)$,
- functional version of **affine invariance** for ID and dID,
- **monotonicity relative to the deepest point**,
A range of other properties of integral depth for vector-valued functions can be proved (Nagy and Hlubinka [10]):

- **measurability** as a functional on $C([0, 1])^K \times \mathcal{P}(C([0, 1])^K)$,
- functional version of **affine invariance** for ID and dID,
- **monotonicity relative to the deepest point**,
- **continuity** (or **semicontinuity**) as functional of $x \in C([0, 1])^K$.

Stanislav Nagy

Depth
A range of **other properties** of integral depth for vector-valued functions can be proved (Nagy and Hlubinka [10]):

- **measurability** as a functional on $C([0, 1])^K \times \mathcal{P}(C([0, 1])^K)$,
- functional version of **affine invariance** for ID and dID,
- **monotonicity relative to the deepest point**,
- **continuity** (or **semicontinuity**) as functional of $x \in C([0, 1])^K$,
- **qualitative robustness**, i.e. continuity as a functional of $P \in \mathcal{P}(C([0, 1])^K)$ in the weak convergence sense.
K-Vector Depth

Integral depths for vector functions

\[ID(x; P) = \int_0^1 D((x_1(t), x_2(t)); (P_{1,t}, P_{2,t})) \, dt, \]

10% of deepest functions
10% of least deep functions
K-Derivatives Depth

Integral depths for differentiable functions

\[d\text{ID}(x; P) = \int_0^1 D\left((x(t), x'(t)) ; (P_t, P'_t)\right) \, dt, \]
Consider now the **contaminated functional dataset**. Does the depth recognize the outlier?
K-Derivatives Depth Again

Integral depths for differentiable functions

\[d\text{ID}(x; P) = \int_0^1 D \left(\left(x(t), x'(t) \right); (P_t, P'_t) \right) \, dt, \]
Future Challenges

- Generalization of van Handel’s (Assouad’s) Theorem for U-processes.
- \mathcal{P}-uniform consistency of integral depths.

$$P_\gamma - \dim \{ \lambda \mid x(t) \in B(x_1(t), x_2(t)) \} \big|_{x \in S} = \infty \quad \forall \gamma > 0$$

for $S \subset C([0, 1])$ compact suggests, that the depth is not \mathcal{P}-uniformly consistent (Alon’s Thm) [1, Thm 2.2]).
Outline

1. Depth Measure and its Smoothness for Multivariate Data
 - Smoothness of Halfspace Depth Contours

2. Functional Data Depth: Theory
 - Functional Band Depths
 - Consistency
 - Counterexample
 - Fixing the Continuousness
 - Integral and Vector Depths

3. Functional Data Depth: Practice
 - Problem of Functional Data Classification
 - Using Depth for Classification
 - Simulation Study

4. Conclusions
Let $P_1, P_2 \in \mathcal{P}(C([0,1]))$ and $X \sim P_m$, $m \in \{1,2\}$ is unknown. What is the distribution of X?
Let $P_1, P_2 \in \mathcal{P}(C([0,1]))$ and $X \sim P_m, m \in \{1,2\}$ is unknown. What is the distribution of X?
Nearest Neighbor Rule

The **k-nearest neighbor rule** KNN with respect to a particular metric on space $C([0, 1])$ (e.g. L_2, $k = 5$):

![Graphs showing nearest neighbor rule](image)
For given training samples X_1, X_2 and depth D, the **DD-transformation** of data can be computed as

$$DD: C([0, 1]) \rightarrow \mathbb{R}^2: x \mapsto (D(x; X_1), D(x; X_2))^T$$
The function is assigned to the sample with highest depth value
\[\text{arg } \max_{i=1,2} D(x; \overline{X}_i) \] (Cuevas et al. 2007)
An increasing **best separating** function (linear, or polynomial) is utilized to classify the DD-transformations (Li et al. 2010)
Location-shifted Model: Functions

\[m_1(t) = 30 (1 - t) t^{1.2}, \quad m_2(t) = 30t (1 - t)^{1.2} \]

\[R_1(s, t) = 0.2 \exp \left(-\frac{|s-t|}{0.3} \right), \quad R_2(s, t) = 0.2 \exp \left(-\frac{|s-t|}{0.3} \right) \]
Location-shifted Model: BD_n^3
Location-shifted Model: ID_n
Location-shifted Model: aID_n
Location-shifted Model: dID_n
Location-shifted Model: Results 1

- BD_{nH}^{2}
- BD_{nH}^{3}
- ID_{nH}
- aID_{nH}
- dID_{nH}
- BD_{nL}^{2}
- BD_{nL}^{3}
- ID_{nL}
- aID_{nL}
- dID_{nL}
- KNN

Box plots illustrating the results for different methods.
Location-shifted Model: Results 2

![Box plots comparing different methods]

- ID_{nH}
- aID_{nH}
- dID_{nH}
- ID_{nL}
- aID_{nL}
- dID_{nL}
- KNN

Stanislav Nagy
Depth
Shape-shifted Model: Functions

\[m_1(t) = 30 \left(1 - t \right) t^{1.2}, \quad m_2(t) = 30 \left(1 - t \right) t^{1.2} + \frac{\sin(20\pi t)}{3} \]

\[R_1(s, t) = 0.2 \exp \left(-\frac{|s-t|}{0.3} \right), \quad R_2(s, t) = 0.2 \exp \left(-\frac{|s-t|}{0.3} \right) \]
Shape-shifted Model: ID_n
Problem of Functional Data Classification
Using Depth for Classification
Simulation Study

Shape-shifted Model: aID_n
Shape-shifted Model: \(dID_n \)
Shape-shifted Model: Results
Variance Difference Model: Functions

\[m_1(t) = 30(1 - t)t^{1.2}, \quad m_2(t) = 30(1 - t)t^{1.2} + \frac{\sin(20\pi t)}{3} \]

\[R_1(s, t) = 0.2 \exp\left(-\frac{|s-t|}{0.3}\right), \quad R_2(s, t) = \exp\left(-\frac{|s-t|}{0.3}\right) \]
Variance Difference Model: ID_n
Variance Difference Model: aID_n
Variance Difference Model: dID_n
Variance Difference Model: Results
Outline

1. Depth Measure and its Smoothness for Multivariate Data
 - Smoothness of Halfspace Depth Contours

2. Functional Data Depth: Theory
 - Functional Band Depths
 - Consistency
 - Counterexample
 - Fixing the Continuousness
 - Integral and Vector Depths

3. Functional Data Depth: Practice
 - Problem of Functional Data Classification
 - Using Depth for Classification
 - Simulation Study

4. Conclusions
Depth-based Classification

How to choose a depth?
Depth-based Classification

How to choose a depth?

- **Band depths fail** in the case of noisy observations.
How to choose a depth?

- **Band depths** fail in the case of noisy observations.
- **Fraiman-Muniz depths** are reasonable in the location-shifted model, but fail in the case of shape shifted models.
How to choose a depth?

- **Band depths** fail in the case of noisy observations.
- **Fraiman-Muniz depths** are reasonable in the location-shifted model, but fail in the case of shape shifted models.
- **Depths including derivatives** with proper weights provide good pattern recognition for the location-shifted models as well as for the shape-shifted models.
How to choose a depth?

- **Band depths** fail in the case of noisy observations.
- **Fraiman-Muniz depths** are reasonable in the location-shifted model, but fail in the case of shape shifted models.
- **Depths including derivatives** with proper weights provide good pattern recognition for the location-shifted models as well as for the shape-shifted models.
How to choose a depth?

- **Band depths** fail in the case of noisy observations.
- **Fraiman-Muniz depths** are reasonable in the location-shifted model, but fail in the case of shape shifted models.
- **Depths including derivatives** with proper weights provide good pattern recognition for the location-shifted models as well as for the shape-shifted models.

In most of the non-trivial examples the K-derivative depths classify better than the nearest neighbor methods.
Depth-based Classification

How to choose a DD-plot analysis method?
Depth-based Classification

How to choose a DD-plot analysis method?

- **Highest depth rule** is reliable if the difference is caused by the mean function, but **fails in the variance difference setup.**
Depth-based Classification

How to choose a DD-plot analysis method?

- **Highest depth rule** is reliable if the difference is caused by the mean function, but **fails in the variance difference setup**.

- **Li’s rules** identify the location and shape difference (if a proper depth is used) as well as the variance structure difference.
Depth-based Classification

How to choose a DD-plot analysis method?

- **Highest depth rule** is reliable if the difference is caused by the mean function, but **fails in the variance difference setup**.

- **Li’s rules** identify the location and shape difference (if a proper depth is used) as well as the variance structure difference.
How to choose a DD-plot analysis method?

- **Highest depth rule** is reliable if the difference is caused by the mean function, but **fails in the variance difference setup**.

- **Li’s rules** identify the location and shape difference (if a proper depth is used) as well as the variance structure difference.

The nearest neighbor rule appears to be weak in comparison with Li’s rules, mainly in the variance difference models.
As far as band depths are concerned, we have seen that:

- they provide **bad results in applications**,
- are hard to be counted \(O\left(n^J\right) \) against \(O(n) \) for integral depths),
- need not to be uniformly consistent.

Conclusion

Avoid using band depths, aim for integral alternatives!
References I

