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Overture

• “Lasciate ogni speranza o voi ch’entrate.”
(Abandon all hope, ye who enter.)

[Dante Alighieri; Divina Commedia, Inferno]

• “Und die Pforte ist enge, und der Weg ist schmal, der zum Leben führet; und wenig
ist ihrer, die ihn finden.”
(How strait is the gate, and narrow the way, that leadeth to life, and there be few
that find it.)

[Matthaeus 7:14; Lutherbibel]
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Strait Gate and Narrow Way

• Need of stochastic thinking: 95% & 95% = ?

• Three ordinary issues outside our long path:

• Derivative should have been defined as log-derivative, but . . . Physics

• Central Limit Theorem is only the Holy pre-Grail, but a non-differentiable continuous
function to which everything converges is the Holy Grail

• Anyone uses neural networks, but just a few knows how to use them
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Introductory Course

≠ Elementary Lecture
> Preliminary Course
< Comprehensive Course
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Overview

Introduction and Motivation

1. Probability and Random Events

2. Random Variables

3. Expectations

4. Stochastic Inequalities

5. Stochastic Convergence

6. Statistical Learning

7. Statistical Functionals

8. Bootstrap

9. Parametric Inference

10. Hypothesis Testing

11. References
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Agenda

Introduction and Motivation
0.1 Literature
0.2 Structure
0.3 Data Science
0.4 Data Mining
0.5 Machine Learning

6 / 202



Literature

• Main source [Wasserman, 2013]
• Czech partial alternative [Dupač and Hušková, 2013]
• Additional and extending material

[Casella and Berger, 2001, Chung, 2001, Resnick, 2013, Rosenthal, 2006, Ross, 2020]
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Blocks of Highlighted Text

Some important text will be highlighted, because it’s important.

Definition 0.1 (Name of the definition)
Definitions are in red.

Example 0.2 (Name of the example)
Examples are in green.

Theorem 0.3 (Name of the theorem)
Theorems are in italics and blue.
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Data Science

= Mathematical Statistics + Algorithmic Computing

• Mathematical Statistics = Justified Statistics . . . not just “How?”, but also “Why?”
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Data Mining

+ Statistical Inference = Stochastic Modeling

Data generating process

Observed data

ProbabilityStatistical Inference & Data Mining
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Machine Learning

⊊ Statistical Learning

Mathematical Statistics
estimation
classification
clustering
data
covariates
classifier
hypothesis
confidence interval

Machine Learning
learning
supervised learning
unsupervised learning
training sample
features
hypothesis
—
—
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Agenda

1. Probability and Random Events
1.1 Measurable Space
1.2 Probability Space
1.3 Independent Events
1.4 Conditional Probability
1.5 Bayes’ Theorem
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Measurable Space
The sample space Ω is the set of possible outcomes of an experiment. Points 𝜔 in Ω are
called sample outcomes, realizations, or elements. Subsets of Ω are called (random) events.

Example 1.1 (Tossing a coin twice)
If we toss a coin twice, then Ω = {HH ,HT ,TH ,TT }. The event that the first toss is
heads is A = {HH ,HT }.

Definition 1.2 (Measurable space)

Let Ω ≠ ∅ be some set and let 2Ω represent its power set. A subset A ⊆ 2Ω is called a
𝜎-algebra or 𝜎-field iff it satisfies
(i) ∅ ∈ A;
(ii) if A ∈ A, then A∁ ∈ A;
(iii) if A1,A2, . . . ∈ A, then ∪∞

i=1Ai ∈ A.
Then, the tuple (Ω,A) is called a measurable space.
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Probability Space
We will assign a real number P(A) to every event A ∈ A, called the probability of A.

Example 1.3 (Two coin tosses)
Let H1 be the event that heads occurs on toss 1 and let H2 be the event that heads
occurs on toss 2. If all outcomes are equally likely, then the probability that at least one
head occurs (i.e., H1 ∪ H2) is 3/4.

Definition 1.4 (Probability space)

Let (Ω,A) be a measurable space. A mapping (a set function) P : A → [0, 1] is
a probability distribution or a probability measure iff it satisfies
(i) P(Ω) = 1;
(ii) if A1,A2, . . . ∈ A are (pairwise) disjoint, then P(∪∞

i=1Ai ) =
∑∞

i=1 P(Ai ).
Then, the triple (Ω,A, P) is called a probability space.
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Basic Properties of Probability

Definition 1.4 clearly implies: P(∅) = 0, P(A∁) = 1 − P(A), A ⊆ B ⇒ P(A) ≤ P(B ),
A ∩ B = ∅ ⇒ P(A ∪ B ) = P(A) + P(B )

Lemma 1.5 (Probability of Union)
For any events A,B ∈ A,

P(A ∪ B ) = P(A) + P(B ) − P(A ∩ B ).

Theorem 1.6 (Continuity of Probabilities)
Either An ↑ A or An ↓ A,

P(An ) → P(A).
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Finite Sample Spaces

Suppose that the sample space Ω = {𝜔1, . . . , 𝜔n } is finite.

Example 1.7 (Toss a die twice)
Ω has 36 elements: Ω = {(i , j ) : i , j ∈ {1, . . . , 6}}. If each outcome is equally likely, then
P(A) = |A|/36, where |A| denotes the number of elements in A. The probability that the
sum of the dice is 11 is 2/36, since there are two outcomes that correspond to this event.

If Ω is finite and if each outcome is equally likely, then

P(A) = |A|
|Ω| ,

which is called the uniform probability distribution.
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Independence I

Definition 1.8 (Independent Events)
Two events A and B are independent if

P(A ∩ B ) = P(A)P(B )

and we write A ⊥⊥ B . A set of events {Ai : i ∈ I } is independent if

P

( ⋂
i ∈J

Ai

)
=

∏
i ∈J

P(Ai )

for every finite subset J ⊆ I . If A and B are not independent, we write A B .

• Independence can sometimes be assumed (believed in) or sometimes derived (proved)
• Disjoint events with positive probability are not independent
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Independent Experiments

Example 1.9 (Toss a fair coin 10 times)
Let A = “at least one head”. Let Tj be the event that tails occurs on the j th toss. Then

P(A) = 1 − P(A∁)
= 1 − P(all tails)
= 1 − P(T1 ∩ . . . ∩ T10) using independence
= 1 − P(T1) . . . P(T10)
= 1 − (1/2)10 ≈ .999.
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Conditional Probability

Definition 1.10 (Conditional Probability)
If P(B ) > 0, then the conditional probability of A given B is

P(A|B ) = P(A ∩ B )
P(B ) .

• Think of P(A|B ) as the fraction of times A occurs among those in which B occurs.
For any fixed B such that P(B ) > 0, P(·|B ) is a probability.

• In general, P(A|B ) ≠ P(B |A).
• A and B are independent iff P(A|B ) = P(A), given P(B ) > 0.
• P(A ∩ B ) = P(A|B )P(B ) = P(B |A)P(A), given P(A)P(B ) > 0.
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Sensitivity and Specificity I

Example 1.11 (A medical test for a disease D has outcomes + and −)
The probabilities are:

D D∁

+ .009 .099
− .001 .891

From the definition of conditional probability,

P(+|D) = P(+ ∩ D)
P(D) =

.009
.009 + .001

= .9, P(−|D∁) = P(− ∩ D∁)
P(D∁)

=
.891

.891 + .099
≈ .9.

Apparently, the test is fairly accurate. Sick people yield a positive 90% of the time and
healthy people yield a negative about 90% of the time.
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Sensitivity and Specificity II

Example 1.12 (A medical test for a disease D has outcomes + and − (con’t))
Suppose you go for a test and get a positive. What is the probability you have the disease?
Most people answer .90. The correct answer is

P(D |+) = P(D ∩ +)
P(+) =

.009
.009 + .099

≈ .08.

Don’t trust your intuition.

However, don’t trust a black box neither: A randomly selected person is considered (not
a symptomatic one).
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Law of Total Probability and Bayes’ Theorem

Theorem 1.13 (The Law of Total Probability)
Let A1,A2, . . . be a disjoint countable partition of Ω such that P(Ai ) > 0 for each i ∈ N.
Then, for any event B ,

P(B ) =
∞∑︁
i=1

P(B |Ai )P(Ai ).

P(Ai ) is the prior probability of Ai and P(Ai |B ) is the posterior probability of Ai

Theorem 1.14 (Bayes’ Theorem)
Let A1,A2, . . . be a disjoint countable partition of Ω such that P(Ai ) > 0 for each i ∈ N.
If P(B ) > 0, then, for each i ,

P(Ai |B ) = P(B |Ai )P(Ai )∑∞
j=1 P(B |Aj )P(Aj )

.
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Email Filtering

Example 1.15 (Three categories of emails)
A1=“spam”, A2=“low priority” and A3=“high priority”. From previous experience, I find
that P(A1) = .7, P(A2) = .2 and P(A3) = .1. Of course, .7 + .2 + .1 = 1. Let B be the
event that the email contains the word “free”. From previous experience, P(B |A1) = .9,
P(B |A2) = .01, P(B |A3) = .01. (Note: .9 + .01 + .01 ≠ 1.) I receive an email with the
word “free”. What is the probability that it is spam? Bayes’ theorem yields,

P(A1 |B ) = .9 × .7
.9 × .7 + .01 × .2 + .01 × .1

= .995.
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Agenda

2. Random Variables
2.1 Measurable Mapping
2.2 Distribution Function
2.3 Probability Mass Function
2.4 Probability Density Function
2.5 Quantile
2.6 Discrete Random Variables
2.7 Continuous Random Variables
2.8 Random Vectors
2.9 Bivariate Distributions
2.10 Marginal Distributions
2.11 Independent Random Variables
2.12 Conditional Distributions
2.13 Multivariate Distributions
2.14 Transformations of Random Variables
2.15 Transformations of Random Vectors
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Measurable Mapping

Definition 2.1 (Random Variable)
Let (Ω,A) be a measurable space. A random variable is a measurable mapping that
assigns a real number X (𝜔) to each outcome 𝜔. It means that

X : Ω → R & {𝜔 ∈ Ω : X (𝜔) ≤ x } ∈ A, ∀x ∈ R.

[X ∈ A] ≡ X −1(A) := {𝜔 ∈ Ω : X (𝜔) ∈ A}

Example 2.2 (Flip a coin ten times)
Let X (𝜔) be the number of heads in the sequence 𝜔. If 𝜔 = HHTHHTHHTT , then
X (𝜔) = 6.
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Distribution Function

Definition 2.3 (Cumulative Distribution Function)
Let (Ω,A, P) be a probability space. The cumulative distribution function (CDF) of X is
the function FX : R → [0, 1] defined by

FX (x ) = P(X ≤ x ).

Theorem 2.4
Let X have CDF F and let Y have CDF G . If F (x ) = G (x ) for all x ∈ R, then
P(X ∈ A) = P(Y ∈ A) for all (measurable) A ∈ B(R).

26 / 202



Flip a Coin Twice

Example 2.5

Flip a fair coin twice and let X be the number of heads. Then
P(X = 0) = P(X = 2) = 1/4 and P(X = 1) = 1/2. The distribution function is

FX (x ) =


0 x < 0
1/4 0 ≤ x < 1
3/4 1 ≤ x < 2
1 x ≥ 2.

Notice that the function is right continuous, non-decreasing, and that it is defined for all
x , even though the random variable only takes values 0, 1, and 2.
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Properties of the CDF
Theorem 2.6 (Three Basic Properties)
If F is a CDF of a random variable X , then:
(i) F is non-decreasing: x1 < x2 implies that F (x1) ≤ F (x2).
(ii) F is normalized:

limx↓−∞F (x ) = 0

and
limx↑+∞F (x ) = 1.

(iii) F is right-continuous: F (x ) = F (x +) for all x , where

F (x +) = limy↓x+F (y).

Proving the other direction – namely, that if a function F mapping the real line to [0, 1]
satisfies (i), (ii), and (iii), then it is a CDF for some random variable – uses some deep
tools in analysis. 28 / 202



Probability Mass Function

Definition 2.7 (Probability Mass Function)
X is discrete if it takes countably many values {x1, x2, . . .}. We define the probability
function or probability mass function (PMF) for X by fX (x ) = P(X = x ).

Example 2.8
The probability function for Example 2.5 is

fX (x ) =


1/4 x = 0
1/2 x = 1
1/4 x = 2
0 otherwise.
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Probability Density Function

Definition 2.9 (Probability Density Function)
A random variable X is continuous if there exists a function fX such that fX (x ) ≥ 0 for all
x ,

∫ ∞
−∞ fX (x )dx = 1 and for every a ≤ b,

P(a < X < b) =
∫ b

a
fX (x )dx .

The function fX is called the probability density function (PDF). We have that

FX (x ) =
∫ x

−∞
fX (t )dt

and fX (x ) = F ′
X (x ) at all points x at which FX is differentiable.
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Consequences of the CDF Definition

Lemma 2.10 (Consequences of the CDF Definition)
Let F be the CDF for a random variable X . Then:

1. P(X = x ) = F (x ) − F (x −) where F (x −) = limy↑x−F (y);
2. P(x < X ≤ y) = F (y) − F (x );
3. P(X > x ) = 1 − F (x );
4. If X is continuous, then

F (b) − F (a) = P(a < X < b) = P(a ≤ X < b)
= P(a < X ≤ b) = P(a ≤ X ≤ b).
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Quantile Function

Definition 2.11 (Quantile)
Let X be a random variable with CDF F . The inverse CDF or quantile function is defined
by

F −1(q) = inf
{
x : F (x ) > q

}
for q ∈ (0, 1). If F is strictly increasing and continuous, then F −1(q) is the unique real
number x such that F (x ) = q .

• F −1(1/4) is the first quartile, F −1(1/2) is the median (or second quartile), and
F −1(3/4) the third quartile.

• Two random variables X and Y are equal in distribution – written X d
= Y – iff

FX (x ) = FY (x ) for all x . This does not mean that X = Y .
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Examples – Discrete Random Variables I

Example 2.12 (Point Mass Distribution)
X has a point mass distribution at a iff P[X = x ] = 𝟙{x = a}, x ∈ R. Written X ∼ 𝛿a
(Dirac measure at a). Then, FX (x ) = 𝟙{x ≥ a}.

Example 2.13 (Discrete Uniform Distribution)

X has a discrete uniform distribution on {1, . . . , k } iff fX (x ) =
{
1/k , for x = 1, . . . , k ;
0, otherwise.

Example 2.14 (Bernoulli Distribution)
X has a Bernoulli (or alternative; 0–1) distribution with parameter p ∈ (0, 1) iff
fX (x ) = px (1 − p)1−x for x ∈ {0, 1}. Written X ∼ Be(p).

33 / 202



Examples – Discrete Random Variables II

Example 2.15 (Binomial Distribution)
X has a binomial distribution with parameters n ∈ N and p ∈ (0, 1) iff
fX (x ) =

(n
x
)
px (1 − p)n−x𝟙{x ∈ {0, . . . ,n}}. Written X ∼ Bi(n , p).

Example 2.16 (Geometric Distribution)
X has a geometric distribution with parameter p ∈ (0, 1) iff fX (x ) = p (1 − p)x for
x ∈ N0. Written X ∼ Ge(p).

Example 2.17 (Poisson Distribution)
X has a Poisson distribution with parameter 𝜆 > 0 iff fX (x ) = exp{−𝜆}𝜆x /x ! for x ∈ N0.
Written X ∼ Po(𝜆).

X ∼ Po(𝜆X ) ⊥⊥ Y ∼ Po(𝜆Y ) ⇒ X + Y ∼ Po(𝜆X + 𝜆Y )
. . . later & easy; not valid w/o ⊥⊥ (try counterEx); ⇐ non-trivial (Raikov’s theorem)
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Examples – Continuous Random Variables I

Example 2.18 (Uniform Distribution)

X has a uniform distribution on interval [a , b] iff fX (x ) = (b − a)−1𝟙{x ∈ [a , b]}.
Written X ∼ U(a , b).

Example 2.19 (Normal or Gaussian Distribution)

X has a normal (or Gaussian) distribution with parameters 𝜇 ∈ R and 𝜎2 > 0 iff
fX (x ) ≡ 𝜙(x ) = 1√

2𝜋𝜎2 exp
{
− (x−𝜇)2

2𝜎2

}
, x ∈ R. Written X ∼ N(𝜇, 𝜎2).

• X ∼ N(𝜇, 𝜎2) ⇒ Z = (X − 𝜇)/𝜎 ∼ N(0, 1) (standard normal)
• X ∼ N(𝜇X , 𝜎2

X ) ⊥⊥ Y ∼ N(𝜇Y , 𝜎2
Y ) ⇒ X + Y ∼ N(𝜇X + 𝜇Y , 𝜎2

X + 𝜎2
Y )

. . . later & easy; not valid w/o ⊥⊥; ⇐ non-trivial (Cramér’s decomposition theorem)
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Examples – Continuous Random Variables II
• CDF of N(𝜇, 𝜎2): Φ(x ) =

∫ x
∞ 𝜙(t )dt . . . no closed-form expression

Example 2.20
Suppose that X ∼ N(3, 5). Find P[X > 1]. The solution is

P[X > 1] = 1 − P[X < 1] = 1 − P
[
Z <

1 − 3
√

5

]
= 1 −Φ(−0.8944) = 0.81.

Now find q = Φ−1(0.2). We solve this by writing

0.2 = P[X < q] = P
[
Z <

q − 𝜇

𝜎

]
= Φ

[q − 𝜇

𝜎

]
.

From the Normal table, Φ(−0.8416) = 0.2. Therefore, −0.8416 =
q−𝜇
𝜎

=
q−3√

5
and, hence,

q = 3 − 0.8416
√

5 = 1.1181.
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Examples – Continuous Random Variables III

Example 2.21 (Exponential Distribution)
X has an exponential distribution with parameter 𝛽 > 0 iff
fX (x ) = 𝛽−1exp{−x/𝛽}𝟙{x > 0}. Written X ∼ Exp(𝛽).

Example 2.22 (Gamma Distribution)
X has a Gamma distribution with parameters 𝛼, 𝛽 > 0 iff
fX (x ) = 1

𝛽𝛼Γ (𝛼) x
𝛼−1exp{−x/𝛽}𝟙{x > 0}, where Γ(𝛼) =

∫ ∞
0 t 𝛼−1exp{−t }dt is the

Gamma function. Written X ∼ Gamma(𝛼, 𝛽).

• X ∼ Exp(𝛽) ⇒ X ∼ Gamma(1, 𝛽)
• X ∼ Gamma(𝛼X , 𝛽) ⊥⊥ Y ∼ Gamma(𝛼Y , 𝛽) ⇒ X + Y ∼ Gamma(𝛼X + 𝛼Y , 𝛽)
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Examples – Continuous Random Variables IV

Example 2.23 (Beta Distribution)
X has a Beta distribution with parameters 𝛼, 𝛽 > 0 iff
fX (x ) = Γ (𝛼+𝛽)

Γ (𝛼)Γ (𝛽) x
𝛼−1(1 − x )𝛽−1𝟙{x ∈ (0, 1)}. Written X ∼ Beta(𝛼, 𝛽).

Example 2.24 (𝜒2-Distribution)

X has a 𝜒2-distribution with p degrees of freedom iff
fX (x ) = 1

Γ (p/2)2p/2 x p/2−1exp{−x/2}𝟙{x > 0}. Written X ∼ 𝜒2
p .

X1, . . . ,Xp
⊥⊥∼ N(0, 1) ⇒ ∑p

i=1 X 2
i ∼ 𝜒2

p
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Examples – Continuous Random Variables V

Example 2.25 (Student’s t -Distribution)
X has Student’s t -distribution with 𝜈 degrees of freedom iff
fX (x ) = Γ ( (𝜈+1)/2)

Γ (𝜈/2)
1

(1+x2/𝜈) (𝜈+1)/2 . Written X ∼ t𝜈.

Example 2.26 (Cauchy Distribution)
The Cauchy distribution is a special case of the t -distribution corresponding to 𝜈 = 1.
Written X ∼ Cauchy.

• X ∼ Cauchy ⇒ fX (x ) = 1
𝜋 (1+x2 )

• The standard normal corresponds to a t -distribution with 𝜈 = ∞.
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Multivariate Randomness

Definition 2.27 (Random Vector)
Let (Ω,A) be a measurable space. A random variable is a measurable mapping that
assigns a real d-dimensional vector 𝕏(𝜔) to each outcome 𝜔. It means that

𝕏 : Ω → Rd & {𝜔 ∈ Ω : 𝕏(𝜔) ≤ 𝕩} ∈ A, ∀𝕩 ∈ Rd .

Definition 2.28 (Multivariate CDF)
Let (Ω,A, P) be a probability space. The multivariate cumulative distribution function
(mCDF) of 𝕏 is the function F𝕏 : Rd → [0, 1] defined by

F𝕏(𝕩) = P(𝕏 ≤ 𝕩).
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Multivariate CDF

Theorem 2.29 (Properties of mCDF)
If F is a mCDF of a random vector 𝕏, then
(i) F is element-wise non-decreasing and right-continuous;
(ii)

limxℓ↓−∞F (𝕩) = 0 for any ℓ = 1, . . . , d

and
limxℓ↑+∞ ∀ℓF (𝕩) = 1;
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Bivariate Distributions – Discrete
Definition 2.30 (Joint Mass Function)
Given a pair of discrete random variables X and Y ,

f (x , y) = f(X ,Y ) (x , y) = P[X = x ,Y = y]

is called the joint probability mass function of (X ,Y ).

Example 2.31
A bivariate distribution for two random variables X and Y each taking values 0 or 1:

Y = 0 Y = 1
X = 0 1/9 2/9 1/3
X = 1 2/9 4/9 2/3

1/3 2/3 1
Thus, f (1, 1) = P(X = 1,Y = 1) = 4/9.
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Bivariate Distributions – Continuous

Definition 2.32 (Joint Probability Density Function)
Given a pair of continuous random variables X and Y , we call a function f (x , y) a joint
probability density function for (X ,Y ) if
(i) f (x , y) ≥ 0 ∀(x , y),
(ii)

∫ ∞
−∞

∫ ∞
−∞ f (x , y)dxdy = 1, and

(iii) for any Borel set A ⊆ R × R, P[(X ,Y ) ∈ A] =
∫
A f (x , y)dxdy .

Example 2.33
Let (X ,Y ) be uniform on the unit square. Then, f (x , y) = 𝟙{(x , y) ∈ [0, 1]2}. Find
P[X < 1/2,Y < 1/2]. The event {X < 1/2,Y < 1/2} corresponds to a subset of the
unit square. Integrating f over this subset corresponds, in this case, to computing the area
of the set {x < 1/2, y < 1/2} which is 1/4. So, P[X < 1/2,Y < 1/2] = 1/4.
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Marginal Distribution – Discrete & Continuous

Theorem 2.34 (Marginal Distributions)
If (X ,Y ) have the joint mass function f(X ,Y ) , then the marginal mass function for X is

fX (x ) = P[X = x ] =
∑︁
y

P[X = x ,Y = y] =
∑︁
y

f(X ,Y ) (x , y).

If (X ,Y ) have joint probability density function f(X ,Y ) , then the marginal probability
density function for X is

fX (x ) =
∫

f(X ,Y ) (x , y)dy .
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Independence II
Note that

limxℓ↑+∞∀j ∈{1,...,k }\{ℓ }F𝕏(𝕩) = limxj ↑+∞∀j ∈{1,...,k }\{ℓ }P[X1 ≤ x1, . . . ,Xk ≤ xk ]
= P[Xℓ ≤ xℓ] = FXℓ

(xℓ)

Definition 2.35 (Independent Random Variables)
Random variables X1, . . . ,Xk are independent if

F𝕏(𝕩) =
k∏

ℓ=1

FXℓ
(xℓ) for every 𝕩 = [x1, . . . , xk ]⊺ ∈ Rk ,

where 𝕏 = [X1, . . . ,Xk ]⊺.

If X and Y are independent random variables, we write X ⊥⊥ Y . If they are not
independent (are dependent), we write X Y .
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Discrete and Continuous Independence
• Support of a discrete random variable X . . . S(X ) = {x ∈ R : P[X = x ] > 0}
• Support of a continuous random variable X . . . S(X ) = {x ∈ R : fX (x ) > 0}

Theorem 2.36 (Equivalent Characterization of Independence)
Let the joint PDF of X1, . . . ,Xk be f𝕏(𝕩). ⊥⊥ {X1, . . . ,Xk } iff

f𝕏(𝕩) =
k∏

ℓ=1

fXℓ
(xℓ) for almost alla 𝕩 ∈ ×k

ℓ=1S(Xℓ).

Let the joint PMF of X1, . . . ,Xk be P[𝕏 = 𝕩]. ⊥⊥ {X1, . . . ,Xk } iff

P[𝕏 = 𝕩] =
k∏

ℓ=1

P[Xℓ = xℓ] for all 𝕩 ∈ ×k
ℓ=1S(Xℓ).

aI.e., for all 𝕩 ∈ ×k
ℓ=1S(Xℓ ) \ N , where N is a Borel set having measure zero.
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Cartesian Support and Independence

• Support of a discrete random vector 𝕏 . . . S(𝕏) = {𝕩 : P[𝕏 = 𝕩] > 0}
• Support of a continuous random vector 𝕏 . . . S(𝕏) = {𝕩 : f𝕏(𝕩) > 0}

Theorem 2.37 (Cartesian Product of Supports and Independence)
Suppose that S(X ,Y ) = S(X ) × S(Y ). If f(X ,Y ) (x , y) = g (x )h (y) or
P[X = x ,Y = y] = g (x )h (y) for some functions g and h (not necessarily PDFs or PMFs)
for almost all [x , y]⊺ ∈ S(X ,Y ), then X ⊥⊥ Y .
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Conditional Distributions

Definition 2.38 (Conditional PDF and PMF)
The conditional probability mass function of X given Y = y is

fX |Y (x |y) ≡ P[X = x |Y = y] := P[X = x ,Y = y]
P[Y = y] ≡

f(X ,Y ) (x , y)
fY (y) , if P[Y = y] > 0.

The conditional probability density function of X given Y = y is

fX |Y (x |y) :=
f(X ,Y ) (x , y)

fY (y) , if fY (y) > 0.

• Conditional PMF an PDF are functions of argument x with parameter y
• Otherwise defined arbitrarily
• Discrete . . . P[X ∈ A|Y = y] = ∑

x ∈A P[X = x |Y = y]
• Continuous . . . P[X ∈ A|Y = y] =

∫
A fX |Y (x |y)dx
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Multivariate Normal Distribution

Definition 2.39 (Multivariate Normal)
The d-dimensional random vector 𝕏 = [X1, . . . ,Xd ]⊺ has a d-variate normal distribution
with parameters 𝝁 ∈ Rd and Σ ∈ Rd×d , if it has the PDF

f𝕏(𝕩; 𝝁, Σ) =
1

(2𝜋)d/2
√︁

det(Σ)
exp

{
−1

2
(𝕩 − 𝝁)⊺Σ−1(𝕩 − 𝝁)

}
, 𝕩 ∈ Rd .

where Σ is a positive definite matrix.

• notation: 𝕏 ∼ Nd (𝝁, Σ)
• special case: standard d-variate normal distribution 𝝁 = 𝟘 and Σ = Id , i.e.,
𝕏 ∼ Nd (𝟘, Id )
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Multivariate Standard Normal Distribution

Square root of a positive definite matrix Σ . . . denoted by Σ1/2

(i) Σ1/2 is symmetric
(ii) Σ = Σ1/2Σ1/2

(iii) Σ1/2Σ−1/2 = Σ−1/2Σ1/2 = Id , where Σ−1/2 = (Σ1/2)−1

Theorem 2.40 (Standardization)

If ℤ ∼ Nd (𝟘, Id ) and 𝕏 = 𝝁 + Σ1/2ℤ, then 𝕏 ∼ Nd (𝝁, Σ). Conversely, if 𝕏 ∼ Nd (𝝁, Σ),
then Σ−1/2(𝕏 − 𝝁) ∼ Nd (𝟘, Id ).
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Normal Margins
Suppose we partition a random normal vector 𝕏 as 𝕏 = [𝕏⊺

a ,𝕏
⊺
b ]

⊺. We can similarly
partition 𝝁 = [𝝁⊺

a , 𝝁
⊺
b ]

⊺, such that 𝝁a ∈ Rs , 𝝁b ∈ Rd−s , and

Σ =

[
Σaa Σab
Σba Σbb

]
.

Theorem 2.41 (Properties of MND)

Let 𝕏 ∼ Nd (𝝁, Σ). Then,
(i) the marginal distribution of 𝕏a is 𝕏a ∼ Ns (𝝁a , Σaa );
(ii) the conditional distribution of 𝕏b given 𝕏a = 𝕩a is

𝕏b |𝕏a = 𝕩a ∼ Nd−s (𝝁b + ΣbaΣ
−1
aa (𝕩a − 𝝁a ), Σbb − ΣbaΣ

−1
aa Σab);

(iii) 𝕒⊺𝕏 ∼ N(𝕒⊺𝝁, 𝕒⊺Σ𝕒) for 𝕒 ∈ Rd ;
(iv) (𝕏 − 𝝁)⊺Σ−1(𝕏 − 𝝁) ∼ 𝜒2

d .
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Transformations of Discrete Random Variables

• A transformation Y = t (X ) (not necessarily monotonic)
• Having a known discrete distribution of X , i.e., P[X = x ]
• The goal is P[Y = y]:

P[Y = y] = P[t (X ) = y] = P[𝜔 : t (X (𝜔)) = y] = P[X ∈ t−1(y)] =
t (x )=y∑︁

x
P[X = x ],

where t−1 gives all the preimages
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Transformations of Continuous Random Variables

• A transformation Y = t (X ) (not necessarily monotonic)
• Having a known continuous distribution of X , i.e., fX (x )
• The aim is fY (y):

1. For each y , find the set T (y) = {x : t (x ) ≤ y}
2. The CDF is

FY (y) = P[Y ≤ y] = P[t (X ) ≤ y] = P[𝜔 : t (X (𝜔)) ≤ y] =
∫
T(y )

fX (x )dx

3. If FY is absolutely continuous, then the PDF is fY (y) = F ′
Y (y)
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Transformations of Discrete Random Vectors

• A transformation Z = t (X ,Y ), where t : R2 → R
• Having a known discrete distribution of [X ,Y ], i.e., P[X = x ,Y = y]
• The target is P[Z = z ]:

P[Z = z ] = P[t (X ,Y ) = z ] = P[𝜔 : t ( [X ,Y ] (𝜔)) = z ] = P[[X ,Y ] ∈ t−1(z )]

=

t (x ,y )=z∑︁
[x ,y ]

P[X = x ,Y = y],

where t−1 gives all the preimages
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Transformations of Continuous Random Vectors

• A transformation Z = t (X ,Y ), where t : R2 → R
• Having a known continuous distribution of [X ,Y ], i.e., f(X ,Y ) (x , y)
• The target is fZ (z ):

1. For each z , find the set T (z ) = {[x , y] : t (x , y) ≤ z }
2. The CDF is

FZ (z ) = P[Z ≤ z ] = P[t (X ,Y ) ≤ y] = P[𝜔 : t ( [X ,Y ] (𝜔)) ≤ y]

=

∫ ∫
T(z )

f(X ,Y ) (x , y)dxdy

3. If FZ is absolutely continuous, then the PDF is fZ (z ) = F ′
Z (z )
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Agenda

3. Expectations
3.1 Definition
3.2 Discrete and Continuous Case
3.3 Expectation of Transformation
3.4 Moments
3.5 Properties
3.6 Variance
3.7 Covariance and Correlation
3.8 Variance-covariance Matrix
3.9 Conditional Expectation
3.10 Conditional Variance
3.11 Moment Generating Function
3.12 Characteristic Function
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Expectation
Pre-definition:

E[X ] ≡ EX :=

∫
X dP ≡

∫
X (𝜔)dP(𝜔)

Using the pushforward measure PX (·) := P[X ∈ ·] ≡ P[X −1(·)]

EX =

∫
xdPX (x )

Here, PX is the distribution or law of X .

Or, the Lebesgue–Stieltjes measure associated with the CDF FX :

Definition 3.1 (Expectation or Expected Value or Mean Value)
The expected value of X is

EX =

∫
R
xdFX (x ),

if the r.h.s. exists.
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Discrete and Continuous Expectation

Using the Radon–Nikodym derivative:

Theorem 3.2 (Discrete and Continuous Mean)
The expected value of X is

EX =

{∫ +∞
−∞ xfX (x )dx if X is continuous;∑
x ∈S(X ) xP[X = x ] if X is discrete,

given that the r.h.s. is well-defined.
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Caution with Expectation

Example 3.3 (Cauchy Distribution)
If X ∼ Cauchy, then EX does not exist. Using per partes,∫ ∞

0

x
𝜋(1 + x 2) dx = [xarctan(x )]∞0 −

∫ ∞

0
arctan(x )dx = ∞.

Thus, for
∫ ∞
−∞

x
𝜋 (1+x2 ) dx , ∞−∞ is not defined.
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Expectation of Transformation

A transformation Y = t (X ).

Theorem 3.4 (The Rule of the Lazy Statistician)
Let Y = t (X ). Then,

EY =

∫
t (x )dFX (x ),

if the r.h.s. exists.

• A.k.a. The Law of The Unconscious Statistician
• Discrete . . . EY =

∑
x ∈S(X ) t (x )P[X = x ]

• Continuous . . . EY =
∫ +∞
−∞ t (x )fX (x )dx
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Moments

Definition 3.5 (Moment)

The k th moment of X is defined to be E[X k ] assuming that E[|X |k ] < ∞.

Theorem 3.6 (Higher Moments)
If the k th moment exists and, then the ℓth moment exists for any ℓ ≤ k .

Example 3.7 (Student’s t -distribution as “Counter” Example)

t -distribution with 𝜈 = 3 degrees of freedom: EX = 0, EX 2 = ∞, EX 3 does not exist.

Definition 3.8 (Absolute Moment)

The k th absolute moment of X is defined to be E[|X |k ] assuming that it exists.
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Properties of Expectations

Definition 3.9 (Lp-spaces of Random Variables)
X ∈ Lp , if E[|X |p] < ∞.

Theorem 3.10 (Linearity)

If X1, . . . ,Xk ∈ L1 and a1, . . . , ak are constants, then E
( ∑k

ℓ=1 aℓXℓ

)
=

∑k
ℓ=1 aℓEXℓ .

Theorem 3.11 (Multiplication Under Independence)

If X1, . . . ,Xk ∈ L1 are independent random variables, then E
( ∏k

ℓ=1 Xℓ

)
=

∏k
ℓ=1 EXℓ .
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Variance

The variance measures the “spread” of a distribution.

Definition 3.12 (Variance and Standard Deviation)
The variance of X is defined by

VarX = E(X − EX )2.

The standard deviation of X is sd(X ) =
√
VarX .

We can’t use E(X − EX ) as a measure of spread since E(X − EX ) = 0. We can and
sometimes do use E|X − EX | as a measure of spread, but more often we use the variance.
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Properties of Variance

Theorem 3.13
Assuming that the considered second moments are finite, it has the following properties:

• VarX = E(X 2) − (EX )2 ≥ 0;
• if a , b ∈ R, then Var(aX + b) = a2VarX ;
• if Xi , . . . ,Xk are independent and a1, . . . , ak are real constants, then
Var

( ∑k
ℓ=1 aℓXℓ

)
=

∑k
ℓ=1 a2

ℓ
VarXℓ .
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Covariance
The covariance and correlation between X and Y measure how strong the linear
relationship is between X and Y .

Definition 3.14 (Covariance and Correlation)
The covariance between X and Y is defined by

Cov(X ,Y ) = E{(X − EX ) (Y − EY )}.

If Var(X )Var(Y ) > 0, then the correlation between X and Y is defined by

𝜌X ,Y ≡ Corr(X ,Y ) = Cov(X ,Y )√︁
Var(X )Var(Y )

.

Note that E[t (X ,Y )] =
∫
R2 t (x , y)dF(X ,Y ) (x ,y ) and, thus,

EXY =

{∫ +∞
−∞

∫ +∞
−∞ xyf(X ,Y ) (x , y)dxdy if X and Y are continuous,∑

x ∈S(X ) ,y∈S(Y ) xyP[X = x ,Y = y] if X and Y are discrete 65 / 202



Properties of Covariance and Correlation

Theorem 3.15
• Cov(X ,Y ) = E(XY ) − (EX ) (EY ).
• −1 ≤ Corr(X ,Y ) ≤ 1.
• |Corr(X ,Y ) | = 1 ⇐⇒ ∃a ≠ 0&b ∈ R : Y = aX + b with probability 1.
• If X and Y are independent, then Cov(X ,Y ) = 0.

In general, Cov(X ,Y ) = 0 ⇏ X ⊥⊥ Y .

Corollary 3.16
If X1, . . . ,Xk ∈ L2 and a1, . . . , ak are real constants, then

Var
( k∑︁
ℓ=1

aℓXℓ

)
=

k∑︁
ℓ=1

a2
ℓVarXℓ + 2

∑︁∑︁
1≤j<ℓ≤k

ajaℓCov(Xj ,Xℓ).
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Variance-covariance Matrix

Definition 3.17 (Multivariate Expectation)
The expected value of a random vector 𝕏 = [X1, . . . ,Xk ]⊺ is defined by

E𝕏 = [EX1, . . . ,EXk ]⊺ .

Note that Cov(X ,Y ) = Cov(Y ,X ) and Cov(X ,X ) = VarX .

Definition 3.18 (Variance-covariance Matrix)
The variance-covariance matrix of a random vector 𝕏 is defined by

Var𝕏 =


VarX1 Cov(X1,X2) . . . Cov(X1,Xk )

Cov(X2,X1) VarX2 . . . Cov(X2,Xk )
...

...
. . .

...

Cov(Xk ,X1) Cov(Xk ,X2) . . . VarXk


.
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Properties of Variance-covariance Matrix

Theorem 3.19
• If 𝕏 is a random vector and 𝕒,𝕓 are real vectors, then

E(𝕒⊺𝕏 + 𝕓) = 𝕒⊺E𝕏 + 𝕓 and Var(𝕒⊺𝕏 + 𝕓) = 𝕒⊺ (Var𝕏)𝕒.

• If 𝕏 is a random vector and 𝔸,𝔹 are real matrices, then

E(𝔸𝕏 +𝔹) = 𝔸E𝕏 +𝔹 and Var(𝔸𝕏 +𝔹) = 𝔸(Var𝕏)𝔸⊺ .
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Conditional Expectation

What is the mean of X among those times when Y = y?

Definition 3.20 (Deterministic and Random Conditioning)
The conditional expectation of t (X ,Y ) given Y = y is

gt (X ,Y ) (y) ≡ E[t (X ,Y ) |Y = y] =
{∑

x ∈S(X ) t (x , y)fX |Y (x |y), discrete case;∫
t (x , y)fX |Y (x |y)dx , continuous case.

The conditional expectation of t (X ,Y ) given Y is gt (X ,Y ) (Y ).

Theorem 3.21 (The Rule of Iterated Expectations)

E{E[X |Y ]} = EX , E{E[Y |X ]} = EY , and E{E[t (X ,Y ) |Y ]} = E[t (X ,Y )] .
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Properties of Conditional Expectations

Definition 3.22 (P-almost surely)
We say that something holds P-almost surely if it holds for all 𝜔 ∈ Ω \N , where N ∈ A is
a set of zero probability, i.e., P(N ) = 0. If it is clear what probability measure P we are
using, we just say: it holds almost surely. We abbreviate P-a.s., or only a.s.

Theorem 3.23
• E[a |X ] = a almost surely.
• E[aX + bY |Z ] = aE[X |Z ] + bE[Y |Z ] almost surely.
• E[h (X )Y |X ] = h (X )E[Y |X ] almost surely.
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Conditional Variance

Definition 3.24
The conditional variance of X given Y = y is

vX (y) ≡ Var[X |Y = y] =
{∑

x ∈S(X ) {x − gX (y)}2fX |Y (x |y), discrete case;∫
{x − gX (y)}2fX |Y (x |y)dx , continuous case.

The conditional variance of X given Y is vX (Y ).

Theorem 3.25 (The Law of Total Variance)

VarX = EVar[X |Y ] + VarE[X |Y ] .
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Moment Generating Function
Definition 3.26 (MGF)
The moment generating function (MGF), or Laplace transform, of X is defined by

𝜓X (t ) = E[exp{tX }] =
∫
R

exp{tx }dFX (x ), t ∈ R,

if the r.h.s. exists.

A characteristic function 𝜑X (t ) = E[exp{itX }] is, however, well defined for all t ∈ R.

Theorem 3.27 (Properties of the MGF)

• 𝜓
(m )
X (0) = EXm , m ∈ N0.

• If Y = aX + b, then 𝜓Y (t ) = exp{bt }𝜓X (at ).
• If Xi , . . . ,Xk are independent and Y =

∑k
ℓ=1 Xℓ , then 𝜓Y (t ) = ∏k

ℓ=1 𝜓Xℓ
(t ).

If 𝜓X (t ) = 𝜓Y (t ) for all t in an open interval around 0, then X d
= Y . 72 / 202



Characteristic Function

Definition 3.28 (CF)
The characteristic function (CF) of X is defined by

𝜑X (t ) = E[exp{itX }] =
∫
R

exp{itx }dFX (x ), t ∈ R.

• Fourier transform: E[exp{−itX }] = 𝜑X (−t )
• 𝜑X (t ) = E[cos(tX )] + iE[sin(tX )]
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Properties of the Characteristic Function

Theorem 3.29 (Properties of the CF)
(i) 𝜑X exists for any distribution of X
(ii) 𝜑X (0) = 1
(iii) |𝜑X (t ) | ≤ 1 ∀t ∈ R

(iv) 𝜑X is uniformly continuous – ∀𝜀 > 0 ∃𝛿 > 0: |𝜑X (t ) − 𝜑X (s) | ≤ 𝜀 whenever
|t − s | ≤ 𝛿

(v) 𝜑a+bX (t ) = e iat𝜑X (bt ) ∀t ∈ R ∀a , b ∈ R

(vi) 𝜑−X (t ) = �𝜑X (t ) ∀t ∈ R (complex conjugate)
(vii) 𝜑X (t ) ∈ R ∀t ∈ R ⇐⇒ P[X > x ] = P[X < −x ] ∀x ≥ 0 (distribution symmetric

about zero)
(viii) X ⊥⊥ Y ⇒ 𝜑X+Y (t ) = 𝜑X (t )𝜑Y (t ) ∀t ∈ R
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Unique Characterization of Distribution

Theorem 3.30 (Inversion Formula)

For any a < b,

limT→∞
1
2𝜋

∫ T

−T

e−ita − e−itb

it
𝜑X (t )dt = P[a < X < b] + P[X = a] + P[X = b]

2
.

CF uniquely determines the distribution.

Corollary 3.31

𝜑X = 𝜑Y ⇐⇒ X d
= Y
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Multivariate Characteristic Function

Definition 3.32 (CF for a Random Vector)
The CF of the random vector 𝕏 is defined by

𝜑𝕏(𝕥) = E[exp{i𝕥⊤𝕏}] =
∫
Rk

exp{i𝕥⊤𝕩}dF𝕏(𝕩), 𝕥 ∈ Rk .

• Remark that the univariate properties of the CF can be extended into the multivariate
setting.

• Multivariate corollary 3.31 can be used to prove the properties of MND,
cf Theorem 2.41.

76 / 202



Agenda

4. Stochastic Inequalities
4.1 Markov-type Inequalities
4.2 Inequalities for Expectations
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Markov-type Inequalities I

Theorem 4.1 (Markov’s Inequality)
Let X be a non-negative random variable and suppose that E[X ] exists. For any 𝜀 > 0,

P[X ≥ 𝜀] ≤ E[X ]
𝜀

.

Corollary 4.2
Let X be a non-negative random variable and suppose that E[X r ] exists for some r > 0.
For any 𝜀 > 0,

P[X ≥ 𝜀] ≤ E[X r ]
𝜀r .
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Markov-type Inequalities II

Theorem 4.3 (Chebyshev’s Inequality)
Let X be a random variable and suppose that E[X ] is finite. For any 𝜀 > 0,

P[|X − EX | ≥ 𝜀] ≤ Var[X ]
𝜀2 .

79 / 202



Inequalities for Expectations

Theorem 4.4 (Cauchy-Schwarz Inequality)
If X and Y have finite variances, then

|EXY | ≤
√
EX 2EY 2

and
|Cov(X ,Y ) | ≤

√
VarXVarY .
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Inequalities for Expectations (cont.)

Theorem 4.5 (Jensen’s Inequality)
If g is convex, then

Eg (X ) ≥ g (EX ).

If g is concave, then
Eg (X ) ≤ g (EX ).
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Agenda

5. Stochastic Convergence
5.1 Types of Stochastic Convergence
5.2 Relationships Between the Types of Convergence
5.3 Continuous Mapping Theorem
5.4 Slutsky’s Theorem
5.5 Lévy’s Continuity Theorem
5.6 Weak Law of Large Numbers
5.7 Central Limit Theorem
5.8 Delta Method
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Modes of Stochastic Convergence I

Definition 5.1 (Converges in Probability and in Distribution)
Let X1,X2, . . . be a sequence of random variables and let X be another random variable.
Let Fn denote the CDF of Xn and let F denote the CDF of X .

(i) Xn converges to X in probability, written Xn
P−−−−→

n→∞
X , if, for every 𝜀 > 0,

P[|Xn − X | > 𝜀] → 0 as n → ∞.

(ii) Xn converges to X in distribution, written Xn
D−−−−→

n→∞
X , if

limn→∞Fn (x ) = F (x ) at all x for which F is continuous.
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Modes of Stochastic Convergence II

Definition 5.2 (Converges in Lebesgue Spaces and Almost Surely)
Let X1,X2, . . . be a sequence of random variables and let X be another random variable.

(i) Xn converges to X in Lp for p ≥ 1, written Xn
Lp−−−−→

n→∞
X , if

E|Xn − X |p → 0 as n → ∞.

(ii) Xn converges to X P-almost surely, written Xn
P-a.s.−−−−−→
n→∞

X , if

P[limn→∞Xn = X ] ≡ P[𝜔 ∈ Ω : limn→∞Xn (𝜔) = X (𝜔)] = 1.

Convergence in L1 ≡ convergence in expectation
Convergence in L2 ≡ convergence in quadratic mean
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Relationships Between the Convergences

Theorem 5.3 (Implications Between the Modes of Convergence)

(a) Xn
P-a.s.−−−−−→ X ⇒ Xn

P−→ X

(b) p ≥ 1: Xn
Lp−−→ X ⇒ Xn

P−→ X

(c) p ≥ q ≥ 1: Xn
Lp−−→ X ⇒ Xn

Lq−−→ X

(d) Xn
P−→ X ⇒ Xn

D−→ X

(e) If Xn
D−→ X and P[X = c] = 1 for some c ∈ R, then Xn

P−→ X .
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Reverse Implications Does Not Hold I

Example 5.4 (Convergence in probability does not imply almost sure convergence.)
Ω = [0, 1], A = B(Ω), P = 𝜆. We can uniquely write any positive integer by 2n + m ,
m = 0, 1, . . . , 2n − 1 and define

X2n+m (𝜔) = 𝟙{𝜔 ∈ (m2−n , (m + 1)2−n ]}, 𝜔 ∈ [0, 1] .

For instance, since 33 = 25 + 1, we obtain X33(·) = 𝟙{· ∈ (2−5, 2−4]}. Then, for any

𝜀 ∈ (0, 1), we get P[|X2n+m | > 𝜀] = 2−n → 0 as n → ∞. Thus, Xn
P−→ 0.

However, for each 𝜔 ∈ (0, 1], Xj (𝜔) = 1 and Xj (𝜔) = 0 for infinitely many j ’s and so the

sequence does not converge almost surely, i.e., Xn X
P-a.s.−−−−−→.
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Reverse Implications Does Not Hold II

Example 5.5 (Convergence in probability does not imply Lp convergence.)
Ω = [0, 1], A = B(Ω), P = 𝜆. We can define

X2n+m (𝜔) = 2n𝟙{𝜔 ∈ ((m − 1)2−n ,m2−n ]}, 𝜔 ∈ [0, 1] .

Then again, for any 𝜀 ∈ (0, 1), we get P[|X2n+m | > 𝜀] = 2−n → 0 as n → ∞. Thus,

Xn
P−→ 0.

However, E|X2n+m − 0| = 2nP[X2n+m = 2n ] = 2n2−n = 1 and so the sequence does not

converge in L1, i.e., Xn X
L1−−→. Hence, Xn X

Lp−−→, p ≥ 1.
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Reverse Implications Does Not Hold III

Example 5.6 (Lq convergence does not imply Lp convergence, when p > q ≥ 1.)
Ω = [0, 1], A = B(Ω), P = 𝜆. We can define

X2n+m (𝜔) = 2⌊n/2⌋𝟙{𝜔 ∈ ((m − 1)2−n ,m2−n ]}, 𝜔 ∈ [0, 1] .

Then, E|X2n+m − 0| = 2⌊n/2⌋P[X2n+m = 2n ] = 2⌊n/2⌋2−n → 0 as n → ∞. Thus, Xn
L1−−→ 0.

However, E|X2n+m − 0|2 = 2nP[X2n+m = 2n ] = 22⌊n/2⌋2−n → 1 as n → ∞ and so the

sequence does not converge in L2, i.e., Xn X
L2−−→.
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Reverse Implications Does Not Hold IV

Example 5.7 (Convergence in distribution does not imply convergence in probability.)
X ∼ N(0, 1) and Xn := −X , n ∈ N. Hence, Xn ∼ N(0, 1) for every n ∈ N. So, trivially,

limn→∞Fn (x ) = F (x ) for all x ∈ R. Therefore, Xn
D−→ X .

However, P[|Xn − X | > 𝜀] = P[|2X | > 𝜀] = P[|X | > 𝜀/2] ≠ 0 (which does not depend

on n) and so the sequence does not converge in probability, i.e., Xn X
P−→.
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Continuous Mapping Theorem

Theorem 5.8 (Continuous Mapping Theorem (CMP))

Let 𝕏,𝕏1,𝕏2, . . . be k -dimensional random vectors and g : Rk → Rm be continuous at
every point of a set C such that P [𝕏 ∈ C ] = 1.

• 𝕏n
P-a.s.−−−−−→ 𝕏 ⇒ g (𝕏n )

P-a.s.−−−−−→ g (𝕏)
• 𝕏n

P−→ 𝕏 ⇒ g (𝕏n )
P−→ g (𝕏)

• 𝕏n
D−→ 𝕏 ⇒ g (𝕏n )

D−→ g (𝕏)

! In general: 𝕏n
Lp−−→ 𝕏 ⇏ g (𝕏n )

Lp−−→ g (𝕏)
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Cramér–Slutsky Theorem

Theorem 5.9 (Slutsky’s Theorem)

If Xn
D−→ X and Yn

P−→ c ∈ R, then

• Xn + Yn
D−→ X + c;

• XnYn
D−→ cX .

Corollary 5.10

If Xn
P−→ a ∈ R and Yn

P−→ b ∈ R, then

• Xn + Yn
P−→ a + b;

• XnYn
P−→ ab.
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Convergence in Distribution and Pointwise
Convergence of Characteristic Functions

Theorem 5.11 (Lévy’s Continuity Theorem)

𝕏n
D−→ 𝕏 ⇔ 𝜑𝕏n (𝕥) → 𝜑𝕏(𝕥), ∀𝕥 ∈ Rk

Example 5.12 (CF of a Normal Distribution)

X ∼ N(𝜇, 𝜎2) ⇒ 𝜑X (t ) = exp{i𝜇t − 𝜎2t2/2}, t ∈ R

Definition 5.13 (Sequence of Independent Random Variables)
{Xn }n∈N is a sequence of independent random variables if

F{Xj }j ∈J ({xj }j ∈J ) =
∏
j ∈J

FXj (xj ) ∀{xj }j ∈J ∈ R |J | , ∀J ⊆ N, |J | < ∞.
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Weak Law of Large Numbers

Definition 5.14 (IID Sequence; IID = Independent and Identically Distributed)
{Xn }n∈N is a sequence of IID random variables if it is a sequence of independent random
variables having the same CDF.

The above can be defined for random vectors as well.

Theorem 5.15 (Weak Law of Large Numbers (WLLN))
If {Xn }n∈N is an IID sequence of random variables with E|X1 | < ∞, then

X n := n−1 ∑n
i=1 Xi

P−→ EX1 as n → ∞.

• Strong Law of Large Numbers (SLLN): replacing
P−→ by

P-a.s.−−−−−→
• Finite variance is not required. Although, the underlying proof would be simpler,

cf. Chebyshev’s inequality.
• Independence can be relaxed.
• Identical distribution can be relaxed.
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Central Limit Theorem for IID

Theorem 5.16 (Central Limit Theorem (CLT))

If {Xn }n∈N is an IID sequence of random variables with EX 2
1 < ∞ and VarX1 > 0, then

Zn :=
√
n

X n − EX1√
VarX1

D−→ Z ∼ N(0, 1), n → ∞.

In other words,

limn→∞P[Zn ≤ x ] = Φ(x ) ≡
∫ x

−∞

1
√

2𝜋
exp{−t2/2}dt , ∀x ∈ R.

In short,
Zn

D−−−−→
n→∞

N(0, 1).
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Multivariate Central Limit Theorem

Corollary 5.17 (Cramér–Wold Device)

𝕏n
D−→ 𝕏 ⇔ 𝕥⊺𝕏n

D−→ 𝕥⊺𝕏, ∀𝕥 ∈ Rk

The Cramér–Wold Theorem is a trivial consequence of the Lévy’s Continuity Theorem.

Theorem 5.18 (Multivariate CLT)
If {𝕏n }n∈N is an IID sequence of k -dimensional random vectors with the positive definite
variance-covariance matrix Var𝕏1, then

√
n

(
𝕏n − E𝕏1

) D−→ Nk (𝟘,Var𝕏1), n → ∞.
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Delta Method

Theorem 5.19 (Delta Method)

If
√
n

(
Yn − 𝜇

) D−→ N(0, 𝜎2) and g is continuously differentiable on the neighborhood of 𝜇
such that g ′(𝜇) ≠ 0, then

√
n

(
g (Yn ) − g (𝜇)

) D−→ N
(
0,

(
g ′(𝜇)

)2
𝜎2

)
, n → ∞.
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Agenda

6. Statistical Learning
6.1 Random Sample
6.2 Statistical Experiment
6.3 Stochastic Models
6.4 Parametric Models
6.5 Non-parametric Models
6.6 Fundamental Concepts in Inference
6.7 Estimation
6.8 Standard Error
6.9 Mean Squared Error
6.10 Confidence Sets

97 / 202



Statistical Learning

• Statistical Learning a.k.a. Statistical Inference

= The process of using data to infer the distribution that generated the data

? Given a random sample X1, . . . ,Xn
IID∼ F , how do we infer F ?
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Random Sample

Definition 6.1 (Random Sample and Sample Size)
If X1, . . . ,Xn are independent and each has the same marginal distribution with CDF F ,
we say that X1, . . . ,Xn are IID (independent and identically distributed) and we write

X1, . . . ,Xn
IID∼ F .

We also call a random sample of size n from F .
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Data From Experiment

• We consider / think of / assume:
• measurable mappings Xi : (Ω,A) → (R,B(R)), i = 1, . . . ,n

• We observe / measure / obtain:
• real-valued data Xi (𝜔) ∈ R, i = 1, . . . ,n for one particular 𝜔 ∈ Ω
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Stochastic Model

• Stochastic model ≈ Probabilistic model, Statistical model, . . .

• Parametric model
• A set F that can be parameterized by a finite number of parameters

• Non-parametric model
• A set F that cannot be parameterized by a finite number of parameters
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Parametric Models

Example 6.2 (Normal Model)

F =

{
f (x ; 𝜇, 𝜎2) = 1

√
2𝜋𝜎2

exp
{
− (x − 𝜇)2

2𝜎2

}
, 𝜇 ∈ R, 𝜎2 > 0

}
.

• Data come from a Normal distribution with two parameters 𝜇 and 𝜎2

• In general,
F =

{
f (·; 𝜽) : 𝜽 ∈ 𝚯 ⊆ Rd }

• Some notation: P𝜃 [X ∈ A] =
∫
A f (x ; 𝜃)dx , E𝜃 [g (X )] =

∫
R g (x )f (x ; 𝜃)dx
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Non-parametric Models

Example 6.3 (Sobolev Space Model)

F =

{
f :

∫
R
{f ′′(x )}2dx < ∞

}
.

• Data come from a distribution having a density, which is not too “wiggly”
• The distinction between parametric and non-parametric is more subtle than this but

we don’t need a rigorous definition for our purposes
• For instance, the whole PDF can be considered as infinite dimensional parameter
• Semi-parametric models
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Point Estimation

Definition 6.4 (Estimator)

A point estimator 𝜃̂n of a parameter 𝜃 is a measurable function t of X1, . . . ,Xn :

𝜃̂n = t (X1, . . . ,Xn ).

• Here, it is not generally required that X1, . . . ,Xn are IID

• Important:

• Parameter 𝜃 is a fixed real number (vector), but unknown

• Estimator 𝜃̂n is a random variable (a measurable function of random variables), but
known (i.e., obtainable from the data)
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Consistent Estimator

• 𝜃̂n is unbiased if E
[
𝜃̂n

]
= 𝜃 for every n ∈ N

• Unbiasedness used to receive much attention but these days is less important
• Many of the estimators we will use are biased
• The bias of an estimator is defined by bias(𝜃̂n ) = E

[
𝜃̂n

]
− 𝜃

• A reasonable requirement for an estimator is that it should “converge” to the true
parameter value as we collect more and more data

Definition 6.5 (Consistent Estimator)

A point estimator 𝜃̂n of a parameter 𝜃 is consistent if 𝜃̂n
P→ 𝜃 as n → ∞.

• (weak) consistency ⇔ in probability ↔ strong consistency ⇔ almost surely
• Qualitative property
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Standard Error

• The distribution of 𝜃̂n is called the sampling distribution

• The standard deviation of 𝜃̂n is called the standard error: se(𝜃̂n ) =
√︃
Var𝜃̂n

• Often, the standard error depends on the unknown F

• In those cases, se is an unknown quantity (parameter), but we usually can estimate it

• The estimated standard error is denoted by ŝe

Example 6.6 (Standard Error in Alternative Model – Flipping a Coin)

Bernoulli random sample X1, . . . ,Xn
IID∼ Be(p) and parameter p ∈ (0, 1)

. . . p̂n = n−1 ∑n
i=1 Xi relative frequency as an estimator . . . ŝe(p̂n ) =

√︁
p̂n (1 − p̂n )/n .
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Mean Squared Error

• The quality of a point estimate is sometimes assessed by the mean squared error

MSE(𝜃̂n ) = E𝜃

[
𝜃̂n − 𝜃

]2

• Keep in mind that E𝜃 refers in case of IID X ’s to expectation with respect to the
distribution f (x1, . . . , xn ; 𝜃) =

∏n
i=1 f (xi ; 𝜃) that generated the data

• Quantitative property

Theorem 6.7 (Variance-Bias Decomposition of MSE)

MSE(𝜃̂n ) = bias2(𝜃̂n ) + Var(𝜃̂n )
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Weak Consistency

Theorem 6.8 (Sufficient Condition for Consistency)

bias(𝜃̂n ) → 0 & Var(𝜃̂n ) → 0 ⇒ 𝜃̂n
P→ 𝜃 (a consistent estimator)

Example 6.9 (Consistency – Flipping a Coin)

Example 6.6: E(p̂n ) = p & Var(p̂n ) = p (1 − p)/n → 0 ⇒ p̂n
P→ p

Definition 6.10 (Asymptotically Normal Estimator)

An estimator 𝜃̂n of a parameter 𝜃 is asymptotically normal if

𝜃̂n − 𝜃

se(𝜃̂n )
D→ N(0, 1), n → ∞.

108 / 202



Confidence Sets

Definition 6.11 (Confidence Interval)
A (1 − 𝛼)-confidence interval for a parameter 𝜃 is an interval Cn = (a , b), where
a = a (X1, . . . ,Xn ) and b = b (X1, . . . ,Xn ) are measurable functions of the data such that

P𝜃 [𝜃 ∈ Cn ] = 1 − 𝛼 for all 𝜃 ∈ Θ.

An approximate (1 − 𝛼)-confidence interval for a parameter 𝜃 is an interval Cn such that

limn→∞P𝜃 [𝜃 ∈ Cn ] = 1 − 𝛼 for all 𝜃 ∈ Θ.

• In words, (a , b) traps 𝜃 with probability (approximately) 1 − 𝛼

• We call 1 − 𝛼 the coverage of the confidence interval (CI)
• Warning: Cn is random and 𝜃 is fixed
• 𝜃 ∈ Rd , d > 1: a confidence set (such as a sphere/ellipse) instead of an interval
• A CI is not a probability statement about 𝜃 since 𝜃 is fixed, not a random variable
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CI Normal Model

Example 6.12 (CI – Normality)

Example 6.2: X1, . . . ,Xn
IID∼ N(𝜇, 𝜎2) and parameter 𝜇 ∈ R is unknown and to be be

estimated (point estimator and confidence interval), 𝜎2 > 0 is supposed to be known
• Point estimator of 𝜇: 𝜇n = n−1 ∑n

i=1 Xi ≡ X n

• Linearity of the normal distributions:
√
n (𝜇n − 𝜇)/𝜎 ∼ N(0, 1), ∀n ∈ N

• Qunatiles of the standard normal distribution:

P

[
−u1−𝛼/2 ≤

√
n

X n − 𝜇
√
𝜎2

≤ +u1−𝛼/2

]
= 1 − 𝛼, ∀n ∈ N and ∀𝜇 ∈ R

• Confidence interval for 𝜇:
(
X n − u1−𝛼/2

√︃
𝜎2

n ,X n + u1−𝛼/2

√︃
𝜎2

n

)
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Length of the Confidence Interval

Length of the CI in the normal model for 𝜇 with 𝜎2 > 0 known (provided):

CI: X n ± u1−𝛼/2

√︂
𝜎2

n
⇒ Length: 2u1−𝛼/2

√︂
𝜎2

n

• Higher coverage 1 − 𝛼 ⇒ wider CI
• Larger variability 𝜎2 ⇒ wider CI
• Smaller sample size n ⇒ wider CI

How many observations do I need for a CI narrower than d? . . . n ≥
⌊
4u2

1−𝛼/2𝜎
2

d2

⌋
+ 1
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Normal-based Confidence Interval

Theorem 6.13 (Normal-based CI)

Suppose that 𝜃̂n is an asymptotically normal estimator of the parameter 𝜃 and ŝe(𝜃̂n ) is

a consistent estimator of se(𝜃̂n ), i.e., ŝe(𝜃̂n ) − se(𝜃̂n )
P→ 0. Let u1−𝛼/2 be the

(1 − 𝛼/2)-quantile of the standard normal distribution and

Cn =

(
𝜃̂n − u1−𝛼/2ŝe(𝜃̂n ), 𝜃̂n + u1−𝛼/2ŝe(𝜃̂n )

)
.

Then,
P𝜃 [𝜃 ∈ Cn ] → 1 − 𝛼, n → ∞.

• Informally: 𝜃̂n ≈ N
(
𝜃, ŝe(𝜃̂n )

)
• Approximately: For 95%-confidence intervals, 𝛼 = 0.05 and u.975 � 1.96 ≈ 2 leading

to the approximate 95%-confidence interval 𝜃̂n ± 2ŝe(𝜃̂n )
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CLT Confidence Interval

Example 6.14 (CI – Flipping a Coin)
Example 6.9:

• p̂n
P→ p & se(p̂n ) =

√︁
p (1 − p)/n & ŝe(p̂n ) :=

√︁
p̂n (1 − p̂n )/n & Slutsky’s ⇒

ŝe(p̂n ) − se(p̂n )
P→ 0

• CLT ⇒ p̂n−p
se(p̂n )

D→ N(0, 1)

Then, by Slutsky’s Theorem once again, ⇒ p̂n−p
ŝe(p̂n )

D→ N(0, 1). Thus,

p̂n ± u1−𝛼/2
√︁
p̂n (1 − p̂n )/n

is an approximate (1 − 𝛼)-confidence interval for p.
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Agenda

7. Statistical Functionals
7.1 Empirical Distribution Function
7.2 Properties of ECDF
7.3 Statistical Functional
7.4 Plug-in Estimator
7.5 Linear Statistical Functional
7.6 Plug-in Estimator For Linear Statistical Functional
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Empirical Distribution Function

• X1, . . . ,Xn
IID∼ F is a random sample from F with sample size n

• To estimate F with its empirical counterpart

Definition 7.1 (ECDF)

F̂n (x ) =
1
n

n∑︁
i=1

𝟙{Xi ≤ x }, x ∈ R.

• The ECDF puts mass 1/n at each data point Xi

• The relative frequency of X ’s being smaller or equal to a fixed x , i.e., #{Xi ≤ x }/n
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ECDF in Python

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import statsmodels.api as sm
4 # Example data
5 data = [1, 3, 4, 5, 5, 7, 8, 10, 10, 13]
6 # Compute ECDF
7 ecdf = sm.distributions.empirical_distribution.ECDF(data)
8 # Plot ECDF
9 plt.figure(figsize =(6, 6))

10 plt.hlines(ecdf.y[:-1],ecdf.x[:-1],ecdf.x[1:], color=’black’)
11 plt.scatter(ecdf.x, ecdf.y, marker=’o’, color=’black’)
12 plt.xlabel(’Data’)
13 plt.ylabel(’ECDF’)
14 plt.title(’Empirical Cumulative Distribution Function (ECDF)’)
15 plt.grid(True)
16 plt.show()
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ECDF in R

1 data <- c(1, 3, 4, 5, 5, 7, 8, 10, 10, 13)
2 plot(ecdf(data), xlab=’Data’, ylab=’ECDF’, main=’Empirical Cumulative

Distribution Function (ECDF)’)
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ECDF in Python & R
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Properties of ECDF

Theorem 7.2 (Pointwise Properties of ECDF)
At any fixed x ∈ R,

• E
[
F̂n (x )

]
= F (x );

• Var
[
F̂n (x )

]
=

F (x ) {1−F (x ) }
n ;

• MSE
(
F̂n (x )

)
=

F (x ) {1−F (x ) }
n → 0 as n → ∞;

• F̂n (x )
P→ F (x ) as n → ∞.
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Statistical Functional
A functional is just a function of a function.

Definition 7.3 (Functional)
A functional is a mapping T : F → R, where F is a set of functions.

Definition 7.4 (Statistical Functional)
A statistical functional is a map T that maps a distribution function F to a real number.

A vector functional can be defined as well (just to replace the “output” by Rd).

Example 7.5 (Mean, Variance, Median)
• 𝜇 ≡ EX =

∫
xdF (x ) . . . mean

• 𝜎2 ≡ VarX =
∫
(x − 𝜇)2dF (x ) . . . variance

• median(X ) = F −1(1/2) . . . median
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Plug-in (Empirical) Estimator

Definition 7.6 (Plug-in Estimator)

The plug-in estimator of 𝜃 = T (F ) is defined by 𝜃̂n = T (F̂n ).

Just plug in the empirical F̂n for the unknown F . . . a.k.a. Empirical estimator
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Linear Statistical Functional

Definition 7.7 (Linear Statistical Functional)

If T (F ) =
∫

r (x )dF (x ) for some measurable function r , then T is called a linear
statistical functional.

The reason T (F ) =
∫

r (x )dF (x ) is called a linear functional is because T satisfies

T (aF + bG + c) = aT (F ) + bT (G) + c, a , b, c ∈ R;

if both sides exist. Hence, T is linear in its arguments.
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Plug-in Estimator For Linear Statistical
Functional

Theorem 7.8 (Empirical Estimator For Linear Statistical Functional)

The plug-in estimator for the linear statistical functional T (F ) =
∫

r (x )dF (x ) is

T (F̂n ) =
∫

r (x )dF̂n (x ) =
1
n

n∑︁
i=1

r (Xi ).

Example 7.9 (The Mean)

𝜇 = T (F ) =
∫

xdF (x ) ⇒ 𝜇n =
∫

xdF̂n (x ) = X n
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Empirical Variance

Example 7.10 (The Variance)

VarX = 𝜎2 = T (F ) =
∫
(x − 𝜇)2dF (x ) =

∫
x 2dF (x ) −

(∫
xdF (x )

)2 ⇒

𝜎̂2
n =

∫
x 2dF̂n (x ) −

(∫
xdF̂n (x )

)2

=
1
n

n∑︁
i=1

X 2
i −

(
1
n

n∑︁
i=1

Xi

)2

=
1
n

n∑︁
i=1

(
Xi − X n

)2

Another reasonable estimator of 𝜎2 is the sample variance

S2
n =

1
n − 1

n∑︁
i=1

(
Xi − X n

)2
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Empirical Correlation
Example 7.11 (Correlation)
Let Z = (X ,Y ) and let 𝜌 = T (F ) = E(X − 𝜇X ) (Y − 𝜇Y )/(𝜎X𝜎Y ) denote the
correlation between X and Y , where F (x , y) is bivariate. We can write

T (F ) = a
(
T1(F ),T2(F ),T3(F ),T4(F ),T5(F )

)
,

where

T1(F ) =
∫

xdF (x , y); T2(F ) =
∫

ydF (x , y); T3(F ) =
∫

xydF (x , y);

T4(F ) =
∫

x 2dF (x , y); T5(F ) =
∫

y2dF (x , y); and

a (t1, t2, t3, t4, t5) =
t3 − t1t2√︃

(t4 − t2
1 ) (t5 − t2

2 )
.
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Empirical Correlation (cont.)

Example 7.12 (Correlation (cont.))

Replace F with F̂n in T1(F ),T2(F ),T3(F ),T4(F ),T5(F ), and take

𝜌̂ = T (F̂n ) = a
(
T1(F̂n ),T2(F̂n ),T3(F̂nF ),T4(F̂n ),T5(F̂n )

)
,

We get

𝜌̂ =

∑
i (Xi − X n ) (Yi − Y n )√︃∑

i (Xi − X n )2
∑

i (Yi − Y n )2

which is called the sample correlation.
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Empirical Quantiles

Example 7.13 (Quantiles)
For p ∈ (0, 1), the p-th quantile is defined by

T (F ) = F −1(p) = inf
{
x : F (x ) > p

}
.

Now, we define
T (F̂n ) = F̂ −1

n (p) = inf
{
x : F̂n (x ) > p

}
and we call it the p-th sample quantile. Thus, the sample median is F̂ −1

n (1/2). Moreover,
the interquartile range (IQR) T̃ (F ) = F −1(3/4) − F −1(1/4) can be estimated through
sample interquartile range T̃ (F̂n ) = F̂ −1

n (3/4) − F̂ −1
n (1/4).
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Agenda

8. Bootstrap
8.1 Bootstrapping Statistics
8.2 Simulation
8.3 Bootstrap Variance Estimation
8.4 Bootstrap Confidence Intervals
8.5 Pivotal Intervals
8.6 Normal Intervals
8.7 Percentile Intervals
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Bootstrapping the Statistics

Bootstrap is a class of methods for
• estimating standard errors;
• computing confidence intervals;
• testing hypotheses;
• calculation prediction intervals; . . .

Definition 8.1 (Statistic)
A statistic Tn ≡ Tn (X1, . . . ,Tn ) is any measurable function Tn of data X1, . . . ,Xn .

• The simplest case of data X1, . . . ,Xn is a random sample, i.e., IID data
• For instance, every estimator is a statistic
• However, an estimator is related to some quantity of the distribution
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Variance of Statistic
Suppose we want to know VarFTn , i.e., the variance of Tn

• We have written VarF to emphasize that the variance usually depends on the
unknown distribution function F

• For example, if Tn = X n for IID Xi ’s, then VarFTn = 𝜎2/n , where
𝜎2 =

∫
(x − 𝜇)2dF (x ) and 𝜇 =

∫
xdF (x )

• Thus, the variance of Tn is a function of F

The bootstrap idea has two steps:
(1) Estimate VarFTn with VarF̂n

Tn

(2) Approximate VarF̂n
Tn using simulations

Suppose Tn = X n and let 𝜎̂2 = n−1 ∑n
i=1(Xi − X n )2

(i) VarF̂n
Tn = 𝜎̂2/n and Step (1) is enough

(ii) However in more complicated cases, we cannot write down a simple formula for
VarF̂n

Tn , which is why we need Step (2)
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Simulation

• Suppose we draw an IID sample Y1, . . . ,YB from a distribution G
• By the LLN,

Y B =
1
B

B∑︁
b=1

Yb
P−−−−−→

B→∞

∫
ydG (y) = EY

• So if we draw a large sample from G , we can use the sample mean Y B to
approximate EY

• In a simulation, we can make B as large as we like, in which case, the difference
between Y and EY is negligible
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Simulation (cont.)

• More generally, if h is any function with finite mean, then

1
B

B∑︁
b=1

h (Yb)
P−−−−−→

B→∞

∫
h (y)dG (y) = E[h (Y )]

• In particular,

1
B

B∑︁
b=1

(
Yb − Y B

)2
=

1
B

B∑︁
b=1

Y 2
b −

(
1
B

B∑︁
b=1

Yb

)2

P−−−−−→
B→∞

∫
y2dG (y) −

(∫
ydG (y)

)2

= VarY

• Hence, we can use the sample variance of the simulated values to approximate VarY
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Bootstrap Variance Estimation

• We just learned, we can approximate VarF̂n
Tn by simulation

• Now, VarF̂n
Tn means “the variance of Tn if the distribution of the data is F̂n ”

• How can we simulate from the distribution of Tn , when the data are assumed to have
distribution F̂n?

• The answer is to simulate X★
1 , . . . ,X

★
n from F̂n and, then, compute

T★
n = Tn (X★

1 , . . . ,X
★
n )

• The idea is illustrated in the following diagram:

Real world F ⇒ X1, . . . ,Xn ⇒ Tn = Tn (X1, . . . ,Xn )
Bootstrap world F̂n ⇒ X★

1 , . . . ,X
★
n ⇒ T★

n = Tn (X★
1 , . . . ,X

★
n )
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Bootstrap Variance Estimation (cont.)
• How do we simulate X★

1 , . . . ,X
★
n from F̂n?

• Notice that in puts mass 1/n at each data point X1, . . . ,Xn
• Therefore, drawing an observation from F̂n is equivalent to drawing one point at

random from the original data set

Example 8.2 (Summary of Bootstrap Variance Estimation)

(1) Simulate X★
1 , . . . ,X

★
n ∼ F̂n ⇔ draw n observations with replacement from

X1, . . . ,Xn

(2) Compute T★
n = Tn (X★

1 , . . . ,X
★
n )

(3) Repeat steps (1) and (2), B times, to get (1)T★
n , . . . , (B )T★

n

(4) Let

V̂ar
★
Tn =

1
B

B∑︁
b=1

(
(b )T★

n − 1
B

B∑︁
j=1

(j )T★
n

)2
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Bootstrap Variance of Sample Mean

VarFTn ≈ VarF̂n
Tn ≡ Var★Tn ≈ V̂ar

★
Tn

1 # scientifc computing
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 # set seed for the random number generator
7 np.random.seed (2024)
8

9 # example data
10 dt = [1, 3, 4, 5, 5, 7, 8, 10, 10, 13]
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Bootstrap Variance of Sample Mean (cont.)

1 def create_bootstrap_samples(sample_size = len(dt), B_samples = 1000):
2

3 # create a list for sample means
4 sample_means = []
5

6 # loop n_samples times
7 for i in range(B_samples):
8 # create a bootstrap sample of sample_size with replacement
9 bootstrap_sample = np.random.choice(dt , size = sample_size , replace =

True)
10 # calculate the bootstrap sample mean
11 sample_mean = bootstrap_sample.mean()
12 # add this sample mean to the sample means list
13 sample_means.append(sample_mean)
14

15 return pd.Series(sample_means)
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Bootstrap Variance of Sample Mean (cont. II)
1 # create bootstrap samples
2 sample_means = create_bootstrap_samples ()
3 # calculate bootstrap variance of the sample mean
4 sample_means.var()
5 # plot the distribution
6 sample_means.plot(kind = ’hist’, bins = 20, title = ’Distribution of the

Bootstrap Sample Means’)

V̂ar
★
Tn ≈ 1.1818
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Distribution of the Bootstrap Sample Means
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Bootstrap Confidence Intervals
• Several ways to construct bootstrap CIs
• Here, we discuss three nonparametric methods, although there are also parametric

bootstrap methods

Method 1: Pivotal Intervals
• 𝜃 = T (F ) and 𝜃̂n = T (F̂n )
• Define the pivot Rn := 𝜃̂n − 𝜃

• Let (1) 𝜃̂
★
n , . . . , (B ) 𝜃̂

★
n be the bootstrap replications of 𝜃̂n

• Denote the CDF of the pivot

H (r ) = P[Rn ≤ r ]

• Define C★
n = (a , b), where

a = 𝜃̂n − H −1(1 − 𝛼/2) and b = 𝜃̂n − H −1(𝛼/2)
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Pivotal Intervals

• Now, it follows (if H is continuous)

P[a < 𝜃 < b] = P[a − 𝜃̂n < 𝜃 − 𝜃̂n < b − 𝜃̂n ] = P[𝜃̂n − b < 𝜃̂n − 𝜃 < 𝜃̂n − a]
= P[𝜃̂n − b < Rn < 𝜃̂n − a] = H (𝜃̂n − a) − H (𝜃̂n − b)
= H

(
H −1(1 − 𝛼/2)

)
− H

(
H −1(𝛼/2)

)
= 1 − 𝛼/2 − 𝛼/2 = 1 − 𝛼

• Hence, C★
n is an exact 1 − 𝛼 confidence interval for 𝜃

• Unfortunately, a and b depend on the unknown distribution H , but we can form
a bootstrap estimate of H

Ĥn (r ) =
1
B

B∑︁
b=1

𝟙{ (b )R★
n ≤ r }, where (b )R★

n = (b ) 𝜃̂
★
n − 𝜃̂n
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Pivotal Intervals (cont.)

• Let r★
𝛽

denote the 𝛽 sample quantile of
(
(1)R★

n , . . . , (B )R★
n
)

• Let 𝜃★
𝛽

denote the 𝛽 sample quantile of
(
(1) 𝜃̂

★
n , . . . , (B ) 𝜃̂

★
n
)

• Since r★
𝛽
= 𝜃★

𝛽
− 𝜃̂n , then Cn = (â , b̂) is an approximate (1 − 𝛼)-confidence interval,

where

â = 𝜃̂n − Ĥ −1(1 − 𝛼/2) = 𝜃̂n − r★1−𝛼/2;

b̂ = 𝜃̂n − Ĥ −1(𝛼/2) = 𝜃̂n − r★
𝛼/2

• Then, the (1 − 𝛼)-bootstrap pivotal confidence interval is

Cn =

(
2𝜃̂n − 𝜃★1−𝛼/2, 2𝜃̂n − 𝜃★

𝛼/2

)
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Normal Intervals

Method 2: Normal Intervals
• Suppose that 𝜃̂n is an asymptotically normal estimator of the parameter 𝜃
• The simplest method gives the (1 − 𝛼)-bootstrap normal confidence interval

𝜃̂n ± u1−𝛼/2

√︃
V̂ar

★
𝜃̂n

• Note that
√︃
V̂ar

★
𝜃̂n =: se★

(
𝜃̂n

)
is the bootstrap estimate of the standard error
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Percentile Intervals

Method 3: Percentile Intervals
• The (1 − 𝛼)-bootstrap percentile confidence interval is

Cn =

(
𝜃★
𝛼/2, 𝜃

★
1−𝛼/2

)
• The idea in-behind: Suppose there exists a monotone transformation U = m (T )

such that U ∼ N(𝜙, c2) where 𝜙 = m (𝜃)
• We do not suppose we know the transformation, only that one exists
• Let U★

t = m
(
(b ) 𝜃̂

★
n
)

• Let u★
𝛽

be the 𝛽 sample quantile of the U★
b ’s

• Since a monotone transformation preserves quantiles, we have that u★
𝛽
= m (𝜃★

𝛽
)
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Percentile Intervals (cont.)

• Also, since U ∼ N(𝜙, c2), the 𝛼/2 quantile of U is 𝜙 + u𝛼/2c
• Hence u★

𝛼/2 = 𝜙 + u𝛼/2c
• Similarly, u★

1−𝛼/2 = 𝜙 + u1−𝛼/2c
• Therefore,

P[𝜃★
𝛼/2 < 𝜃 < 𝜃★1−𝛼/2] = P

[
m

(
𝜃★
𝛼/2

)
< m (𝜃) < m

(
𝜃★1−𝛼/2

) ]
= P[u★

𝛼/2 < 𝜙 < u★
1−𝛼/2] = P[U + u𝛼/2c < 𝜙 < U + u1−𝛼/2c]

= P
[
u𝛼/2 <

U − 𝜙

c
< u1−𝛼/2

]
= 1 − 𝛼

• An exact normalizing transformation will rarely exist, but there may exist approximate
normalizing transformations
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Computing Bootstrap CIs

Example 8.3 (Skewness as a Measure of Asymmetry)

Let 𝜃 = T (F ) =
∫
(x − 𝜇)3dF (x )/𝜎3 =: 𝜇3 be the skewness. A normal distribution, for

example, has skewness 0. The plug-in estimator of the skewness is

𝜃̂n = T (F̂n ) =
∫
(x − 𝜇)3dF̂n (x )

𝜎̂3 .

Let us consider a standard lognormal distribution. This means, assume that
Y1, . . . ,Yn

IID∼ N(0, 1) and we call that Xi = exp{Yi }, i = 1, . . . ,n are IID having the
standard lognormal distribution. Then, 𝜇 ≡ EX1 = Eexp{Y1} =

√
e , 𝜎2 = VarX1 = e2 − e ,

and 𝜃 ≡ 𝜇3 = (e + 2)
√
e − 1 � 6.185.
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Skewness for Lognormal Data
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 from scipy.stats import norm
5 from scipy.stats import lognorm
6 np.random.seed (2024)
7 def create_data(n=1000):
8 y = norm.rvs(size=n)
9 return np.exp(y)

10 def skewness(x):
11 n = len(x)
12 mu = sum(x) / n
13 var = sum((x - mu)**2) / n
14 return sum((x - mu)**3) / (n * var **(3/2))
15

16 # Creating the data
17 x = create_data(n=1000)
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Histogram for Simulated Lognormal Data

1 # Plot histogram
2 plt.figure(figsize =(6, 6))
3 plt.hist(x, bins=30, density=True , color=’green ’, label=’Histogram ’)
4

5 # Plot theoretical PDF of lognormal distribution
6 xx = np.linspace(0, max(x), 1000)
7 pdf = lognorm.pdf(xx , 1, scale=np.exp (0))
8

9 plt.plot(xx, pdf , ’red’, label=’PDF of Lognormal Distribution ’)
10 plt.title(’Histogram and PDF of Lognormal Distribution ’)
11 plt.xlabel(’Value’)
12 plt.ylabel(’Probability Density ’)
13 plt.legend ()
14 plt.grid(True)
15 plt.show()
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ECDF for Simulated Lognormal Data
1 # Sort the data for plotting ECDF
2 sorted_data = np.sort(x)
3 nn = len(sorted_data)
4 ecdf = np.arange(1, nn + 1) / nn
5

6 # Plot ECDF
7 plt.figure(figsize =(6, 6))
8 plt.step(sorted_data , ecdf , label=’Empirical CDF’, color=’blue’, where=’

post’)
9

10 # Plot theoretical CDF of lognormal distribution
11 xx = np.linspace(0, max(sorted_data), 1000)
12 cdf = lognorm.cdf(xx , 1, scale=np.exp (0))
13 plt.plot(xx, cdf , color=’brown ’, label=’Theoretical CDF’)
14 plt.title(’ECDF and CDF of Lognormal Distribution ’)
15 plt.xlabel(’Value’); plt.ylabel(’Cumulative Probability ’)
16 plt.legend (); plt.grid(True); plt.show()
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Lognormal Data in Python
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Bootstrap CIs in Python
1 def bootstrap_values(x, B=10000):
2 n = len(x)
3 t_boot = np.empty(B)
4 for i in range(B):
5 xx = np.random.choice(x, n, replace=True)
6 t_boot[i] = skewness(xx)
7 return t_boot
8 def bootstrap_intervals(theta_hat , t_boot , alpha =0.05):
9 se = t_boot.std()

10 u = norm.ppf(1 - alpha /2)
11 q_half_alpha = np.quantile(t_boot , alpha /2)
12 q_c_half_alpha = np.quantile(t_boot , 1 - alpha /2)
13 pivotal_conf = (2* theta_hat - q_c_half_alpha , 2* theta_hat -

q_half_alpha)
14 normal_conf = (theta_hat - u * se, theta_hat + u * se)
15 percentile_conf = (q_half_alpha , q_c_half_alpha)
16 return pivotal_conf , normal_conf , percentile_conf
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Bootstrap CIs in Python (cont.)
1 # Nonparametric Bootstrap
2 theta_hat = skewness(x)
3 t_boot = bootstrap_values(x, B=10000)
4 pivotal_conf , normal_conf , percentile_conf = bootstrap_intervals(

theta_hat , t_boot , alpha =0.05)
5

6 print(’empirical skewness: \t %.3f’ % theta_hat)
7 print(’95%% confidence interval (pivotal): \t %.3f, %.3f’ % pivotal_conf

)
8 print(’95%% confidence interval (Normal): \t %.3f, %.3f’ % normal_conf)
9 print(’95%% confidence interval (percentile): \t %.3f, %.3f’ %

percentile_conf)

𝜃 = 6.185, 𝜃̂n = 5.686,

C pivot
n = (3.810, 8.962), C norm

n = (2.545, 8.827), C perc
n = (2.410, 7.562)
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Bootstrap Distribution with CIs in Python
1 intervals =[( pivotal_conf [0], pivotal_conf [1],’blue’,’Pivotal ’) ,(

normal_conf [0], normal_conf [1],’green’,’Normal ’),(percentile_conf [0],
percentile_conf [1],’orange ’,’Percentile ’)] # Define three CIs

2 plt.figure(figsize =(7, 4))
3 sns.boxplot(data=t_boot , orient=’v’) # Create the box plot
4 for i, (start , end , color , name) in enumerate(intervals):
5 plt.plot ([0.9+i*0.1 ,1.1+i*0.1] ,[start ,start],color=color ,linestyle=’-’

,linewidth=2,label=name)
6 plt.plot ([1+i*0.1 ,1+i*0.1] ,[start ,end],color=color ,linestyle=’-’,

linewidth =2)
7 plt.plot ([0.9+i*0.1 ,1.1+i*0.1] ,[end ,end],color=color ,linestyle=’-’,

linewidth =2) # Plot CIs
8 plt.axhline(y=6.185 , color=’r’, linestyle=’-’, linewidth=2, label=’True

Unknown Skewness ’)
9 plt.title(’Boxplot with Bootstrap Confidence Intervals ’)

10 plt.ylabel(’Data’); plt.xticks ([]); plt.grid(True)
11 plt.legend(loc=’upper center ’); plt.show()
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Bootstrap Distribution of Skewness
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Agenda

9. Parametric Inference
9.1 Parametric Family
9.2 Method of Moments
9.3 Asymptotic Properties of Method of Moments
9.4 Maximum Likelihood
9.5 Asymptotic Properties of Maximum Likelihood
9.6 Score Function and Fisher Information
9.7 Asymptotic Normality of MLE
9.8 Multivariate Delta Method
9.9 Parametric Bootstrap
9.10 Computing Maximum Likelihood Estimates
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Parametric Family

• Parametric family of models (or Family of parametric models):

F =
{
f (·; 𝜽) : 𝜽 ∈ 𝚯 ⊆ Rd } ,

where 𝚯 is the parameter space and 𝜽 = (𝜃1, . . . , 𝜃d ) is the parameter
? How would we ever know that the distribution that generated the data is in some

parametric model?
! A reasonable approximation & diagnostics (Goodness-of-fit tests, . . . )
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Parameter of Interest

• We are only interested in some function T (𝜽)
• For example, if Xi

IID∼ N(𝜇, 𝜎2), then the parameter is 𝜽 = (𝜇, 𝜎2)
• If our goal is to estimate 𝜇, then 𝜇 = T (𝜽) is called the parameter of interest and 𝜎2

is called a nuisance parameter
• The parameter of interest might be a complicated function of 𝜽
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Parameter of Interest (cont.)

Example 9.1 (Gamma Model)
Recall that X has a Gamma(𝛼, 𝛽) distribution if

fX (x ;𝛼, 𝛽) = 1
𝛽𝛼Γ(𝛼) x

𝛼−1exp{−x/𝛽}, x > 0;

where 𝛼, 𝛽 > 0 and

Γ(𝛼) =
∫ ∞

0
y 𝛼−1exp{−y}dy

is the Gamma function. The parameter is 𝜽 = (𝛼, 𝛽). The Gamma distribution is
sometimes used to model lifetimes of people, animals, and electronic equipment. Suppose
we want to estimate the mean lifetime. Then, T (𝛼, 𝛽) = E𝜽X = 𝛼𝛽.
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Parametric Estimators

Consider a random sample X1, . . . ,Xn
IID∼ F ∈ F

Example 9.2 (Just Finite Mean)

F =
{
F (𝜇) : EF (𝜇) = 𝜇 & |𝜇 | < ∞

}
• X n is a consistent and unbiased estimator of 𝜇
• X1 is an unbiased, but not a consistent estimator of 𝜇

Example 9.3 (Just Finite Variance)

F =
{
F (𝜎2) : VarF (𝜎2 ) = 𝜎2 & 𝜎2 < ∞

}
• 𝜎̂2

n = n−1 ∑
i=1(Xi − X n )2 is a consistent, but not an unbiased estimator of 𝜎2

• S2
n = (n − 1)−1 ∑

i=1(Xi − X n )2 is a consistent and unbiased estimator of 𝜎2
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Parametric Estimators (cont.)

Example 9.4 (Poisson Model)
F = {Po(𝜆), 𝜆 > 0} and 𝜃 = P[Xi = 0]
• 𝜃̂n = n−1 ∑

i=1 𝟙{Xi = 0} is a consistent and unbiased estimator of 𝜆

• 𝜃̃n =
(n−1

n
)∑n

i=1 Xi is also a consistent and unbiased estimator of 𝜆

Example 9.5 (Poisson Model – Awkward Case)
F = {Po(𝜆), 𝜆 > 0} and 𝜃 = exp{−2𝜆}
• The only unbiased estimator of 𝜃 is (−1)X1 , however it never reaches an admissible

value of exp{−2𝜆}
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Method of Moments

• A method for obtaining parametric estimators
• MoM stimators are not optimal, but they are often easy to compute
• They are are also useful as starting values for other methods that require iterative

numerical routines
• Define the k -th (raw) moment, 1 ≤ k ≤ d ,

𝜇′k ≡ 𝜇′k (𝜽) = E𝜽X k =

∫
x kdF𝜽 (x )

• Define the k -th sample moment

𝜇′k =
1
n

n∑︁
i=1

X k
i
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MoM Estimators
Definition 9.6

The method of moments estimator 𝜽̂n is defined to be the value of 𝜽 such that

𝜇′1
(
𝜽̂n

)
= 𝜇′1, 𝜇′2

(
𝜽̂n

)
= 𝜇′2, . . . 𝜇′d

(
𝜽̂n

)
= 𝜇′d .

Alternatively, the k -th centered moments together with their empirical counterparts can be
used instead.

Example 9.7 (Method of Moments Estimator for Alternative Distribution)

X1, . . . ,Xn
IID∼ Be(p). Then, 𝜇′1 = EpX1 = p and 𝜇′1 = X n . By equating these, we get

the estimator

p̂n =
1
n

n∑︁
i=1

Xi

and it is indeed the same plug-in (empirical) estimator.
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MoM Estimators (cont.)

Example 9.8 (Method of Moments Estimator for Normal Distribution)

X1, . . . ,Xn
IID∼ N(𝜇, 𝜎2). Then, 𝜇′1 = E(𝜇,𝜎2 )X1 = 𝜇 and

𝜇′2 = E(𝜇,𝜎2 )X 2
1 = Var(𝜇,𝜎2 )X1 + (E(𝜇,𝜎2 )X1)2 = 𝜎2 + 𝜇2. We need to solve the equations

𝜇n =
1
n

n∑︁
i=1

Xi and 𝜇2
n + 𝜎̂2

n =
1
n

n∑︁
i=1

X 2
i .

This is a system of 2 equations with 2 unknowns. The solution is

𝜇n = X n and 𝜎̂2
n =

1
n

n∑︁
i=1

(Xi − X n )2.
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MoM Estimators (cont. II)

Example 9.9 (MoM in Gamma Model – Alternative Parametrization)

X1, . . . ,Xn
IID∼ Gamma(a , p), where

fX (x ; a , p) = ap

Γ(p) x
p−1exp{−ax }, x > 0;

(an alternative parametrization) where a , p > 0 and Γ(p) =
∫ ∞
0 yp−1exp{−y}dy is the

Gamma function. Then, the MoM estimators

ân =
X n

𝜎̂2
n

and p̂n =
X 2

n

𝜎̂2
n

are consistent and AN.
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MoM Estimators (cont. III)
Example 9.10 (MoM in Uniform Model – Both Sided)

X1, . . . ,Xn
IID∼ U(𝜃1, 𝜃2). The MoM estimators

𝜃̂1,n = X n −
√︃

3𝜎̂2
n and 𝜃̂2,n = X n +

√︃
3𝜎̂2

n

are consistent and AN.

Example 9.11 (MoM in Beta Model)

X1, . . . ,Xn
IID∼ Beta(𝛼, 𝛽). The MoM estimators

𝛼̂n = X n

{
X n (1 − X n )

𝜎̂2
n

− 1

}
and 𝛽n = (1 − X n )

{
X n (1 − X n )

𝜎̂2
n

− 1

}
are consistent and AN.
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Asymptotic Properties of MoM Estimators
Theorem 9.12 (Consistency and Asymptotic Normality for MoM)

Let 𝜽̂n denote the method of moments estimator for parameter 𝜽, which true value is 𝜽0.
Suppose that E|X d

1 | < ∞ and t : Rd → Rd : 𝜽 ↦→
(
𝜇′1(𝜽), . . . , 𝜇′d (𝜽)

)⊺ is invertible on
U(𝝁′), which is some neighborhood of 𝝁′ =

(
𝜇′1(𝜽0), . . . , 𝜇′d (𝜽0)

)⊺.

(1) The MoM estimator 𝜽̂n exists with probability tending to 1 as n → ∞.

(2) If t−1 is continuous on U(𝝁′), then the MoM estimator is consistent: 𝜽̂n
P−−−−→

n→∞
𝜽0.

(3) If t−1 is continuously differentiable on U(𝝁′) such that det
[
∇(t−1) (𝝁′)

]
≠ 0, then

the MoM estimator is asymptotically normal:
√
n

(
𝜽̂n − 𝜽0

) D−−−−→
n→∞

Nd (𝟘, Σ), where

Σ = ∇(t−1) (𝝁′)E𝜽 [𝕐𝕐⊺]∇⊺ (t−1) (𝝁′), ∇(t−1) (𝝁) =
[
𝜕 (𝜇′j )

−1(𝝁)/𝜕𝜇k
]d ,d
j ,k=1, and

𝕐 = (X 1
1 , . . . ,X

d
1 )⊺.

• (3) ⇒ standard errors & confidence intervals ↔ an easier way: parametric bootstrap
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Maximum Likelihood
• The most common method for estimating parameters in a parametric model is the

maximum likelihood method

Definition 9.13
The likelihood function is defined by

Ln (𝜽) =
n∏

i=1

f (Xi ; 𝜽).

The log-likelihood function is defined by ℓn (𝜽) = logLn (𝜽).

• The likelihood function is just the joint density of the data, except that we treat it is
a function of the parameter 𝜽

• Thus, Ln : 𝚯 → [0,∞)
• The likelihood function is not a density function: in general, it is not true that Ln (𝜽)

integrates to 1 (with respect to 𝜽)
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Maximum Likelihood Estimator
Definition 9.14 (MLE)

The maximum likelihood estimator MLE, denoted by 𝜽̂n , is the value of 𝜽 that maximizes
Ln (𝜽).

• The maximum of Ln (𝜽) occurs at the same place as the maximum of ℓn (𝜽)

Example 9.15 (Maximum Likelihood Estimator for Alternative Distribution)

X1, . . . ,Xn
IID∼ Be(p). The PF is f (x ; p) = px (1 − p)1−x , x ∈ {0, 1}. Then,

Ln (p) =
n∏

i=1

f (Xi ; p) =
n∏

i=1

pXi (1 − p)1−Xi = p
∑n

i=1 Xi (1 − p)n−∑n
i=1 Xi .

Hence, ℓn (p) = (logp)∑n
i=1 Xi + {log(1 − p)}(n − ∑n

i=1 Xi ). Set 𝜕ℓn (p)/𝜕p
!
= 0. The

MLE is p̂n = X n .
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ML Estimator

Example 9.16 (Maximum Likelihood Estimator for Normal Distribution)

X1, . . . ,Xn
IID∼ N(𝜇, 𝜎2). Then,

Ln (𝜇, 𝜎2) = (2𝜋)−n/2(𝜎2)−n/2exp
{
− 1

2𝜎2

n∑︁
i=1

(Xi − X n )2
}
.

Set 𝜕ℓn (𝜇, 𝜎2)/𝜕 (𝜇, 𝜎2)⊺ !
= 𝟘2. The MLE is 𝜇n = X n and 𝜎̂2

n = n−1 ∑n
i=1(Xi − X n )2.
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ML Estimator (cont.)

Example 9.17 (Maximum Likelihood Estimator for Uniform Distribution – Hard)

X1, . . . ,Xn
IID∼ U(0, 𝜃). Then,

Ln (𝜃) = 𝜃−n𝟙{𝜃 ≥ X(n ) },

which is not differentiable w.r.t. 𝜃. However, it can be maximized and, thus, the MLE is
𝜃̂n = X(n ) ≡ max1≤i≤n {Xi }.
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ML Estimator (cont. II)

Example 9.18 (MLE in Exponential Model)

X1, . . . ,Xn
IID∼ Exp(𝜆). The MLE is 𝜆n = 1/X n .

Example 9.19 (MLE in Gamma Model – Reparametrized)

X1, . . . ,Xn
IID∼ Gamma(a , p). The MLE p̂n for the parameter p solves the non-linear

equation

logp̂n − Γ′(p̂n )
Γ(p̂n )

=
X n

n
√︁∏n

i=1 Xi
.

The MLE ân for the parameter a is ân = p̂n/X n .
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Properties of Maximum Likelihood Estimators

MLE is:
• consistent
• equivariant . . . 𝜽 { 𝜽̂n ↔ g (𝜽) { g

(
𝜽̂n

)
• asymptotically normal
• asymptotically optimal or efficient . . . roughly, this means that among all

well-behaved estimators, the MLE has the smallest variance, at least for large samples
• approximately the Bayes estimator
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Identifiability

Definition 9.20 (Identifiable Model)

We say that the model F is identifiable if 𝜽 ≠ 𝝑 implies that
∫

f (x ; 𝜽)log
(
f (x ;𝜽 )
f (x ;𝝑)

)
dx > 0.

• This means that different values of the parameter correspond to different distributions
• We will assume from now on the the model is identifiable
• Kullback–Leibler divergence D (f , g) :=

∫
f (x )log

(
f (x )
g (x )

)
dx . . . not a distance,

because it is not symmetric

• D (𝜽 , 𝝑) ≡
∫

f (x ; 𝜽)log
(
f (x ;𝜽 )
f (x ;𝝑)

)
dx

171 / 202



Asymptotic Properties of ML Estimators
Theorem 9.21 (MLE Consistency)
Let 𝜽0 be the true unknown value of 𝜽. Define

Mn (𝜽) =
1
n

n∑︁
i=1

log
f (Xi ; 𝜽)
f (Xi ; 𝜽0)

and M (𝜽) = −D (𝜽0, 𝜽). Suppose that

sup
𝜽∈𝚯

|Mn (𝜽) − M (𝜽) | P−−−−→
n→∞

0

and that, for every 𝜀 > 0,
sup

𝜽: ∥𝜽−𝜽0 ∥≥𝜀

M (𝜽) < M (𝜽0).

Then, the MLE 𝜽̂n for 𝜽 is consistent, i.e., 𝜽̂n
P−−−−→

n→∞
𝜽0.

172 / 202



Uniform Law of Large Numbers

• By LLN,

Mn (𝜽)
P−−−−→

n→∞
−D (𝜽0, 𝜽)

• However, we need ULLN (uniform law of large numbers)

sup
𝜽∈𝚯

|Mn (𝜽) − M (𝜽) | P−−−−→
n→∞

0

• This can be achieved by assuming a dominating integrable majorant d (x ), i.e.,����log
f (x ; 𝜽)
f (x ; 𝜽0)

���� ≤ d (x ) ∀𝜽 ∈ 𝚯 and E[d (X )] < ∞

• Additionally, we require that 𝚯 is compact and f (x ; 𝜽) is continuous in 𝜽 ∈ 𝚯 for
almost all x ’s
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Asymptotic Properties of ML Estimators (cont.)

Theorem 9.22 (MLE Equivariancy)

Let 𝝉 = g (𝜽) be a measurable function of 𝜽. Let 𝜽̂n be the MLE of 𝜽. Then, 𝝉̂n := g
(
𝜽̂n

)
is the MLE of 𝝉.

Example 9.23

X1, . . . ,Xn
IID∼ N(𝜃, 1). The MLE for 𝜃 is 𝜃̂n = X n . Let 𝜏 = exp{𝜃}, Then, the MLE for 𝜏

is 𝜏̂n = exp{X n }.
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Score and Information

Definition 9.24 (Score Function and Fisher Information)
The score function is defined to be

S (X ; 𝜽) = 𝜕logf (X ; 𝜽)
𝜕𝜽

.

The Fisher information is defined to be

In (𝜽) = Var𝜽

[
n∑︁

i=1

S (Xi ; 𝜽)
]
=

n∑︁
i=1

Var𝜽 [S (Xi ; 𝜽)] .

• For n = 1, we sometimes write I (𝜽) instead of I1(𝜽)
• S (X ; 𝜽) is a d-dimentional random vector
• In (𝜽) is a (d × d)-variate deterministic matrix
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Score and Information
Denote [·]⊗2 := [·] [·]⊺

Lemma 9.25 (Mean and Variance of Score)

E𝜽 [S (X ; 𝜽)] = 𝟘d and Var𝜽 [S (X ; 𝜽)] = E𝜽 [S ⊗2(X ; 𝜽)] .

Lemma 9.26 (Alternative Definition of Information)

In (𝜽) = nI (𝜽) and I (𝜽) = −E𝜽

[
𝜕2logf (X ; 𝜽)

𝜕𝜽⊺𝜕𝜽

]
.

Corollary 9.27 (Limiting Information)

1
√
n

n∑︁
i=1

S (Xi ; 𝜽)
D−−−−→

n→∞
Nd

(
𝟘d , I (𝜽)

)
.
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Asymptotic Normality of MLE
Theorem 9.28 (AN of MLE)
Let 𝜽0 be the true unknown value of 𝜽. Let the following regularity conditions hold:
(i) S(X ) does not depend on 𝜽;
(ii) 𝜽 ∈ int𝚯;
(iii) I (𝜽) is positive definite on some neighborhood of 𝜽0;
(iv) f (x ; 𝜽) is twice continuously differentiable w.r.t. 𝜽;
(v)

∫
𝜕
𝜕𝜽h (x ; 𝜽)d𝜈(x ) =

𝜕
𝜕𝜽

∫
h (x ; 𝜽)d𝜈(x ) for h (x ; 𝜽) = f (x ; 𝜽) and

h (x ; 𝜽) = 𝜕f (x ; 𝜽)/𝜕𝜽.
Then, the MLE 𝜽̂n for 𝜽 is asymptotically normal such that

√
n

(
𝜽̂n − 𝜽0

) D−−−−→
n→∞

Nd
(
𝟘d , I −1(𝜽0)

)
.

• Normal-based confidence intervals (d = 1) . . . Theorem 6.13
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MLE Examples

Example 9.29 (MLE in Special Case of Beta)

X1, . . . ,Xn
IID∼ f (x ; 𝜃) = 𝜃 (1 − x ) 𝜃−1𝟙{x ∈ (0, 1)} and 𝜃0 be the true unknown value of

the parameter 𝜃 > 1. Then,

√
n

(
𝜃̂n − 𝜃0

) D−−−−→
n→∞

N(0, 𝜃2
0).

Example 9.30 (MLE in Tied Normal)

X1, . . . ,Xn
IID∼ f (x ; 𝜃) = 𝜃 (1 − x ) 𝜃−1𝟙{x ∈ (0, 1)} and 𝜃0 be the true unknown value of

the parameter 𝜃 > 1. Then,

√
n

(
𝜃̂n − 𝜃0

) D−−−−→
n→∞

N
(
0, 2𝜃2

0/(2𝜃0 + 1)
)
.
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MLE Examples (cont.)

Example 9.31 (MLE in Bernoulli Model – Flipping the Coin)
Consider Example 9.15. Consequently,

S (X ; p) = X
p

− 1 − X
1 − p

and S ′(X ; p) = −X
p2 − 1 − X

(1 − p)2 .

Thus,

I (p) = 1
p (1 − p) and ŝe

(
p̂n

)
=

1√︁
In (p̂n )

=

√︄
X n (1 − X n )

n
.

An approximate 95% percent confidence interval is X n ± u.975ŝe
(
p̂n

)
.
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MLE Examples (cont. II)

Example 9.32 (MLE in Normal Model)

Consider Example 9.16, where 𝜎2 is known. The MLE of 𝜇 is 𝜇n = X n . Consequently,

S (X ; 𝜇) = X − 𝜇

𝜎2 and S ′(X ; 𝜇) = − 1
𝜎2 .

Thus,

I (𝜇) = 1
𝜎2 and ŝe

(
𝜇n

)
=

1√︁
In (𝜇n )

=

√︂
𝜎2

n
.

Thus, 𝜇n ≈ N(𝜇, 𝜎2/n) (informaly; for large n). The normal approximation is actually
exact, i.e., 𝜇n ∼ N(𝜇, 𝜎2/n).
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MLE Examples (cont. III)

Example 9.33 (MLE in Poisson Model)

X1, . . . ,Xn
IID∼ Po(𝜆), where 𝜆 > 0. The MLE of 𝜆 is 𝜆n = X n . Consequently,

S (X ;𝜆) = X
𝜆

− 1 and S ′(X ;𝜆) = −X
𝜆2 .

Thus,

I (𝜆) = 1
𝜆

and ŝe
(
𝜆n

)
=

1√︃
In (𝜆n )

=

√︄
X n

n
.

An approximate 95% percent confidence interval is X n ± u.975

√︃
X n/n .
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Multivariate Delta Method

Theorem 9.34 (Multivariate Delta Method)

If
√
n

(
𝕐n − 𝝁

) D−→ Nd (𝟘d , Σ), function g : Rd → Rk is continuously differentiable on the
neighborhood of 𝝁, and ∇g (𝝁) =

[
𝜕gj (𝝁)/𝜕𝜇ℓ

]k ,d
j ,ℓ=1, then

√
n

(
g (𝕐n ) − g (𝝁)

) D−−−−→
n→∞

Nk
(
𝟘k ,∇g (𝝁)Σ∇⊺g (𝝁)

)
.
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Delta Method and Approximate Normal-based
CIs

Example 9.35 (Flipping a Coin and Logit Transform)

Let us continue with Example 9.15. Consider the logit transform 𝜓 = g (p) = log p
1−p . The

MLE of p is p̂n = X n . The Fisher information function is I (p) = 1/(p (1 − p)). So, the

estimated standard error of the MLE p̂n is ŝe
(
p̂n

)
= 1√

In (p̂n )
=

√︃
p̂n (1−p̂n )

n . The MLE of 𝜓

is 𝜓n = log p̂n
1−p̂n

. Since g ′(p) = 1/(p (1 − p)), according to the delta method,

ŝe
(
𝜓n

)
= |g ′(p̂n ) |ŝe

(
p̂n

)
=

1√︁
np̂n (1 − p̂n )

.

An approximate 95% percent confidence interval is 𝜓n ± 2√
nX n (1−X n )

, because u.975 � 2.
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Transformations Using Delta Method

Example 9.36 (Relative Standard Error)

X1, . . . ,Xn
IID∼ N(𝜇, 𝜎2). Then, a relative dispersion can be characterized by the

se-to-mean ratio 𝜏 = g (𝜇, 𝜎) = 𝜎/𝜇. Here, the Fisher information matrix is

In (𝜇, 𝜎) =
[ n
𝜎2 0
0 2n

𝜎2

]
. Hence, its inverse becomes I −1

n (𝜇, 𝜎) = 1
n

[
𝜎2 0
0 𝜎2/2

]
. The

gradient of g is ∇g (𝜇, 𝜎) = [−𝜎/𝜇2, 1/𝜇]. Thus,

ŝe
(
𝜏̂n

)
=

√︃
∇g (𝜇n , 𝜎̂n )Î −1

n (𝜇n , 𝜎̂n )∇⊺g (𝜇n , 𝜎̂n ) =
1
√
n

√︄
1
𝜇4
n
+ 𝜎̂2

n

2𝜇2
n
.

An approximate 95% percent confidence interval is 𝜎̂n/𝜇n ± u.975ŝe
(
𝜏̂n

)
.
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Parametric Bootstrap

• For parametric models, SEs and CIs (and many more things) may also be estimated
using the bootstrap

• There is only one difference to the nonparametric bootstrap
• In the nonparametric bootstrap, we sampled X★

1 , . . . ,X
★
n from the empirical

distribution F̂n

• In the parametric bootstrap, we sample instead from f (x ; 𝜽̂n )
• Here, 𝜽̂n could be the MLE or the MoM estimator
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Parametric Bootstrap Example
Example 9.37 (Relative Dispersion via the SE-to-Mean Ratio)
Consider Example 9.36. To get the bootstrap standard error, simulate
X★

1 , . . . ,X
★
n ∼ N

(
𝜇n , 𝜎̂

2
n
)
, compute 𝜇★n = n−1 ∑n

i=1 X★
i and 𝜎̂2★

n = n−1 ∑n
i=1

(
X★

i − 𝜇★n
)2.

Then, calculate 𝜏̂★n = g
(
𝜇★n , 𝜎̂

2★
n

)
= 𝜇★n/𝜎̂2★

n . Repeating this B times yields bootstrap
replications

(1) 𝜏̂
★
n , . . . , (B ) 𝜏̂

★
n .

The estimated standard error becomes

ŝe★
(
𝜏̂n

)
=

√︄∑B
b=1

(
(b ) 𝜏̂

★
n − 𝜏̂n

)2
B

.

• The bootstrap is much easier than the delta method
• On the other hand, the delta method has the advantage that it gives a closed form

expression for the standard error
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Parametric Bootstrap vs Delta Method

Example 9.38 (Comparing Two Treatments)
n1 people are given Treatment 1 and n2 people are given Treatment 2. Let X1 be the
number of people on Treatment 1 who respond favorably to the treatment and let X2 be
the number of people on Treatment 2 who respond favorably. Assume that
X1 ∼ Bi(n1, p1), X2 ∼ Bi(n2, p2). Let 𝜓 = p1 − p2.
(a) Find the MLE of 𝜓.
(b) Find the Fisher Information Matrix I (p1, p2).
(c) Use the delta method to find the asymptotic standard error of 𝜓n .
(d) Suppose that n1 = n2 = 200, X1 = 160 and X2 = 148. Find 𝜓n . Find an approximate

90% confidence interval for 𝜓 using (i) the delta method and (ii) the parametric
bootstrap.
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Parametric Bootstrap vs Delta Method (cont.)

Example 9.39 (Comparing Two Treatments – Solution)

(a) The MLE is equivariant, so 𝜓n = p̂1 − p̂2 =
X1
n1

− X2
n2

, where n = n1 + n2.
(b) The probability mass function is

f ( [x1, x2];𝜓) = f1(x1; p1)f2(x2; p2) =
(
n1

x1

)
px1

1 (1 − p1)n1−x1

(
n2

x2

)
px2

2 (1 − p2)n2−x2 .

The log-likelihood is

ℓn = log{f ( [x1, x2];𝜓)} =
2∑︁

i=1

log
{(

ni

xi

)
+ xi logpi + (ni − xi )log(1 − pi )

}
.
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Parametric Bootstrap vs Delta Method (cont. II)

Example 9.40 (Comparing Two Treatments – Solution (cont.))
(b) Calculating the partial derivatives and their expectations

H11 =
𝜕2ℓn

𝜕p2
1

=
𝜕

𝜕p1

(
x1

p1
− n1 − x1

1 − p1

)
= − x1

p2
1
− n1 − x1

(1 − p1)2
,

EH11 = −E[x1]
p2

1
− E[n − x1]

(1 − p1)2
= −n1p1

p2
1

− n1(1 − p1)
(1 − p1)2

= − n1

p1(1 − p1)
,

H22 = − x2

p2
2
− n2 − x2

(1 − p2)2
, EH22 = − n2

p2(1 − p2)
, H12 =

𝜕2ℓn

𝜕p1𝜕p2
= 0, H21 = 0.

So, the Fisher information matrix is In (p1, p2) =
[

n1
p1 (1−p1 ) 0

0 n2
p2 (1−p2 )

]
.
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Parametric Bootstrap vs Delta Method (cont. III)

Example 9.41 (Comparing Two Treatments – Solution (cont. II))
(c) Using the multivariate delta method for g (𝜓) = p1 − p2, we obtain

∇g = [𝜕g/𝜕p1, 𝜕g/𝜕p2] = [1,−1]. The inverse of the Fisher information matrix is

I −1
n (p1, p2) =

[
p1 (1−p1 )

n1
0

0 p2 (1−p2 )
n2

]
.

Then, the estimated asymptotic standard error of 𝜓n becomes

ŝe
(
𝜓n

)
=

√︃
∇g (p̂1, p̂2)Î −1

n (p̂1, p̂2)∇⊺g (p̂1, p̂2) =

√︄
p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2
.

(d) Python code
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Parametric Bootstrap vs Delta Method in Python

1 import numpy as np
2 from scipy.stats import norm , binom
3

4 np.random.seed (2024)
5

6 n = 200
7 X1 = 160
8 X2 = 148
9

10 p1_hat = X1 / n
11 p2_hat = X2 / n
12 psi_hat = p1_hat - p2_hat
13

14 print("Estimated psi: \t %.3f" % psi_hat)
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Parametric Bootstrap vs Delta Method in
Python (cont.)

1 # Confidence using delta method
2

3 z = norm.ppf (.95)
4

5 se_delta = np.sqrt(p1_hat * (1 - p1_hat)/n + p2_hat * (1 - p2_hat) / n)
6 confidence_delta = (psi_hat - z * se_delta , psi_hat + z * se_delta)
7

8 print("90%% confidence interval (delta method): \t %.3f, %.3f" %
confidence_delta)
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Parametric Bootstrap vs Delta Method in
Python (cont. II)

1 # Confidence using parametric bootstrap
2

3 B = 1000
4 xx1 = binom.rvs(n, p1_hat , size=B)
5 xx2 = binom.rvs(n, p2_hat , size=B)
6 t_boot = xx1 / n - xx2 / n
7

8 se_bootstrap = t_boot.std()
9 confidence_delta = (psi_hat - z * se_bootstrap , psi_hat + z *

se_bootstrap)
10

11 print("90%% confidence interval (parametric bootstrap): \t %.3f, %.3f" %
confidence_delta)

𝜓n � 0.060, C delta
n (90%) = (−0.009, 0.129), C parboot

n (90%) = (−0.008, 0.128)
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Computing Maximum Likelihood Estimates

• In some cases, we can find the MLE 𝜽̂n analytically
• More often, we need to find the MLE by numerical methods, cf. Example 9.19
• Two iterative methods – NR & EM – that produce a sequence of values

𝜽 (0) , 𝜽 (1) , 𝜽 (2) , . . ., which, under ideal conditions, converge to the MLE 𝜽̂n

• In each case, it is helpful to use a good starting value 𝜽 (0)

• Often, the MoM estimator is a good starting value
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Newton-Raphson Algorithm
• Expand the derivative of the log-likelihood around 𝜃 (j ) :

0 = ℓ′n (𝜃̂n ) ≈ ℓ′n (𝜃 (j ) ) + (𝜃̂n − 𝜃 (j ) )ℓ′′n (𝜃 (j ) )

• Solving for 𝜃̂n gives

𝜃̂n ≈ 𝜃 (j ) − ℓ′n (𝜃 (j ) )
ℓ′′n (𝜃 (j ) )

• This suggests the following iterative scheme

𝜃 (j+1) := 𝜃 (j ) − ℓ′n (𝜃 (j ) )
ℓ′′n (𝜃 (j ) )

• In the multiparameter case,

𝜽 (j+1) = 𝜽 (j ) − H −1∇ℓn (𝜽 (j ) ),

where H is the matrix of second derivatives (Hessian matrix) of the log-likelihood
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Expectation-Maximization Algorithm

• Suppose we have data Y whose density f (y ; 𝜽) leads to a log-likelihood that is hard
to maximize

• But suppose we can find another random variable Z such that
f (y ; 𝜽) =

∫
f (y , z ; 𝜽)dz and such that the likelihood based on f (y , z ; 𝜽) is easy to

maximize
• In other words, the model of interest is the marginal of a model with a simpler

likelihood
• In this case, we call Y the observed data and Z the hidden (or latent or missing) data
• If we could just “fill in” the missing data, we would have an easy problem
• Conceptually, the EM algorithm works by filling in the missing data, maximizing the

log-likelihood, and iterating
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EM Algorithm

The idea is to iterate between taking an expectation then maximizing

(0) Pick a starting value 𝜽̂
(0)
n and repeat:

(1) [The E-step]: Calculate

J (𝜽 |𝜽 (j ) ) = E𝜽 (j )

[
log

f (𝕐,ℤ; 𝜽)
f (𝕐,ℤ; 𝜽 (j ) )

���𝕐 = 𝕪

]
The expectation is over the missing data ℤ treating 𝜽 (j ) and the observed data 𝕐 as
fixed

(2) [The M-step]: Find 𝜽 (j+1) ) to maximize J (𝜽 |𝜽 (j ) )

The EM algorithm always increases the likelihood, that is, Ln
(
𝜽 (j+1) ) ≥ Ln

(
𝜽 (j ) )
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Agenda

10. Hypothesis Testing
10.1 Null Hypothesis and Alternative
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The End
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