NMFM401 – Mathematics of Non-Life Insurance 1

2. Severity II – Models for the Amount of a Single Payment

A Exercises

1. The amount of a single claim has a Pareto distribution with pdf

$$f(x; \alpha, \theta) = \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}}, \quad x > \theta, \, \alpha > 0, \, \theta > 0$$

and $\alpha = 2$ and $\theta = 2,000$. Determine the loss elimination ratio for a deductible of 500.

2. The distribution of losses for claims in 2012 has a discrete distribution with

$$\mathbb{P}[X = 1,000k] = 1/6, k = 1,\dots, 6.$$

The insurance contract calls for a deductible of 1,500 on each loss. Inflation of 5% impacts all claims uniformly from 2012 to 2013. The deductible remains at 1,500 in 2013. Determine the percentage increase in expected payments per loss from 2012 to 2013.

- **3.** A random sample of auto glass claims has yielded the following five observed claims amounts: 100, 125, 200, 250, and 300. Determine the value of the empirical mean excess loss function at x = 250.
- 4. It has been conjectured that losses have a Pareto distribution with parameters $\alpha = 2$; $\theta = 1,000$ and pdf

$$f(x;\alpha,\theta) = \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}, \quad x > 0, \, \alpha > 0, \, \theta > 0.$$

A random sample of size 10 produced 3 losses in the range 0 - 250, 2 in the range 250 - 500, 3 in the range 500 - 1,000, and 2 above 1,000. Perform the chi-square goodness-of-fit test with a significance level of 0.10. [Do not require that expected counts be at least 5.]

5. Given sample values of 0.1, 0.4, 0.8, 0.8, and 0.9 you wish to test the goodness of fit of the distribution with pdf f(x) = (1 + 2x)/2, $0 \le x \le 1$. Determine the Kolmogorov-Smirnov test statistic and conduct the test at 5% significance level.

B Homework

1. The distribution of losses for claims in 2012 is lognormal with pdf

$$f(x;\mu,\sigma) = \frac{\exp\{-z^2/2\}}{x\sqrt{2\pi\sigma^2}}, \quad z = \frac{\log x - \mu}{\sqrt{\sigma^2}}, \quad x > 0, \, \mu \in \mathbb{R}, \, \sigma^2 > 0$$

and $\mu = 10$ and $\sigma^2 = 5$. From 2012 to 2013, an inflation rate of 10% impacts all claims uniformly. The insurer has purchased reinsurance that pays the excess over 2,000,000 on any claim. Determine the insurer's expected payment per loss for 2013.

- **2.** Claim amounts in 2012 have the normal distribution with $\mu = 1,000$ and $\sigma^2 = 10,000$. Inflation of 5% impacted all claims uniformly from 2012 to 2013. Determine the distribution for claim amounts in 2013.
- **3.** For 2012, loss sizes follow a uniform distribution on [0; 2,500]. Inflation of 3% impacts all losses uniformly from 2012 to 2013. In 2013 a deductible of 100 is applied to all losses. Determine the loss elimination ratio for 2013.

Pyments	Number	Average
0 - 2,500	41	1,389
2,500 - 7,500	48	4,661
7,500 - 12,500	24	9,991
$12,\!500 - 17,\!500$	18	$15,\!482$
17,500 - 22,500	15	20,232
22,500 - 32,500	14	$26,\!616$
32,500 - 47,500	16	40,278
47,500 - 67,500	12	$56,\!414$
$67,\!500 - 87,\!500$	6	74,985
$87,\!500 - 125,\!000$	11	$106,\!851$
$125,\!000 - 225,\!000$	5	184,735
225,000 - 300,000	4	$264,\!025$
at 300,00	3	300,000

4. It has been conjectured that general liability payments (300,000 limit) have a lognormal distribution with ML estimates $\hat{\mu} = 9.29376$ and $\sqrt{\hat{\sigma}^2} = 1.62713$. Amounts paid from policies are listed in the table below:

Perform the chi-square goodness-of-fit test to determine if the lognormal model is appropriate.

5. In Homework 1.B.6. a gamma distribution with ML estimates $\hat{\alpha} = 6.341$ and $\hat{\theta} = 599.3$ was fitted to the data. Use the Kolmogorov-Smirnov test to determine if the gamma model is reasonable.

(Version: October 15, 2014)

Source

 Klugman, Stuart A., Panjer, Harry H., and Willmont, Gordon E. Loss Models: From Data to Decisions. John Wiley & Sons, Inc., New York, NY, 4th Edition, 2012.