NMFM401 – Mathematics of Non-Life Insurance 1

1. Severity I – Models for the Amount of a Single Payment

A Exercises

- 1. The cdf of a random variable is $F(x) = 1 x^{-2}$, $x \ge 1$. Determine the mean, median, and the mode of this random variable.
- 2. The severities of individual claims have the Pareto distribution with pdf

$$f(x;\alpha,\theta) = \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}, \quad x \ge 0, \, \alpha > 0, \, \theta > 0$$

and parameters $\alpha = 8/3$ and $\theta = 8,000$. Use the CLT to approximate the probability that the sum of 100 independent claims will exceed 600,000.

- **3.** A sample of 1,000 health insurance contracts on adults produced a sample mean of 1,300 for the annual benefits paid with a standard deviation of 400. It is expected that 2,500 contracts will be issued next year. Use the CLT to estimate the probability that benefit payments will be more than 101% of the expected amount.
- 4. A population of losses has the Pareto distribution with $\theta = 6,000$ and $\alpha > 0$ unknown. Simulation of the results from maximum likelihood estimation based on samples of size 10 has indicated $\mathbb{E}\hat{\alpha} = 2.2$ and $MSE(\hat{\alpha}) = 1$. Determine $\mathbb{V}ar\,\hat{\alpha}$ if it is known that $\alpha = 2$.
- **5.** Let X_1, \ldots, X_n be a random sample from a population with cdf $F(x) = x^p \mathbf{1}_{(0,1)}(x)$.
 - (a) Determine the MLE of p.
 - (b) Determine the MoM estimate of p.
 - (c) Determine the asymptotic variance of the maximum likelihood estimator of p.
 - (d) Use your answer to obtain a general formula for a 95% confidence interval for p.
 - (e) Determine the maximum likelihood estimator of $\mathbb{E}X$ and obtain its asymptotic variance and a formula for a 95% confidence interval.
- 6. A random sample of claims has been drawn from a loglogistic distribution with pdf

$$f(x;\gamma,\theta) = \frac{\gamma(x/\theta)^{\gamma}}{x[1+(x/\theta)^{\gamma}]^2}, \quad x \ge 0, \, \gamma > 0, \, \theta > 0.$$

In the sample, 80% of the claims exceed 100 and 20% exceed 400. Estimate the loglogistic parameters by percentile matching.

B Homework

- 1. There have been 30 claims recorded in a random sampling of claims. There were 2 claims for 2,000, 6 for 4,000, 12 for 6,000, and 10 for 8,000. Determine the empirical skewness coefficient.
- 2. The severity distribution of individual claims has pdf $f(x) = 2.5x^{-3.5}, x \ge 1$. Determine the coefficient of variation.
- **3.** A sample of size 500 has been taken from a continuous distribution. A confidence interval for the median is formed by using the order statistics $X_{(240)}$ a $X_{(260)}$. Use the normal approximation to determine the level of confidence. [Hint: Approximate the binomial distribution by the normal one.]

- **4.** Six independent observations, X_1, \ldots, X_6 , were obtained. The variance was estimated as $\hat{\sigma}^2 = \sum_{j=1}^6 (X_j \bar{X})^2/6$ with $\bar{X} = \sum_{j=1}^6 X_j/6$. The true population variance is $\sigma^2 = 2$. Determine the bias of $\hat{\sigma}^2$.
- **5.** Let X_1, \ldots, X_n be a random sample from a population with pdf $f(x) = \theta^{-1} \exp\{-x/\theta\}, x \ge 0, \theta > 0.$
 - (a) Determine the MLE of θ .
 - (b) Determine the asymptotic variance of the maximum likelihood estimator of θ .
 - (c) Use your answer to obtain a general formula for a 95% confidence interval for θ .
 - (d) Determine the maximum likelihood estimator of $\mathbb{V}ar X$ and obtain its asymptotic variance and a formula for a 95% confidence interval.
- 6. A random sample of 10 claims obtained from a gamma distribution with pdf

$$f(x;\alpha,\theta) = \frac{(x/\theta)^{\alpha} \exp\{-x/\theta\}}{x\Gamma(\alpha)}, \quad x > 0, \, \alpha > 0, \, \theta > 0$$

is given: 1,500; 6,000; 3,500; 3,800; 1,800; 5,500; 4,800; 4,200; 3,900; 3,000.

- (a) Estimate α and θ by the MoM.
- (b) Suppose it is known that $\alpha = 12$. Determine the MLE of θ .
- (c) Determine the MLE of α and θ .
- 7. The random variable X has pdf $f(x; \alpha, \lambda) = \alpha \lambda^{\alpha} (\lambda + x)^{-\alpha 1}, x \ge 0, \alpha > 0, \lambda > 0$. It is known that $\lambda = 1,000$. You are given the following five observations: 43, 145, 233, 396, 775.
 - (a) Determine the MoM estimate of α .
 - (b) Determine the MLE of α .
 - (c) Estimate the variance of the MLE.
 - (d) Use the estimated variance from above to construct a 95% confidence interval for $\mathbb{E}\min\{X, 500\}$.

(Version: October 1, 2014)

Source

 Klugman, Stuart A., Panjer, Harry H., and Willmont, Gordon E. Loss Models: From Data to Decisions. John Wiley & Sons, Inc., New York, NY, 4th Edition, 2012.