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Abstract. Equivalent martingale measures are of key importance for pricing

of complex derivative contracts. The goal of the paper is to apply infinitesimals

in the non-standard analysis set up to provide an elementary construction of

the equivalent martingale measure built on hyperfinite binomial trees with

infinitesimal time steps.

1. Introduction

A martingale is a stochastic process M(t) such that M(0) = E[M(t)] for every
t. If M(t) = f(t)

g(t) is a ratio of prices of a new derivative and of a positively valued
derivative we already know how to price (numeraire) and if M(t) is a martingale
then f(0) can be obtained as g(0) · E

[
f(T )
g(T )

]
as long as we are able to calculate

analytically or numerically the expected value at certain future time T . The time
T is typically the expiration time of a European type derivative when the value
simply equals to the payoff of the derivative. The most popular numeraire is the
time t market value P (t, T ) of the unit zero coupon bond maturing at time T . The
main advantage is that if M(t) = f(t)

P (t,T ) is a numeraire then f(0) = P (0, T )·E[f(T )]
since P (T, T ) = 1. The numeraire is in particular useful for valuation of interest
rate derivatives where we simple must work with the fact that interest rates are
stochastic (not constant as in the basic Black-Scholes model). Nevertheless it is
clear that the fraction will rarely be a martingale in the real financial world where
investors require higher return for higher risk. If we were able to adjust the measure
under which the expected values are taken so that the process becomes a martingale
then there is a chance that the valuation could be realized.

The equivalent martingale measure theorem provides exactly what we need. It
says roughly speaking that if g(t) is a numeraire, i.e. a stochastic process attaining
positive values and modelling prices of a derivative security, then there is a measure
Q equivalent to the original measure P such that M(t) = f(t)

g(t) is a martingale with
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respect to Q. In the context of the pricing method explained above this is the
key result for valuation of various derivative contracts like interest rate, quanto, in
arrears etc. (see Hull (2006)).

The theorem is often applied and even heuristically proven without mentioning
rigorous foundations of stochastic processes like σ-algebras, filtrations, etc. The
standard mathematical theory behind the technique is indeed quite technically dif-
ficult. It should be noted that the famous Black-Scholes formula has been discovered
using heuristic arguments without the modern rigorous theory of stochastic pro-
cesses. The stochastic theory has been developed ex post partially in order to give
a precise foundation to the Black-Scholes theory. We are going to built equivalent
martingale measures in an elementary set up on hyperfinite binomial trees apply-
ing the methods of Cox, Ross, and Rubinstein (1979) but with infinitesimal time
steps. We follow the paper of Cutland, Kopp, and Willinger (1991) but generalize
the approach to a general numeraire with mutiple sources of uncertainty and also
simplify the construction eliminating the notion of filtration building the processes
step-by-step on binomial trees. We believe that the approach provides an intu-
itive framework on which further modelling concepts like processes with stochastic
volatility could be easily built.

The set of real numbers can be extended with infinitesimals satisfying most of
their intuitive properties using a technique discovered by A.Robinson (1961). The
field of mathematics is called Non-Standard Analysis (NSA). It allows for example
to differentiate and integrate using infinitesimals in an intuitive manner, but com-
pared to the historical critism on rigorous foundations within Zermelo-Fraenkel Set
Theory with the Axiom of Choice. The probability theory has been in particular de-
veloped by P.Loeb (1975) and foundation of stochastic processes with infinitesimals
were given by Anderson (1976) and J.Keisler (1984). The elementary Brownian mo-
tion is in the standard approach constructed as a limit of approximating random
processes. This approach makes undestanding of this basic stochastic process quite
difficult. On the other hand with infinitesimals we can define the Brownian motion
sequentially step by step “tossing a coin” to go up or down in line with our intu-
ition. The result will be not an approximation but a perfect Browninan motion if
infinitesimal time steps are used. This allows us to model similarly step by step
financial processes like stock price development, trading, or hedging strategies in a
way close to the financial markets reality.

The first application of this approach to derivetives pricing was given by Cutland,
Kopp, and Willinger (1991). The paper gives a nonstandard proof of the classical
Black-Scholes result and nonstandard treatment of self-financing hedging strategies.
In subsequent papers Cutland, Kopp, and Willinger (1995) focus rather on the issue
of (D2) convergence of finite Cox-Ross-Rubinstein approximations. The technique
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is applied to some particular derivative pricing problems like pricing of options with
underlying assets following a Poisson jump process (1993) or to Snell envelopes for
pricing of American put options (with Wyman (1997)).

We will extend the construction of a hyperfinite Cox-Ross-Rubinstein binary tree
to the case of derivatives with multiple sources of uncertainty and with stochastic
drift and volaitilties. We will use an intuitive technique building the processes
step-by-step on hyperfinite trees that allows us to eliminate the notion of filtration.

2. Nonstandard analysis - an overview

For a detailed overview of NSA see for example Hurd and Loeb (1985) or the
elementary textbook by Keisler (2000). Let us however review the basic principles.

There is (in the universe of sets with Axiom of Choice) an extension ∗R of the
real line R with a number of properties outlined below. The extension ∗R includes
elements defined as non-zero ”infinitesimals” (x ∈∗ R satisfying |x| < ε for all
ε > 0 in R) and their ”infinite” multiplicative inverses. The extension itself is not
unique: ∗R can, for example, be defined as an ultrapower RN/U of the reals by
any non-principal ultrafilter U on N (i.e. a collection of subsets of N closed under
intersections and supersets, containing no finite sets, and such that for any A ⊆ N ,
either A or N − A belongs to U .) The existence of such ultrafilters is equivalent
to the Axiom of Choice. What is important here is that the arithmetical and order
operations valid in R extend to ∗R: the tuple (∗R; +;×;<) is an ordered field.

For any set S the superstructure V (S) over S is defined as V (S) = ∪∞n=0Vn(S);
where V0(S) = S; and

Vn+1(S) = Vn(S) ∪ P(Vn(S )) (n ∈ N )

This construction can be applied to R as well as to ∗R. The superstructures V =
V (R) and V (∗R) are connected by a map ∗ : V (R)→ V (∗R) which associates with
each object A ∈ V (R) its nonstandard extension ∗A ∈ V (∗R). The nonstandard
universe (whose members are known as the internal sets) is given by

∗V = {x : x ∈ ∗A for some A ∈ V } = ∪∞n=0
∗Vn(R)

The Transfer Principle states that any bounded quantifier statement holds in V iff it
holds in ∗V . (A bounded quantifier statement is a mathematical statement which
can be written so that all quantifiers range over prescribed sets. This includes
most statements used in practice.) This principle enables us to “switch” from
the “standard world” V to internal objects (elements of ∗V ) in “the non-standard
world” and back again: in proofs we can therefore “translate” a statement into the
language of internal sets, manipulate it within ∗V and then translate the results
into the context of V . Note that not all sets in ∗V (R) are internal. For example R
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itself cannot be internal since it is a bounded subset of ∗R yet it does not have any
supremum. The sets that are not internal are called external. One has to be carefull
working with external sets when the transfer principle is applied. For development
of nonstandard probability theory we also need the ω1-saturation principle to hold.
If (An)n∈N is a decreasing sequence of nonempty internal sets then their intersection
is nonempty as well, ∩n∈NAn 6= ∅. Regarding infinitesimal analysis we will follow
the basic notation used by Robinson (1961) but will try to recall the definitions
and basic theorems whenever needed.

The advantage of NSA is that objects can be built using infinitesimally small
or infinitely large numbers. The objects can then be lifted back to the “normal”
mathematical world if needed. Many papers have been devoted to various lift-
ing techniques. However this effort might be considered as anachronism from the
perspective of applications or our understanding to the real world. If our objects
constructed in ∗V (R) provide a reasonable and applicable model of the investigated
reality then why should we lift it back to the standard universe V (R)? Hence we
will focus more on understanding and applicability of our constructions and will
not care too much whether the results and objects can be translated back into the
fully standard set-up.

3. Infinitesimal Stochastic Calculus

We will built stochastic processes on hyperfinite binomial trees. Let T > 0
be a given terminal time and H ∈ ∗N − N infinite. We set δt = T

H to be our
elementary infinitesimal time step and T = {0, δt, 2 · δt, ..., H · δt = T} to be our
hyperfinite time line. We reserve δt for that particular infinitesimal time step.
On the other hand by dt we will mean a general infinitesimal time step, possibly
δt, but sometimes its infinite multiple, yet still infinitesimally small. While in
NSA literature the stochastic processes are built on the space {−1,+1}T of paths
of lengths T throughout the hyperfinite binomial tree we will rather use the set
T = {−1,+1}≤T = ∪t∈T{−1,+1}T∩(0,t] corresponding to individual nodes of the
tree. For ω ∈ T we denote t(ω) to be the length of ω, i.e. t(ω) = max(dom(ω)) ∈ T

if ω is nonemepty, and 0 if ω is empty (i.e. if it is the root). The nodes with length
t(ω) branch into two subsequent nodes ω_{+1} and ω_{−1}. For a t ∈ T it will
be useful to set T (t) = {ω ∈ T : t(ω) = t} and T (< t) = {ω ∈ T : t(ω) < t} If
τ < t(ω) then we denote ω � τ = ω � (T ∩ (0, τ ]) to be the trucated path of length
τ ∈ T.

In general we are going to study stochastic processes modelled by internal func-
tions X : T → ∗R. For ω ∈ T the value X(ω) naturally depends only on the
information encoded in ω up to the time t(ω) and we do not have to bother with
filtrations to take care of the issue of anticipation. Sometimes for τ ≤ t(ω) we will
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use the notation X(ω, τ) instead of X(ω � τ). If ω ∈ T (T ) then 〈X(ω, t) for t ∈ T〉
is a realization of the stochastic process x corresponding to the path ω. On the
other hand for a t ∈ T we denote X(t) or Xt to be the random variable X(ω, t)
with ω ∈ T (t).

Of course we are interested in processes that are generated by a law applied step-
by-step throughout the binomial trees. Building a stochastic process we start with
an initial value assigned to the root X(∅) = X0. For each already calculated X(ω)
of length smaller than T we define X(ω_{+1}) = Xu(ω) and X(ω_{−1}) = Xd(ω)
on the subsequent nodes. Hence the two values +1 and −1 correspond to the coin
tossing random element. The up and down values Xu(ω) and Xd(ω) are generally
(internal) functions of the values of X along ω or of values of other stochastic
processes up to time t = t(ω), in most cases just of the values X(ω) and t(ω).

The most wellknown process is the Brownian motion first constructed using NSA
infinitesimals by Anderson (1976). The original idea of Brown as well as the first
applications of Bacheliur and Einstein were in fact based on the intuitive notion of
infinitesimals. Set Z(∅) = 0 and Z(ω_{j}) = Z(ω) + j ·

√
δt where j = +1,−1.

Consequently Z(ω) =
∑
s∈T∩(0,t(ω)] ω(s)

√
δt. It will be useful to denote δZ = j

√
δt

for j = +1,−1. Then any stochastic process X : T → ∗R can be in fact expressed
by the equation δX(ω) = a(ω)δt+b(ω)δZ where δX = X(ω_{j}−X(ω) describing
how to generate its values from the initial one X(∅) = X0. The (internal) functions
a, b : T (< T )→ ∗R can be obtained solving for every ω the two equations with two
unknowns:

X(ω_{+1})−X(ω) = a(ω)δt+ b(ω)
√
δt, and

X(ω_{−1})−X(ω) = a(ω)δt− b(ω)
√
δt.

So far we did not need any probability measure, but to characterize distribution
of of the process Z or X we need to introduce one. The advantage of the hyperfinite
probability theory is that any probability measure P on a hyperfinite space Ω is
given by elementary probabilities on individual scenarious ω ∈ Ω. The probability
measure is then in a straightforward manner defined on all internal subsets of Ω
and can be extended using Caratheodory theorem and the ω1-saturation principle
(see Loeb (1975)) to a standard measure denoted L(P ) which is σ-complete and
takes standard values in R+

0 .

In the case of hyperfinite binomial trees in line with our intuition it is enough to
specify the branching probabilities on T (< T ). I.e. if an internal function specifies
for every ω ∈ T (< T ) the probability p+1(ω) of the process to go up, and if we set
p−1(ω) = 1 − p+1(ω) to be the complementary down/branching probability, then
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Figure 1. Binomial branching probabilities

we can define the elementary probability for every ω ∈ T with t = t(ω) setting

p(ω) =
∏

s∈T∩[0,t)

pω(s)(ω).

Equivalently the measure can be specified by an internal function p : T (T ) →
∗R+

0 such that
∑
ω∈T (T ) p(ω) = 1. Then for t < T, t ∈ T we can extend the

probability on any ω ∈ T (t) setting

p(ω) =
∑

ω′∈T (T ), ω′�t=ω

p(ω′).

The corresponding branching probabilities can be defined by the equation p+1(ω) =
p(ω_{+1}

p(ω) for ω ∈ T (< T ). Consequently any measure on T is given by a branching
probability function. The basic measure on T is the uniform counting measure
corresponding to constant branging probabilities equal to 1

2 . Then p(ω) = 2−H =
1
|T | for every ω ∈ T (T ). It can be shown (Anderson (1975)) that with respect
to this measure the process Z has the properties of a Brownian motion, or more
precisely that the lifted process z(ω, ot) = oZ(ω � t), ω ∈ T (T ) satisfies the classical
conditions put on a Brownian motion.1

The key property we need to verify is that the increments Z(ω1) − Z(ω0) are
normally distributed, where ω0 fixed and ω1 such that ω1 � t(ω0) = ω0. This
easily follows from a hyperfinite version of the Central Limit Theorem (see Cutland
(1991)) which will also serve as our key tool. The theorem is obtained simply
applying the transfer principle to the classical Central Limit Theorem.

Theorem 3.1. Let {Xn : n ≤ M} with M ∈ ∗N − N be an internal sequence
of ∗-independent random variables on a hyperfinite probability space {Ω, P} with a
common distribution function F that has mean 0 and standard deviation 1. Then
the variable

X =
1√
M

M∑
n=1

Xn

1We say that x and y in ∗R are infinitesimally close x ≈ y if x − y is infinitesimal. We say that
x ∈ ∗R is finite if |x| < n for some n ∈ N. It can be easily shown that for every finite x ∈ ∗R
there is unique number r ∈ R such that x ≈ r. The number, which can be viewed as a result
of infinitesimal rounding to the nearest standard number, is called the standard part of x and
denoted ox = st(x).

We say that a function F : T → ∗R is S-continuous if F (x) ≈ F (y) whenever x ≈ y. It can be
shown that for almost all ω ∈ T (T ) with respect to the Loeb measure the functions Z(ω, ·) are
S-continuous. Hence for almost all ω the definition of z(ω, t) is correct.
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is normally distributed in the sense that P [X ≤ x] ≈ ∗ψ(x) for any x ∈ ∗R where

ψ(x) =
1√
2π

∫ x

−∞
e−

x2
2 dx

is the cumultive standardized normal distribution function.

In the case of (Anderson’s) Brownian motion the theorem can be directly applied
to the independent incremental random variables Xn = +1 or −1 with probabilities
1
2 . It follows that the variable z on T (T ) which can be expressed as

Z =
H∑
n=1

√
δtXn = T · 1√

H

H∑
k=1

Xk

has the normal distribution (up to an infinitesimal error) with mean 0 and variance
T. Moreover if for a given infinitesimal dt being an infinite multiple of δt and for
a given ω ∈ T (< T ) we set dz = dz(ω′) = Z(ω_ω′) − Z(ω) for ω′ of length dt

then dz is also normally distributed with mean 0 and variance dt but in this case
up to an error of order o(dt). 2 Consequently we have a nutural interpretation of
stochastic equations of the form

dx = a · dt+ b · dz

with a, b being finite constants or reasonable functions depending on x and t (Itô’s
processes). The process can be exactly defined on the elementary time step level by
the equation δx = a·δt+b·δz and at the same time we can say that dx = a·dt+b·dz
with an error of o(dt). It is useful to prove the following lemma which says that
when building step-by-step a stochastic process errors of the order o(1)δt+O(

√
δδZ

where O(
√
δ is a reasonable function do not matter.

Lemma 3.2. Let X : T → ∗R be a stochastic process such that X(∅) ≈ 0 and
δX(ω) = a(ω)δt+b(ω)δZ where a(ω) ≈ 0 for all ω and b has the form b = b(x, t) =
β(x, t)

√
δt with β(x, t) Lipschitz continuous in x and t. 3 Then X ≈ 0 for any a.s.

on T with the uniform measure. Moreover if b = b(ω) = o(
√
δt) then X(ω) ≈ 0 for

all ω ∈ T .

Proof. (1) Let us assume that X satisfies the equation δX(ω) = a(ω)δt with a(ω) ≈
0 for all ω. If ε = maxω∈T |a(ω)| then ε ≈ 0 as the maximum is attained by an ω

and so

|X(ω)| ≤ |X(∅)|+
∑

s<t(ω),s∈T

|δ(ω � s)| ≤ |X(∅)|+ t(ω)
δt

ε · δt ≈ 0.

2We say that a number x is of order o(y) if y 6= 0 and x
y

is infinitesimal. We say that x is of order

O(y) if y 6= 0 and x
y

is finite.
3I.e. there is a constant c so that |β(x2, t2)−β(x1, t1)| ≤ c(|x2−x1|+|t2−t1|) for any x1, x2, t1, t2.
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(2) Let us assume that X satisfies δX = b · δZ where b ≈ 0 is a constant. Then
X(ω) = X(∅) + b · Z(ω) and so X ≈ 0 a.s.

(3) Let us now assume that δX = b·δZ where b(ω) ≈ o(
√
δt). If ε = maxω∈T | b(ω)√

δt
|

then ε ≈ 0 and |X(t)| ≤ |X(∅)|+ ε ·
√
δt ·
√
δt · tδt ≈ 0.

(4) Let δX(ω) = β(t(ω))
√
δtδZ where β(t) is a Lipschitz continuous function on

[0, T ]. Then for every n ∈ N there is a finite division of the interval [0, T ] and a
corresponding piecewise function βn(t) approximating β(t) so that |βn(t)−β(t)| ≤ 1

n

for every t. The process Xn defined by setting Xn(∅) = X(∅) and δXn = βn(t)
√
δt ·

δZ can be expressed as a finite composition of Brownian motions with infinitesimal
multipliers. Consequently according to (2) Xn ≈ 0 a.s. Let An = {ω ∈ T :
Xn(ω) 6≈ 0}. Then ∪n∈NAn has measure zero and for ω ∈ T − ∪n∈NAn we have
|Xn(ω)−X(ω)| ≤ t

n for every n ∈ N and so X(ω) ≈ 0.
(5) Finally to prove the main statement of the Lemma decompose X into its

deterministic and stochastic part. All we need to prove is that the stochastic part
is infinitesimally small a.s. So assume that X(∅) = 0 and δX = β(X, t)

√
δt · δZ.

Let X0 be the process defined by X0(∅) = 0 and δX0 = β(0, t)
√
δt · δZ. According

to (4) X0 ≈ 0 a.s. Let us set Y = X − X0 and prove that Y ≈ 0. We know that
Y (∅) = 0, δY = (β(X0 +Y, t)−β(0, t))

√
δt ·δZ, and so |δY | ≤ c(|X0|+ |Y |)δt by the

Lipschitz continuity of β. Let ω ∈ T be such that X0(ω, t) ≈ 0 for every t ∈ T. Set
ε = maxt∈T |X0(ω, t)| ≈ 0. Then we may estimate inductively Yk = Y (ω � (k · δt))
inductively for k = 1, . . . ,H by

|Yk| ≤ |Yk−1|+ (ε+ |Yk−1|)(c · δt).

Consequently

|Yk| ≤ c · ε · δt
k−1∑
j=0

(k − j)(c · δt)k ≤ c · ε · k · δt
k−1∑
j=0

(c · δt)k = c · ε · t1− (c · δt)k

1− (c · δt)
≈ 0

�

Corollary 3.3. If X and Y are two stochastic processes such that X(∅) ≈ Y (∅)
and D = X − Y satisfies δD = o(1)δt + o(

√
δt)δZ then X ≈ Y. If δD = o(1)δt +

b(D, t)
√
δt · δZ with b Lipschitz continuous in the two variables then X ≈ Y a.s.

4. Change of measure

Let us firstly investigate what happens with the mean, variance, and the prob-
ability distribution of the Brownian motion Z when the uniform branching proba-
bility p+1 = 1

2 is changed to 1
2 + δp for a δp ≈ 0. The expected value and variance

of δZ under the new measure Q is

EQ[δZ] = (
1
2

+ δp) ·
√
δt+ (

1
2
− δp) · (−

√
δt) = 2δp

√
δt,
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V arQ[δZ] = EQ[δZ2]−EQ[δZ]2 = (
1
2

+δp)·δt+(
1
2
−δp)·δt−4δp2 ·δt = δt(1−4δp2).

If δp is constant then the random variable Z(T ) − Z(0) can be expressed as∑H−1
n=0 δZn where δZn are independent and all have the same distribution with one

value +
√
δt attained with probability 1

2 + δp and the other value −
√
δt attained

with probability 1
2 − δp. Consequently

EQ[Z(T )− Z(0)] = H · 2 · δp
√
δt = T · 2δp√

δt

and
V arQ[Z(T )− Z(0)] = T (1− 4δp2).

Since we restrict ourselves only to processes with finite mean we need 2δp√
δt

to be

finite, i.e. δp = α
2

√
δt for a finite α. In other words only changes of order

√
δt are

admissible. Notice that in this case the mean of the process EQ[Z(T )−Z(0)] = αT

can be changed to an arbitrary finite number, but the variance V arQ[Z(T )−Z(0)] =
T (1− α2δt) ≈ T remains unchanged up to an infinitesimal error.

Moreover the distribution of Z(T ) remains normal. Let

Xn =
δZn − αδt√

δt
.

Then Xn are independent with the same distribution with mean 0 and variance 1.
Consequently we may apply the hyperfinite central limit theorem to

1√
H

H∑
n=1

Xn =
Z(T )− Z(0)− αT√

T
.

So we prove that Z(T ) − Z(0) is a normally distributed variable (up to an infin-
itesimal error) with mean αT and variance T. The same analysis applies to the
differential dZ for an infinitesimal dt that is at the same time an infinite multiple
of δz. Thus the stochastic process z with respect to the changed measure satisfies
the classical stochastic differential equation dx = α · dt+ dz with dz normally dis-
tributed with mean 0 and variance dt. Note that we have got at least two different
representations of a (real world) process satisfying this equation: first the process
with drift α defined on T with the uniform measure and then the original Brownian
motion on T with the changed measure.

On the other hand if there is a process X with a drift β on T with the uniform
measure, i.e. δX = β · δt + δZ then we may change the measure (as above with
the coefficient α = −β) so that X is a martingale (has zero drift) with respect to
the changed measure. To show that this a special case of an equivalent martingale
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measure we yet need to show that the changed measure is equivalent to the uniform
measure on T . 4

The density of the changed measure Q with respect to the uniform measure P
can be for an ω ∈ T (t) expressed as

Q(ω)
P (ω)

=
∏

s∈dom(ω)

(
1 + αω(s)

√
δt
)
.

To understand to the expression on the right hand side we need the following (see
also Cutland at al. (1991))

Lemma 4.1. For any ω ∈ T (t) such that |Z(ω)| is finite and for any finite con-
stants α and β

(4.1)
∏

s∈dom(ω)

(1 + α · ω(s)
√
δt+ β · δt) ≈ exp

(
αZ(ω) +

(
β − α2

2

)
t

)
.

Proof. If we apply the logarithm to the left hand side of the equation then

ln

 ∏
s∈dom(ω)

(
1 + α · ω(s)

√
δt+ β · δt)

) =

∑
s∈dom(ω)

ln
(

1 + α · ω(s)
√
δt+ β · δt)

)
.

(4.2)

The Taylor expansion of ln(1 + x) is ln(1 + x) = x− x2

2 +O(x3), hence

ln(1 + α · ω(s)
√
δt+ β · δt) =

α · ω(s)
√
δt+ β · δt− 1

2
(α2δt+ 2αβω(s)δt3/2 + β2δt2) +O(δt3/2) =

α · ω(s)
√
δt+ (β − 1

2
α2)δt+ o(δt).

(4.3)

Since the o(δt) terms can be in the sum over dom(ω) neglected we get∑
s∈dom(ω)

ln
(

1 + α · ω(s)
√
δt+ β · δt)

)
≈ α · Z(ω) + (β − 1

2
α2)t.

Since exp is S-continuous we have proved (4.1). �

Theorem 4.2. The changed measure Q is equivalent to the uniform measure P on
Ω = T (T ).

Proof. Let us assume A ⊆ Ω is such that P (A) � 0. Since Z(ω) is finite L(P )-
almost surely there is an n ∈ N such that An = {ω ∈ A : |Z(ω)| < n} is also
positive, i.e. P (An) � 0. It follows from the lemma that there is a finite constant
K such that exp(−K) ≤ Q(ω)

P (ω) ≤ exp(K) for every ω ∈ An. Consequently Q(A) ≥

4Generally we say that two measures P and Q on a hyperfinite space Ω are equivalent if P (A) ≈ 0
whenever Q(A) ≈ 0 for any internal A ⊆ Ω.
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Q(An) ≥ exp(−K) · P (An) � 0. Similarly we can prove that if Q(A) � 0 then
P (A) � 0 as well. �

Generally we wish to consider change of measure determined by a non constant
adjustments on the binomial branches, i.e. the change of p+1 = 1

2 to 1
2 (1+α(ω)

√
δt)

where α : T (< T )→ ∗R is an internal function taking only (or at least L(P ) surely)
finite values. In the sense of the analysis above the ”Brownian” motion with respect
to this measure is equivalent to the process defined by δX(ω) = α(ω) · δt + δZ on
T with the uniform measure. If α is a continuous deterministic function of t = t(ω)
then the analysis above can be easily generalized: X(t)−X(0) is normal (up to an
infinitesimal error) with variance t and mean equal to∫ t

0

α(s)ds ≈
∑

s∈T∩[0,t)

α(s)δt.

The changed measure Q is in this case again equivalent to the uniform measure
P . Nevertheless if α depends on ω ∈ T (t) we cannot generally conclude that the
process δX(ω) = α(ω) ·δt+δZ leads to a normal ditribution. Note that the process
is nevertheless well defined for any internal function α. We will however restrict our
attention only to those drift functions α resulting in realistic stochastic processes
that are almost surely finite and continuous.

Let us consider the geometric Brownian motion frequently used for stock price
modelling. It is given by the equation dS = µ ·S ·dt+σ ·S ·dz where µ is the relative
drift and σ the volatility. The process is constructed inductively on T with the
uniform measure setting S(∅) = S0 and S(ω_{j}) = S(ω)+µS(ω)δt+σS(ω)j

√
δt.

Note that in this case the coefficients of δt and δZ are stochastic (depend on ω ∈
T (t)). The resulting distribution indeed is not normal, but lognormal. To show
that S(T ) is lognormal set X = lnS, then using the technique of the proof of
Lemma 4.1 we get that

X(ω_{j})−X(ω) =
(
µ− σ2

2

)
δt+ σj

√
δt+ o(δt).

According to Lemma 3.2 the process X has (up to an infinitesimal) the same dis-
tribution as the process given by δX ′ =

(
µ− σ2

2

)
δt+ σδZ. Consequently X(T )−

X(0) = ln S(T )
S0

has a normal distribution with mean
(
µ− σ2

2

)
T and standard

deviation σ
√
T . In other words S(T ) is (up to an infinitesimal error) lognormally

distributed.
Equivalently we may set the values of the process without any drift, S(∅) = S0

and S(ω_{j}) = S(ω) + σS(ω)j
√
δt, and change the measure on T to achieve

the desired drift of S. To set up the adjustment α
√
δt
2 on the node ω we need the
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following equation to hold

µSδt = EQ(δS) = (
1
2

+ α

√
δt

2
)σS
√
δt− (

1
2
− α
√
δt

2
)σS
√
δt = ασSδt.

Consequently if we set α = µ
σ and change the uniform branching probabilities from

1
2 to 1

2 + α
√
δt
2 then the process S with respect to the measure also satisfies the

stochastic differential equation dS = µ · S · dt+ σ · S · dz. Note that the measure is
again equivalent since α = µ

σ is finite and constant.

5. Equivalent Martingale Measure

Let us consider a general derived security f depending on n underlying assets
corresponding to n primary sources of uncertainty z1, ..., zn modelled as independent
Brownian motions. Let us assume that f satisfies the stochastic differential equation
of the form

(5.1) df = µ · f · dt+ σ1 · f · dz1 + · · ·+ σn · f · dzn.

To model such a process let T1, . . . , Tn be n copies of the hyperfinite binomial tree
on T. Let

T1 ⊗ · · · ⊗ Tn = {〈ω1, . . . , ωn〉 : ω1 ∈ T1, . . . , ωn ∈ Tn, and t(ω1) = · · · = t(ωn)}.

According to (5.1) we build the process as follows: F (∅) = F0 and

(5.2) F (〈ω_1 {j1}, . . . , ω_n {jn}〉) =

F (〈ω1, . . . , ωn〉) · (1 + µδt+ σ1j1
√
δt+ · · ·+ σnjn

√
δt).

Given measures P1, . . . , Pn on T1, . . . , Tn we define the product measure P = P1⊗
· · · ⊗ Pn by P (〈ω1, . . . , ωn〉) = P1(ω1) · · ·Pn(ωn). We again start with the uniform
product measure corresponding to 1

2 branching probabilities throughout each of
the hyperfinite binomial trees. Then we are going to change the up-branching
probabilities along Ti to 1

2 + αi
√
δt
2 for some finite αi. In other words we change

Pi to Qi and set Q = Q1 ⊗ · · · ⊗ Qn. If X is the corresponding log-process, i.e.
δX = µδt+

∑
σiδZi, then EQi

[δX] = (µ+ αiσi)
√
δt, V ar[Qi](δX) = σ2

i δt+ o(δt)
and since δZi are independent

EQ[δX] = (µ+ α1σ1 + · · ·+ αnσn)δt,

V arQ[δX] = (σ2
1 + · · ·+ σ2

n)δt+ o(δt).

Hence F ≈ exp(X) satisfies the stochastic differential equation

df

f
= (µ+ α1σ1 + · · ·+ αnσn)dt+ σ1dz1 + · · ·+ σndzn.
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We are almost ready to build up a general equivalent martingale measure. Let g
be a numeraire, i.e. a (almost surely) positive stochastic process with the n sources
of uncertainty satisfying the equation:

dg

g
= µgdt+ σ1,gdz1 + · · ·+ σn,gdzn.

Let us start with its canonical representation on T1 ⊗ · · · ⊗ Tn with the uniform
counting measure given by: G(∅) = G0 and

(5.3) G(〈ω_1 {j1}, . . . , ω_n {jn}〉) =

G(〈ω1, . . . , ωn〉) · (1 + µgδt+ σ1,gj1
√
δt+ · · ·+ σn,gjn

√
δt).

We would like to change the uniform measure to a measure Q so that for any
other derivative security f with the same sources of uncertainty the ratio f

g is a
martingale, i.e. if F is the canonical representation of f then

F0

G0
≈ EQ

[
F (t)
G(t)

]
for any t ∈ T. At this point we need to introduce the notion of risk-free interest rate
and the assumption of arbitrage-free markets. A derivative security or a portfolio
of securitites is risk-less if its value is just a function of time. The arbitrage-free
market assumption says that any risk-free portfolio earns just a risk-free return
(otherwise there would be an arbitrage when a risk-free portfolio financed for a
risk-free interest rate would earn a positive profit). Note that the (instantenous)
risk-free interest rate itself is in general stochastic.

The arbitrage-free principle is used to prove that for each source of uncertainty
dzi there is a price of risk λi increasing the expected return of a security with
dzi-volatility σi with respect to the risk-free interest rate by λiσi. I.e. if

df

f
= µfdt+ σ1,fdz1 + · · ·+ σn,fdzn

then µ = r + λ1σ1 + · · ·+ λnσn where r is the risk-free interest rate.
Let us assume without loss of generality that there are n underlying securities

θ1, . . . , θn representing the n sources of uncertainty. Let δθi = µiθiδt+σiθiδZi with
σi 6= 0 be the canonical representation of the i-th process on Ti for i = 1, . . . , n.
Let us set λi = µi−r

σi
and show that the prices of risk are also consistent with the

return of f canonically represented by F on T1 ⊗ · · · ⊗ Tn. Let Π = f −
∑n
i=1 kiθi

where ki = σi,fF (ω)
σiθi(ω) be a portfolio (set at time t = t(ω) at the state ω) consisting

of a linear combination of the security f and the underlying securities θi so that
all the dZi’s are eliminated - i.e. its values at all states at t + δt are the same.
Consequently the portfolio is risk-free and according to the arbitrage-free markets



14 JIŘÍ WITZANY

principle δΠ = rΠδt + o(δ). Expanding the left hand side and the right hand side
we get the equation(

µf −
n∑
i=0

µi
σi,f
σi

)
Fδt =

(
r −

n∑
i=0

r
σi,f
σi

)
Fδt+ o(δt),

so

µf − r ≈
n∑
i=0

(µi − r)
σi,f
σi

=
n∑
i=0

λiσi,f .

Note that when we change the uniform measure on Ti by adjusting the branching
probability from 1

2 to 1
2 + αi

√
δt
2 we are in fact changing the price of risk from the

original λi to λi + αi.

Theorem 5.1 (Equivalent Martingale Measure). Let g be a numeraire represented
by (5.3) on T1⊗· · ·⊗Tn with the uniform measure. Let Q be the changed measure on
T1⊗· · ·⊗Tn obtained by changing the splitting probilities on Ti from 1

2 to 1
2 +αi

√
δt
2

with αi = σg,i−λi, i.e. changing the price of risk to σg,i. Then if f is any stochastic
process with the same sources of uncertainty and represented by the equation (5.2)
then f

g is a martingale with respect to Q, i.e. F0
G0
≈ EQ

[
F (t)
G(t)

]
for all t.

We could show that F
G is a martingale with respect to Q just applying an ele-

mentary but tedious artithmetics of infinitesimals. It is however more elegant and
also useful to prove a nonstandard version of the Itô’s lemma first.

Lemma 5.2 (Itô). Let G be a real function of two variables with partial derivatives
of all orders. Let X be a stochastic process on T1 ⊗ · · · ⊗ Tn following the equa-
tion dx = a(x, t)dt +

∑n
i=1 bi(x, t)dzi where bi are Lipschitz continuous. Then the

stochastic process G = G(X, t) follows the equation

dG =

(
∂G

∂x
a+

∂G

∂t
+

1
2
∂2G

∂x2

n∑
n=1

b2i

)
dt+

∂G

∂x

n∑
i=1

bidzi.

Proof. Let us apply Taylor’s expansion to δG = G(x+ δx, t+ δt)−G(x, t):

δG =
∂G

∂x
δx+

∂G

∂t
δt+

1
2
∂2G

∂x2
δx2 + o(|δx|+ |δt|).

Let us plugin the equation dX = a(X, t)δt+
∑n
i=1 bi(X, t)δZi defining the process

X into the Taylor expansion. We use the facts that δZ2
i = δi and δZiδZj for

i 6= j takes only the two values δt and −δt with equal probabilities, hence has the
mean 0 and variance δt2. According to the Lemma 3.2 we may neglect deterministic
elements of order less than δt and under certain conditions stochastic elements with
standard deviation of order δt. So

δG = a
∂G

∂x
δt+

n∑
i=1

∂G

∂x
bi(X, t)δZi +

∂G

∂t
δt+
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1
2
∂2G

∂x2
(a2δt+

n∑
i=1

b2i δt+
∑
i6=j

bibjδZiδZj) + o(1)δt+O(1)δtδZ =

(
a
∂G

∂x
+
∂G

∂t
+

1
2
∂2G

∂x2

n∑
i=1

b2i

)
δt+

n∑
i=1

∂G

∂x
biδZi + o(1)δt+ o(1)δZ.

Consequently in the sense of Lemma 3.2 G follows the equation (5.2). �

To finalize our proof of the Equivalent Martingale Measure Theorem, i.e. to prove
that f

g is a martingale with respect to Q, we will use the the function the logarithmic
transformation. First since σg,i is w.r.t Q the price of the i-th component of risk,
the processes F and G satisfy the stochastic differential equations

df =

(
r +

n∑
i=1

σg,i · σf,i

)
f · dt+

n∑
i=1

σf,i · f · dzi and

dg =

(
r +

n∑
i=1

σ2
g,i

)
g · dt+

n∑
i=1

σg,i · g · dzi.

According to the Itô’s lemma the processes lnF and lnG satisfy

d(ln f) =

(
r +

n∑
i=1

σg,i · σf,i −
1
2

n∑
i=1

σ2
f,i

)
dt+

n∑
i=1

σf,i · dzi and

d(ln g) =

(
r +

1
2

n∑
i=1

σ2
g,i

)
dt+

n∑
i=1

σg,i · dzi.

Hence ln f
g = ln f − ln g follows

d(ln
f

g
) =

(
−1

2

n∑
i=1

(
σ2
f,i − 2σg,i · σf,i + σ2

g,i

))
dt+

n∑
i=1

(σf,i − σg,i)dzi =

−1
2

n∑
i=1

(σf,i − σg,i)2dt+
n∑
i=1

(σf,i − σg,i)dzi.

Finally let us apply the exponential function to ln f
g and the Itô’s lemma again

to get

d(exp ln
f

g
) = d

(
f

g

)
=

n∑
i=1

(σf,i − σg,i)
f

g
dzi.

In terms of the representations F and G on T1 ⊗ · · · ⊗ Tn the equations hold up to
an error of order o(1)δ+ o(

√
δt)δZ. Hence according to Lemma 3.2 we have proved

that F
G is a martingale, i.e. for every t:

F0

G0
≈ EQ

(
F (t)
G(t)

)
.
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