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Abstract

State price density (SPD) contains important information concerning market expectations. In existing

literature, a constrained estimator of the SPD is found by nonlinear least squares in a suitable Sobolev

space. We improve the behavior of this estimator by implementing a covariance structure taking into

account the time of the trade and by considering simultaneously both the observed Put and Call option

prices.

Keywords and Phrases: isotonic regression, Sobolev spaces, monotonicity, multiple observations, covariance

structure, option price

JEL classification: C10, C13, C14, C20, C88, G13

Let Yt(K,T ) denote the price of a European Call with strike price K on day t and with expiry date T .

The payoff at time T is given by (ST −K)+ = max(ST −K, 0), where ST denotes the price of the underlying

asset at time T . The price of such an option may be expressed as the expected value of the payoff

Yt(K,T ) = exp{−r(T − t)}
+∞∫

0

(ST −K)+h(ST )dST , (1)

discounted by the known risk-free interest rate r. The expectation in (1) is evaluated with respect to the

so-called State Price Density (SPD) h(.). The SPD contains important information on the expectations of

the market and its estimation is a statistical task of great practical interest (Jackwerth, 1999).

Similarly, we can express the price Zt(K,T ) of the European Put with payoff (K − ST )+ as:

Zt(K,T ) = exp{−r(T − t)}
+∞∫

0

(K − ST )+h(ST )dST . (2)

In the following, the symbol Z denotes the vector of all Put option prices corresponding to a fixed date of

expiry T observed on a given day t. Similarly, Y denotes a vector containing all Call option prices. The

corresponding vectors of the strike prices for the Call and Put options are denoted by xα and xβ , respectively.

Calculating the second derivative of (1) and (2) with respect to the strike price K, we can express the

SPD as the second derivative of the European Call and Put option prices (Breeden and Litzenberger, 1978):

h(K) = exp{r(T − t)}∂
2Yt(K,T )

∂K2
= exp{r(T − t)}∂

2Zt(K,T )

∂K2
. (3)

Both parametric and nonparametric approaches to SPD estimation are described in Jackwerth (1999). Non-

parametric estimates of the SPD based on (3) are considered, among others, in Aı̈t-Sahalia and Lo (2000);
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Aı̈t-Sahalia, Wang and Yared (2001); Yatchew and Härdle (2006); Härdle and Hlávka (2006).

In this paper, we will generalize the nonlinear least squares method suggested in Yatchew and Härdle

(2006) by including the covariance of the observed option prices suggested in Härdle and Hlávka (2006).

The estimation of the SPD will be further improved by considering simultaneously both Put and Call option

prices.

The investigation will be based on constrained (isotonic and convex) regression in pseudo-Sobolev spaces

(Yatchew and Bos, 1997; Yatchew and Härdle, 2006). In Sections 1 and 2, we will describe the mathematical

foundation of the method. In Section 3, we discuss problems arising in the real life application on the

observed option prices. The covariance structure suggested in Härdle and Hlávka (2006) is explained in

Section 4. Finally, SPD estimates based on the observed DAX option prices are calculated in Section 5. The

proofs of all theorems are given in Appendix A.

1 Pseudo-Sobolev Spaces

In this section, we give a brief overview of the basic results on the Pseudo-Sobolev spaces. We assemble

and prove necessary preliminaries and some theorems for statistical regression in these spaces. The crux of

this section lies in Theorem 1.1 (Representors in Pseudo-Sobolev Space) from Yatchew and Bos (1997). We

examine representors’ properties in more detail, see Theorem 1.2, providing both the exact form and the

construction of the representors.

The symbol Lp(Ω) shall denote the Lebesgue space Lp(Ω) := {f : ‖f‖Lp(Ω) < ∞}, 1 ≤ p ≤ ∞, where

‖f‖Lp(Ω) := (
∫
Ω f

p(x)dx)1/p for 1 ≤ p <∞ and ‖f‖L∞(Ω) := inf{C ≥ 0 : |f | ≤ C a.e.} for a measurable real-

valued function f : Ω → R on a given Lebesgue-measurable domain Ω, i.e., a connected Lebesgue-measurable

bounded subset of an Euclidean space R
q with non-empty interior.

The symbol Cm(Ω), m ∈ N0 denotes the space of m-times continuously differentiable scalar functions upon

bounded domain Ω, i.e., Cm(Ω) :=
{
f : Ω → R

∣∣Dαf ∈ C0(Ω), |α|∞ ≤ m
}

, where |α|∞ = maxi=1,...,q |αi|.

1.1 Definition of Pseudo-Sobolev Space

Let us denote by Dαf(x) := ∂|α|
1f(x)/∂xα1

1 . . . ∂x
αq
q the partial derivative of the function f : Ω → R inx ∈ int(Ω)(≡ Ω◦ := Ω\∂Ω), where α = (α1, . . . , αq)
⊤ ∈ N

q
0 is a multiindex of the modulus |α|1 =

∑q
i=1 αi.

Definition 1.1 (Sobolev Norm). Let f ∈ Cm(Ω) ∩ Lp(Ω). We introduce a Sobolev norm ‖·‖p,Sob,m as:

‖f‖p,Sob,m :=





∑

|α|
∞

≤m

∫

Ω

∣∣∣Dαf(x)
∣∣∣
p

dx



1/p

, where |α|∞ = max
i=1,...,q

αi. (4)
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The triangle inequality for the Sobolev norm (4) follows easily from the triangle inequality for the p-norms

on Lp(Ω) and lp ({α : |α|∞ ≤ m}). For any f, g ∈ Cm(Ω) ∩ Lp(Ω), we have that

‖f + g‖p,Sob,m =





∑

|α|
∞

≤m

‖Dαf +Dαg‖p
Lp(Ω)





1/p

≤





∑

|α|
∞

≤m

[
‖Dαf‖p

Lp(Ω) + ‖Dαg‖p
Lp(Ω)

]




1/p

≤





∑

|α|
∞

≤m

‖Dαf‖p
Lp(Ω)





1/p

+





∑

|α|
∞

≤m

‖Dαg‖p
Lp(Ω)





1/p

= ‖f‖p,Sob,m + ‖g‖p,Sob,m .

(5)

Definition 1.2 (Pseudo-Sobolev Space). A Pseudo-Sobolev space of rank m, Wm
p (Ω), is the completion of

the intersection of Cm(Ω) and Lp(Ω) with respect to the Sobolev norm ‖·‖p,Sob,m.

Remark 1.1. Cm(Ω) ∩ Lp(Ω) is dense in Wm
p (Ω) according to ‖·‖p,Sob,m.

Definition 1.3 (Sobolev Inner Product). Let f, g ∈ Wm
2 (Ω). The Sobolev inner product 〈·, ·〉Sob,m is defined

as: 〈f, g〉Sob,m :=
∑

|α|
∞

≤m

∫
ΩD

αf(x)Dαg(x)dx.
The correctness of Definition 1.3 is guaranteed by the denseness of the space Cm(Ω) ∩ L2(Ω) in Wm

2 (Ω),

see Remark 1.1. The Sobolev inner product 〈·, ·〉Sob,m induces the Sobolev norm ‖·‖2,Sob,m in Wm
2 (Ω) and

we denote the Pseudo-Sobolev space Hm(Ω) := Wm
2 (Ω). For simplicity of notation, we denote the Sobolev

norm ‖·‖2,Sob,m := ‖·‖Sob,m.

It is straightforward to verify that Hm(Ω) is a normed linear space. By construction, Hm(Ω) is complete

and, hence, it is Banach space. Next, the inner product 〈·, ·〉Sob,m has been defined on Hm(Ω) and it follows

that Hm(Ω) is Hilbert space.

The theory of Sobolev spaces is vast and more general than we could have presented in this short

introduction. However, our simplified theory is sufficient for the following presentation. We refer to Adams

(1975) for more detailed and insightful information.

1.2 Construction of Representors in Pseudo-Sobolev Space

The Hilbert space Hm(Ω) can be expressed as a direct sum of subspaces that are orthogonal to each other.

For the nonparametric regression, see Section 2, it is very important that we can take projections of the

elements of Hm(Ω) into its subspaces.

The following Theorem 1.1 is the representation theorem for Pseudo-Sobolev spaces derived in Yatchew

and Bos (1997), an analogy to the well-known Riesz Representation Theorem. From now on, we suppose

that m ∈ N. The symbol Qq denotes the closed unit cube in R
q.
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Theorem 1.1 (Representors in Pseudo-Sobolev Space). For all f ∈ Hm(Qq), a ∈ Qq and w ∈ N
q
0, |w|∞ ≤

m− 1, there exists a representor ψwa (x) ∈ Hm(Qq) at the point a with the rank w such that
〈
ψwa , f〉

Sob,m
=

Dwf(a). Furthermore, ψwa (x) =
∏q

i=1 ψ
wi
ai

(xi) for all x ∈ Qq, where ψwi
ai

(·) is the representor in the Pseudo-

Sobolev space of functions of one variable on Q1 with the inner product

∂wif(a)

∂xwi

i

=
〈
ψwi

ai
, f(x1, . . . , xi−1, ·, xi+1, . . . , xq)

〉
Sob,m

=

m∑

α=0

∫

Q1

dαψwi
ai

(xi)

dxα
i

dαf(x)

dxα
i

dxi. (6)

The proof of Theorem 1.1 given in Appendix A is based on the ideas of Yatchew and Bos (1997). In

addition, we derive the exact form of the representor for Pseudo-Sobolev spaces Wm
p (Ω).

In order to derive the representor ψa ≡ ψ0
a of f ∈ Hm [0, 1], we start with functions La and Ra defined

in Appendix A in (51) and (54). The coefficients γk(a) of the representor are obtained as the solution of a

system linear equations corresponding to the boundary conditions (42)–(46) of the differential equation (41).

The existence and uniqueness of the coefficients γk(a) is shown in the proof of Theorem 1.1.

Theorem 1.2 (Obtaining Coefficients γk(a)). The coefficients γk(a) of the representor ψa are the unique

solution of the following 4m× 4m system of linear equations:

m∑

k=0
k 6=κ

γk(a)
{
ϕ

(m−j)
k (0) + (−1)jϕ

(m+j)
k (0)

}
+

m∑

k=0
k 6=κ

γm+1+k(a)
{
ϕ

(m−j)
m+1+k(0) + (−1)jϕ

(m+j)
m+1+k(0)

}
= 0 (7)

for j = 0, . . . ,m− 1,

m∑

k=0
k 6=κ

γ2m+2+k(a)
{
ϕ

(m−j)
k (1) + (−1)jϕ

(m+j)
k (1)

}
+

m∑

k=0
k 6=κ

γ3m+3+k(a)
{
ϕ

(m−j)
m+1+k(1) + (−1)jϕ

(m+j)
m+1+k(1)

}
= 0 (8)

for j = 0, . . . ,m− 1,

m∑

k=0
k 6=κ

{γk(a) − γ2m+2+k(a)}ϕ(j)
k (a) +

m∑

k=0
k 6=κ

{γm+1+k(a) − γ3m+3+k(a)}ϕ(j)
m+1+k(a) = 0, (9)

for j = 0, . . . , 2m− 2, and

m∑

k=0
k 6=κ

{γk(a) − γ2m+2+k(a)}ϕ(2m−1)
k (a) +

m∑

k=0
k 6=κ

{γm+1+k(a) − γ3m+3+k(a)}ϕ(2m−1)
m+1+k(a) = (−1)m−1, (10)

where κ is the integer part of (m+ 1)/2 and ϕk are defined in Appendix A in (49a)–(50d).

Let 0n denote column vector of zeros of length n and γ(a) a column vector of the coefficients γk(a),
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k = 1, . . . , 4m+ 3, appearing in equations (7)–(10) with nonzero coefficients, i.e.,

γ(a) = (γ0(a), . . . , γκ−1(a), γκ+1(a), . . . , γm+κ(a), γm+2+κ(a), . . . , γ2m+1(a),

γ2m+2(a), γ2m+1+κ(a), γ2m+3+κ(a), . . . , γ3m+2+κ(a), γ3m+4+κ(a), . . . , γ4m+3(a))
⊤

The system of the 4m linear equations (7)–(10) can now be written in a more illustrative way:




ϕ
(m−j)
k (0) + (−1)jϕ

(m+j)
k (0) 0m−10

⊤
m−1

0m−10
⊤
m−1 ϕ

(m−j)
k (1) + (−1)jϕ

(m+j)
k (1)

ϕ
(j)
k (a) −ϕ(j)

k (a)

ϕ
(2m−1)
k (a) −ϕ(2m−1)

k (a)




︸ ︷︷ ︸
{Γj,k(a)}

γ(α) =




0m−1

0m−1

02(m−1)

(−1)m−1



. (11)

Hence, the coefficients can be expressed as γ(a) = (−1)m−1
[
{Γ(a)}−1

]
•,4m

.

2 General Least Squares

A combination of properties of the L2 and Cm space yields an interesting background for nonparametric

regression. The L2 space is a special type of Hilbert space that facilitates the calculation of least squares

projection. On the other hand, the Cm space contains classes of smooth (m-times continuously differentiable)

functions suitable for nonparametric regression.

The general single equation model investigated in this section is:

Yi = f(xi) + εi, i = 1, . . . , n, (12)

where xi are q-dimensional fixed design points (knots), εi are correlated random errors such that Eεi = 0

and Varε = Σ = (σij)i,j=1,...,n with σ2
i = σii > 0, and f ∈ F , where F is a family of functions in the

Pseudo-Sobolev space Hm(Qq) from R
q to R

1, m > q
2 , F =

{
f ∈ Hm(Qq) : ‖f‖2

Sob,m ≤ L
}
. From now on,

we denote Hm ≡ Hm(Qq).

In case of i.i.d. observations, the estimation of f is carried out in one of these ways:

minf∈Hm
1
n

∑n
i=1 [Yi − f(xi)]

2
such that ‖f‖2

Sob,m ≤ L, (13)

minf∈Hm

{
1
n

∑n
i=1 [Yi − f(xi)]

2
+ χ ‖f‖2

Sob,m

}
. (14)
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Figure 1: The full lines in both plots are the representors in the Pseudo-Sobolev space H4 [0, 1] for data

points x = (0.05, 0.27, 0.41, 0.53, 0.57, 0.75, 0.81, 0.83, 0.87, 0.9, 0.96)
⊤

marked by dashed vertical lines. The
limits of the horizontal axis in the upper and the lower graph are [0, 1] and [−4.5,+5.5], respectively.
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The Sobolev norm bound L and the smoothing (or bandwidth) parameter χ control the trade-off between

the infidelity to the data and the roughness of the estimator. For heteroscedastic and correlated data, we

rewrite (14) as

min
f∈Hm

1

n
[Y − f(x)]⊤ Σ−1 [Y − f(x)] + χ ‖f‖2

Sob,m (15)

where x is (n× q) matrix containing in its rows the q-dimensional design points x1, . . . ,xn, Σ > 0 is n× n

symmetric (variance) matrix, Y is n× 1 vector of observations, f(x) = (f(x1), . . . , f(xn))⊤, and χ > 0.

Definition 2.1 (Representor Matrix). Let ψx1
, . . . , ψxn

be the representors for function evaluation atx1, . . . ,xn, respectively. I.e., 〈ψxi
, f〉Sob,m = f(xi) for all f ∈ Hm, i = 1, . . . , n. The representor ma-

trix Ψ is the (n × n) matrix such that its columns and rows are the representors evaluated at x1, . . . ,xn,

i.e., Ψ = (Ψi,j)i,j=1,...,n, where Ψi,j =
〈
ψxi

, ψxj

〉
Sob,m

= ψxi
(xj) = ψxj

(xi).

Theorem 2.1 (Infinite to Finite). Assume that Y = (Y1, . . . , Yn)⊤ and Σ > 0 is (n×n) symmetric matrix.

Define

σ̂2 = min
f∈Hm

1

n
[Y − f(x)]

⊤
Σ−1 [Y − f (x)] + χ ‖f‖2

Sob,m , (16)

s2 = min∈Rn

1

n
[Y − Ψ]⊤ Σ−1 [Y − Ψ] + χ⊤Ψ (17)

where  is a (n× 1) vector, f is defined in (15), and Ψ is the representor matrix.

Then σ̂2 = s2. Furthermore, there exists a solution to (16) of the form f̂ =
∑n

i=1 ĉiψxi
, where ̂ =

(ĉ1, . . . , ĉn)⊤ solves (17). The estimator f̂ is unique a.e.

Theorem 2.1 transforms the infinite dimensional problem into a finite dimensional quadratic optimization

problem. Similar result derived in Yatchew and Bos (1997) uses different penalization.

Corollary 2.2 (Form of the Regression Function Estimator). In one-dimensional case, the regression func-

tion estimator f̂ defined in Theorem 2.1 can be written as:

f̂(x) =





n∑

i=1

ĉiLxi
(x), 0 ≤ x ≤ x1,

n∑

i=j+1

ĉiLxi
(x) +

j∑

i=1

ĉiRxi
(x), xj < x ≤ xj+1, j = 1, . . . , n− 1;

n∑

i=1

ĉiRxi
(x), xn < x ≤ 1,

(18)

where ̂ = (ĉ1, . . . , ĉn)⊤ solves (17) and Lxi
(x) and Rxi

(x) are defined in (37).
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Remark 2.1. Corollary 2.2 can be easily extended for a q-dimensional vector variable x if we recall how

the representor ψa is produced in the proof of Theorem 1.1. We apply (37) on the form of each factor

ψa of the product of representors ψa in (55). The only difference in (18) will be the number of cases.

We will obtain (n + 1)q decision conditions (vector x has q components) instead of actual number n + 1

(0 ≤ x ≤ x1, . . . , xj < x ≤ xj+1, . . . , xn < x).

Alternatively, the regression function estimator f̂ can be written as:

f̂(x) =

n∑

j=1

ĉj

2m∑

k=1

exp
[
ℜ

(
eiθk

)
x
] {

I[x≤xj]γk(xj) cos
[
ℑ

(
eiθk

)
x
]
+ I[x>xj ]γ2m+k(xj) sin

[
ℑ

(
eiθk

)
x
] }

. (19)

Note that the estimator f̂ is not calculated using trigonometric splines neither kernel functions!

Theorem 2.3 (Symmetry and Positive Definiteness of Representor Matrix). The representor matrix is

symmetric and positive definite.

In the linear model, the unknown coefficients are estimated using Least Squares. Gauss-Markov Theorem

(Rao, 1973, Chapter 4) says that the Least Squares estimator is the best linear unbiased estimator and

underlies the so-called normal equations. The normal equations for our model are derived in Theorem 2.4.

Theorem 2.4 (Normal Equations for ̂). Let us consider the general single equation model (12). Let Y
denote the response vector (Y1, . . . , Yn)⊤ and Ψ the representor matrix. Then, the vector ̂ = (c1, . . . , cn)⊤

of the coefficients of the minimizer f̂ =
∑n

i=1 ĉiψxi
derived in Theorem 2.1 is the unique solution of the

system of equations
(
ΨΣ−1Ψ + nχΨ

)  = ΨΣ−1Y.

Remark 2.2 (Hat Matrix). The fitted values Ŷ can be expressed as Ŷ = f̂(x) = Ψ̂. From the normal

equations for ̂, see Theorem 2.4, we obtain the so-called hat matrix Λ := Ψ
(
ΨΣ−1Ψ + nχΨ

)−1
ΨΣ−1

satisfying Ŷ = ΛY.

Using the Infinite to Finite Theorem 2.1 and Lagrange multipliers, a one-to-one correspondence between

the Sobolev bound L and the smoothing parameter χ can be easily shown (Pešta, 2006). Formally, the

relationship between the parameters L and χ is described in the following Theorems 2.5 and 2.6.

Theorem 2.5 (1–1 Mapping of Smoothing Parameters). Let L > 0, Σ is positive definite and symmetric

matrix and

f∗ = arg min
f∈Hm

1

n
[Y − f (x)]

⊤
Σ−1 [Y − f(x)] s.t. ‖f‖2

Sob,m ≤ L. (20)

Then, there exists a unique χ ≥ 0 such that

f∗ = arg min
f∈Hm

1

n
[Y − f(x)]

⊤
Σ−1 [Y − f(x)] + χ ‖f‖2

Sob,m . (21)
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Theorem 2.6 (Bijection Between the Smoothing Parameters). Assume that χ > 0 and Σ is positive definite

and symmetric matrix and f∗ = arg minf∈Hm
1
n [Y − f(x)]

⊤
Σ−1 [Y − f(x)]+χ ‖f‖2

Sob,m. Then, there exists

a unique L > 0 such that f∗ = argminf∈Hm
1
n [Y − f(x)]

⊤
Σ−1 [Y − f(x)] s.t. ‖f‖2

Sob,m = L.

If ∗⊤Ψ∗ < L, then Y = Ψ∗ = Ŷ and the estimator just interpolates the observations.

Theorem 2.7 (Asymptotic Behavior). Suppose that ε̃ := Ξε is an (n× 1) vector of i.i.d. random variables.

Then

1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
= OP

(
n− 2m

2m+q

)
, n→ ∞. (22)

2.1 Choice of the Smoothing Parameter

The smoothing parameter χ corresponds to the diameter of the set of functions over which the estimation

takes place. Heuristically, for large bounds (≡ smaller χ), we obtain consistent but less efficient estimator.

On the other hand, for smaller bounds (i.e., large χ) we obtain more efficient but inconsistent estimators.

A well-known selection method is based on the minimization of the cross-validation criterion CV(L) =

1
n

[y − f̂∗(x)
]⊤

Σ−1
[y− f̂∗(x)

]
, where f̂∗ =

(
f̂−1, . . . , f̂−n

)⊤

is the usual leave-one-out estimator obtained

by solving f̂−i = arg minf∈Hm
1

n−1

∑n
j=1
j 6=i

[Ξj,•y − Ξj,•f(x)]2 + χ ‖f‖2
Sob,m , i = 1, . . . , n, where Ξ denotes

the square root matrix of Σ−1. The smoothing parameter χ, which in-turn corresponds to unique Sobolev

bound L, is chosen as the minimizer of the Cross-Validation function CV. The relationship between the fit

and the smoothness of the estimator is plotted in Figure 2.

Detailed information concerning the choice of the smoothing parameter χ can be found in Eubank (1999).

Apart of the cross validation, there exist many other methods based on penalizing functions or plug-in

selectors. Specific types of “smoothing choosers”, such as Akaike’s Information Criterion, Finite Prediction

Error, Shibata’s model selector, or Rice’s bandwidth selector, are described, among others., in Härdle (1990).

3 Application to Option Prices

In Section 2, we have imposed only smoothness constraint on the estimated regression function f ∈ F =
{
f ∈ Hm(Qq) : ‖f‖2

Sob,m ≤ L
}
. However, in practice we often have a prior knowledge concerning the shape

of the regression function. Hence, in this section we will focus on the inclusion of additional constraints,

such as isotonia or convexity, in the nonparametric regression estimator.

Formally, we are interested in the estimation of f ∈ F̃ ⊆ F where F̃ combines smoothness with further

properties such as monotonicity of particular derivatives of the function. The following discussion concerns

only the one-dimensional case (q = 1).
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Figure 2: The left plot shows how the fitted curve in H2 changes depending on the smoothing parameter χ.
The right plot displays the cross-validation criterion as function of χ. The optimal value of the smoothing
parameter is marked by a vertical line.

Definition 3.1 (Derivative of the Representor Matrix). Let ψx1
, . . . , ψxn

be the representors for function

evaluation at x1, . . . , xn, i.e., 〈ψxi
, f〉Sob,m = f(xi) for all f ∈ Hm(Q1), i = 1, . . . , n. The k-th derivative

of the representor matrix Ψ is the matrix Ψ(k) whose columns are equal to the k-th derivatives of the

representors evaluated at x1, . . . , xn, i.e., Ψ
(k)
i,j = ψ

(k)
xj (xi), i, j = 1, . . . , n.

Contrary to Theorem 2.3, the derivatives of the representor matrix do not have to be symmetric.

Definition 3.2 (Estimate of the Derivative). The estimate of the derivative of the regression function is

defined as the derivative of the regression function estimate, i.e., f̂ (s) := f̂ (s), s ∈ N.

Theorem 3.1 (Consistency of the Estimator). Suppose that ε̃ := Ξε is a (n × 1) vector of i.i.d. random

variables, the design points are equidistantly distributed on the interval [a, b] such that a = x1 < . . . < xn = b

and Σ > 0 is a covariance matrix of ε such that its largest eigenvalue is less or equal than a positive constant

ϑ > 0 for all n ∈ N. Then supx∈[a,b]

∣∣∣f̂ (s)(x) − f (s)(x)
∣∣∣ P−−−−→

n→∞
0 for s = 0, . . . ,m− 2.

Now we can show the relationship between the operator of derivative of the representor matrix and

isotonia. We will concentrate mainly on the application to the Call and Put option properties.
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3.1 Call and Put options

Suppose that Call and Put option prices are observed repeatedly for fixed distinct strike prices ̟i, i =

1, . . . , ω. The points ̟i are called the strike price knots.

In each strike price knot ̟i, we observe ni ∈ N0 Call option prices Yik
with strikes xik

= ̟i, for

k = 1, . . . , ni. We observe altogether n =
∑ω

i=1 niI[ni≥1] Call options in ωY =
∑ω

i=1 I[ni≥1] distinct strike

price knots. Similarly, in each strike price knot ̟j , j = 1, . . . , ω, we observe mj Put option prices Zjl

with strike prices xjl
= ̟j, for l = 1, . . . , nj. In ωZ =

∑ω
j=1 I[mj≥1] distinct strike price knots, we observe

m =
∑ω

j=1mjI[mj≥1] Put option prices.

Let us now denote by Y the vector of all observed Call option prices and by xα = (xα,1, . . . , xα,n)⊤

the vector of the corresponding strike prices. Next, the symbol ∆ = (∆ij)i=1,...,n;j=1...,ωY
denotes the

connectivity matrix for Call option strike prices such that ∆ij = I[xα,i=̟j ]. The symbol Z denotes the

observed Put option prices. The vector xβ = (xβ,1, . . . , xβ,m)⊤ of the strike prices corresponding to Z leads

the connectivity matrix Θ = (Θij)i=1,...,m;j=1...,ωZ
for Put option prices defined as Θij = I[xβ,i=̟j ]. Similar

matrix has been already defined in Yatchew and Härdle (2006).

Our model for the observed Call and Put options prices can be written as:

Yi = f(xα,i) + εi, where xα,i ∈ {̟1, . . . , ̟ω} and i = 1, . . . , n, (23)

Zj = g(xβ,j) + ǫj, where xβ,j ∈ {̟1, . . . , ̟ω} and j = 1, . . . ,m. (24)

under the assumptions:

i) εik
and ǫjl

are random variables such that Eεi = Eǫj = 0, ∀i, j, cov (εi, εk) = ξi,k, cov (ǫj , ǫl) = ζj,l,

and cov (εi, ǫj) = σi,j . For simplicity, we will write ξ2i = ξi,i and ζ2
j = ζj,j .

ii) f, g ∈ F , where F =
{
f ∈ Hp(Qq) : ‖f‖2

Sob,p ≤ L
}

is a family of functions in Pseudo-Sobolev space

Hp(Qq), p > q
2 .

We assume that the second derivatives of functions f and g have to be the same SPD, see equations (1)–

(3) in the introduction. Theorem 2.1 allows to handle multiple (repeated) observations in our option prices

setup (23)–(24).

Theorem 3.2 (Call and Put Option Optimizing). Invoke the assumptions from Call and Put Option
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Model (23)–(24). Define

σ̂2 = min
f∈Hp,g∈Hp






YZ 

 −




∆ 0

0 Θ







f (xα)

g (xβ)







⊤

Σ−1






YZ 

 −




∆ 0

0 Θ







f (xα)

g (xβ)







+ χ ‖f‖2
Sob,p + θ ‖g‖2

Sob,p (25)

subject to

−1 ≤ f ′ (xα) ≤ 0, 0 ≤ g′ (xβ) ≤ 1, f ′′ (xα) ≥ 0, g′′ (xβ) ≥ 0, and f ′′ (xγ) = g′′ (xγ) (26)

and

s2 = min∈R
ωY ,d∈R

ωZ






YZ 

 −




∆ 0

0 Θ







Ψ 0

0 Φ







d 





⊤

×Σ−1






YZ 

 −




∆ 0

0 Θ







Ψ 0

0 Φ







d 



 + χ⊤Ψ+ θd⊤Φd (27)

subject to

−1 ≤ Ψ(1) ≤ 0, 0 ≤ Φ(1)d ≤ 1, Ψ(2) ≥ 0, Φ(2)d ≥ 0, and Ψ(2)γ = Φ(2)dγ , (28)

where χ > 0, θ > 0, Σ is (n + m) × (n + m) positive definite and symmetric variance matrix, ∆ and

Θ are respectively the connectivity matrices for Call and Put options, Ψ is the ωY × ωY representor ma-

trix at (xι)
⊤
ι∈{ι |nι≥1}, Φ is the ωZ × ωZ representor matrix at (xι)

⊤
ι∈{ι |mι≥1}, Y = (Y1, . . . , Yn)⊤, Z =

(Z1, . . . , Zm)
⊤
, f(xα) = (f(xι))

⊤
ι∈{ι |nι≥1}, g(xβ) = (g(xι))

⊤
ι∈{ι |mι≥1} and γ := α∩β = (ι |nι ≥ 1 &mι ≥ 1)

⊤

is the vector of indices in increasing order. Then σ̂2 = s2. Furthermore, there exists a solution to (25) with

respect to (26) of the form

f̂ =
∑

{i |ni≥1}

ĉiψxi
and ĝ =

∑

{j |mj≥1}

d̂jφxj
, (29)

where ̂ = (ĉi)
⊤
i∈{i |ni≥1} and d̂ = (d̂j)

⊤
j∈{j |mj≥1} solves (27), ψxi

is the representor at xi for vector

(xι)
⊤
ι∈{ι |nι≥1} and φxj

is the representor at xj for vector (xι)
⊤
ι∈{ι |mι≥1}. The estimators f̂ and ĝ are unique

a.e.

The structure of the (n+m)× (n+m) covariance matrix Σ of the random errors (ε1, . . . , εn, ǫ1, . . . , ǫm)⊤

will be investigated in Section 4. The minimization problem (27) under the constraints (28) can be imple-
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mented using, e.g., GNU–R statistical software with function pcls() in the library mgcv.

4 Covariance Structure

Let us denote the vector of the true SPD in the ω distinct observed strike prices ̟1, . . . , ̟ω as h =

(h(̟1), . . . , h(̟ω))⊤. Assume that the expected values of the option prices given in (1) and (2) can be

approximated by a linear combination of this discretized version of the SPD, i.e., we assume a linear model

Yi = α(xi)
⊤h+ εi, i = 1, . . . , n, and Zj = β(xj)

⊤h+ ǫj , j = 1, . . . ,m, (30)

for the Call and Put option prices, respectively. We assume that the vectors of the coefficients α(x) and

β(x) depend only on the strike price x and can be interpreted as rows of design matrices Xα and Xβ so that

the observed option prices can be written as



YZ

 =



Xα

Xβ


 h+




ε

ǫ


 . (31)

In the following, the SPD may depend on the time of the observation and hk = (hk(̟1), . . . , hk(̟ω))⊤

will denote the true value of the SPD at the time of the k-th trade, k = 1, . . . , n+m.

4.1 Constant SPD

Assuming that the random errors ε = (ε1, . . . , εn+m)⊤ in the linear model (31) are independent and iden-

tically distributed, the model (31) for the k-th observation, corresponding to the strike price xk, can be

written as

Yi = α(xi)
⊤hk + εi, where hk = h, (32)

if the k-th observation in the combined dataset is the i-th Call option price or

Zj = β(xj)
⊤hk + ǫj where hk = h, (33)

if the k-th observations in the combined dataset is the j-th Put option price.

Here, the SPD h = h1 = · · · = hn+m is constant in the observation period. This simplified model has

been investigated in Yatchew and Härdle (2006) only for Call option prices.
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4.2 Dependencies due to the time of the trade

Let us now assume that the observations are sorted according to the time of the trade tk ∈ (0, 1) and denote

by δk = tk − tk−1 > 0 the time between the (k − 1)-st and the k-th trade. The model (32) can now be

generalized by considering a different error structure:

Yi = α(xi)
⊤hk,

hk = hk−1 + δ
1/2
k εk.

Expressing all observations in terms of an artifical parameter h = hn+m+1, corresponding to the time 1 that

can be interpreted as, e.g., “end of the day”, it follows that the covariance of any two observed call option

prices depends only on their strike prices and on the time of the trade:

Cov{Yi−u, Yi−v} = Cov(α(xi−u)⊤hi−u, α(xi−v)⊤hi−v)

= σ2α(xi−u)⊤α(xi−v)

min(u,v)∑

m=1

δi+1−m. (34)

Similarly, we obtain the covariances between the observed Put option prices:

Cov{Zi−u, Zi−v} = Cov(β(xi−u)⊤hi−u, β(xi−v)⊤hi−v(k))

= σ2β(xi−u)⊤β(xi−v)

min(u,v)∑

l=1

δi+1−l. (35)

and the covariance between the observed Put and Call option prices:

Cov{Yi−u, Zi−v} = Cov(α⊤
xi−u

hi−u, β(xi−v)⊤hi−v(k))

= σ2

min(u,v)∑

l=1

δi+1−l

p−1∑

k=2

α⊤
xi−u

β(xi−v). (36)

Hence, the knowledge of the time of the trade allows us to approximate the covariance matrix of the observed

option prices. Using this covariance structure, we can estimate arbitrary future value of the SPD. It is quite

natural that more recent observations are more important for the construction of the estimator and that

observations corresponding to the same strike price obtained at approximately same time will be highly

correlated.
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5 DAX Option Prices

In this section, the theory developed in the previous sections is applied on real data set consisting of intra

day Call and Put DAX option prices in year 1995. The data set, Eurex Deutsche Börse, was provided by

the Financial and Economic Data Center (FEDC) at Humboldt-Universität zu Berlin in the framework of

the SFB 649 Guest Researcher Program for Young Researchers.

In Figures 3 and 4, we present the analysis for the first two trading days in January 1995. On the first

trading day, the time to expiry was T − t = 0.05 years, i.e., 18 days. Naturally, on the second trading day,

the time to expiry was 17 days.

In both figures, the first two plots contain the fitted Put and Call option prices and the estimated SPD.

Both smoothing parameters were chosen as 2 × 10−5 leading to a reasonably smooth SPD estimate in the

upper right plot in Figures 3 and 4. Smaller values of the smoothing parameters would lead to a more

variable and less smooth SPD estimates that would be difficult to interpret.

The second two plots in Figures 3 and 4 show ordinary residual plots separately for the observed Put

and Call option prices. The size of each plotting symbol denotes the number of residuals lying in the

respective area. The shape of the plotting symbols corresponds to the time of the trade. The circles, squares

and stars correspond, respectively, to morning, lunchtime and afternoon prices. Clearly, we observe both

heteroscedasticity and strong dependency due to the time of the trade.

In the last two plots in Figures 3 and 4, we plot the same residuals transformed by Mahalanobis transfor-

mation, i.e., multiplied by the inverse square root of their assumed covariance matrix, see Section 4.2. This

transformation removes most of the dependencies caused by the time of the trade. However, some outlying

observations have now appeared. For example, for the Call options on the second day, plotted in Figure 4,

we can see a very large positive and a very large negative residual at the same strike price 2050.

The outlying observations can be explained if we have a closer look at the original data set. In Table 1, we

show the Call option prices, times of the trades, and the transformed residuals for all trades with the strike

price K = 2050. The two observations with large residuals, 358.7 and −342.2, occurred at approximately the

same time, the time difference between them is approximately 0.13 hours, i.e., approximately five minutes.

Simultaneously, the price difference of these two observations is quite large. Hence, the large correlation of

these two very different prices leads to the large (suspicious) residuals appearing in the residual plot.

An example of a more recent data set is plotted in Figure 5. In year 2002, the range of the traded strike

prices was much wider than in 1995. The estimated SPD is plotted in the upper right plot. The estimate

could be described as a unimodal probability density function with the right tail cut off. It seems that,

especially on the right hand side, the traded strike prices do not cover the entire support of the SPD.
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Figure 3: Estimates and residual plots on the 1st trading day in 1995 (January 2nd). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining four
graphics contain respectively residual plots for Call and Put option prices on the left and right hand side.
The residuals plotted in the last two plots were corrected by the inverse square root of the covariance matrix.
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Figure 4: Estimates and residual plots on 2nd trading day in 1995 (January 3rd). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining four
graphics contain respectively residual plots for Call and Put option prices on the left and right hand side.
The residuals plotted in the last two plots were corrected by the inverse square root of the covariance matrix.
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Call price (K = 2050) time (in hours) transformed residual
50.62296 9.690 337.4
51.12417 9.702 73.2
50.62296 9.785 33.8
50.02150 9.807 6.5
48.11687 9.826 −10.3
46.61322 9.864 −11.5
47.31492 10.121 −6.9
48.11687 10.171 26.5
49.01906 10.306 24.3
49.01906 10.361 26.3
50.32223 10.534 358.7
46.61322 10.666 −342.2
47.61565 10.672 32.8
45.00932 11.187 −62.2
48.11687 11.690 28.2
45.10957 12.100 −72.6
48.11687 12.647 53.9
48.11687 12.766 13.3
48.11687 13.170 28.3
47.51541 14.205 11.2
44.10713 14.791 −4.8
42.10226 15.137 −34.1
42.10226 15.138 −93.4
40.99958 15.232 −32.4
41.60104 15.250 −14.2
42.10226 15.283 −2.4
42.10226 15.288 −87.6
40.69885 15.638 −31.2
41.60104 15.658 −48.9
42.60348 15.711 −46.6
42.10226 15.715 6.7
41.60104 15.796 −39.2
42.10226 15.914 −49.5

Table 1: Subset of observed prices of Call options on 2nd trading day in 1995 for strike price K = 2050, time
of the trade in hours and residuals transformed by the Mahalanobis transformation. The fitted value for the
strike price K = 2050 is f̂ (2)(2050) = 42.37. This value can be interpreted as an estimate corresponding to
16:00 o’clock.
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Figure 5: Estimates and residual plots on the 1st trading day in 2002 (January 2nd). The first plot shows
fitted Call and Put option prices, the estimated SPD is plotted in the second plot. The remaining four
graphics contain respectively residual plots for Call and Put option prices on the left and right hand side.
The residuals plotted in the last two plots were corrected by the inverse square root of the covariance matrix.
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The residual plots in Figure 5 look very similar to the residual plots in Figures 3 and 4. The residual

analysis suggests that the simple model for the covariance structure presented in Section 4 is more appropriate

for this estimation problem than the unrealistic iid assumptions. In practice, the traded strike prices do not

cover the entire support of the SPD. Hence, our estimators recover only the central part of the SPD in

Figures 3 and 4 or the left hand part of the SPD in Figure 5. Unfortunately, this implies that we cannot

impose any conditions on the expected value of the SPD without additional distributional assumptions.

6 Conclusion

The mathematical foundation of the constrained regression in pseudo-Sobolev spaces is explained in Section 1,

see also Yatchew and Bos (1997); Yatchew and Härdle (2006). In Section 2, we generalize the method to

dependent observations and introduce the constrained general regression in pseudo-Sobolev spaces. The

application of the method to the observed option prices is developed in Section 3. The resulting algorithm,

using the covariance structure given in Section 4, see also Härdle and Hlávka (2006), is applied on a real

data set in Section 5.

The main achievement of this paper is the simultaneous estimation of the SPD from both Put and Call

option prices and the incorporation of the covariance structure in the nonparametric estimator that has been

previously considered in Yatchew and Härdle (2006). The constrained general regression in pseudo-Sobolev

spaces will certainly be very useful in various practical problems.

A Proofs

Proof of Theorem 1.1. We divide the proof into two steps. The proof follows closely the proof of Theorem 2.2

given in Yatchew and Bos (1997). However, we repeat it here since we need to introduce the notation needed

for expressing the coefficients given in Theorem 1.2.

(i) Construction of a representor ψa(≡ ψ0
a). For simplicity, let us set Q1 ≡ [0, 1]. We know that for

functions of one variable we have 〈g, h〉Sob,m =
∑m

k=0

∫
Q1 g

(k)(x)h(k)(x)dx. We are constructing a representor

ψa ∈ Hm [0, 1] such that 〈ψa, f〉Sob,m = f(a) for all f ∈ Hm [0, 1]. It suffices to demonstrate the result for

all f ∈ C2m because of the denseness of C2m, see Remark 1.1. The representor is defined as:

ψa(x) =





La(x) 0 ≤ x ≤ a,

Ra(x) a ≤ x ≤ 1,
(37)
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where La(x) ∈ C2m [0, a] and Ra(x) ∈ C2m [a, 1]. As ψa ∈ Hm [0, 1], it suffices that L
(k)
a (a) = R

(k)
a (a),

0 ≤ k ≤ m− 1. We get:

f(a) = 〈ψa, f〉Sob,m =

∫ a

0

m∑

k=0

L(k)
a (x)f (k)(x)dx+

∫ 1

a

m∑

k=0

R(k)
a (x)f (k)(x)dx. (38)

Integrating by parts and setting i = k − j − 1, we obtain:

m∑

k=0

∫ a

0

L(k)
a (x)f (k)(x)dx

=

m∑

k=0





k−1∑

j=0

(−1)j L(k+j)
a (x)f (k−j−1)(x)

∣∣∣∣∣

a

0

+ (−1)k
∫ a

0

L(2k)
a (x)f(x)dx





=

m∑

k=0

k−1∑

j=0

(−1)
j
L(k+j)

a (x)f (k−j−1)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)
k
L(2k)

a (x)

}
f(x)dx

=

m∑

k=1

k−1∑

i=0

(−1)
k−i−1

L(2k−i−1)
a (x)f (i)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)
k
L(2k)

a (x)

}
f(x)dx

=

m−1∑

i=0

m∑

k=i+1

(−1)
k−i−1

L(2k−i−1)
a (x)f (i)(x)

∣∣∣∣∣

a

0

+

∫ a

0

{
m∑

k=0

(−1)
k
L(2k)

a (x)

}
f(x)dx

=

m−1∑

i=0

f (i)(a)

{
m∑

k=i+1

(−1)
k−i−1

L(2k−i−1)
a (a)

}
−

m−1∑

i=0

f (i)(0)

{
m∑

k=i+1

(−1)
k−i−1

L(2k−i−1)
a (0)

}

+

∫ a

0

{
m∑

k=0

(−1)k L(2k)
a (x)

}
f(x)dx

(39)

and, similarly,

m∑

k=0

∫ 1

a

R(k)
a (x)f (k)(x)dx

=

m−1∑

i=0

f (i)(1)

{
m∑

k=i+1

(−1)
k−i−1

R(2k−i−1)
a (1)

}
−

m−1∑

i=0

f (i)(a)

{
m∑

k=i+1

(−1)
k−i−1

R(2k−i−1)
a (a)

}

+

∫ 1

a

{
m∑

k=0

(−1)k R(2k)
a (x)

}
f(x)dx.

(40)

This holds for all f(x) ∈ Cm [0, 1]. We require that both La and Ra are solutions of the constant coefficient

differential equation
m∑

k=0

(−1)
k
ϕ

(2k)
k (x) = 0. (41)

The boundary conditions are obtained by the equality of the functional values of L
(i)
a (x) and R

(i)
a (x) at a

and the coefficient comparison of f (i)(0), f (i)(1) and f (i)(a), compare (38) to (39) and (40). Let f (i)(x) ⊲⊳ c
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denote that the term f (i)(x) has the coefficient c in a certain equation. We can write:

ra ∈ Hm [0, 1] ⇒ L(i)
a (a) = R(i)

a (a) . . . 0 ≤ i ≤ m− 1, (42)

f (i)(0) ⊲⊳ 0 ⇒
m∑

k=i+1

(−1)k−i−1 L(2k−i−1)
a (0) = 0 . . . 0 ≤ i ≤ m− 1, (43)

f (i)(1) ⊲⊳ 0 ⇒
m∑

k=i+1

(−1)
k−i−1

R(2k−i−1)
a (1) = 0 . . . 0 ≤ i ≤ m− 1, (44)

f (i)(a) ⊲⊳ 0 ⇒
m∑

k=i+1

(−1)k−i−1
{
L(2k−i−1)

a (a) −R(2k−i−1)
a (a)

}
= 0 . . . 1 ≤ i ≤ m− 1, (45)

f(a) ⊲⊳ 1 ⇒
m∑

k=1

(−1)
k−1

{
L(2k−1)

a (a) −R(2k−1)
a (a)

}
= 1; (46)

together m + m + m + (m − 1) + 1 = 4m boundary conditions. To obtain the general solution of this

differential equation, we need to find the roots of its characteristic polynomial Pm(λ) =
∑m

k=0(−1)kλ2k.

Hence, it follows that

(1 + λ2)Pm(λ) = 1 + (−1)mλ2m+2, λ 6= ±i. (47)

Solving (47), we get the characteristic roots λk = eiθk , where

θk ∈





(2k+1)π
2m+2 m even, k ∈ {0, 1, . . . , 2m+ 1} \

{
m
2 ,

3m+2
2

}
,

kπ
m+1 m odd, k ∈ {0, 1, . . . , 2m+ 1} \

{
m+1

2 , 3m+3
2

}
.

(48)

We have altogether (2m+ 2)− 2 = 2m different complex roots but each has a pair that is conjugate with it.

Thus, for m even we have m complex conjugate roots with multiplicity one. We also have 2m base elements

alike complex roots:

m even

ϕk(x) = exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]
, k ∈ {0, 1, . . . ,m} \

{m
2

}
; (49a)

ϕm+1+k(x) = exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, k ∈ {0, 1, . . . ,m} \

{m
2

}
. (49b)

If m is odd, we have 2m− 2 different complex roots (each has a pair that is conjugate with it) and two real

roots. The two real roots are ±1. The m− 1 complex conjugate roots have multiplicity one. We also have

2(m− 1) + 2 = 2m base elements alike all roots. These base elements are:

m odd

ϕ0(x) = exp {x} ; (50a)
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ϕk(x) = exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]
, k ∈ {1, 2, . . . ,m} \

{
m+ 1

2

}
; (50b)

ϕm+1(x) = exp {−x} ; (50c)

ϕm+1+k(x) = exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, k ∈ {1, 2, . . . ,m} \

{
m+ 1

2

}
. (50d)

These vectors generate the subspace of Cm [0, 1] of solutions of the differential equation (41). The general

solution is given by the linear combination:

La(x) =
m∑

k=0
k 6= m

2

γk(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+

m∑

k=0
k 6= m

2

γm+1+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, for m even; (51)

La(x) = γ0(a) exp {x} +

m∑

k=1
k 6= m+1

2

γk(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+ γm+1(a) exp {−x}

+

m∑

k=1
k 6= m+1

2

γm+1+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, for m odd; (52)

Ra(x) =
m∑

k=0
k 6= m

2

γ2m+2+k(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+

m∑

k=0
k 6= m

2

γ3m+3+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, for m even; (53)

Ra(x) = γ2m+2(a) exp {x} +

m∑

k=1
k 6= m+1

2

γ2m+2+k(a) exp
{(

ℜ(λk)
)
x
}

cos
[(
ℑ(λk)

)
x
]

+ γ3m+3(a) exp {−x}

+

m∑

k=1
k 6= m+1

2

γ3m+3+k(a) exp
{(

ℜ(λk)
)
x
}

sin
[(
ℑ(λk)

)
x
]
, for m odd; (54)

where the coefficients γk(a) are arbitrary constants that satisfy the boundary conditions (42)–(46). It can

be easily seen that we have obtained 4(m+ 1) − 4 = 4m coefficients γk(a), because the first index of γk(a)

is 0 and the last one is 4m+ 3. Thus we have 4m boundary conditions and 4m unknowns of γks that lead

us to the square 4m× 4m system of the linear equations. Does ψa exist and is it unique? To show this, it

suffices to prove that the only solution of the associated homogeneous system of linear equations is the zero

vector. Suppose La(x) and Ra(x) are functions corresponding to the solution of the homogeneous system,
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because in linear system of equations (42)–(46) the right side has all zeros—coefficient of f(a) in the last

boundary condition is 0 instead of 1. Then, by the exactly the same integration by parts, it follows that

〈ψa, f〉Sob,m = 0 for all f ∈ Cm [0, 1]. Hence, ψa(x), La(x) and Ra(x) are zero almost everywhere and, by

the linear independence of the base elements ϕk(x), we obtain the uniqueness of the coefficients γk(a).

(ii) Producing a representor ψwa . Let us define the representor ψwa by setting

ψwa (x) =

q∏

i=1

ψwi
ai

(xi) for all x ∈ Qq, (55)

where ψwi
ai

(xi) is the representor at ai in Hm
(
Q1

)
. We know that Cm is dense in Hm, so it is sufficient to

show the result for f ∈ Cm(Qq). For simplicity let’s suppose Qq ≡ [0, 1]
q
. After rewriting the inner product

and using Fubini theorem we have

〈
ψwa , f〉

Sob,m
=

〈 q∏

i=1

ψwi
ai
, f

〉

Sob,m

=
∑

|α|
∞

≤m

∫

Qq

∂α1ψw1
a1

(x1)

∂xα1

1

· · · ∂
αqψ

wq
aq (xq)

∂x
αq
q

Dαf(x)dx
=

∑

i1,...,iq=0,...,m

∫

Qq

∂i1ψw1
a1

(x1)

∂xi1
1

· · · ∂
iqψ

wq
aq (xq)

∂x
iq
q

∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dx
=

m∑

i1=0

∫ 1

0

∂i1ψw1
a1

(x1)

∂xi1
1

[
· · ·

[
m∑

iq=0

∫ 1

0

∂iqψ
wq
aq (xq)

∂x
iq
q

.
∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dxq

]
. . .

]
dx1.

(56)

According to Definition 1.3 and notation in Definition 1.1, we can rewrite the center-most bracket

m∑

iq=0

∫ 1

0

∂iqψ
wq
aq (xq)

∂x
iq
q

.
∂i1,...,iqf(x)

∂xi1
1 . . . ∂x

iq
q

dxq =
〈
ψwq

aq
, D(i1,...,iq−1)f(x1, . . . , xi−1, ·)

〉
Sob,m

= D(i1,...,iq−1,wq)f(x−q, aq).

(57)

Proceeding sequentially in the same way, we obtain that the value of the above expression is Dwf(a).

Proof of Theorem 1.2. Existence and uniqueness of coefficients γk(a) has already been proved in the proof

of Theorem 1.1. Let us define

Λ
(l)
a,I :=





L
(l)
a (0), for I = L;

R
(l)
a (1), for I = R;

L
(l)
a (a) −R

(a)
a (a), for I = D.

(58)
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From the boundary conditions (43)–(46), we easily see that

m∑

k=i+1

(−1)k−i−1Λ
(2k−i−1)
a,I = 0, 0 ≤ i ≤ m− 1, I ∈ {L,R,D} , [i, I] 6= [0, D] ; (59)

m∑

k=1

(−1)k−1Λ
(2k−1)
a,D = 1. (60)

For m = 1 it follows from (59)–(60) that:

Λ
(1)
a,I = 0, I ∈ {L,R} , (61)

Λ
(1)
a,D = 1. (62)

For m = 2, we have from (59)–(60):

Λ
(2)
a,I = 0, ∀I, (63)

Λ
(1)
a,I − Λ

(3)
a,I = 0, I ∈ {L,R} , (64)

Λ
(1)
a,D − Λ

(3)
a,D = 1. (65)

Let us now suppose that m ≥ 3. We would like to prove the next important step:

Λ
(m−j)
a,I + (−1)jΛ

(m+j)
a,I = 0, j = 0, . . . ,m− 2, ∀I, (66)

Λ
(1)
a,I + (−1)m−1Λ

(2m−1)
a,I = 0, I ∈ {L,R} , (67)

Λ
(1)
a,D + (−1)m−1Λ

(2m−1)
a,D = 1, (68)

where j := m− i− 1. For j = 0, we obtain i = m− 1 and (59)–(60) implies

Λ
(m)
a,I = 0, ∀I, (69)

which is correct according to (66). Consider j = 1 and thus i = m− 2. In the same way we get:

Λ
(m−1)
a,I − Λ

(m+1)
a,I = 0, ∀I. (70)

For j = 2 and thus i = m− 3, we have:

Λ
(m−2)
a,I − Λ

(m)
a,I + Λ

(m+2)
a,I = 0, ∀I, (71)
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and we can use (69). For j = 3 and thus i = m− 4 we have

Λ
(m−3)
a,I − Λ

(m−1)
a,I + Λ

(m+1)
a,I − Λ

(m+3)
a,I = 0, ∀I, (72)

where we can apply (70). We can continue in this way until j = m−1. The last step ensures the correctness

of (67) in case that I ∈ {L,R}, eventually (68) if I = D instead of (66).

To finish the proof, we only need to keep in mind (42). From (42), it follows that

Λ
(j)
a,D = 0, j ∈ {0, . . . ,m− 1} . (73)

According to (66) for I = D and (68), we further see:

Λ
(j)
a,D = 0, j ∈ {m+ 1, . . . , 2m− 2} ; (74)

Λ
(2m−1)
a,D = (−1)m−1. (75)

Altogether we have obtained the following system of 4m linear equations:

Λ
(m−j)
a,L + (−1)jΛ

(m+j)
a,L = 0, j = 0, . . . ,m− 1, (76)

Λ
(m−j)
a,R + (−1)jΛ

(m+j)
a,R = 0, j = 0, . . . ,m− 1, (77)

Λ
(j)
a,D = 0, j = 0, . . . , 2m− 2, (78)

Λ
(2m−1)
a,D = (−1)m−1, (79)

which, after rewriting them using (58), (51)–(54) and (49a)–(50d), bring us to a close.

Proof of Theorem 2.1. Let M = span {ψxi
: i = 1, . . . , n} and its orthogonal complement

M⊥ =
{
h ∈ Hm : 〈ψxi

, h〉Sob,m = 0, i = 1, . . . , n
}
. (80)

Representors exist by Theorem 1.1 and we can write the Pseudo-Sobolev space as a direct sum of its

orthogonal subspaces, i.e.Hm = M ⊕M⊥ since Hm is a Hilbert space. Functions h ∈ M⊥ take on the

value zero at x1, . . . ,xn. Each f ∈ Hm can be written as

f =

n∑

j=1

cjψxj
+ h, h ∈M⊥. (81)
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Then,

[Y − f(x)]
⊤

Σ−1 [Y − f (x)] + χ ‖f‖2
Sob,m

=


Y• −

〈
ψx•

,

n∑

j=1

cjψxj
+ h

〉

Sob,m



⊤

Σ−1


Y• −

〈
ψx•

,

n∑

j=1

cjψxj
+ h

〉

Sob,m


 + χ

∥∥∥∥∥∥

n∑

j=1

cjψxj
+ h

∥∥∥∥∥∥

2

Sob,m

=


Y• −

n∑

j=1

〈
ψx•

, cjψxj

〉
Sob,m



⊤

Σ−1


Y• −

n∑

j=1

〈
ψx•

, cjψxj

〉
Sob,m


 + χ

∥∥∥∥∥∥

n∑

j=1

cjψxj

∥∥∥∥∥∥

2

Sob,m

+ χ ‖h‖2
Sob,m

=


Y• −

n∑

j=1

cj
〈
ψx•

, ψxj

〉
Sob,m



⊤

Σ−1


Y• −

n∑

j=1

cj
〈
ψx•

, ψxj

〉
Sob,m




+ χ

〈
n∑

j=1

cjψxj
,

n∑

j=1

cjψxj

〉

Sob,m

+ χ ‖h‖2
Sob,m

=


Y• −

n∑

j=1

Ψ•,jcj



⊤

Σ−1


Y• −

n∑

j=1

Ψ•,jcj


 + χ

n∑

j=1

n∑

k=1

cj
〈
ψxj

, ψxk

〉
Sob,m

ck + χ ‖h‖2
Sob,m

= [Y − Ψ]⊤ Σ−1 [Y − Ψ] + χ⊤Ψ+ χ ‖h‖2
Sob,m

where, for an arbitrary g ∈ Hm,

〈ψx•
, g〉Sob,m =

(
〈ψx1

, g〉Sob,m , . . . , 〈ψxn
, g〉Sob,m

)⊤

. (82)

Hence, there exists a function f∗, minimizing the infinite dimensional optimizing problem, that is a linear

combination of the representors. We note also that ‖f∗‖2
Sob,m = ⊤Ψ.

Uniqueness is clear, since ψxi
are the base elements of M , and adding a function that is orthogonal to

the spaces spanned by the representors will increase the norm.

Proof of Corollary 2.2. It follows directly from (37) and from Theorem 2.1.

Proof of Theorem 2.3. The representor matrix is symmetric by Definition 2.1 since

Ψi,j =
〈
ψxi

, ψxj

〉
Sob,m

=
〈
ψxj

, ψxi

〉
Sob,m

= Ψj,i, (83)

i.e., Ψ = Ψ⊤.

We give the proof of positive definiteness of the representor matrix only for one dimensional variable x.

The extention into the multivariate case is straightforward, see Remark 2.1. For an arbitrary  ∈ R
n, we
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obtain ⊤Ψ =
∑

i

ci
∑

j

Ψijcj =
∑

i

∑

j

ci
〈
ψxi

, ψxj

〉
Sob,m

cj =
∑

i

∑

j

〈
ciψxi

, cjψxj

〉
Sob,m

=

〈∑

i

ciψxi
,
∑

j

cjψxj

〉

Sob,m

=

∥∥∥∥∥
∑

i

ciψxi

∥∥∥∥∥

2

Sob,m

≥ 0.

(84)

Hence ⊤Ψ = 0 iff
∑

i ciψxi
= 0 a.e.

For x > xi, we define γ(xi) = (γ0, . . . , γκ−1, γκ+1, . . . , γm+κ, γm+2+κ, . . . , γ2m+1)
⊤

(xi). Otherwise,

γ(xi) = (γ2m+2, . . . , γ2m+1+κ, γ2m+3+κ, . . . , γ3m+2+κ, γ3m+4+κ, . . . , γ4m+3)
⊤ (xi). Similarly, we will work

with elements of the vector
[
{Γ(xi)}−1

]
•,4m

. According to (51)–(54), (49a)–(50d) and (11), we have

ψxi
(x) = γ(xi)

⊤ϕ(x) = (−1)m−1
[
{Γ(xi)}−1

]⊤
•,4m

ϕ(x) (85)

where ϕ(x) is vector containing the base elements of the space of the solutions of the differential equation (41),

i.e., ϕk(x) (see (49a)–(50d)). From the linear independence of ϕk(x) it follows that

∑

i

ciψxi
= (−1)m−1

∑

i

ci

[
{Γ(xi)}−1

]⊤
•,4m

ϕ

= (−1)m−1
∑

i

∑

k

ci

[
{Γ(xi)}−1

]
4m,k

ϕk = 0 a.e. (86)

m

ϕk = 0 a.e. k ∈ {0, 1, . . . , 2m+ 1} \





{
m
2 ,

3m+2
2

}
m even,

{
m+1

2 , 3m+3
2

}
m odd;

(87)

⇓

ψxi
= 0 a.e. i = 1, . . . , n. (88)

And ψxi
= 0 a.e. is a zero element of the space Hm.

Proof of Theorem 2.4. According to the Theorem 2.1, we want to minimize the function

L() :=
1

n
[Y − Ψ]⊤ Σ−1 [Y − Ψ] + χ⊤Ψ. (89)

Therefore, the first partial derivatives of L() have to be equal zero at the minimizer ̂:
∂

∂ci
L() !

= 0, i = 1, . . . , n. (90)
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Denoting Σ−1 =: (φij)
n,n
i,j=1, we can write:

nL() = Y⊤Σ−1Y − 2Y⊤Σ−1Ψ+ ⊤ΨΣ−1Ψ+ nχ⊤Ψ
=

n∑

r=1

n∑

s=1

YrφrsYs − 2
n∑

r=1

n∑

s=1

n∑

t=1

YrφrsΨstct +
n∑

r=1

n∑

s=1

n∑

t=1

n∑

u=1

crΨrsφstΦtucu + nχ
n∑

r=1

n∑

s=1

crΨrscs

and, hence,

0
!
= −2

n∑

r=1

n∑

s=1

YrφrsΨsi + 2

n∑

r=1
r 6=i

n∑

s=1

n∑

t=1

crΨrsφstΦti + 2

n∑

r=1

n∑

s=1

ciΨisφstΦti + 2nχ

n∑

r=1
r 6=i

crΨri + 2nχciΨii

= −2Y⊤Σ−1Ψ•,i + 2⊤ΨΣ−1Ψ•,i + 2nχ⊤Ψ•,i, i = 1, . . . , n.

Then we obtain our system of the normal equations⊤ (
ΨΣ−1Ψ•,i + nχΨ•,i

)
= Y⊤Σ−1Ψ•,i, i = 1, . . . , n. (91)

Proof of Theorem 2.5. The solution of (20) always exists and is unique according to the proof of Theorem 2.1.

From the same proof of Theorem 2.1 follows that finding f∗—optimizing (20)—is the same as searching

optimal ∗ such that ∗ = arg min∈Rn

1

n
[y − Ψ]⊤ Σ−1 [y − Ψ] s.t. ⊤Ψ ≤ L (92)

and again from the proof of Theorem 2.1 the existence and the uniqueness of ∗ is guaranteed. Let’s fix L.

If ∗⊤Ψ∗ = L, we can simply apply Lagrange multipliers on the condition ⊤Ψ = L using the Lagrange

function

J (, λ) =
1

n
[y − Ψ]⊤ Σ−1 [y − Ψ] + χ

(⊤Ψ− L
)

(93)

and it provides a unique Lagrange multiplier χ. The term −χL can be omitted as it does not depend on .
The quadratic form J (·, λ) has to be positive definite according to Lagrange Multiplier Theorem (we are

minimizing J ). That implies χ > 0.

If ∗⊤Ψ∗ < L, we just set χ = 0 and we are done.

Proof of Theorem 2.6. The proof is an easy application of Lagrange multipliers.

Proof of Theorem 2.7. Let’s have fixed χ > 0. Hence we have obtained unique f̂ and also ̂ according to
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Theorem 2.1. Theorems 2.1 and 2.6 say that there exists a unique L > 0 such that ̂ is also a unique solution

of optimizing problem ̂ = arg min∈Rn

1

n
[Y − Ψ]⊤ Σ−1 [Y − Ψ] s.t. ⊤Ψ = L. (94)

Let’s define

f̃(x) := Ξf(x), (95)Ỹ := ΞY, (96)

̂̃ := arg min
e∈Rn

1

n

[Ỹ − Ψ̃]⊤ Σ−1
[Ỹ − Ψ̃] s.t. ̃⊤ΨΞ−1Ψ−1Ξ−1Ψ̃ ≤ L. (97)

We can easily find out that

̂̃ = Ψ−1ΞΨ̂ (98)

and hence

̂̃
f(x) = Ξ̂̃. (99)

Finally, there must exists L̃ > 0 such that

̂̃ = arg min
e∈Rn

1

n

[Ỹ − Ψ̃]⊤ Σ−1
[Ỹ − Ψ̃] s.t. ̃⊤Ψ̃ = L̃ (100)

and hence this ̂̃ has to be a unique solution of the optimizing problem

̂̃ = arg min
e∈Rn

1

n

[Ỹ − Ψ̃]⊤ Σ−1
[Ỹ − Ψ̃] s.t. ̃⊤Ψ̃ ≤ L̃ (101)

since Ψ is a positive definite matrix (̃⊤Ψ̃ is the volume of n-dimensional ellipsoid).

Now we think of model

Ỹi = f̃(xi) + ε̃i, ε̃i ∼ i.i.d., i = 1, . . . , n (102)

with least-squares estimator
̂̃
f . As in the proof of Lemma 1 in Yatchew and Bos (1997), using Kolmogorov and

Tihomirov (1959), it can be shown that there existsA > 0 such that for δ > 0, we have logN(δ; F ) < Aδ−q/m,

where N(δ; F ) denotes the minimum number of balls of radius δ in sup-norm required to cover the set of

functions F . Consequently, applying Van de Geer (1990, Lemma 3.5), we obtain that there exist positive
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constants C0,K0 such that for all K > K0

P


 sup
‖g‖2

Sob,m
≤eL

√
n

∣∣∣− 2
n

∑n
i=1 ε̃i

(
f̃(xi) − g(xi)

)∣∣∣
(

1
n

∑n
i=1

(
f̃(xi) − g(xi)

)2
) 1

2
− q

4m

≥ KA1/2


 ≤ exp

{
−C0K

2
}
. (103)

Since f̃ ∈ F̃ =
{
g ∈ Hm(Qq) : ‖g‖2

Sob,m ≤ L̃
}

and
̂̃
f minimizes the sum of squared residuals over g ∈ F̃ ,

1

n

n∑

i=1

[
Ỹi − ̂̃

f(xi)

]2

≤ 1

n

n∑

i=1

[
Ỹi − g(xi)

]2

, g ∈ F̃ (104)

1

n

n∑

i=1

[(
f̃(xi) − ̂̃

f(xi)

)
+ ε̃i

]2

≤ 1

n

n∑

i=1

[(
f̃(xi) − g(xi)

)
+ ε̃i

]2

, g ∈ F̃

⇓ realize that f̃ ∈ F̃

1

n

n∑

i=1

(
f̃(xi) − ̂̃

f(xi)

)2

≤ − 2

n

n∑

i=1

ε̃i

(
f̃(xi) − ̂̃

f(xi)

)
. (105)

Now combine (103) and (105) to obtain the result that ∀K > K0

P

[
1

n

n∑

i=1

(
f̃(xi) − ̂̃

f(xi)

)2

≥
(
K2A

n

) 2m
2m+q

]
≤ exp

{
−C0K

2
}
. (106)

Thus

1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
=

1

n

n∑

i=1

(
f̃(xi) − ̂̃

f(xi)

)2

= OP

(
n− 2m

2m+q

)
, n→ ∞. (107)

Lemma A.1. Suppose (fn)
∞
n=1 are non-negative Lipschitz functions on interval [a, b] with a constant T > 0

for all n ∈ N. If fn
L1−−−−→

n→∞
0 then ‖fn‖∞,[a,b] := supx∈[a,b] |fn(x)| −−−−→

n→∞
0.

Proof of Lemma A.1. Suppose that

∃ǫ > 0 ∀n0 ∈ N ∃n ≥ n0 ∃x ∈ [a, b] fn(x) ≥ ǫ. (108)
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Then according to Lipschitz property of each fn ≥ 0 we have for fixed ǫ, n0, n and x ∈ [a, b] that

‖fn‖L1[a,b] =

∫ b

a

fn(t)dt

≥ min

{
fn(x)

2
(x− a) +

fn(x)

2
(b− x),

fn(x)

2
(x− a) +

fn(x)

2

fn(x)

T
,

fn(x)

2

fn(x)

T
+
fn(x)

2
(b− x),

fn(x)

2

fn(x)

T
+
fn(x)

2

fn(x)

T

}

≥ min

{
ǫ

2
(b− a),

ǫ

2
(x− a) +

ǫ2

2T
,
ǫ2

2T
+
ǫ

2
(b − x),

ǫ2

T

}
=: K > 0.

(109)

But K is a positive constant which does not depend on n and its existence would contradict the assumptions

of this lemma, i.e., ∀δ > 0 ∃n1 ∈ N ∀n ≥ n1 ‖fn‖L1[a,b] < δ.

Proof of Theorem 3.1. We divide the proof into two steps.

(i) s = 0. The covariance matrix Σ is symmetric and positive definite with equibounded eigenvalues for

all n. Hence it can be decomposed using Schur decomposition: Σ = ΓΥΓ⊤, where Γ is orthogonal, Υ

is diagonal (with eigenvalues on this diagonal) such that 0 < Υii ≤ ϑ, i = 1, . . . , n, ∀n. Hence Σ−1 =

Γdiag
{
Υ−1

1 , . . . ,Υ−1
n

}
Γ⊤. Then

1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
≥ 1

n

[
f̂(x) − f(x)

]⊤
Γϑ−1IΓ⊤

[
f̂ (x) − f(x)

]
=

1

nϑ

n∑

i=1

[
f̂(xi) − f(xi)

]2

(110)

Let’s define hn :=
∣∣f̂ − f

∣∣. We know
∥∥f̂

∥∥2

Sob,m
≤ L for all n and

∥∥f
∥∥2

Sob,m
≤ L. For every function

t ∈ Hm[a, b] with
∥∥t

∥∥2

Sob,m
≤ L it holds that

‖t′‖L2[a,b] ≤ ‖t‖Sob,1 ≤ ‖t‖Sob,m ≤
√
L. (111)

Then t has equibounded derivative and hence there exists a Lipschitz constant T > 0 such that

|t(ξ) − t(ζ)| < T |ξ − ζ| , ξ, ζ ∈ [a, b]. (112)

We easily see

|hn(ξ) − hn(ζ)|
|ξ − ζ| =

∣∣∣
∣∣f̂(ξ) − f(ξ)

∣∣ −
∣∣f̂(ζ) − f(ζ)

∣∣
∣∣∣

|ξ − ζ| ≤

∣∣∣
[
f̂(ξ) − f(ξ)

]
−

[
f̂(ζ) − f(ζ)

]∣∣∣
|ξ − ζ|

≤
∣∣f̂(ξ) − f̂(ζ)

∣∣ +
∣∣f(ξ) − f(ζ)

∣∣
|ξ − ζ| < 2T, ξ, ζ ∈ [a, b].

(113)
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Since hn is T -Lipschitz function for all n and

‖hn‖L2[a,b] =
∥∥f̂ − f

∥∥
L2[a,b]

≤
∥∥f̂ − f

∥∥
Sob,1

≤
∥∥f̂ − f

∥∥
Sob,m

≤
∥∥f̂

∥∥
Sob,m

+
∥∥f

∥∥
Sob,m

≤ 2
√
L, ∀n, (114)

we obtain that hn is equibounded for all n with a positive constant M such that

‖hn‖∞,[a,b] ≤M > 0, ∀n. (115)

Hence h2
n is also a Lipschitz function for all n, because for ξ, ζ ∈ [a, b]

∣∣h2
n(ξ) − h2

n(ζ)
∣∣

|ξ − ζ| =
|hn(ξ) − hn(ζ)|

|ξ − ζ| [hn(ξ) + hn(ζ)] ≤ T × 2 ‖hn‖∞,[a,b] = 2MT =: U > 0, ∀n. (116)

Since h2
n is U -Lipschitz function for all n and design points (xi)

n
i=1 are equidistantly distributed on [a, b],

we can write that

∫ b

a

h2
n(u)du ≤

n−1∑

i=1

xi+1 − xi

2

{
h2

n(xi) +
[
h2

n(xi) + U(xi+1 − xi)
]}

≤ 1

2n

[
2

n−1∑

i=1

h2
n(xi) + U(b− a)

]

≤ 1

n

n∑

i=1

h2
n(xi) +

U(b− a)

2n
.

(117)

According to Theorem 2.7

∀ǫ > 0 P

{
1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
> ǫ

}
−−−−→
n→∞

0, (118)

so it means

∀ǫ > 0 ∀δ > 0 ∃n0 ∈ N ∀n ≥ n0 P

{
1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
> ǫ

}
< δ. (119)

Let’s fix an arbitrary ǫ > 0 and δ > 0. Next, we fix

n0 :=

⌈
U

ǫ2

⌉
(120)
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and for all n ≥ n0 we can write

δ > P

{
1

n

[
f̂(x) − f(x)

]⊤
Σ−1

[
f̂(x) − f(x)

]
>
ǫ2(b − a)

2ϑ

}
by (119)

≥ P

{
1

n

n∑

i=1

[
f̂(xi) − f(xi)

]2

>
ǫ2(b− a)

2

}
by (110)

≥ P




‖hn‖2

L2[a,b] >
ǫ2(b− a)

2
+
U(b − a)

2n︸ ︷︷ ︸
ǫ̃





by (117)

≥ P

{
‖hn‖L1[a,b] >

√
ǫ̃

‖1‖L2[a,b]

}
by Cauchy-Schwarz inequality

≥ P

{
‖hn‖L1[a,b] > ǫ

}
by (120). (121)

Thus

‖hn‖L1[a,b]
P−−−−→

n→∞
0. (122)

According to Lemma A.1 and the fact that the almost sure convergence implies convergence in probability,

we have

sup
x∈[a,b]

∣∣∣f̂(x) − f(x)
∣∣∣ P−−−−→

n→∞
0. (123)

(ii) s ≥ 1. If m = 2, we are done. Let gn := f̂ − f . According to the assumptions of our model,

gn ∈ Hm[a, b]. By Yatchew and Bos (1997, Theorem 2.3), all functions in the estimating set have derivatives

up to order m− 1 uniformly bounded in sup-norm. Then, all the g′′n are also bounded in sup-norm (m ≥ 3)

and this implies the uniform boundedness of g′′n:

∃M > 0 ∀n ∈ N ‖g′′n‖∞,[a,b] < M. (124)

Let’s have fixed M > 0. For any fixed ǫ > 0, define ǫ̃ := Mǫ and there exists n0 ∈ N, such that ∀n ≥ n0 :

[cn, dn] ⊂ [a, b] and

g′n(cn) = g′n(dn) = ǫ̃ & g′n(ξ) > ǫ̃, ξ ∈ (cn, dn) (125)

because g′n is continuous on [cn, dn] (drawing a picture is helpful). If such [cn, dn] does not exist, the proof

is finished.

Otherwise there exists n1 ≥ n0 such that ∀n ≥ n1 holds:

|ǫ̃(dn − cn)| ≤
∣∣∣∣∣

∫ dn

cn

g′n(ξ)dξ

∣∣∣∣∣ = |gn(dn) − gn(cn)| ≤ 2ǫ2 (126)
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Figure 6: Uniform convergence of g′n.

because gn
n→∞−−−−→ 0 uniformly in sup-norm on the interval [a, b]. Hence,

|dn − cn| ≤
2ǫ

M
. (127)

The uniform boundedness of g′′n implies Lipschitz property (see Figure 6):

|g′n(x)| ≤
∣∣∣∣ǫ̃+M

dn − cn
2

∣∣∣∣ ≤Mǫ+M
ǫ

M
≤ ǫ(M + 1). (128)

We can continue in this way finitely times (formally we can proceed by something like a finite induction). In

fact, if (m−1)-th derivatives are uniformly bounded (gn ∈ Hm[a, b]), then this ensures that f̂ (s) for s ≤ m−2

converges in sup-norm. Finally, we have to realize that convergence almost sure implies convergence in

probability and each convergent sequence in probability has a subsequence that converges almost sure.

Proof of Theorem 3.2. The proof is very similar to the proof of the Infinite to Finite Theorem 2.1 and the

same arguments can be used. Each f, g ∈ Hm can be written in the form:

f =
∑

{i |ni≥1}

ciψxi
+ hf , hf ∈ {span {ψxi

: ni ≥ 1}}⊥ , (129)

g =
∑

{j |mj≥1}

djφxj
+ hg, hg ∈

{
span

{
φxj

: mj ≥ 1
}}⊥

. (130)
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For 1 ≤ ι ≤ n, we easily note that






YZ 

 −




∆ 0

0 Θ







f (xα)

g (xβ)







ι

= Yι −





∑

{i |ni≥1}

∆ιif(xi) +
∑

{i |mi≥1}

Θιig(xi)





= Yι −
∑

{i |ni≥1}

∆ιi

〈
ψxi

,
∑

{j |nj≥1}

cjψxj
+ hf

〉

Sob,m

−
∑

{i |mi≥1}

Θιi

〈
φxi

,
∑

{j |mj≥1}

djφxj
+ hg

〉

Sob,m

= Yι −
∑

{i |ni≥1}

∆ιi

∑

{j |nj≥1}

Ψijcj −
∑

{i |mi≥1}

Θιi

∑

{j |mj≥1}

Φijdj

=






YZ 

 −




∆ 0

0 Θ







Ψ 0

0 Φ







d 





ι

.

We can proceed in the same way also for n < ι ≤ n+m.

Finally, it remains to rewrite the constraints using (6) from Theorem 1.1:

f ′(xι) =

〈
ψxι

,
∑

{i |ni≥1}

ciψ
′
xi

+ hf

〉

Sob,m

=
[
Ψ(1)]

ι
∀ι : nι ≥ 1. (131)

Similarly, we obtain

g′(xι) =
[
Φ(1)d]

ι
∀ι : mι ≥ 1, (132)

f ′′(xι) =
[
Ψ(2)]

ι
∀ι : nι ≥ 1, (133)

g′′(xι) =
[
Φ(2)d]

ι
∀ι : mι ≥ 1. (134)
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