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Abstract

Cross-correlation measure is one of second order characteristics of spatial stochastic
processes. It measures a spatial dependence of two given random processes. A density of
such a measure and condition of existence of this density are studied. Further a particular
attention is paid to so called semi-stationarity of spatial random process.

1 Introduction

The cross-correlation measure of two spatial random processes was �rst introduced in [3]
to characterise geometrical relationship between two compound stationary spatial random
processes. In the same publication some estimators of this characteristic were presented.

By compound stationarity we mean an invariance of compound distribution of given
processes. Further for existence of a density of the cross-correlation measure, the semi-
stationarity in needed. Thus a brief introduction of several kinds of stationarity is made
in the second section.

The third section is devoted to the cross-correlation measure and its properties. Espe-
cially conditions for existence of density of this measure are deeply studied.

Basic notions

We use a stochastic approach to random spatial objects build on principles developed by
G. Matheron [1].

Let (X, τX) be a locally compact, separable topological space, equipped with its Borel
σ-algebra X. A measure on (X,X) is called locally �nite, if it is �nite on every compact
subset of X .

Then by a random point process on the space (X,X) we understand a measurable map
from some probability space (Ω,A,Pr) to a measurable space (N (X),N(X)) of all locally
�nite, integer-valued measures on (X,X) (see [4]).

Here the space N (X) is equipped with usual σ-algebra N(X) � the smallest σ-algebra,
for which all the maps fZ : N (X) → N ∪ {0} de�ned by ψ → ψ(Z), are measurable for
every Z ∈ X.

Note that a translation of an arbitrary measure µ is de�ned by tz(µ)(·) = µz(·) =
µ(t−z(·)). Particarly the map tz de�ned on (N (X),N(X)) and its inverse t−z are measur-
able if a translation tz is de�ned on (X,X) and measurable for every z ∈ R

d. To see that,
it is enough to check that the set tz({ϕ ∈ N (X) : t−z(ϕ)(Z) = k} is N(X)-measurable
where Z ∈ X and k ∈ N ∪ {0} are arbitrary. But this is easy to see since the above set is
equal to measurable set {ϕ ∈ N (X) : ϕ(tzZ) = k}.

By a (spatial) random process on (Rd,B) we understand a random point process on
the hyperspace (F ,F) of all nonempty closed subset of R

d provided with a Borel σ-algebra
generated by the Vietoris topology1.

Note that according to [1] the space (F ,F) is a locally compact, separable Hausdor�
topological space and that the usual set valued maps are measurable with respect to (F ,F).
Namely motions, intersection, union and s-dimensional Hausdor� measure (cf. [1] and [5]).

1sometimes called myope topology or hit-or-miss topology
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Recall some basic notions of geometric measure theory. Set some integer m ≤ d. By
H m and L the m-dimensional Hausdor� measure (see [2, 2.10.2]) and Lebesque measure
on R

d will be denoted respectively. Note that if A ⊂ R
d is Borel, then H d(A) = L (A)

by [2, 2.10.35].

• A subset E ⊂ R
d is called m-recti�able if there exists a Lipschitz function mapping

some bounded subset of R
m onto E.

• A subset E ⊂ R
d is called H m-recti�able whenever H m(E ∩ K) < ∞ for any

bounded set K ⊂ R
d and there exists a sequence {Ej}∞j=1 of m-recti�able subsets of

R
d such that H m(E\

∞⋃
j=1

Ej) = 0.

It was proved in [5, 2.2.1] that a class Xm of all closed H m-recti�able sets is measurable
i.e. Xm ∈ F. Thus we can de�ne H m-process as a random point process on the measurable
space (Xm,Xm), where Xm denotes the σ-algebra F∩Xm. Here F∩Xm denotes a trace of
σ-algebra that is the class

F ∩ Xm = {B ∩ Xm : B ∈ F}.

Note that every H m-process is also a spatial random process.
To every random point process Φ we assign its intensity measure

ΛΦ(·) = EΦ(·).

If Φ is point process on R
d, we call a possible density λΦ(·) of its intensity measure ΛΦ

with respect to Lebesque measure an intensity function.
Further for ϕ ∈ N (Xm) we de�ne a measure on R

d by

µm(ϕ, ·) =
∫

H m(X ∩ ·)ϕ(dX),

and �nally for a random H m-process Φ we can de�ne its intensity measure by

Λm
Φ (·) = Eµm(Φ, ·).

To complete the list of our notions, let us �nelly introduce a random H m-set X as a
measurable map from probability space (Ω,A,Pr) to the measurable space (Xm,Xm) and
intesity measure Λm

X of the random H m-set X by

Λm
X(·) = Eµm(X, ·).

2 Stationarity

De�nition 1 A random process Φ is called stationary, if its distribution is invariant
under translations, that is

Pr[tzΦ ∈ (·)] = Pr[Φ ∈ (·)]
for an arbitrary z ∈ R

d.

If Φ is a random stationary H m-process, then its intensity measure Λm
Φ coincides with

Lebesque measure on Borel sets up to a constant λm
Φ ∈ 〈0,∞) called intesity.

Semi-stationarity

Let Λ be a measure on (Xm,Xm) and S ⊂ Xm a translation invariant set with Λ(Xm\S) =
0. We say that p : S → R

d is a location function on Xm with respect to the measure Λ if

p(X + z) = p(X) + z, z ∈ R
d, X ∈ S.
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De�nition 2 Let be Φ some H m-process. Then we say that a process of locations NΦ

and a location function p correspond to Φ whenever p is a location function with respect
to the intensity measure Λm

Φ and

NΦ = Φ(p−1(·)).
The process Φ will be called semi-stationary, if it posseses a location function p which

ful�lls

E
∫

1B(p(X))1Z(X − p(X))tzΦ(dX) = E
∫

1B(p(X))1Z(X − p(X))Φ(dX) (1)

for an arbitrary z ∈ R
d, B ∈ B and Z ∈ Xm.

The notion of semi-stationarity was de�ned in [5]. A general stationary process does
not need to be semi-stationary. There exists many stationary processes, whose grains do
not posses any signi�cant point needed for a correct de�nition of location function (e.g.
process of lines). Clearly, semi-stationarity does not imply stationarity (see Remark 11).

Some conditions su�cient for stationary processes to be semi-stationary will be listed
at the end of this section.

Remark 3 The choice of Z = R
d in (1) implies that the intensity measure of the process

of locations NΦ is translation invariant (i.e. EtzNΦ(B) = ENΦ(B)).

Lemma 4 If Φ is an H m-process, then for an arbitrary nonnegative measurable function
f : (Rd × F ,B ⊗ F) → R and every z ∈ R

d the following inequality holds

Ef(p(X), X − p(X)) tzΦ(dX) = Ef(p(X), X − p(X))Φ(dX).

Proof The above equation holds for characteristic functions by (1). The statement
then follows from approximation by a sequence of step functions. �

Proposition 5 For an H m-process Φ with a location function p, the equation

E
∫

1B(p(X))Φ(dX) = ηΦL (B)

holds for some ηΦ ∈ R+ ∪ {∞}.
Moreover, if ηΦ <∞ then there exists a uniquely de�ned distribution QΦ

p on the space
(Xm,Xm) satisfying

E
∫

1B(p(X))1Z(X − p(X))Φ(dX) = ηΦL (B)QΦ
p (Z). (2)

Proof For a proof see 3.2.4.1 [5]. �
De�nition 6 A distribution QΦ

p satisfying (2) will be called the distribution of a typical
grain.

Corollary 7 If f : (Rd × F ,B ⊗ F) → (R,B) is nonnegative measurable function and
ηΦ <∞, then

Ef(p(X), X − p(X))Φ(dX) = ηΦ

∫∫
f(x, Z)QΦ

p (dZ)dx.

Proof Equation (2) implies the above assertion for characteristic functions. The
general version follows by a routine procedure of approximation. �
Corollary 8 If ηΦ is �nite then every nonnegative F-measurable function f on Xm ful�lls∫

f(X) ΛΦ(dX) = ηΦ

∫∫
f(z +X0)QΦ

p (dX0)dz.
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Proof The map (z,X) → z+X is measurable. Thus the function f(X) = f(p(X)+
X − p(X)) satis�es assumptions of the Corollary 7. �
Theorem 9 The semi-stationarity property is independent of the choice of a location
function.

Proof Denote p1 the location function of a semi-stationary process Φ. Further for
an arbitrary other location function p2 of the process Φ denote f(X) := p2(X) − p1(X).
The function f(X) is obviously translation invariant, especially f(X) = f(X − p(X)).

Therefore

E
∫

1B(p2(X))1Z(X − p2(X)) tzΦ(dX)

= E
∫

1B(p1(X) + f(X))1Z(X − p1(X) − f(X)) tzΦ(dX)

= E
∫

1B(p1(X) + f(X))1Z(X − p1(X) − f(X))Φ(dX)

= E
∫

1B(p2(X))1Z(X − p2(X))Φ(dX),

where the second equality follows directly by Lemma 4. �

Theorem 10 Let Φ be a semi-stationary point process on Xm with location functions p1,
p2 and N1,Φ, N2,Φ their corresponding processes of location. Then η1,Φ = η2,Φ.

Proof If η1,Φ = η2,Φ = ∞, the assertion holds. Thus we may without loss of gener-
ality assume that η1,Φ <∞.

Let us choose some DC-system2 A on R
d, denote rn := sup{diamA : A ∈ An}, and for

a bounded Borel set A denote g(A) a centre of a corresponding circumscribed sphere.
Further let f(X) := p2(X) − p1(X) and Fj := {X ∈ Xm : f(X) ∈ Aj} for Aj ∈ An.

The sets Fj are measurable, translation invariant, since f(X+z) = p2(X)−p1(X) = f(X)
that is X ∈ Fj i� X + z ∈ Fj , and Φ =

∑
ΦxFj almost sure, where ϕxFj denotes the

restriction of the measure ϕ to the set Fj . Both follows from the de�nition of a location
function.

Thus

EN2,Φ(B) = E
∫

1B(p1(X) + f(X))Φ(dX)

= E
∑∫

1B(p1(X) + f(X))ΦxFj(dX)

≤ E
∑∫

1B⊕−Aj(p1(X))ΦxFj(dX)

= E
∑∫

1tg(Aj )(B⊕−Aj)(p1(X))ΦxFj(dX)

≤ E
∑∫

1B⊕Brn
(p1(X))ΦxFj(dX)

= EN1,Φ(B ⊕ Brn)

= η1,ΦL (B ⊕ Brn) n→∞−→ η1,ΦL (B),

2DC-system A = {An} on X is a monotone sequence of countable disjoint decompositions of X satisfying

the following conditions

1. for every n is X =
⋃

Aj , Aj ∈ An and An is a countable partition of X to Borel sets,

2. for every n and every A ∈ An there exist A1, . . . , Ak ∈ An+1 such that A = A1 ∪ · · · ∪ A2 and

3. lim
n→∞

sup
A∈An

diam A = 0.
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where the third equality follows from semi-stationarity of the processΦ and the translation
invariance of Fj .

Therefore η2,Φ ≤ η1,Φ < ∞ and the above technique can be applied on η1,Φ to get
η1,Φ ≤ η2,Φ which implies η1,Φ = η2,Φ. �

Remark 11 Let us now present an example of a semi-stationary, but nonstationary pro-
cess.

The de�nition of semi-stationarity property (1) is based on a �rst order characteristic.
Thus it is su�cient to �nd a semi-stationary process, whose second order characteristics
are not translation invariant.

In the following example a cluster process on R
2 will be constructed in the way, that

the intensity of the process of clusters � parent process � will decrease with an increasing
distance from origin, but the expected number of points in a particular cluster will rise.

a) Parent process ΦR

Let ΦR be a Poisson process on R
d with intensity function λR(x) = αfR(x), x ∈ R

2,
where α > 0, and fR is an arbitrary positive measurable function. Thus

ΛΦR(A) =
∫

A

λR dx = α

∫
A

fR dx.

b) Clusters ξx

Further let {ξx} be a collection of mutually independent point processes, independent
from the parent process ΦR, provided with intensity functions

λξx(y) = fS(x)
1

2πσ2
exp

{
−‖y − x‖2

2σ2

}
,

where fS = 1/fR.

c) Cluster process Φ.
Denote Φ =

∫
ξx ΦR(dx), then the intensity measure ΛΦ of the process Φ satis�es

ΛΦ(A) = E
∫

EΦR
ξx(A)ΦR(dx)

= α

∫
fR(x)

∫
1A(x)fS(x)

1
2πσ2

exp
{
−‖y − x‖2

2σ2

}
dy dx

= αL (A).

Now we can de�ne a location function of Φ by p({x}) = x. Then NΦ ≡ Φ and the point
process Φ is therefore semi-stationary, but nonstationary by the choice of an almost sure
nonconstant function fR.

Moreover if an arbitrary H k-process is constructed so that, to every location an in-
dependent random H k-set is placed, then the de�nition equation (1) of semi-stationarity
restricts just the corresponding process of locations. By this technique further semi-
stationary H k-processes, can be constructed.

A stationary process Φ satis�es the semi-stationarity condition (1), whenever some
location function exists. Here some examples of location functions are listed.

• If a H k-process Φ ful�lls

0 < H k(X) <∞,

∣∣∣∣∣∣
∫
X

~xH k(dx)

∣∣∣∣∣∣ <∞, ∀X ∈ Φ a.s.

then p(X) can be chosen as a gravity centre of a grain i.e.

p(X) =
∫
X

~xH k(dx).

The measurability of p(X) follows from the measurability of the integral.
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Figure 1: Cluster process Φ with choice fR = e−‖x‖; {+ ∈ Φ, ◦ ∈ ΦR}.

• If a process of compact sets is of interest, then a centre of a circumscribed sphere of
a grain can be used as a convenient choice of a location function.

• For a proof of �niteness of ηΦ some signi�cant point of grain can serve for a con-
struction of a location function (e.g. the minimal point of compact set X under
lexicographical order). Namely, the assumptions

ΛΦ(FB) <∞; ∀B ∈ B,L (B) <∞ and p(X) ∈ X, X ∈ Φ,

where FB = {F : F ∈ F , F ∩ B 6= ∅}, imply ηΦ < ∞, because ηΦL (B) =
E

∫
1B(p(X))Φ(dX) < ΛΦ(FB) <∞.

De�nition 12 We say that random point process Φ on Xm satis�es the decomposition
condition, if it is semi-stationary and the intensity ηΦ of its corresponding process of
locations is �nite.

Compound Stationarity

De�nition 13 Two point processes Ψ, Φ on Xm and Xn respectively are called com-
pound stationary, if their compound distribution is stationary, that is

Pr(Ψ ∈ A,Φ ∈ B) = Pr(tzΨ ∈ A, tzΦ ∈ B)

for every A,B ∈ F and z ∈ R
d.

Remark 14 Clearly the compound stationarity implies stationarity of both processes, but
the converse is not valid.

Proposition 15 Let Ψ and Φ be compound stationary random point processes on Xm and
Xn so that the process Ψ satis�es the decomposition condition. Then there exists a measure
ΛΨ,Φ

0 on F×F so that, every nonnegative measurable function f : (F×F ,F⊗F) → (R,B)
satis�es the equation

∫
f(X,Y ) ΛΨ,Φ(d(Y,X)) = ηΨ

∫∫
f(z +X, z + Y0) ΛΨ,Φ

0 (d(Y0, X)) dz, (3)

where ΛΨ,Φ is compound intensity of the processes Ψ and Φ, that is ΛΨ,Φ(·) = E(Ψ,Φ)(·).
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For the proof of the above proposition we will make a use of so called Palm distribution
of random point process. If (S,S) and (T,T) are measurable spaces, we say that a mapping
% : S × T → 〈0, 1〉 is a probability kernel from (S,S) to (T,T) if it sati�es the following
properties

1. the mapping t→ %(A, t) is measurable for every A ∈ S,

2. the mapping A→ %(A, t) is probability measure for every t ∈ T .

The existence of Palm distribution follows from the follwoing theorem.

Theorem 16 Let Ψ be a random point process on (X,X) with locally �nite intensity
measure ΛΨ and let QΨ = PrΨ−1 be its distribution. The there exists a probability kernel
x→ PΨ

x from (X,X) to (N (X),N(X) such that for every nonnegative mesurable function
f : X ×N (X) → R the folowing equation holds

∫
N (X)

∫
X

f(x, µ)ψ(dx)QΨ(dµ) =
∫

X

∫
N (X)

f(x, µ)PΨ
x (dµ)ΛΨ(dx). (4)

Further if PΨ
x , P

′Ψ
x are two probability kernels satisfying the above equation, then PΨ

x (U) =
P ′Ψ

x (U) ΛΨ-almost everywhere for every U ∈ N(X).

De�nition 17 Every probability kernel PΨ
x satifying equation (4) is called Palm distribu-

tion of the random point process Ψ.

Proof

E(Ψ,Φ)(f) = E
∫

E[
∫
f(X,Y )Φ(dX)|Ψ]Ψ(dY )

= E
∫∫

E[
∫
f(X,Y )Φ(dX)|Ψ = µ]PΨ

Y (dµ)ΛΨ(dY )

= ηΨ

∫∫∫
E[

∫
f(X,Y0 + z)Φ(dX)|Ψ = µ]PΨ

Y0+z(dµ)QΨ
p (dY0)dz

= ηΨ

∫∫∫
E[

∫
f(X,Y0 + z)Φz(dX)|Ψz = tzν]PΨ

Y0
(dν)QΨ

p (dY0)dz

= ηΨ

∫∫∫
E[

∫
f(X + z, Y0 + z)Φ(dX)|Ψ = ν]PΨ

Y0
(dν)QΨ

p (dY0)dz,

where the third equality follows by Corollary 8. The fourth equality is valid because the
compound stationarity of processesΦ, Ψ implies translation invariance of their mutual con-
ditional distributions, that is that for every measurable function g : (N (Xm),N(Xm)) →
(R,B) the following holds

E[g(Φ)|Ψ = µ] = E[g(Φz)|Ψz = µ] for QΨ-almost all µ. (5)

Thus

ΛΨ,Φ
0 (U) =

∫∫
E[

∫
1U (X,Y )Φ(dX)|Ψ = ν]PΨ

Y (dν)QΨ
p (dY ).

�
Remark 18 ΛΨ,Φ

0 is not a probability measure, but some kind of centring of an intensity
measure of the process Φ around a typical grain of the process Ψ. One can see this using
its form for independent processes,

ΛΨ,Φ
0 (U) =

∫
E

∫
1U (X,Y )Φ(dX)QΨ

p (dY ).

De�nition 19 The measure ΛΨ,Φ
0 , from (3) will be called intensity measure of a com-

pound grain.
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3 Cross Correlation Measure

The cross-correlation measure was introduced in [3] to describe a mutual relationship of
two processes. It is suitable especially for tests of attractive or repulsive interactions.

De�nition 20 Let Φ, Ψ be a compound stationary random H k(resp. H l)-processes
and λk

Φ, λ
l
Ψ their intensities. Then the cross-correlation measure is de�ned by equation

KΨ,Φ(B) =
1

λk
Ψλ

l
ΦL (A)

E
∫

A

µk(Φ, B + x)µl(Ψ, dx),

where a set A is arbitrary Borel set of positive Lebesque measure and B Borel set.

For further computations let us denote its deterministic version by

CY,X(B) =
∫
Y

∫
X

1B(x− y)H k(dx)H l(dy),

where X ∈ Xk, Y ∈ Xl with H k(X),H l(Y ) <∞. Notice that the de�nition of determin-
istic cross-correlation measure does not include any normalization.

Basic Properties

Proposition 21 Let Ψ and Φ be two compound stationary H l- and H k-processes and
A B are arbitrary Borel sets. Then the following hold:

1. The cross-correlation measure can be expressed in the conditional form

KΨ,Φ(B) =
1
λk

Φ

∫
E[µk(Φ, B)|µl(Ψ, ·) = µ]PΨ

0 (dµ). (6)

2. The mixed second moment measure of Ψ and Φ can be express by

Eµk(Ψ, A)µl(Φ, B) = λl
Ψλ

k
Φ

∫
A

KΨ,Φ(B − x)dx = λk
Φλ

l
Ψ

∫
B

KΦ,Ψ(A− y)dy.

3. The cross-correlation measure is symmetric in the sense

KΨ,Φ(B − x) = KΦ,Ψ(−B + x) for L -almost all x ∈ R
d.

If there exists a density kΨ,Φ of the measure KΨ,Φ, then there exists also a density
kΦ,Ψ and these densities inherit the symmetry of the cross-correlation measure i.e.
kΨ,Φ(z) = kΦ,Ψ(−z) for almost all z ∈ R

d.

4. If the processes Φ and Ψ are stochastically independent, then

KΨ,Φ(B) = L (B).

Proof

1. Using de�nition it holds

KΨ,Φ(B) =
1

λl
Ψλ

k
ΦL (A)

EEΨ

∫
A

µk(Φ, B + x)µl(Ψ, dx)

=
1

λl
Ψλ

k
ΦL (A)

∫∫
1AE[t−xµ

k(Φ, B)|µl(Ψ, ·) = ν]PΨ
x (dν)ΛΨ(dx)

=
1
λk

Φ

∫∫
1A

L (A)
E[t−xµ

k(Φ, B)|t−xµ
l(Ψ, ·) = µ]PΨ

0 (dµ)L (dx)

=
1
λk

Φ

∫
E[µk(Φ, B)|µl(Ψ, ·) = µ]PΨ

0 (dµ),

where the last equality follows by (5).
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2. It holds

Eµk(Ψ, A)µl(Φ, B) = Eµk(Ψ, A)E[µl(Φ, B)|Ψ]

=
∫∫

1A(x)E[µk(Φ, B)|µl(Ψ, ·) = ν]PΨ
x (dν)λl

ΨL (dx)

= λl
Ψλ

k
Φ

∫
A

KΨ,Φ(B − x)dx,

where the last equality follows by (6) using the same technique as in the proof of 1.
The statement then follows from symmetry.

3. The deterministic version of cross-correlation measure is symmetric by de�nition,
that is CX,Y (B) = CY,X(−B). Therefore

∫
A

KΨ,Φ(B − x) dx =
∫

B

KΦ,Ψ(A− y) dy =
∫∫

1B(y)1A(x+ y) dyKΦ,Ψ(dx)

=
∫∫

1A(z)1B(z − x) dzKΦ,Ψ(dx) =
∫

A

KΦ,Ψ(−B + z) dz,

for an arbitrary Borel set A.

4. Using conditional form (6) one obtains

KΨ,Φ(B) =
1
λk

Φ

∫
E[µk(Φ, B)|µl(Ψ, ·) = µ]PΨ

0 (dµ) =
1
λk

Φ

∫
Λk

Φ(B)PΨ
0 (dµ) = L (B).

�

Existence of Density

The cross-correlation measure can have a density even in the case, where there is no den-
sity for its deterministic version. In many applications it is possible to reduce the problem
of existence of a density to a question of existence of a density of measure E CX,Y , where
X and Y are suitable chosen random grains (cf. Theorem 25).

ForX,Y ⊂ R
d denoteMX,Y the set of all translations z ∈ R

d such that the intersection
of X with Y − z is nonempty, i.e.

MX,Y = {z ∈ R
d : X ∩ t−zY 6= ∅} = Y −X = {y − x : x ∈ X, y ∈ Y }.

Theorem 22 For 0 ≤ k, l ≤ n let Λ be a complete measure on (Xk × Xl,Xk ⊗ Xl) such
that Λ({(X,Y ) ∈Xk ×Xl : X × Y is not H k+l-recti�able}) = 0. Then MX,Y is Λ almost
everywhere H min{d,k+l}-recti�able. Moreover if

∫
H min{d,k+l}(MX,Y ∩ ·) Λ(d(X,Y )) � L (·)

on Borel sets, then the measure
∫ CX,Y (·) Λ(d(X,Y )) has a density with respect to the

Lebesgue measure.

In particular:

Corollary 23 Let (Ω,A,Pr) be some probability space. Further for 0 ≤ k, l ≤ n let X, Y
be random H k(resp. H l)-sets with H k(X),H l(Y ) <∞ almost sure, such that X × Y
is random H k+l-set. Then MX,Y is random H min{d,k+l}-set. Moreover if

Λmin{d,k+l}
MX,Y

� L

on Borel sets, then the measure ECX,Y has a density with respect to the Lebesgue measure.
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For arbitrary H k- and H l-recti�able sets X,Y ⊂ R
d such that X × Y is a H k+l-

recti�able subset of R
2d denote fX,Y the restriction of the function g : R

2d → R
d, de�ned

by g(x1, . . . , x2d) = (xd+1 − x1, xd+2 − x2, . . . , x2d − xd), to X × Y . Then we set

JX,Y (x, y) = (
1√
2
)max{k+l−d,0}apJmin{d,k+l}fX,Y (x, y),

where apJ is the approximate Jacobian de�ned in [2, 3.2.22]. Measurability of the function
JX,Y (x, y) with respect to product σ-algebra Xk ⊗ Xl ⊗ Bd ⊗ Bd on Xk × Xl × R

d × R
d

was shown in [5].
For the proof of Theorem 22 we will need a kind of translative theorem. The following

is slight generalisation of [5, 1.4.1].

Theorem 24 For 0 ≤ k, l ≤ d let X be a H k-measurable, H k-recti�able and Y a H l-
measurable, H l-recti�able subsets of R

d such that the set X ×Y is H k+l-measurable and
H k+l-recti�able. Then for H d∧(k+l)-almost all z ∈ R

d the set X∩(Y −z) is H (k+l−d)∨0-
recti�able, H (k+l)∨0-measurable and an arbitrary H k+l-measurable function h : X×Y →
R+ satis�es ∫

Rd

∫
X∩(Y −z)

h(u, u+ z)H (k+l−d)∨0(du)H d∧(k+l)(dz)

=
∫

Y

∫
X

h(x, y)JX,Y (x, y)H k(dx)H l(dy).

Proof The proof has to be done for cases k + l ≥ d and k + l < d separately. The case
of k + l ≥ d was treated in [5, 1.4.1]. To show the second one, k + l < d, denote

VX,Y =
∫

Y

∫
X

h(x, y)apJk+lfX,Y (x, y)H k(dx)H l(dy)

=
∫

Y

∫
Xy

h(x′)apJk+lfX,Y (x′)H k(dx′)H l(dy),

where x′ ∈ R
2d and Xy is a slice of X , i.e. Xy = {(x, y) : x ∈ X}. Now apply co-area

formula [2, 3.2.22] for the projection π2 : X × Y → Y . Thus π−1
2 (y) = {(x, y) : x ∈ X},

apJlπ2 = 1 and

VX,Y =
∫

X×Y

h(v)apJk+lfX,Y (v)apJlπ2(v)H k+l(dv)

=
∫
Rd

∫

f−1
X,Y (z)

h(w)H 0(dw)H k+l(dz)

=
∫
Rd

∫
X∩(Y −z)

h(u, u+ z)H 0(du)H k+l(dz),

where the second equality follows by co-area formula [2, 3.2.22] applied to the function
fX,Y and the third one from fact that the set f−1

X,Y (z) has the same amount of points as
the set X ∩ (Y − z). �

Proof of Theorem 22 Choose B ∈ Bn with L (B) = 0. Theorem 24 for (X,Y ) ∈
Xk × Xl implies

CX,Y (B) =
∫
X

∫
Y

1B(x− y)H k(dx)H l(dy)

=
∫

MX,Y

∫
X∩Y −z

1B(z)
JX,Y −z(u, u)

H max{k+l−n,0}(du)H min{d,k+l}(dz).
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Set of all z such that JX,Y −z(u, u) = 0 for some u ∈ X∩Y −z is a H min{d,k+l}xMX,Y -null
set. The above equation is therefore well de�ned almost everywhere.

Denote the inner integral by f(X,Y, z) and fi(X,Y, z) := min{f(X,Y, z), i} for i ∈ N.
Then ∫∫

MX,Y

1B(z)fi(X,Y, z)H min{d,k+l}(dz)Λ(d(X,Y )) ≤

≤
∫∫

iH min{d,k+l}(MX,Y ∩B) Λ(d(X,Y )) = 0

by assumptions. Since fi ↗ f , Levi theorem implies
∫

CX,Y (B) Λ(d(X,Y )) = 0.

Thus the assumptions of Radon-Nikodym theorem are satis�ed and the measure
∫

CX,Y (·) Λ(d(X,Y ))

has a density. �

Su�cient conditions of existence of a density of a cross-correlation measure are pre-
sented in the following theorem.

Theorem 25 Let Ψ and Φ be compound stationary H k(resp.H l)-processes such that

Ψ×Φ is a H k+l-process. If there exists an intensity measure of a compound grain ΛΨ,Φ
0

such that the measure
∫ CX,Y (·)dΛΨ,Φ

0 has a density, then the cross-correlation measure of
processes Ψ, Φ has a density as well.

Proof Recall De�nition 19 of the intensity measure of compound grain and (3).

KΨ,Φ(B) =
1

λk
Ψλ

l
ΦL (A)

∫∫∫
1A(y)µk(X,B + y)µl(Y, dy)ΛΨ,Φ(d(X,Y ))

=
α

λk
Ψλ

l
ΦL (A)

∫∫∫∫
1A(y)µk(tzX,B + y)µl(tzY, dy)Λ

Ψ,Φ
0 (d(X,Y ))L (dz)

=
α

λk
Ψλ

l
ΦL (A)

∫∫ ∫∫
1A(y + z)L (dz)µk(X,B + y)µl(Y, dy)ΛΨ,Φ

0 (d(X,Y ))

=
α

λk
Ψλ

l
Φ

∫
CX,Y (B)ΛΨ,Φ

0 (d(X,Y )).

Finaly, the proof is �nished by applying Theorem 22. �

However, it is more convenient to use a conditional form of a cross-correlation measure
for direct computation of a density.

Practical Examples

Here a few examples of computations of a density of the measure E CX,Y shall be presented.
A di�erent treatment is needed for particular cases of dimension.

1. k + l ≥ d
This case is very easy to handle, since the measure CX,Y already posseses a density.
Thus it is possible to express directly a density of the cross-correlation measure.

KX,Y (B) = E
∫∫

1B(w − y)1X(w)1Y (y)H k(dw)H l(dy)

= E
∫∫

1B(x)
1X (u)1Y (u+ x)
JX,Y (u, u+ x)

H k+l−n(du)L (dx).
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The last equality follows by Theorem 24 . Then the density is given by

kX,Y (x) = E
∫

X∩Y −x

1
JX,Y −x(u, u)

H k+l−n(du).

2. 0 < k + l < d
This case is interesting by the fact that the probability contributes to the existence
of the density as well as a deterministic space measure. The following settings can
appear as an output of an intensity measure of a compound grain of some motion
invariant Poisson process.

Choose a random H k-set X and H l-set Y in the way that X × Y is a random
H k+l-set and H k+l({z ∈ MX,Y : Tank+l[H k+lxMX,Y , z] ⊥ z}) = 0 a.s. Further
let us denote the compound distribution of X and Y by QX,Y .

Then choose an uniformly distributed random variable ϕ on the space Gn of all
rotations on R

d. Thus the composition (ϕX,ϕY ) has a distribution QX,Y , which
satis�es for every A ∈ Xk and B ∈ Xl the equation

QX,Y (A,B) =
∫
QX,Y (ϕA,ϕB)ϑn(dϕ),

where ϑn is the probability Haar measure on the space Gn.

Now, the explicit form of a density will be inferred.

E CϕX,ϕY (B) =
∫∫

CϕX,ϕY (B)ϑn(dϕ)QX,Y (d(X,Y )). (7)

Denote the inner integral by VX,Y . Then according to Theorem 24 the following
holds

VX,Y =
∫∫∫

1B(w − y)1ϕX(w)1ϕY (y)H k(dw)H l(dy)ϑn(dϕ)

=
∫∫
MϕX,ϕY

1B(z)
∫

ϕX∩ϕY −z

1
JϕX,ϕY −z(u, u)

H 0(du) H k+l(dz)ϑn(dϕ).

Moreover denote

f(X,Y, z) :=
∫

X∩Y −z

1
JX,Y −z(u, u)

H 0(du) pro z ∈MX,Y .

The function f is rotation covariant, that is f(X,Y, z) = f(ϕX,ϕY, ϕz), and the set
MX,Y satis�es

MϕX,ϕY = ϕMX,Y .

Therefore

VX,Y =
∫ ∫
ϕMX,Y

1B(z)f(ϕX,ϕY, z)H k+l(dz)ϑn(dϕ)

=
∫

MX,Y

∫
1B(ϕz)ϑn(dϕ) f(X,Y, z)H k+l(dz),

where the inner integral I expresses the probability that the point ϕz hits the set B
and by isotropy is a function only of ‖z‖.

I(‖z‖) =
1

H n−1(‖z‖−1)

∫
‖z‖−1∩B

dH n−1 =
1

‖z‖n−1vk

∫
‖z‖−1

1B(u)H n−1(du),

where ‖z‖−1 = {y : ‖y‖ = ‖z‖} and vk is area of surface of a k-dimensional ball.
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Then we may apply the co-area formula [2, 3.2.22] with the substitution w = ‖ ·
‖xMX,Y .

VX,Y =
∫

Mx,y

I(‖z‖)f(X,Y, z)H k+l(dz)

=
∫

‖MX,Y ‖

1‖B‖(v)I(v)
∫

‖v‖−1∩MX,Y

f(X,Y, z)
1

apJ1w(z)
H k+l−1(dz)H 1(dv),

where apJ1w(z) = 1
‖z‖ |ΠV z|, V = Tank+l[H k+lxMX,Y , z]. Obviously

apJ1w(z) = 0 ⇐⇒ Tank+l[H k+lxMX,Y , z] ⊥ z,

and apJ1w(z) 6= 0 H k+l-almost everywhere using assumptions.

The inner integral will by denoted by h(v) and the co-area formula [2, 3.2.22] will be
used backwards.

VX,Y =
∫

‖B‖

∫
‖v‖−1∩B

1‖MX,Y ‖(v)
1

‖v‖n−1vk
h(v)H n−1(du)H 1(dv)

=
∫
B

1
‖x‖n−1vk

h(‖x‖)L (dx).

Finaly let us just exchange the Lebesue measure with the distribution QX,Y in equa-
tion (7). Then the density has a form

kϕX,ϕY (x) =

(‖x‖n−1vk)−1

∫
‖x‖−1∩MX,Y

∫
X∩Y −z

1
JX,Y −z(u, u)apJ1w(z)

H 0(du)H k+l−1(dz).

3. k = l = 0
The case of point processes X, Y is presented for completeness. Here the set MX,Y

is also a point process such that

MX,Y = Y ⊕−X,

and a deterministic version of a cross-correlation measure of realisations of X and
Y is reduced to counting measure µ0(MX,Y , ·) i.e.

ECX,Y = Λ0
MX,Y

.

Thus the problem of density of the measure ECX,Y is reduced to the existence of an
intensity function of the point process MX,Y .
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