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Abstract The standard way towards continuum thermodynamics based on con-
servation laws is discussed. Modelling of complex materials, where detailed state
variables are necessary, requires insight beyond the conservation laws to determine
the evolution equations for the detailed variables in a unique way. Several such ap-
proaches are discussed, including the natural configurations, SHTC equations and
GENERIC.

1 Introduction

When teaching continuum mechanics, e.g. [26, 44], one typically starts with a
reference configuration and a mapping to the actual configuration (inertial reference
frame). The mapping expresses kinematics of mass points and, consequently, of
material volumes. To obtain dynamics of material volumes, the laws of conservation
of mass, linear momentum and energy are invoked. By means of the Reynolds
transport theorem one obtains the integral versions of equation of continuity, balance
ofmomentumand balance of energy of the volume situated in the actual configuration
(Eulerian inertial frame). The balance of momentum contains a priori unknown
surface terms, which using the Cauchy theorem, are expressed by a second-order
tensor field. Balance of energy contains unknown heat flux. The balances are then
localized by shrinking the material volume to infinitesimal size, which yields the
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partial differential equations (balance laws with unknown Cauchy stress and heat
flux) in the Eulerian inertial frame. A General balance equation can be seen as

∂tΦ = −∂i JiΦ, (1)

where Ji
Φ
is the flux of quantity Φ.

Because there are some unspecified fields present in the balance equations
(Cauchy stress and heat flux, and possibly others), thermodynamics is used to find
suitable constitutive relations for them. Firstly, the set of state variables is declared,
on which the entropy density (or free energy density) depends. Derivatives of the
entropy potential (or free energy) with respect to the state variables (energy density,
density, velocity, and extra state variables) are denoted as temperature, pressure, etc.,
using the assumption of local thermodynamic equilibrium for interpretation. This
is called a Gibbs relation. Time-derivative of entropy density is then calculated by
means of chain rule and, using the balances of mass, momentum and energy, it is
rewritten into a form of divergence of entropy flux, while the remaining terms inter-
preted as the entropy production. The remaining terms contain the so far unspecified
quantities and suitable constitutive relations (for instance linear force-flux relations)
are sought so that entropy production be non-negative. This ensures validity of the
second law of thermodynamics.

When seeking the constitutive relations, further axioms are often invoked, like
objectivity or material frame indifference, Galilean invariance, Curie principle and
Onsager-Casimir reciprocal relations [23]. Because the entropy is allowed to depend
on some extra state variables (not only mass, momentum and energy densities),
their time-derivatives are present in the formula for entropy production, and their
evolution equations are thus part of the closure relations. This way a closed set of
evolution equations for the state variables is obtained.

Let us refer to this last step (seeking suitable constitutive relations) as the mod-
elling step because actual modelling and creativity is needed in that step. In the
case of simple fluids (Navier-Stokes-Fourier system), there is not much freedom in
the modelling, since there are no extra state variables. However, in non-equilibrium
thermodynamics beyond the Classical Irreversible Thermodynamics (formulated in
[26, 6]), some extra state variables (fluxes of other variables, internal variables, etc.)
are typically present, and their evolution equations are to be found in the modelling
step. If an extra variable is a scalar quantity, it is usually clear that the substantial
derivative (including convection) expresses evolution of the variable. On the other
hand, in case of tensorial variables, one has the freedom to choose any objective
time-derivative (upper-or-lower-convective, Jaumann, etc.) with no theoretical lead
which to choose. The conservation laws with the additional requirements above
are typically not enough to fully specify the complex kinematics of tensorial state
variables, and additional insight is needed. Let us make a non-exhaustive review of
several possibilities.
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2 Some sources of additional insight into modelling

Further insight can be gained from kinetic theory, e.g. the Grad hierarchy [19,
42] for the Boltzmann equation or the BBGKY hierarchy, results of which can be
implemented into non-equilibrium thermodynamics [6, 22, 33]. In the case of dense
gases, a new double hierarchy was proposed in [39].

One can also exploit the Liu procedure for generating the closure relations,
[28, 27].

Additional insight can be obtained by introducing another configurations like the
natural configuration [37, 24] or relaxed metric [12, 4]. In the case of natural con-
figurations, evolution is split into plastic processes from the reference configuration
to the natural configuration (irreversible) and elastic processes from the natural to
the actual configuration (reversible). Dynamics of the natural configuration (pure
elasticity) then provides the additional insight, namely the evolution for deformation
tensor or its variant.

One can also exploit the space-time formulations of kinematics, see e.g. [25, 12],
which provides additional leads for choosing time-derivatives.

Another source of additional insight is provided by the requirement that the evolu-
tion equations be symmetric hyperbolic, quasilinear first-order, dissipative and obey
certain gauge invariance (w.r.t. rotations, etc.) [15, 18, 17, 14, 16, 11, 29, 38, 45]. This
line of research is culminating with the Symmetric Hyperbolic Thermodynamically
Compatible equations (SHTC) [36, 8, 7], a simplified version of which is

∂t ρ = −∂i(ρEmi ) (2a)
∂tmi = −∂j(miEm j ) − ρ∂iEρ − mj∂iEm j − s∂iEs − AL
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These equations express evolution of density, total momentum density, entropy den-
sity (per volume) and distortion A, which can be interpreted as inverse deformation
gradient (at least in the absence of irreversible terms, see below). The symmetric
positive definite tensor M is typically considered isotropic, in which case it can be
interpreted as inverse relaxation time and typically depends on the state variables
(ρ,m, s,A). These evolution equations represent a set of first-order quasilinear sym-
metric hyperbolic equations that conserve energy, produce entropy and are Galilean
invariant. Note that irreversible terms (those with the time-reversal behavior oppo-
site to the corresponding left-hand side [32]) are present only in the equation for the
distortion.
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Hyperbolicity of the SHTC equations is advantageous in numerical simulations.
In Fig. 1 a simple one-dimensional finite string at three subsequent time instants is
shown. The numerical results were obtained using publicly available code [21] in
[43].

Further insight into the modelling step can be found in geometry. For instance
one can take advantage of variational principles [41, 13, 9], which yields evolution
equations for the chosen state variables once a Lagrangian is specified.

Finally, another possibility is to formulate the evolution equations as Hamiltonian
mechanics. For instance on the material manifold (sometimes also called reference
configuration) each continuum particle is equippedwith a labelX. The state variables
are then the field of positions in an inertial frame (actual configuration) of the
particles and the field of their momenta, x(X) and M(X). The canonical Poisson
bracket expressing kinematics of these fields is

{F,G}(L) =
∫

dX
(

δF
δxi(X)

δG
δMi(X)

−
δG

δxi(X)
δF

δMi(X)

)
, (3)

where F and G are two arbitrary functionals and subscripts stand for functional
derivatives. The Hamilton canonical equations implied by this bracket are

∂t xi(X) =
δE

δMi(X)
, ∂t Mi(X) = −

δE
δxi(X)

. (4)

Once the energy is known, a closed set of reversible evolution equations is obtained.
A transformation of the canonical Poisson bracket to the Eulerian fields (ρ,m, s,A)
then leads to a non-canonical Poisson bracket for the fields, which leads to the
reversible part of SHTC evolution equations (2), see [35, 34]. This Lagrange-to-
Euler transformation, c.f. [5], can be used to derive boundary conditions for free
surfaces [1]. The reversible part of SHTC equations is Hamiltonian.

The irreversible part of the SHTC equations, which provides dissipative algebraic
terms, can be seen as a particular instance of gradient dynamics as shown in [35, 33].

Fig. 1 Vertical vibrations in
an elastoplastic solid with
parameters specified in [43].
The figure shows y-velocity
profiles times t = 0.00005
(green), t = 0.00005 + P
(red) and t = 0.00005 + 2P
(blue), where P = 1/2141 is
the period of the linearized
elastic problem. Dissipation
gradually diminishes the
velocity.
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SHTC equations are thus fully compatible with the framework of General Equation
for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) [20, 30, 31, 33].

Yet further insight can be gained by firstly formulating the motion as an infinite-
dimensional Lie group as in [3, 2, 40]. For instance, the SHTC equations then possess
the structure of a semidirect product, which has further mathematical implications
about hyperbolicity, gauge invariance, etc., see [34]. Finally, one can also formulate
evolution equations for fluid dynamics and Grad’s hierarchy in differential geometry
without Lie groups [10], which leads to sort of GENERIC without Poisson brackets.

3 Conclusion

In this note, several approaches to continuum thermodynamics have been briefly
recalled. It was emphasized that only balance laws are not sufficient for modeling
complex materials, where extra state variables (not only density, momentum and
energy density) are necessary. Indeed, their kinematics is often too complex to
be derived based just on the conservation laws, entropy principle and objectivity.
Several approaches that go beyond the conservation laws were then discussed. The
framework of Symmetric Hyperbolic Thermodynamically Compatible equations
has been recalled and illustrated on a simple numerical example. Finally, geometric
techniques based on Poisson geometry and Lie groups were mentioned and the
Hamiltonian origin of SHTC equations was exposed.
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