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Summary: Testing homogeneity of dispersions may be of its own scientific interest as well as an important auxiliary

step verifying assumptions of a main analysis. The problem is that many biological and ecological data are highly

skewed and zero-inflated. Also the number of variables often exceeds the sample size. Thus data analysts often do

not rely on parametric assumptions, but use a particular dissimilarity measure to calculate a matrix of pairwise

differences. This matrix is then the basis for further statistical inference. Anderson (2006) proposed a distance-

based test of homogeneity of multivariate dispersions for a one-way ANOVA design, for which a matrix of pairwise

dissimilarities can be taken as an input. The key idea, like in Levene’s test, is to replace each observation with its

distance to an estimated group centre. In this paper we suggest an alternative approach that is based on the means

of within-group distances and does not require group centre calculations to obtain the test statistic. We show that

this approach can have theoretical as well as practical advantages. A permutation procedure that gives type I error

close to the prescribed value even in small samples is described.
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NOTICE: This is the author’s version of a work that was accepted for publica-

tion in Biometrics. The definitive version is available at onlinelibrary.wiley.com,

DOI: http://dx.doi.org/10.1111/j.1541-0420.2012.01797.x.

1. Introduction

When analysing multivariate data it is often of crucial importance to know if groups of

observations (e.g. as defined by different treatments) differ in their relative dispersions.

This question may be of interest on its own (e.g. to find the treatments having stabilis-

ing/destabilising effects) or an auxiliary step when verifying assumptions or interpreting

results of a main analysis.

Data coming from many biological applications, in particular ecological community data,

are often very skewed, possibly containing many zeroes, which makes the assumption of

normality (as well as any other parametric assumptions) very difficult to justify. Also the

number of variables is usually not small in comparison to the sample size. That is why an

analyst often uses an appropriate dissimilarity (distance) measure to calculate the matrix of

pairwise dissimilarities (distances) and the statistical inference is based on that matrix.

In this paper we will consider the simple one-way ANOVA design, where each observation

belongs to exactly one treatment. The usual question of scientific interest is to find out

which treatments have effects on outcome. To answer this question several tests based on a

dissimilarity matrix have been proposed, e.g. Mantel and Valand (1970), Mielke et al. (1981),

Smith et al. (1990), Excoffier et al. (1992), Clarke (1993), Pillar and Orlóci (1996), Gower

and Krzanowski (1999), Legendre and Anderson (1999) and McArdle and Anderson (2001).

Roughly speaking, all the above tests are based on comparing the within-group against

between-group dissimilarities and in particular they aim at finding the differences in centres

of the multivariate distributions underlying the observed data. A significant result is usually
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interpreted as the tendency of the observations belonging to the same treatment to ‘cluster

together’ around different group centres. But this interpretation may not be correct as all

the tests are to some extent also omnibus tests and a significant result may be purely the

effect of differences in group dispersions.

Anderson (2006) developed a distance-based test for homogeneity of multivariate disper-

sions which is inspired by the popular Levene’s test in univariate ANOVA. The key idea is

to replace each observation with its distance to an estimated group centre.

The aim of this paper is to suggest an alternative test, which is directly based on the means

of distances within the same group and does not require group centre calculations to obtain

the test statistic. This test overcomes several difficulties of the test of Anderson (2006). First,

it can be easily and explicitly stated in terms of the distance matrix which feature of the

groups is compared. Second, a large sample version of this test can be calculated for a general

dissimilarity matrix without the need for calculating the principal coordinate representation.

Third, the permutation version of the test does not require re-calculation of the centre of

the data with each permutation. Last but not least, our simulation experiences show that

the proposed tests control slightly better the type I error for comparisons of small samples

(up to 20 observations per group).

Note that in ecology the concept of dispersion can be very useful when analysing species

diversity. If one observation represents the composition of species for a given site and

observations are coming from several locations, then testing the homogeneity of dispersions

of the groups is useful when testing for differences between locations in terms of species

composition, because differences between locations (beta diversity) depend on dispersions

within locations (alpha diversity). Observations can also be compared between years instead

of locations. On the other hand, if an observation stands for characteristics of an individual

(animals, plants, . . . ) and the observations are coming from different species (or even well
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defined groups within a given species), then the presented testing problem can be used in

the analysis of genetic or phenotypic differences between species’ populations.

With no loss of generality, we talk only about dissimilarity matrices in this paper, with the

understanding that similarity matrices can be handled in a similar fashion, after applying a

suitable transformation to dissimilarities.

The paper is organized as follows. Section 2 introduces the tests. Permutation procedures

to estimate p-values of the tests are discussed in Section 3. In Section 4 the suggested tests

are compared with the tests of Anderson (2006) in a simulation study. Section 5 summarizes

and discusses the results. Detailed simulation results are provided in a Web Appendix.

2. Description of the test

In a simple one-way ANOVA design each observation is associated with exactly one of the

K treatments and the sample sizes of the corresponding groups are n1, . . . , nK with the

total sample size n = n1 + . . . + nK . Let Y
(k)
i = (Y

(k)
i1 , . . . , Y

(k)
ip )T be the vector of length p

corresponding to the i-th observation in the k-th group for each p variables and suppose that

all the observation vectors are independent and the p-length observation vectors in the same

group follow the same multivariate distribution.

To describe the tests we use two of the data sets discussed in Anderson (2006). We refer

to that paper and the references therein for a more detailed description of the data.

2.1 Using the Euclidean distance

The Bumpus’ sparrow data set consists of five morphological characteristics of sparrows

measured in Rhode Island after a severe storm. The sparrows are divided into two groups,

those that survived the storm and those that died. The data are a subset of the original data

recorded by Bumpus (1899) and can be found in Manly (2005).

As the general theory of stabilizing selection (Campbell et al., 2008) suggests that the char-
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acteristics of non-survivors should be more dispersed than the characteristics of survivors,

one of the questions of interest is to test for a difference in the multivariate dispersions of

these two groups. Thus, we require a test for homogeneity of multivariate dispersions.

The first option is the traditional likelihood ratio test described e.g. in Rencher (1998),

pp. 138–140. This test assumes multivariate normality of the observations and tests the null

hypothesis

H0 : Σ1 = . . . = ΣK , (1)

where Σk is the variance-covariance matrix of random variables underlying the observations

in the k-th group (note that K = 2 in our example). As the resulting test is rather sensitive

to the assumption of multivariate normality, more robust procedures have been developed,

see e.g. Tiku and Balakrishnan (1985) and O’Brien (1992). In the latter paper it was also

suggested that, instead of trying to test the very specific hypothesis (1), it is often reasonable

to concentrate on the overall level of dispersion. This basically means that one constructs

a simple measure that aims at summarizing the dispersion of each group and then tests for

the equality of these measures of dispersion among groups.

The test suggested in Anderson (2006) follows the idea of concentrating on the overall level

of dispersion. Although the test can be based on any dissimilarity measure, it is instructive to

illustrate with the Euclidean distance dE. The core idea is that if group A is more dispersed

than another group B, then the distances of the observation to the centre in group A tend

to be larger than those in group B. To be more precise, let t̂k stand for an estimated centre

of the k-th group and define

X =
(
X

(1)
1 , . . . , X(1)

n1
, X

(2)
1 , . . . , X(2)

n2
, . . . , X

(K)
1 , . . . , X(K)

nK

)T
, where X

(k)
i = dE(Y

(k)
i , t̂k).

Now, the vector X is treated as K independent random samples and the traditional ANOVA

F -statistic is used to compare the means across K groups.

A p-value for this F -statistic is obtained either by using an F -distribution or by using the
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following permutation procedure: (i) Permute the ‘residuals’ r
(k)
i = Y

(k)
i − t̂k; (ii) Calculate

the new group centres t̂∗k based on the permuted residuals; (iii) Take the distances of the

permuted data from the new centres and recalculate the F -statistic.

Anderson (2006) suggested that either centroids (component-wise means) or spatial medi-

ans can be taken as the group centres (t̂k’s). As there are many definitions of a multivariate

median in the literature, by a spatial median of data-points in this paper we understand

a point (say t̂) that minimizes the sum of the Euclidean distances of data-points from t̂

(Haldane, 1948).

The test FAnd is very appealing as it seems to be a very natural multivariate analogue to

Levene’s test (see Van Valen (1978) and Manly (2005) for similar suggestions of a multivariate

Levene’s test). The test is also intuitive and simple to understand.

Despite these nice properties of the test FAnd, one may feel uncomfortable that the test

statistic depends on the choice of the centre of the groups. This could be of particular

concern if a centroid and a spatial median are not close to each other which is often the case

if the data are asymmetric or contain outliers. A straightforward alternative to calculating

distances from group centres is to consider inter-point distances within groups. If for example

the group of non-survivors is more dispersed than the group of survivors, then one would

expect that the inter-point distances within the group of non-survivors are, on average, larger

than those within the group of survivors.

Let us make these ideas more precise. Let d
(k)
ij = d(Y

(k)
i ,Y

(k)
j ) where d stands for the used

dissimilarity measure (the Euclidean distance in our example) be the dissimilarity between

observations i and j. Means of the within-group distances can be calculated as

d̄k =
1(
nk

2

) nk−1∑
i=1

nk∑
j=i+1

d
(k)
ij , k = 1, . . . , K. (2)

Note that if the dispersions in the groups are the same, the quantities d̄1, . . . , d̄K are expected

to be close to each other. Thus, as in a standard ANOVA, we want to test the equality of these
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K means. The only thing we have to be careful about is that each of the d̄k is not a mean

of independent random variables, but rather is a U -statistic of degree two (see Chapter 5

of Serfling, 1980). The asymptotic variance of d̄k is usually estimated with the jackknife

estimator (formula (9) of Callaert and Veraverbeke, 1981)

σ̂2
k =

S2
k

nk

, where S2
k =

4 (nk − 1)

(nk − 2)2

nk∑
i=1

(D̂
(k)
i − d̄k)

2, k = 1, . . . , K, (3)

where the average distance from observation i to every other observation within its group is

D̂
(k)
i =

1

nk − 1

nk∑
j=1,j 6=i

d
(k)
ij , i = 1, . . . , nk, k = 1, . . . , K. (4)

Finally, the test statistic is given by

Fd̄ =

∑K
k=1 nk (d̄k − d̄)2

(K − 1) σ̂2
, where d̄ =

1

K

K∑
k=1

nk d̄k, σ̂2 =

∑K
k=1(nk − 1)S2

k

n−K
. (5)

The null hypothesis is rejected when Fd̄ exceeds the (1 − α)-quantile of an F -distribution

with K − 1 and n−K degrees of freedom. The asymptotic validity of this test follows from

independence and the asymptotic normality of each of the quantities d̄1, . . . , d̄k. In Section 3

we describe a permutation procedure that improves the small sample properties of this test.

Remark 1: As pointed out by one of the referees, the test statistic Fd̄ can be easily

calculated by the standard ANOVA F -test applied to jackknifed ‘pseudo-values’ (Callaert

and Veraverbeke, 1981). In our situation the jackknifed ‘pseudo-values’ are given by

P
(k)
i =

2

nk − 2

nk∑
j=1,j 6=i

d
(k)
ij − nk

nk − 2
d̄k, i = 1, . . . , nk, k = 1, . . . , K.

The fact that one does not need to specify the group centres has some methodological

advantages. The main advantage is that one can easily specify the null hypothesis in terms

of the pairwise distances. Let Lk stand for the distribution of the within sample distances in

the k-th group. Although in the sequel we will be interested in the following null hypothesis

H0 : L1 = L2 = . . . = LK , (6)

different null hypotheses may be of interest. For instance a researcher may be interested
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in a very broad null hypothesis stating that only the mean values of the distributions

L1,L2, . . . ,LK coincide. The corresponding test could be constructed by a modification of

an ANOVA test for unequal variances (see e.g Volaufová, 2009, and references therein).

Remark 2: Note that the test statistic Fd̄ defined in (5) is not the only way to test the

null hypothesis (6). When using Fd̄ one hopes that a difference in distributions L1,L2, . . . ,LK

can be discovered as a difference in their mean values. But generally speaking one can take

any K-sample test and modify it for the within sample distances.

Remark 3: As in fact we test for equality of dispersions, it seems reasonable to expect

that the variances of the distributions L1,L2, . . . ,LK increase with the means. Thus one can

use a logarithmic transformation of d̄k to stabilize the variances. By the delta method (see

e.g. Chapter 3.1 of Serfling, 1980) it follows that the resulting test statistic F log

d̄
is given

by (5) with d̄k replaced with log(d̄k) and S2
k with S2

k/(d̄k)
2.

Remark 4: The test procedure can be visualized with the help of D̂
(k)
i defined in (4).

This quantity gives an average distance from the i-th observation to the other data points in

the k-th group. A small/large value of D̂
(k)
i means that the i-th observation is close/far from

the ‘centre’ of the k-group. Further note that the mean within-group distance d̄k defined

in (2) can also be calculated as d̄k = 1
nk

∑nk

i=1 D̂
(k)
i . Figure 1 plots D̂

(k)
i together with their

means d̄k and an approximate 95%-confidence interval for the mean µk of the distributions Lk.

The confidence interval is based on the asymptotic normality of d̄k and is given by (d̄k −

u0.975 σ̂k, d̄k + u0.975 σ̂k), where up is the p-quantile of the standard normal distribution and

σ̂k is the estimate of the standard derivation of d̄k given in (3). Note that non-overlapping

confidence intervals in Figure 1 would already indicate that the null hypothesis (6) does not

hold. As for our data there is a degree of overlap in the intervals, a formal test is necessary

to decide about the null hypothesis.
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[Table 1 about here.]

[Figure 1 about here.]

Table 1 gives the values of the test statistics and p-values for the sparrow data set (after

standardization for each variable). Fd̄ stands for the test (5) and F log

d̄
for the ‘log-transformed’

test described in Remark 3. The test statistics of Anderson (2006) are denoted by F c
And when

centred by a centroid or Fm
And when centred by a spatial median. Further, ‘p-value (as.)’ stands

for the p-value given by a standard F -distribution and ‘p-value (perm.)’ for the p-value given

by the permutation test with 99 999 permutations. The permutation procedure used to get

the p-values Fd̄(p) and F log

d̄
(p) is described in Section 3.

Note that the p-values of all the tests are ‘borderline’, i.e. close to 0.05 indicating a

possible difference between the two groups of sparrows in the dispersions of these measured

morphological characteristics.

2.2 Using a general dissimilarity measure

The Tikus Island coral data set consists of the percentage cover of each 75 coral species

along each of 10 replicate transects in six different years from 1981 to 1988. Differences

among the coral assemblages in different years are expected as an El Niño event occurred in

1982-1983. The data are given as a data set called tikus in the R-package mvabund (Wang

et al., 2012). As these data include many zeroes and are highly skewed, the approach that

uses the Euclidean distance does not seem to be appropriate here. Following the analysis

of Warwick et al. (1990) the matrix of pair-wise Bray-Curtis dissimilarities (given by (8))

calculated from square-root transformed data was used as a starting point of the analysis.

To be more precise, letY
(k)
i stand for already square-root transformed observations. Denote

the joint sample as

(Z1, . . . ,Zn)
T =

(
Y

(1)
1 , . . . ,Y(1)

n1
,Y

(2)
1 , . . . ,Y(2)

n2
, . . . ,Y

(K)
1 , . . . ,Y(K)

nK

)T
. (7)
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The dissimilarity matrix D is a matrix of pair-wise distances with the elements dij =

d(Zi,Zj), where d now stands for the Bray-Curtis dissimilarity given by

dBC(Zi,Zj) =

∑p
q=1 |Ziq − Zjq|∑p
q=1 |Ziq + Zjq|

. (8)

For the situation when the analyst starts with a matrix D of pairwise-dissimilarities Anderson

(2006) suggests the following way of calculating the test FAnd:

Step 1. Using principal coordinate analysis (PCoA, see e.g. Legendre and Legendre, 1998,

pp. 424–438) find a representation (say U) of the dissimilarity matrix D. The ob-

servation Zi is now represented by the vector ui = (u+
i ,u

−
i )

T (the i-th row of the

matrix U), where u+
i (u−

i ) stands for the coordinates of the vectors that corresponds

to real (imaginary) axes of the representation U.

Step 2. If U contains only real axes, the analysis of Section 2.1 can be directly used with

the original data being replaced with the representation U. If there are also some

imaginary axes, then define X
(k)
i =

√
d2E(u

+
i , t

+
k )− d2E(u

−
i , t

−
k ), where t̂k = (t̂+k , t̂

−
k )

stands for the corresponding group centre (either a centroid or a spatial median)

with t̂+k (t̂−k ) being the coordinates corresponding to real (imaginary) axes.

Step 3. Analogously as in Section 2.1 an F -statistic is computed and its significance is

assessed either with the help of an F -distribution or via a permutation method

where ri = ui − t̂k are permuted.

Although the procedure seems to give reasonable results in practice, it is not without diffi-

culties. Although one intuitively feels that the distances from the group centres in the PCoA

representation should reflect the within-group variability, it is not at all straightforward to

write down rigorously what feature of the original data is tested and how to formulate the

null hypothesis. This is particularly true when the representation U also includes imaginary

axes.

The test statistics based directly on pairwise distances, suggested in this paper, enable
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an analyst to specify the null hypothesis by reference to the inter-point distances directly,

and decide which feature of within-group distances to compare. For instance when using the

statistic Fd̄ defined in (5) the analyst concentrates on comparing the means of within-sample

dissimilarities.

Figure 2 presents the visualization of the test procedure and the p-values for the coral data

set are given in Table 1. To estimate the p-values of the permutation tests, 99 999 random

permutations were used. The results suggest that there is a statistically significant difference

in the means of group dissimilarities. Already the visual inspection of Figure 2 reveals that

multivariate dispersion, as measured by the Bray-Curtis dissimilarity, is significantly higher

in 1983, which corresponds to the year of the El Niño event. Analogously as in Anderson

(2006) one can now proceed and try to find which pairs of years are significantly different.

The findings (not presented here) when using either Fd̄ or F log

d̄
are similar to the findings

based on FAnd.

[Figure 2 about here.]

2.3 Interpreting results

It is worth mentioning that, as in O’Brien (1992) and Anderson (2006), the test statistics

proposed in this paper concentrate on the overall level of dispersions as measured by the

mean within-group dissimilarities. Thus, it might happen that the null hypothesis (6) is

retained even if (1) is not true. Thus, for example, differences in rotations of the groups

cannot be detected by the suggested tests when a rotation invariant dissimilarity measure

is used. But this can be viewed also as a desirable feature of the test when analysing beta

diversity (see Section 5).

Generally speaking, when using distance-based tests one should be careful when inter-

preting the results. In our case, rejecting the null hypothesis (6) says that the distributions

L1, . . . ,LK differ in their means. This can be safely interpreted as the difference in multi-
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variate dispersions if a location invariant dissimilarity measure is used (e.g. Euclidean or

Manhattan) and the underlying distribution of the data can be considered to belong to a

multivariate location-scale family. This seems to be reasonable for Bumpus’ sparrow data

set, but not for the coral data set. When one is dealing with data sets that represent a

percentage coverage (such as the coral data set) or with abundance data, the interpretation

of any distance-based test is difficult because of the intrinsic mean-variance relationships

inherent in the distribution of counts or species abundances (Warton et al., 2012).

Further, one should be aware that the results of tests are usually strongly influenced by

the choice of a dissimilarity measure and by transformation/normalization of the data. This

can be viewed also as an advantage though. As argued and illustrated in Anderson et al.

(2006), by using different dissimilarity measures together with different transformations of

the data an analyst can explore various aspects of data. Rejecting the null hypothesis (6)

however always indicates that there is a difference among groups. Differences in dispersion

may or may not be detected by the traditional ANOSIM-type procedures (see e.g. Clarke,

1993; Anderson, 2001) as these techniques target, in particular, location differences.

3. Resampling procedures

So far, the new proposed tests have been described where inferences rely only on asymptotic

distributions of the test statistics. It is well known that finite-sample properties of these tests

can often be improved through resampling procedures. Several resampling algorithms can

be proven to be asymptotically valid for our problem. In this section we describe a modified

permutation procedure that works very well in all situations we have encountered so far and

that we recommend for general use.
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3.1 The standard permutation procedure

The standard permutation approach consists of permuting the original observations Z1, . . . ,Zn.

Note that this is equivalent to permuting both the rows and the columns of the matrix D.

But this method gives an exact permutation test only if the distribution of the original

observations is the same in all the groups. But as the null hypothesis (6) allows (among

others) for different locations of the groups, this method cannot be generally recommended.

Our experience is that this standard permutation approach does not hold the type I error if

the between-group dissimilarities are much bigger than the within group distances. That is

why we recommend the ‘centred’ permutation procedure described below.

3.2 The ‘centred’ permutation procedure

Improvement of the properties of the standard resampling procedure can be obtained by

reducing the distances among groups. To achieve this we make use of the principal coordinate

representation (PCoA) of the distance matrix D. In order to prevent the imaginary axes of

the representation that raises difficulties in interpretation, we use the Correction method 2

of Legendre and Legendre (1998) (pp. 434–435). This methods adds the smallest positive

constant c to all non-diagonal elements of the matrix D, such that the new matrix (Dc) has

PCoA representation with only real axes. As proved by Cailliez (1983) the constant c can

be found as the largest positive eigenvalue of the matrix 0 2∆1

−I −4∆2


where 0 is a n × n null matrix and I is a n × n identity matrix. Let matrix A of elements

{aij} be defined element-wise as aij = −0.5 d2ij. Matrix ∆1 with elements {δij} is defined as:

δij = aij − āi· − ā·j + ā··, where āi·, ā·j and ā·· are the means for row i, column j and the

overall mean, respectively, from matrix A. Matrix ∆2 is defined in precisely the same way,

but where matrix A contains, instead, the elements aij = −0.5 dij.



Testing for homogeneity of multivariate dispersions using dissimilarity measures 13

The PCoA applied on the matrix Dc gives a matrix U such that for each i, j ∈ {1, . . . , n}

dij + c = dE(ui,uj), for i 6= j,

where dE stands for the Euclidean distance and uk is the k-th row of the matrix U.

Put U1 for the first n1 rows of the matrix U, U2 for the next n2 rows of the matrix U and

so on. Thus, one can write

U = [U
T

1 ,U
T

2 , . . . ,U
T

K ]
T

, (9)

with Uk being the representation for the k-th sample. Now, put Ũk for Uk centred with

either a centroid or a group spatial median defined as

t̃(k) = argmin
t

nk∑
i=1

dE(u
(k)
i , t), (10)

where u
(k)
i is the i-th row of the matrix Uk. Replacing Uk with Ũk in (9) one gets the

‘centred’ representation Ũ, that is used to construct the ‘centred’ distance matrix D̃c with

the elements

d̃cij = dE(ũi, ũj).

Finally, remove the constant c from all the non-diagonal elements of the matrix D̃c and use

the resulting matrix (D̃) for the standard permutation approach (instead of the matrix of

the original distances D) of Section 3.1.

Remark 5: Note that

d̃ij = dij if Zi and Zj belong to the same group.

Thus switching from D to D̃ modifies only the dissimilarities between observations from

different groups.

Further note for the test statistic Fd̄ defined in (5) one can already resample the matrix

D̃c as adding a constant to all distances does not affect the statistic Fd̄.

Remark 6: Note that PCoA is used only as a vehicle to estimate a sampling distribution
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of the test statistic Fd̄ (F
log

d̄
) under the null hypothesis. In contrast with the test FAnd, PCoA

is not necessary to calculate the values of the test statistics. The user thus has the possibility

to use the method of adding a constant to the original dissimilarity matrix to have a PCoA

with only real axes. But for FAnd the dissimilarity matrix Dc gives generally a different value

of the test statistic than when using the original distance matrix D.

3.3 Centring the original data

The construction of the matrix D̃ described above may be summarized as

DATA → D → Dc → U → Ũ → D̃c → D̃.

Sometimes it seems even more natural to calculate the matrix D̃ from the original observa-

tions that are appropriately centred rather than with the help of PCoA.

This approach has basically two requirements. First, the centring of the observations has to

be a reasonable operation. Note that this is true for the sparrow data set of Section 2.1, but

not for the abundance-type of data of Section 2.2. Second, the chosen dissimilarity measure

must be location-invariant, so that centring of the observations does not affect the within

sample distances. In this situation one can centre data either with a centroid or with a spatial

median, where the latter is recommended if outliers are present in the data.

A general class of dissimilarity measures that are location invariant is generated by the

Minkowski distance defined as

dr(Zi,Zj) =

(
p∑

q=1

|Ziq − Zjq|r
)1/r

, where r > 0.

Note that for r = 2 the Minkowski distance d2 reduces to the Euclidean distance dE, and

for r = 1 the Minkowski distance results in the Manhattan distance.

Further, a number of dissimilarity measures are ‘Euclidean-transformable’, that is they

coincide with the Euclidean distance after appropriate transformations of the data. Examples

of such dissimilarity measures are the Chord dissimilarity measure, the Chi-square distance,
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the Distance between species profiles and the Hellinger distance (Legendre and Gallagher,

2001).

On the other hand, the distances that are usually used for abundance-type of data are

not location invariant. Among others let us mention the Canberra metric, the Coefficient

of divergence, the Bray-Curtis dissimilarity (Legendre and Legendre, 1998) or the scale-

invariant binomial deviance (Anderson and Millar, 2004)

dbin(Zi,Zj) =

p∑
q=1

1

Sq

[
Ziq log

(
Ziq

Sq

)
+ Zjq log

(
Zjq

Sq

)
− Sq log

(
1

2

)]
, (11)

where Sq = Ziq + Zjq. For these dissimilarity measures, centring must be done using the

PCoA representation, as described in Section 3.2.

4. Simulation study – findings

In the simulation study we investigated the type I error and power properties of both

asymptotic as well as permutation versions of the tests suggested in Section 2.1 and compared

them with the performances of the FAnd-tests.

The following test procedures were considered:
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1. Fd̄(as) – Fd̄ given by (5) + F -distribution;

2. Fd̄(pmed) – Fd̄ + the ‘centred’ (by median) permutation procedures of Sec-

tion 3.2 or Section 3.3 (if the Euclidean distance is employed);

3. Fd̄(pcentr) – Fd̄ + the ‘centred’ permutation procedure as for Fd̄(pcentr) but

with centring by a centroid instead of a spatial median

4. F log

d̄
(as) – F log

d̄
of Remark 3 + F -distribution;

5. F log

d̄
(pmed) – F log

d̄
+ the ‘centred’ permutation procedure as for Fd̄(pmed)

6. F log

d̄
(pcentr) – F log

d̄
+ the ‘centred’ permutation procedure as for Fd̄(pcentr)

7. FAnd(ascentr) – test of Anderson (2006) + centroid + F -distribution;

8. FAnd(pcentr) – test of Anderson (2006) + centroid + permutation;

9. FAnd(asmed) – test of Anderson (2006) + spatial median + F -distribution;

10. FAnd(pmed) – test of Anderson (2006) + spatial median + permutation.

4.1 The models used to generate data

We considered four types of data generation processes. Detailed descriptions of these data

generations are given in the Web Appendix.

1. Sparrows type data – This data generation process is inspired by the data set of Sec-

tion 2.1. The simulated data came from a five-dimensional normal distribution and the

Euclidean distance dE was used.

2. Fish type data – This data generation example is inspired by the data coming from a

study on spatial variation in temperate reef fish assemblages (Anderson and Millar, 2004).

In this data set each observation records abundance of 57 fish species. In this model the

samples were simulated from a multivariate Poisson-lognormal distribution (Aitchison and

Ho, 1989). As a dissimilarity measure we used the scale-invariant binomial deviance dbin

(11).

3. Corals type data – This data generation process is inspired by the Tikus Islands coral
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data discussed in Section 2.2. In this data set each observation records the percentage

cover of 75 coral species. In our simulation model these covers were generated as a mix-

ture of independent normal distributions and zeroes. Here the Bray-Curtis dissimilarity

measure dBC (8) was used.

4. Gaussian data with outliers – Here the data were generated from a bivariate normal

distribution with 10% of outliers. The Euclidean distance dE was used.

The detailed results of the simulation study are given in the Web Appendix. Here we limit

ourselves to describing and discussing simulation findings.

4.2 An F -distribution or a permutation test?

Generally we recommend to use permutation tests whenever it is computationally feasible.

The tests Fd̄(as) and F log

d̄
(as) tend to be conservative in particular for fish data and coral

data. (Web Tables 2 and 6). Note that F log

d̄
(as) is rather unreliable in terms of type I error

when outliers were present and the Euclidean distance was used (Web Table 8). FAnd(ascentr)

tends to exceed the level slightly in balanced samples and considerably in unbalanced samples

in all simulation settings. Finally, the test FAnd(asmed) is usually conservative in balanced

samples, but sometimes exceeds the level in unbalanced samples (Web Table 2).

The F -distribution approximation of critical values seems to work reasonably well when

the group sample sizes exceed 50, but one should be aware that even for very large sample

sizes FAnd(ascentr) can exceed the level by about one percent, and FAnd(asmed) by about a

half percent (Web Table 4). The tests Fd̄(as) and F log

d̄
(as) seem to work better in this aspect.

4.3 Centring by a centroid or a spatial median?

Not surprisingly, centring by a spatial median is preferred when there are outlying obser-

vations. Particularly in small samples even the permutation test FAnd(pcentr) is not reliable
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in terms of type I error. This can be seen from Web Table 8 as well as from Web Table 2;

indeed the fish type data generation also produced values that are outlying.

When there is no evidence for outlying values, the differences in methods are subtle.

FAnd(pcentr) gives usually slightly higher power results than FAnd(pmed), but in some models

the former test exceeds the level for small and unbalanced samples (Web Tables 2, 3, 6

and 7).

The choice of centring seems to be of lesser importance for the permutation versions of the

tests Fd̄ and F log

d̄
than for the FAnd-tests. This can probably be explained by the fact that

the type of centring does not affect the test statistics and it is used only as an adjustment for

the data before resampling. The test Fd̄(pcentr) (F
log

d̄
(pcentr)) usually achieves slightly higher

power than its closest competitor Fd̄(pmed) (F
log

d̄
(pmed)). The type I error properties of the

tests Fd̄(pcentr) and F log

d̄
(pcentr) are also very satisfactory and both the tests hold the level

very closely for sample sizes bigger than 10. For very small sample sizes, the tests can exceed

the level slightly (but usually not more than by a half percent). On the other hand Fd̄(pmed)

and F log

d̄
(pmed) are sometimes unnecessarily conservative for small samples.

4.4 Distance to centres or within group distances?

In most of the situations all the permutation tests hold the level quite satisfactorily. Only

in small or unbalanced samples the FAnd-tests slightly (usually with about a half or one

percent) exceed the level (Web Tables 2 and 6). On the other hand all the permutation tests

suggested in this paper hold the level very satisfactorily in all situations we encountered so

far.

Regarding power, all the permutation tests give similar powers in balanced samples. This is

not so surprising as the tests concentrate on very similar features of the data. For unbalanced

samples, the suggested tests are more powerful when bigger groups tend to have smaller

dispersions. If it is the other way around, then the tests of Anderson (2006) achieve higher
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power. This seems to be a small sample feature of the tests that is diminishing with increasing

sample size (Web Table 5).

4.5 Fd̄-test or F log

d̄
-test?

In terms of type I error these two tests are comparable. Our experience is that also in terms

of power performances these tests are very close when a scale-invariant dissimilarity measure

is used, that is, a dissimilarity measure satisfying d(cZi, cZj) = d(Zi,Zj) for each c > 0.

Note that dBC defined in (8) as well as dbin defined in (11) are scale-invariant. On the other

hand a noticeable difference in the power performances of the tests can be observed for

dissimilarity measures that are scale-equivariant, that is d(cZi, cZj) = c d(Zi,Zj). This is

the case for the Euclidean measure used for the sparrow-type data (Web Table 1). As the

test statistic F log

d̄
transforms a scale effect into an additive effect and the F -statistic used in

ANOVA is constructed to detect additive differences in mean values, we recommend to use

F log

d̄
for scale-equivariant dissimilarity measures. However, one should be aware that F log

d̄
(as)

can break down when outliers are present (Web Table 8).

4.6 Computational aspects.

Sometimes it might be advantageous that the test statistics Fd̄ and F log

d̄
can be computed

without the necessity of calculating a PCoA representation. The permutation versions of the

suggested tests also require a PCoA representation, thus from this point of view the suggested

procedures are comparable with the tests of Anderson (2006). The amount of calculations

needed to re-calculate the test statistic is for the suggested test procedure comparable with

that for FAnd(pcentr). The test FAnd(pmed) is more computationally expensive when the total

sample size n exceeds one hundred and not the Euclidean distance is used as a dissimilarity

measure. The reason is that in this situation the PCoA representation has typically (n− 1)

dimensions. Re-calculating a spatial median in such a high dimension, with each permutation

and in each group, can take a substantial amount of computing time.
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5. Conclusions

In this work we propose a testing approach that aims at detecting differences in the overall

level of dispersion among independent groups of observations. The approach is based on

pairwise distances of observations. We compare the suggested tests with the tests introduced

in Anderson (2006) from the computational aspect as well as from aspects of performances

in power and type I error.

While the tests of Anderson (2006) summarize the overall measure of dispersion by means

of the distances from the group centres, the tests proposed in this paper used the mean within

group distances to summarize the dispersion. While these concepts are close together when

the Euclidean distance is used, the difference becomes more important for other dissimilarity

measures. The reason is that in this case tests of Anderson (2006) are based on the distances

from the group centres in the PCoA representation and it is less obvious what feature of the

original distance matrix is tested. This is in particular true when also imaginary axes are

present in the PCoA representation. On the other hand, the approach based on distances

from the centroids can be more useful when one also wants to identify outlying observations

visually.

As suggested in Anderson et al. (2006) for the mean distance-to centre, the mean within-

group dissimilarity d̄k can also be used as a direct measure of beta diversity (e.g., Whittaker,

1960, 1972; Vellend et al., 2007). For example, if one analyses species data like the Tikus

Island coral data set, then d̄k can be interpreted as a measure of beta diversity for a given

year (e.g., Anderson et al., 2011).

The proposed new approach to test for homogeneity of overall dispersions among groups

behaves just as well as the tests proposed by Anderson (2006) with respect to type I error

and power, has reasonably good asymptotic properties, and is generally easier to compute

and to interpret than the methods proposed by Anderson (2006).
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6. Supplementary Materials

The data sets analysed in Section 2, an R-code implementing the considered tests and the

Web Appendix referenced in Section 4 are available with this paper at the Biometrics website

on Wiley Online Library.
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Figure 1. Plot of the pseudo-observations D̂
(k)
i for Bumpus’ sparrow data set along with

mean within-group distance and 95%-confidence interval.
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Table 1
Test statistics and p-values for the Bumpus’ sparrow and Tikus Islands coral data set.

Fd̄ F log

d̄
F c
And Fm

And

Sparrows test statistic 4.319 4.956 3.869 3.818
p-value (as.) 0.043 0.031 0.055 0.057
p-value (perm.) 0.041 0.034 0.055 0.048

Corals test statistic 6.920 5.193 9.097 6.292
p-value (as.) < 0.0001 0.0006 < 0.0001 0.0001
p-value (perm.) < 0.0001 0.0004 < 0.0001 0.0001



Web based supplementary material for “Testing for homogeneity of

multivariate dispersions using dissimilarity measures”

by Irène Gijbels and Marek Omelka

Web Appendix A: Details of the simulation study

This section provides detailed results of the simulations study. The considered tests have

been described in Section 4 of the main manuscript.

The type I error is prescribed to be 0.05. A total of 10 000 samples (or 50 000 samples

when at least one of the sample sizes was less or equal to ten) were generated to estimate

the type I error of the tests and 5 000 samples were generated for assessing the power of the

tests. A total of 999 random permutations were used to estimate p-values of permutation

tests. We used the R-computing environment, version 2.10.1 (see R Development Core

Team (2009)) to perform the simulations.

A1. Sparrows. This simulation study is inspired by the data set already introduced in

Section 2.1 of the main manuscript. The simulated data came from a five-dimensional

normal distribution with the parameters estimated from the Bumpus’ sparrow data set.

The means and the variances of the components were taken to be

µ1 = (157.4, 241.0, 31.4, 18.5, 20.8)T, σ2
1 = (11.048, 17.500, 0.531, 0.176, 0.575)T,

µ2 = (158.4, 241.6, 31.5, 18.4, 20.8)T, σ2
2 = (15.069, 32.550, 0.728, 0.434, 1.321)T.

Note that the dispersion is ‘larger’ for the second group.
1
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The correlation matrix was taken the same for both groups and estimated from the

pooled sample as

Corr =



1.00 0.73 0.66 0.65 0.61

0.73 1.00 0.67 0.77 0.53

0.66 0.67 1.00 0.76 0.53

0.65 0.77 0.76 1.00 0.61

0.61 0.53 0.53 0.61 1.00


.

For estimating the empirical type I error the variance of the first group served as that for

both groups.

The generated data were first standardised (to have zero mean and unit variance) for

each variable, and then the distance matrix based on the Euclidean distance measure was

computed. Samples of various sizes were generated to cover the situation of balanced

((n1, n2) = (10, 10), (20, 20), (40, 40)) as well as unbalanced samples ((n1, n2) = (10, 20),

(20, 10)).

From Web Table 1 one can see that for this setting all the tests hold the type I error

very satisfactory. Such type of data sets seem to be ‘well-behaved’ and the asymptotic

and permutation tests give similar results. Note however that for the sample sizes (10, 10),

the asymptotic as well as the permutation procedures that rely on centring by centroids,

slightly exceed the prescribed level 0.05.

When the sample sizes are equal, the powers of all tests are similar. When the larger

sample size goes along with the less dispersed sample, both permutation and asymptotic

versions of the test Fd̄ achieve higher power than the FAnd-tests. If the more dispersed
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Web Table 1. Sparrows type data – empirical type I error and power for

the tests.

Type I error Power

(10,10) (20,20) (40,40) (10,20) (20,20) (10,20) (20,10)

Fd̄(as) 0.051 0.044 0.048 0.046 0.423 0.237 0.319

Fd̄(pmed) 0.049 0.047 0.050 0.049 0.434 0.249 0.332

Fd̄(pcentr) 0.054 0.049 0.050 0.051 0.433 0.251 0.335

F log

d̄
(as) 0.051 0.051 0.051 0.054 0.440 0.303 0.303

F log

d̄
(pmed) 0.049 0.048 0.050 0.049 0.421 0.281 0.281

F log

d̄
(pcentr) 0.053 0.049 0.048 0.051 0.422 0.284 0.285

FAnd(ascentr) 0.060 0.053 0.051 0.057 0.443 0.307 0.308

FAnd(pcentr) 0.056 0.050 0.052 0.052 0.411 0.294 0.295

FAnd(asmed) 0.034 0.041 0.046 0.041 0.397 0.270 0.246

FAnd(pmed) 0.050 0.049 0.052 0.050 0.408 0.299 0.277

sample is larger in size, then it is the other way around. The powers of the F log

d̄
-tests are

close to these of the FAnd-tests.

A2. Fish. Here, the simulated data were inspired by the data coming from a study on

spatial variation in temperate reef fish assemblages along the north-eastern coast of New

Zealand. The observations were coming from four sites (Berghan Point, Home Point,

Leigh and Hahei) and each observation recorded abundance of 57 fish species. One of the
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interests of the original study was in spatial variation among the sites. More details about

the original study can be found in Anderson and Millar (2004) and the references therein.

These data are highly skewed containing many zeros. Analogously as in Anderson (2006)

the simulated samples were generated from a multivariate Poisson-lognormal distribution

(Aitchison and Ho, 1989) by using the following three-steps process. First, we generated

multivariate normal vectors with the parameters (means, variances for each of the group

and a single pooled correlation matrix) that we were kindly provided by Prof. Marti J. An-

derson. For generating the null hypothesis, only the parameters corresponding to these for

Berghan Point were used for all four groups. For an alternative hypothesis, a mixture of the

multivariate normal distributions was considered. With probability α = 0.75 a vector was

generated based on the parameters for Berghan Point and with probability α = 0.25 a vec-

tor was generated using parameters of the actual group (e.g. Home Point when generating

observations for this group). In a second step, the exponential function was applied to the

generated vectors. The results from this step were then used as parameters of component-

wise independent Poisson distributions to generate (X
(1)
1 , . . . ,X

(1)
n1 , . . . ,X

(4)
1 , . . . ,X

(4)
n4 ) .

Finally, for each of the four groups (k = 1, . . . , 4), a random permutation πk = (πk1 , . . . , π
k
57)

of the numbers {1, . . . , 57} was generated and the coordinates of each of the observations

were permuted with a permutation corresponding to its group, that is the observations

were given by

Y
(k)
i = (X

(k)

iπk
1
, . . . , X

(k)

iπk
57

), i = 1, . . . , 57, k = 1, . . . , 4,
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where X
(k)
ij is the j-th component of vector X

(k)
i . Note that as a permutation of the

coordinates does not affect the null hypothesis (6), the null hypothesis (6) continues to

hold provided the vectors X
(k)
i s were generated from the same distribution.

The reason for introducing the permutations of the coordinates was to have a situation

for which that the null hypothesis (6) holds, but the distributions in different groups are

not the same so that the observations are not identically distributed.

The scale-invariant binomial deviance dissimilarity was used to produce the distance

matrix. In this setting there are four groups corresponding to different locations. The

results for the various scenarios are to be found in Web Tables 2 and 3. The statement

4x10 means that all sample sizes are equal to 10. Similarly for 4x20. Further, 2x10-2x20

means that the sample sizes of the first and second group are 10 and of the third and the

fourth group are 20. Similarly for 2x20-2x40.

Note that the asymptotic tests Fd̄(as), F
log

d̄
(as) and FAnd(asmed) are conservative for

balanced small sample sizes. For unbalanced sample sizes this still holds true for the sug-

gested tests Fd̄(as) and F log

d̄
(as), but FAnd(asmed) exceeds the prescribed level considerably.

The problem with holding the level is even bigger for FAnd(ascentr).

The difficulties of the asymptotic tests are to a large extent overcome by the permutation

versions of the tests. Note however that while the permutation versions of the suggested

tests hold the level very closely, the FAnd(pcentr) and FAnd(pmed) tests slightly exceed the

prescribed level.
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Web Table 2. Fish type data – empirical type I error

4x10 4x20 4x40 2x7-2x15 2x10-2x20 2x20-2x40

Fd̄(as) 0.020 0.031 0.037 0.039 0.030 0.042

Fd̄(pmed) 0.046 0.048 0.047 0.045 0.046 0.047

Fd̄(pcentr) 0.050 0.050 0.049 0.049 0.048 0.048

F log

d̄
(as) 0.019 0.031 0.036 0.026 0.030 0.037

F log

d̄
(pmed) 0.045 0.048 0.048 0.046 0.045 0.047

F log

d̄
(pcentr) 0.051 0.049 0.047 0.048 0.048 0.048

FAnd(ascentr) 0.049 0.053 0.055 0.138 0.106 0.084

FAnd(pcentr) 0.063 0.061 0.056 0.070 0.062 0.058

FAnd(asmed) 0.030 0.041 0.045 0.098 0.082 0.071

FAnd(pmed) 0.056 0.059 0.056 0.065 0.060 0.058

Power results are quite analogous to the results for the ‘sparrows-type’ data. The dif-

ferences in power for balanced data correspond well with the way how the tests hold the

level. For unbalanced samples the FAnd-tests are more powerful than the tests based on

Fd̄ or F log

d̄
, when the larger sample size goes along with the more dispersed sample. If it is

the other way around then the tests based on Fd̄ or F log

d̄
are more powerful. Note that for

this type of data, the tests based on Fd̄ or F log

d̄
give very similar powers also in unbalanced

samples.
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Web Table 3. Fish type data – empirical power

4x10 4x20 2x10-2x20 2x20-2x10 2x20-2x40 2x40-2x20

Fd̄(as) 0.203 0.621 0.338 0.467 0.744 0.892

Fd̄(pmed) 0.270 0.622 0.369 0.508 0.756 0.896

Fd̄(pcentr) 0.288 0.628 0.375 0.518 0.759 0.900

F log

d̄
(as) 0.216 0.611 0.357 0.480 0.770 0.898

F log

d̄
(pmed) 0.271 0.634 0.387 0.515 0.776 0.901

F log

d̄
(pcentr) 0.293 0.638 0.386 0.522 0.774 0.905

FAnd(ascentr) 0.374 0.702 0.598 0.559 0.866 0.908

FAnd(pcentr) 0.340 0.672 0.480 0.461 0.819 0.876

FAnd(asmed) 0.249 0.614 0.480 0.445 0.812 0.870

FAnd(pmed) 0.283 0.621 0.427 0.415 0.781 0.850

A2.1. Fish – asymptotic study. To explore the large sample properties of the asymptotic

tests, we concentrated on a comparison of two groups (Berghan Point and Leigh). Similarly

as above, when generating under the null hypothesis only the parameters corresponding to

Berghan Point were used.

The type I errors are to be found in Web Table 4. Note that while Fd̄(as) and F log

d̄
(as)

hold the level very closely, FAnd(ascentr) has difficulties not to exceed the level even for

large samples, and this is particularly the case for unbalanced samples. FAnd(asmed) holds

the level well for balanced samples, but slightly exceeds the level for unbalanced samples.
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Web Table 4. Fish type data – empirical type I error for large sample sizes

(50,50) (100,100) (200,200) (50,100) (100,200) (200,400)

Fd̄(as) 0.047 0.047 0.048 0.049 0.050 0.050

F log

d̄
(as) 0.045 0.046 0.047 0.046 0.049 0.050

FAnd(ascentr) 0.055 0.056 0.057 0.064 0.062 0.060

FAnd(asmed) 0.049 0.051 0.051 0.058 0.056 0.054

When investigating the power of the tests, the probability α of generating from the

alternative distribution was always chosen such that the power is around 0.5. The results

can be found in Web Table 5. Note that with increasing sample size, it becomes less

important if the larger sample size goes along with either the less or more dispersed sample.

At the same time it becomes more important how well the test statistics are suited for

detecting a particular type of deviation from the null hypothesis. This has been confirmed

also for the other types of data generations for which, for brevity, the results are not

included.

A3. Corals. This mechanism of data generation is inspired by the Tikus Islands coral

data set discussed in Section 2.2. The data were generated in a two-steps process. First,

independent normal random variables with the means and variances estimated from the

original data were generated and truncated to the nearest integers. If there were any

negative values, they were set to zero. Second, with probability equal to the proportion of

non-zeroes values in the original data, the values generated in the first step were accepted
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Web Table 5. Fish type data – empirical power for large samples

(100,100) (200,200) (50,100) (100,50) (200,400) (400,200)

Fd̄(as) 0.585 0.523 0.387 0.454 0.491 0.561

F log

d̄
(as) 0.585 0.523 0.390 0.447 0.493 0.560

FAnd(ascentr) 0.611 0.530 0.519 0.391 0.553 0.514

FAnd(asmed) 0.576 0.501 0.475 0.363 0.516 0.491

or otherwise set to zero. For the null hypothesis, only the parameters from the first group

were used. For an alternative hypothesis, an average of the corresponding parameters of

the first group and the actual group were used. Analogously as in the original analysis,

the Bray-Curtis dissimilarity measure was used on the square root-transformed data. The

results are given in Web Tables 6 and 7.

Note that the pattern of the results is similar to the pattern of results in the previous

section. The asymptotic tests Fd̄(as), F
log

d̄
(as) and FAnd(asperm) are conservative for bal-

anced samples, but for unbalanced samples FAnd(asperm) exceeds the given level. The test

FAnd(ascentr) slightly exceeds the level for balanced samples, but heavily for unbalanced

samples. All the considered permutation tests do a good job in holding the type I error,

but in unbalanced samples FAnd(pcentr) slightly exceed the level.

A4. Gaussian data with outliers. In this simulation setup we considered two groups.

As we were interested only in the type I error all observations were drawn from the bivariate
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Web Table 6. Corals type data – empirical type I error for large samples

6x10 6x20 3x5-3x10 3x7-3x15 3x10-3x20

Fd̄(as) 0.018 0.030 0.019 0.025 0.029

Fd̄(pmed) 0.042 0.047 0.042 0.043 0.047

Fd̄(pcentr) 0.046 0.048 0.048 0.046 0.049

F log

d̄
(as) 0.019 0.030 0.022 0.026 0.030

F log

d̄
(pmed) 0.042 0.047 0.042 0.043 0.046

F log

d̄
(pcentr) 0.047 0.048 0.048 0.046 0.049

FAnd(ascentr) 0.056 0.055 0.125 0.124 0.104

FAnd(pcentr) 0.049 0.049 0.057 0.055 0.056

FAnd(asmed) 0.026 0.036 0.054 0.070 0.069

FAnd(pmed) 0.041 0.047 0.050 0.052 0.053

distribution function

F (x1, x2) = 0.9 Φ1(x1, x2) + 0.1 Φ2(x1, x2), (x1, x2) ∈ R2,

where Φ1 and Φ2 are the distribution functions of centred bivariate Gaussian distributions

with variance matrices V1 and V2 given by

V1 =

 2 1

1 2

 , V2 =

 100 1

1 100

 .
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Web Table 7. Corals type data – empirical power

6x10 6x20 3x10-3x20 3x20-3x10 3x20-3x40 3x40-3x20

Fd̄(as) 0.292 0.842 0.412 0.786 0.882 0.998

Fd̄(pmed) 0.414 0.885 0.479 0.830 0.901 0.998

Fd̄(pcentr) 0.433 0.888 0.485 0.838 0.900 0.999

F log

d̄
(as) 0.320 0.859 0.438 0.800 0.894 0.999

F log

d̄
(pmed) 0.436 0.896 0.498 0.844 0.909 0.999

F log

d̄
(pcentr) 0.454 0.900 0.507 0.847 0.909 0.999

FAnd(ascentr) 0.489 0.909 0.625 0.884 0.936 0.999

FAnd(pcentr) 0.439 0.892 0.488 0.799 0.896 0.998

FAnd(asmed) 0.354 0.862 0.533 0.828 0.910 0.998

FAnd(pmed) 0.413 0.884 0.477 0.789 0.895 0.998

The type I error results are to be found in Web Table 8. This table illustrates that in

case of outliers it is better to centre with a spatial mean rather than with a centroid. This

is particularly true for very small samples.
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