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Katedra pravděpodobnosti a matematické statistiky
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Disertačńı práce
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Chapter 1

Introduction

Statistical inferences could not be based solely upon the observations. To be able to answer the

questions of scientific interest, statisticians have to assume, that there is a random mechanism

producing data. This random mechanism is usually called a model. Obviously, the more we

know about the model, the more efficiently we can handle data. There exists huge literature

about optimal procedures for models, which are specified in a great detail.

Nevertheless, the research initiated by Peter J. Huber showed that even very tiny depar-

tures from model assumptions may have a dramatic effect on optimality of procedures. This

initiated a highly dynamic growth of research literature on statistical methods, which are not

so sensitive to the departures from a model, but remain efficient if this model holds. Roughly

speaking, we can distinguish robust methods and nonparametric methods, which present very

broad and lively parts of mathematical statistics.

Although the range of statistical methods is very diverse these days, the basic problem

remains estimation in location and regression problems. Robust and nonparametric statistics

offer us basically three families of estimators – M -estimators, L-estimators and R-estimators.

The aim of this thesis is to give some further insights into the asymptotic properties of

the M -estimators (of location and regression) as well as an R-estimator based on Wilcoxon

scores, which belongs to the most popular R-estimators.

1.1 M-estimators

Suppose that our observations Y = (Y1, . . . , Yn)
T follow the linear model

Yi = β1 xi1 + . . .+ βp xip + ei = βTxi + ei, i = 1, . . . , n, (1.1)

where β = (β1, . . . , βp)
T is a vector of unknown parameters, xi = (xi1, . . . , xip)

T, for i =

1, . . . , n, are rows of a known matrix Xn, and e1, . . . , en are independent, identically dis-

tributed random variables with an unknown cumulative distribution function (cdf) F .
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Then given an absolutely continuous function ρ with a derivative ψ, we define a fixed scale

(studentized) M -estimator β̂n of the parameter β as the solution of the minimization

ρ
(

Yi − tTxi

)

:= min,
(

or ρ
(

Yi−tTxi
Sn

)

:= min
)

,

where Sn is an appropriate scale estimator.

If the function ψ = ρ′ is continuous, then the estimator β̂n is a solution of the system of

equations
n
∑

i=1

xi ψ(Yi − bTxi) = 0

(

or

n
∑

i=1

xi ψ(Yi−b
Txi

Sn
) = 0

)

. (1.2)

As the defining equation (1.2) gives us more flexibility in tuning properties of M -estimators

by a choice of a function ψ, β̂n is usually defined as a carefully chosen root of (1.2). For

simplicity, we will focus on an M -estimator with a fixed scale for this moment.

As the M -estimator is defined implicitly, it is not obvious how to make statistical inference

based on it. A very elegant approach to the investigation of asymptotic properties of β̂n

(consistency, asymptotic normality) is based on the ‘uniform linearity results’. This approach

studies the (vector) process

Tn(t) =
1√
n

n
∑

i=1

xi

[

ψ(ei − tTxi√
n

) − ψ(ei)
]

+ γ1
√
nVnt, t ∈ T = {s ∈ Rp : |s|2 ≤M},

(1.3)

where Vn = 1
n

∑n
i=1 xix

T

i , γ1 = E ψ′(e1), M is an arbitrarily large but fixed constant, and

| · |2 stands for the euclidean norm.

It is well known that under some mild conditions supt∈T |Tn(t)| = op(1). This result,

sometimes called the first order asymptotic linearity (FOAL), is the main tool in proving the

first order asymptotic representation of the estimator β̂n, that is

√
n(β̂n − β) = V−1

n

γ1
√
n

n
∑

i=1

xi ψ(ei) + Rn, (1.4)

where the remainder term Rn is of order op(1). It turns out that to investigate the remainder

term Rn more carefully, a more delicate analysis of the process Tn defined in (1.3) is needed.

Jurečková and Sen (1989b) proved that if the function ψ and the distribution of errors F are

sufficiently smooth, then supt∈T |Tn(t)| = Op(
1√
n
), which further gives us that the remainder

term Rn is of the same order. The asymptotic distribution of the random variable
√
nRn

was studied by Boos (1977) for the special case of a location model and by Jurečková and Sen

(1990) for a general M -estimator of a scalar parameter. Arcones and Mason (1997) generalize

these results to multivariate M -estimators.

Our thesis extends these results in the following way. If ψ and the underlying distributions

of the errors are sufficiently smooth, then we find a simple process Pn (with a limiting gaussian

distribution) linear in the parameter t such that

sup
t∈T

|√n Tn(t) − Pn(t)| = op(1).
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This gives us not only the asymptotic distribution of the remainder term n1/2Rn of (1.4),

but we even derive a two-term von Mises expansion for the M -estimator β̂n. This expansion

enables us to compare the M -estimator with its one-step approximations or with some other

estimators which are first order equivalent to the chosen M -estimator. Our results include

studentized M -estimators as well.

The situation is qualitatively different if ψ is a step function. In this case we are only able

to find the asymptotic distribution of the remainder term n1/4Rn. This extends the results

of Jurečková and Sen (1989a), who dealt with the (unstudentized) location case, as well as

the results of Knight (1997), who consider the special case of quantile regression.

1.2 R-estimators

Consider the linear regression model (1.1). Let Ri(b) be the rank of Yi − bTxi among Y1 −
bTx1, . . . , Yn − bTxn and x̄n = (x̄n1, . . . , x̄np)

T be the vector of the column means of the

design matrix X. Further let an(i), i = 1, . . . , n be a nondecreasing set of scores, satisfying

n
∑

i=1

an(i) = 0.

These scores are usually generated as an(i) = φ( i
n+1), or an(i) = E φ(Un:i), where φ is a

nondecreasing function defined on (0, 1) and Un:i is the i-th order statistic from a sample of n

independent random variables uniformly distributed on (0, 1).

The R-estimator β̂n is usually defined as the argument of the minimum of the ‘Jaeckel’

measure of dispersion (Jaeckel (1972)), that is

β̂n = arg min
b∈Rp

Dn(b), where Dn(b) =

n
∑

i=1

(Yi − bTxi)an (Ri(b)). (1.5)

Jaeckel (1972) showed that the function Dn(b) is nonnegative, continuous and convex in b ∈
Rp. The convexity ensures that Dn(b) is differentiable in b almost everywhere with the

derivative
∂Dn(b)

∂b
= −

n
∑

i=1

xi an(Ri(b)).

Thus β may be defined as the solution of the following minimization (see Jurečková (1971))

p
∑

j=1

|Snj(b)| := min, where Snj(b) =
1

n3/2

n
∑

i=1

xij an(Ri(b)). (1.6)

It can be shown that both definitions are asymptotically equivalent (Jaeckel (1972), or

Jurečková and Sen (1996)). For our purposes it will be more convenient to work with the

definition (1.5).
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In fact, we will only consider the case of Wilcoxon scores, that is an(i) = i
n+1 − 1

2 . The

reason is that these scores give the resulting R-estimator a relatively simple structure. On the

other hand this ‘Wilcoxon type’ R-estimators belong to the most widely used R-estimators,

see e.g. McKean (2004) or Terpstra and McKean (2004).

From any of the definitions of R-estimators we see that, informally speaking, a regression

estimator ‘almost’ solves the following system of equations

Sn(b) = (Sn1(b), . . . , Snp(b))T =
1

n3/2

n
∑

i=1

(xi − x̄n)Ri(b)
!
= 0. (1.7)

Let cin, 1 ≤ i ≤ n, n = 1, 2, . . . be a triangular array of constants satisfying some

conditions which will be specified later. In view of the ‘normal equations’ (1.7), and similarly

to M -estimation, it is not surprising that to investigate the asymptotic properties of β̂n, it

turns out to be useful to study the asymptotic behaviour of the processes

S̃n(t) =
1

n

n
∑

i=1

cinR
′
i(t) =

1

n

n
∑

i=1

cin

n
∑

j=1

I{ei − tTxi√
n

≥ ej − tTxj√
n
}, (1.8)

Tn(t) = S̃n(t) − S̃n(0), (1.9)

T̄n(t) = Tn(t) − E Tn(t), (1.10)

where t = (t1, . . . , tp)
T and R

′
i(t) stands for the rank of ei− tTxi√

n
among e1− tTx1√

n
, . . . , en− tTxn√

n
.

Similarly to the previous section, we will index these processes by the set T = {s ∈ Rp : |s|2 ≤
M}, where |·|2 stands for the euclidean norm, and M is an arbitrarily large but fixed constant.

The process Snj(b) of the equation (1.6) and the process S̃n(t) of (1.8) are connected

through the equation

Snj(b) = 1√
n
S̃n(

√
n(b− β)), where cin = xij − x̄j.

The standard result, which is usually called the first order asymptotic uniform linearity,

states that

sup
t∈T

1√
n

∣

∣

∣

∣

∣

Tn(t) − γ tT

√
n

n
∑

i=1

ci xi

∣

∣

∣

∣

∣

= op(1), where γ = E f(e1) =

∫

f2(x) dx. (1.11)

The results of this type proved to be very useful as they made possible an elegant asymptotic

approach to statistical inference based on R-estimators. The research in this area was initiated

by Jurečková (1971). For an overview of results see Jurečková and Sen (1996) and Koul (2002).

For the case of a simple regression (a one-dimensional parameter β) and Wilcoxon scores

Jurečková (1973) showed that if we leave out the scaling factor 1/
√
n in (1.11), we obtain

a stochastic process which converges weakly to a linear process. This result was further

generalized for the Wilcoxon signed-rank statistics by Antille (1976) and for some other types

of score functions by Hušková (1980), Puri and Wu (1985) and Kersting (1987).

In our thesis, we generalize the work of Jurečková (1973) to the case of a multi-dimensional

parameter β = (β1, . . . , βp)
T. Our approach can be modified for a Wilcoxon-signed rank

statistic (Section 3.4) and some other estimators (Section 3.5).

4



1.3 Thesis outline

The rest of this thesis is organized as follows.

Chapter 2 and Chapter 3 are of technical character. In Chapter 2 we are dealing with the

M -processes of type (1.3) and with the ‘studentized’ processes of the form

Mn(t, u) =

n
∑

i=1

ci

[

ψ
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ(ei/S)
]

,

where T = {(t, u) : |t|2 ≤M, |u| ≤M} (⊂ Rp+1).

Chapter 3 is dealing with the processes of the form (1.8) and (1.10).

The next two chapters, that is Chapter 4 and Chapter 5 are based on the technical results

of the previous chapters.

In the first part of Chapter 4 we derive a two-term von Mises expansion for an M -

estimator based on a ‘smooth’ function ψ and for an R-estimator based on Wilcoxon scores.

Next we use these results to compare an M -estimator with its one-step approximation. This

generalizes the work of Jurečková and Sen (1990) as well as it provides a partial theoretical

background for the work of Welsh and Ronchetti (2002). For an M -estimator generated by

an ‘unsmooth’ function ψ, we find the asymptotic distribution of the remainder term in the

first order asymptotic representation (1.4).

In the second part of Chapter 4 we propose an alternative way of constructing a confidence

interval for a single regression parameter and we investigate its properties. We compare this

alternative procedure with the ‘traditional’ (Wald type) approach. This extends the results

of Boos (1980), who proposed this alternative way of constructing confidence intervals for a

location problem. In the case of R-estimators we generalize some results of Jurečková (1973).

Chapter 5 is dealing with a sequential problem of a confidence interval of a fixed size.

The results of this chapter for M -estimators extend the work of Jurečková and Sen (1981a)

and Jurečková and Sen (1981b), where the linear model (1.1) with one explanatory variable

(without intercept or studentization) was treated. The results for R-estimators generalize the

work of Jurečková (1978) and Hušková (1980) for a special case of Wilcoxon scores.

In Chapter 6 we briefly review the results obtained in this thesis and discuss some further

possible extensions of this work.

The appendix in Chapter 7 contains most of the auxiliary results used in the proofs. We

present the proofs for those results that could not be found in the literature.

Finally, following References we add a list of symbols and regularity conditions which are

used throughout the text.

5



Chapter 2

SOAL of M-processes

In this chapter we generalize the results of Jurečková and Sen (1989b), Jurečková and

Sen (1990), and Knight (1997). The basic building stone of our proofs is 2.11.11 Theo-

rem of van der Vaart and Wellner (1996). The idea of using this theorem for our purposes

originated from Knight (1997), who used this theorem to find the second order asymptotic

distribution of L1 regression estimators. For the sake of future reference, we derived several

modifications of this theorem, which are to be found in Appendix.

The chapter is divided into two sections depending on the smoothness of the function ψ.

Primarily we distinguish two cases:

• ψ is an absolutely continuous function;

• ψ is a step function.

To shorten the terminology, by ‘smooth-ψ’ we will mean that ψ is absolutely continuous and

by ‘unsmooth-ψ’ we will mean that ψ is a step function.

As the studentization of M -estimators brings in new technical and theoretical difficulties,

we will usually treat fixed scale estimators and studentized estimators separately.

2.1 An absolutely continuous ψ

2.1.1 Fixed scale

To motivate the following investigation, let us recall that we are considering the linear model

Yi = β1xi1 + . . .+ βp xip + ei = βTxi + ei, i = 1, . . . , n,

where β = (β1, . . . , βp)
T is a vector of unknown parameters, xi = (xi1, . . . , xip)

T, for i =

1, . . . , n, are known constants, and e1, . . . , en are independent, identically distributed random

variables with a cumulative distribution function (cdf) F .

6



Notations

Let t = (t1, . . . , tp)
T. We will be interested in the asymptotic behaviour of the processes

Mn(t) =

n
∑

i=1

ci

[

ψ(ei − tTxi√
n

) − ψ(ei)
]

, (2.1)

M̄n(t) = Mn(t) − E Mn(t), (2.2)

with t ∈ T = {s ∈ Rp : |s|2 ≤ M}, where | · |2 stands for the euclidean norm, and M is an

arbitrarily large but fixed constant.

Assumptions

First we formulate assumptions on the design x1, . . . ,xn and the constants c1, . . . , cn. As it

is sometimes convenient to allow to vary these quantities with n, we formulate the conditions

for the triangular arrays x1n . . . ,xnn and c1n, . . . , cnn.

X.1
1

n

n
∑

i=1

c2in = O(1), lim
n→∞

max1≤i≤n |cin|√
n

= 0.

X.2
1

n

n
∑

i=1

|xin|22 = O(1), lim
n→∞

max1≤i≤n |xin|2√
n

= 0.

X.3

lim
n→∞

max
1≤i≤n

|cin| |xin|2√
n

= 0.

X.4

B2
n =

1

n

n
∑

i=1

c2in |xin|22 = O(1).

The conditions X.1-3 are analogous to the conditions in Jurečková (1973). The last con-

dition X.4 is for our convenience. If B2
n = O(1) was not satisfied, we would work with the

process M ′
n(t) = Mn(t)

Bn
. To simplify the notation, we will write xi instead of xin and ci instead

of cin.

Remark 1. Put εn = max1≤i≤n
M |xi|2√

n
. We will often use this simple observation:

max
1≤i≤n

sup
t∈T

∣

∣

∣

∣

tTxi√
n

∣

∣

∣

∣

≤ εn = max
1≤i≤n

M |xi|2√
n

X.2−−−→
n→∞

0. (2.3)

Later, we will substitute xij (j = 1, . . . , p) for ci to find the second order asymptotic

distribution of the regression M -estimator β̂n. Taking cin = |xin|2 we get the following

requirements on the design:

7



XX.1
1

n

n
∑

i=1

|xin|42 = O(1), and lim
n→∞

max1≤i≤n |xin|2√
n

= 0. (2.4)

In the next, we will simultaneously impose conditions on the distribution function F and

the function ψ. The abbreviation SmFx stands for ‘a Smooth ψ and a Fixed scale’.

SmFx.1 ψ is absolutely continuous with a derivative ψ′ such that E ψ′(e1)2 <∞.

SmFx.2 The function ψ′(e1 + t) is continuous in the quadratic mean at the point 0, that is

lim
t→0

E [ψ′(e1 + t) − ψ′(e1)]
2 = 0.

SmFx.3 There exists a continuous second derivative of the function λ(t) = E ψ(e1 + t) at

the point 0.

As we will see later, the first two conditions are used to study the asymptotic behaviour of

the process M̄n. The third condition is necessary to approximate E Mn (the mean function

of Mn).

If the function ψ is twice differentiable, ψ′ and ψ′′ are both bounded continuous, then it

is easy to verify that conditions SmFx.2-3 are met. Notice that in this case we do not need

to make any assumptions about the distribution of the errors.

An important class of functions which do not possess a smooth second derivative are piece-

wise linear functions. We will need the following assumptions about this class of functions.

A.1 ψ is a continuous piecewise linear function with the derivative

ψ′(x) = αj , for rj < x ≤ rj+1, j = 1, . . . , k,

where α0, α1, . . . , αk are real numbers, (usually α0 = αk = 0) and −∞ = r0 < r1 <

. . . < rk < rk+1 = ∞.

A.2 The cumulative distribution function F is continuous at the points r1, . . . , rk.

A.3 The cumulative distribution function F is absolutely continuous with a derivative which

is continuous at the points r1, . . . , rk.

The condition A.1 trivially implies SmFx.1. Analogously A.2 ensures SmFx.2 and A.3

ensures SmFx.3.

Remark 2. Probably the most famous ψ functions are (in alphabetical order)

• Andrews’ sine wave ψ(x) = sin
(

π
k x
)

I{|x| ≤ k}
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SmFx.2 SmFx.3

Andrew F is continuous at ±k f exists and is continuous at ±k
Hampel F is continuous at ±a, ±b,±c f exists and is continuous at ±a, ±b,±c
Huber F is continuous at ±k f exists and is continuous at ±k
Tukey OK F is continuous at ±k
ψ(x) = x

1+x2 OK OK

Table 1: Conditions on the underlying distribution for different ψ functions

• Hampels’ function

ψ(x) =























x, 0 ≤ x ≤ a

a, a ≤ x ≤ b

a
(

c−x
c−b

)

, b ≤ x ≤ c

0 x > c

and ψ(x) = −ψ(−x) for x < 0.

• Hubers’ function ψ(x) = max{min{x, k},−k}

• Tukeys’ biweight ψ(x) = x
k

(

1 − x2

k2

)2
I{|x| ≤ k}

Let f stand for the derivative of the cumulative distribution function F . Table 1 present the

requirements on the underlying distribution of the errors so as the conditions SmFx.2 and

SmFx.3 are met.

Many of the following results (in particular for studentized M -estimators) simplify signif-

icantly under some symmetric assumptions. For the sake of future reference, we state this

assumption explicitly.

Sym The distribution of the errors is symmetric and the ψ-function is antisymmetric, that

is F (x) = 1 − F (−x) and ψ(x) = −ψ(−x) for all x ∈ R.

2.1.2 Theorems

For a function g : T 7→ R set

‖g‖T = sup
s∈T

|g(s)|.

Theorem 2.1. Under conditions X.1-4 and SmFx.1-2 it holds that

sup
t∈T

∣

∣

∣

∣

∣

M̄n(t) + tT√
n

n
∑

i=1

ci xi[ψ
′(ei) − γ1]

∣

∣

∣

∣

∣

= op(1), (2.5)

where γ1 = E ψ′(e1).
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Specially, if we put

Bn =
1

n

n
∑

i=1

c2i xix
T

i ,

and the matrix Bn is positive definite for all n large enough, then the process M̄ ′
n(t) =

M̄n(B
−1/2
n t) indexed by the set T converges in distribution to a centered Gaussian process

{Y (t), t ∈ T} with the covariance function cov(Y (t), Y (s)) = σ2 tTs, where σ2 = var{ψ′(e1)}.

Remark 3. One may wonder, whether the quantity on the left-hand side of (2.5) is measurable,

as we are taking supremum over an uncountable set. But all the the processes involved in the

supremum are continuous in the parameter t and the index set T is compact, which ensures

the measurability of the supremum in (2.5).

Proof. Let us denote

Zni(t) = ci

[

ψ(ei − tTxi√
n

) − ψ(ei) + tTxi√
n
ψ′(e1)

]

and Zn(t) =
n
∑

i=1

Zni(t).

Then our theorem states that

∥

∥Z̄n
∥

∥

T
= ‖Zn − E Zn‖T = op(1). (2.6)

To prove (2.6), we need to check the assumptions of Corollary 7.13. As Zni(0) = 0 for

i = 1, . . . , n, it is sufficient to verify (7.5).

First, we notice that for arbitrary t, s ∈ T

|Zni(t) − Zni(s)| ≤ |ci|

∣

∣

∣

∣

∣

∣

∫

tTxi√
n

sTxi√
n

[

ψ′(ei − v) − ψ′(ei)
]

dv

∣

∣

∣

∣

∣

∣

.

Put εn = max1≤i≤n
M |xi|2√

n
and calculate

n
∑

i=1

E sup
|t−s|2<ε

[Zni(t) − Zni(s)]
2 ≤

n
∑

i=1

|ci|2 E sup
|t−s|2<ε

∣

∣

∣

∣

∣

∣

∫

tTxi√
n

sTxi√
n

[ψ′(ei − v) − ψ′(ei)]dv

∣

∣

∣

∣

∣

∣

2

≤
n
∑

i=1

|ci|2 E sup
|t−s|2<ε

∣

∣

∣

tTxi√
n

− sTxi√
n

∣

∣

∣

∫

tTxi√
n

sTxi√
n

[ψ′(ei − v) − ψ′(ei)]
2dv

≤
n
∑

i=1

|ci|2 E
ε|xi|2√

n

∫ −M |xi|2√
n

−M |xi|2√
n

[ψ′(ei − v) − ψ′(ei)]
2dv

≤ 2 εM

n

n
∑

i=1

|ci|2|xi|22 sup
|v|≤εn

E
[

ψ′(e1 − v) − ψ′(e1)
]2 ≤ C ε rn,

where rn = sup|v|≤εn E [ψ′(e1 − v) − ψ′(e1)]. By the assumptions of the theorem we can

take C large enough, so that the last inequality holds uniformly in n and rn = o(1), which

verifies (7.5) and proves the first part of the theorem.
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To show the second part of the theorem, about the process M̄ ′
n(t) = M̄n(B

−1/2
n t), we

utilize the asymptotic expansion (2.5), which gives us that uniformly in T

M̄ ′
n(t) =

B
−1/2
n tT

√
n

n
∑

i=1

ci xi [ψ
′(ei) − γ1] + op(1).

Now it is quite easy to verify the convergence of the process on the right-hand side by Theo-

rem 7.12 (condition X.3 is utilized here).

Remark 4. Let us replace the condition B.3 by an assumption that there exists δ > 0 such

that the set of random variables

G =
{

|ψ′(e1 − s)|2, |s| < δ
}

(2.7)

is uniformly integrable (Definition 7.16). Then we can still prove the tightness of the pro-

cess M̄n, which yields ‖M̄n‖T = Op(1).

The proof is based directly on Theorem 7.12. Put εn = max1≤i≤n
M |xi|2√

n
and define the

metric ρ on T as ρ(t, s) = C
√

|t − s|2, where C is a constant which will be specified later.

Denote B(ε) (⊂ T ) a ρ-ball of radius ε. Then

n
∑

i=1

E sup
t,s∈B(ε)

[Mni(t) −Mni(s)]
2 ≤

n
∑

i=1

|ci|2 E sup
t,s∈B(ε)

∣

∣

∣

∣

∣

∣

∫

tTxi√
n

sTxi√
n

ψ′(ei − v) dv

∣

∣

∣

∣

∣

∣

2

≤
n
∑

i=1

|ci|2 E sup
t,s∈B(ε)

∣

∣

∣

tTxi√
n

− sTxi√
n

∣

∣

∣

∫

tTxi√
n

sTxi√
n

[

ψ′(ei − v)
]2
dv

≤ M ε2

C n

n
∑

i=1

|ci|2|xi|22 sup
|v|≤εn

E
[

ψ′(e1 − v)
]2
.

We immediately see that if we take C large enough then our assumptions X.3-4 and (2.7)

imply the metric ρ(t, s) = C
√

|t − s|2 to satisfy both (7.3) and (7.4) of Theorem 7.12.

Analogously

n
∑

i=1

E ‖Mni‖T I{‖Mni‖T>η} ≤
M2

η n

n
∑

i=1

|ci|2|xi|2 E

∫ M

−M

[

ψ′
(

e1 − v |xi|2√
n

)]2
dv

I

{

M2|ci|2|xi|2
n

∫ M

−M

[

ψ′
(

e1 − v |xi|2√
n

)]2
dv > η2

}

−−−→
n→∞

0,

which implies that the assumption (7.2) is satisfied as well.

Now we would like to approximate the expectation of the process Mn(t). Let γ2 stand

for the second derivative of the function λ(t) = E ψ(e1 + t) at the point 0. That is γ2 =
∑k

j=0 αj [f(rj+1)−f(rj)] for a piecewise linear ψ and γ2 = E ψ′′(e1) for a sufficiently smooth ψ.1

1 This is not correct in a strict mathematical sense as the smoothness of ψ alone does not allow us to

interchange differentiation and integration. But as we write down the formulae for γ1, γ2, . . . only to give the

reader an intuition behind this quantities, we will not discuss this problem in this thesis.
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Lemma 2.2. Under the conditions X.1-4 and SmFx.1-3 it holds uniformly in t ∈ T

E Mn(t) = −γ1 tT

√
n

n
∑

i=1

ci xi +
γ2
2 tTWnt + o(1),

where Wn = 1
n

∑n
i=1 ci xix

T

i .

Proof. By the assumption SmFx.3 the function λ(t) = E λ(e1 + t) has a second derivative.

This enables us to calculate

Rn(t) = E Mn(t) + γ1tT

√
n

n
∑

i=1

ci xi − γ2
2 tTWnt

=

n
∑

i=1

ci E
[

ψ(e1 − tTxi√
n

) − ψ(e1) + tTxi√
n
ψ′(e1) − γ2

2 ( tTxi√
n

)2
]

=
n
∑

i=1

ci

[

λ(− tTxi√
n

) − λ(0) + tTxi√
n
λ′(0) − 1

2( tTxi√
n

)2λ′′(0)
]

=

n
∑

i=1

ci

∫

tTxi√
n

0

[

−λ′(−v) + λ′(0) − v λ′′(0)
]

dv =

n
∑

i=1

ci

∫

tTxi√
n

0

∫ v

0

[

λ′′(−w) − λ′′(0)
]

dw dv.

Let εn be given by (2.3). We get

‖Rn‖T ≤ M2

n

n
∑

i=1

|ci| |xi|22 sup
|t|≤εn

|λ′′(t) − λ′′(0)|.

But the last quantity converges to zero as the second derivative of the function λ(t) is con-

tinuous at zero and as the Cauchy-Schwartz inequality implies us

1

n

n
∑

i=1

|ci||xi|22 ≤
[

1

n

n
∑

i=1

|ci|2|xi|22

]1/2 [

1

n

n
∑

i=1

|xi|22

]1/2
X.2, X.4

= O(1).

The lemma is proved.

Combining Theorem 2.1 and Lemma 2.2 yields the asymptotic representation for the

process {Mn(t), t ∈ T}.

Corollary 2.3. Under conditions X.1-4 and SmFx.1-3 it holds uniformly in t ∈ T

Mn(t) + γ1 tT

√
n

n
∑

i=1

ci xi = − tT√
n

n
∑

i=1

ci xi[ψ
′(ei) − γ1] + γ2

2 tTWnt + op(1). (2.8)

Remark 5. The symmetry condition Sym implies γ2 = 0 and the term γ2
2 tTWnt in the

expansion (2.8) vanishes.
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2.1.3 Studentized M-processes

As M -estimators are generally not scale invariant, in practice they are usually studentized.

Let Sn be an estimator of a scale, which converges to in probability to S.

To investigate properties of studentized estimators, we need to study the studentized

M -processes and consider

Mn(t, u) =
n
∑

i=1

ci

[

ψ
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ(ei/S)
]

.

Put M̄n(t, u) = Mn(t, u)− E Mn(t, u) and take T = {(s, u) : |s|2 ≤M, |u| ≤M} (⊂ Rp+1) as

the index set with the metric ρ((t, u), (s, v)) = |t − s|2 + |u− v|.

Assumptions

In the following, the abbreviation SmSt stands for Smooth Studentized.

SmSt.1 ψ is absolutely continuous with a derivative ψ′ such that E ψ′ (e1
S

)2
<∞.

SmSt.2 the function ψ′ (e1+t
Seu

)

is continuous at the point (0, 0) in the quadratic mean, that

is

lim
(t,u)→(0,0)

E
[

ψ′ ( e1+t
Seu

)

− ψ′ ( e1
S

)]2
= 0. (2.9)

SmSt.3 There exist second partial derivatives of the function λ(t, u) = E ψ(e1+t
Seu ) in a neigh-

bourhood of the point (0, 0), which are continuous at the point (0, 0).

By Lemma 7.17, the equation (2.9) is certainly satisfied, if ψ′ is continuous.

If we suppose the function ψ to be twice differentiable then the condition SmSt.3 is met

provided the following functions

a(t, u) = E ψ′′(e1+t
Seu ),

b(t, u) = E

[

(

e1+t
Seu

)2
ψ′′(e1+t

Seu )
]

,

c(t, u) = E
[

e1+t
Seu ψ

′′(e1+t
Seu )

]

,

d(t, u) = E
[

e1+t
Seu ψ′(e1+t

Seu )
]

are bounded and continuous in the neighbourhood of the point (0, 0) and we can interchange

the derivative and the expectation. This condition is certainly satisfied if ψ is constant for

all |x| ≥ K (K is sufficiently large) and if ψ′′ is uniformly continuous.

If ψ is a piecewise linear function, then the conditions SmSt.1-3 are satisfied if we simply

replace the points r1, . . . , rk in the conditions A.2 and A.3 by the points S r1, . . . , S rk.
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Remark 6. Recall that in Remark 2 in Table 1, we gave a list of assumptions which ensures

the conditions SmFx.2-3 to hold for some of the most famous ψ functions. It is easy to

verify that we can construct an analogous table for the conditions SmSt.2-3. The only thing

we should do is to replace the points a, b, c, k with S a, S b, S c, S k.

Before we proceed, it is useful to introduce some notation. In the following, the partial

derivatives of the functions λ(t, u) = E ψ(e1+t
Seu ) and δ(t, u) = E

e1
S ψ

′(e1+t
Seu ) will be indicated

by lower subscripts. Put

γ1 = λt(0, 0)
(

= 1
S E ψ′ (e1

S

))

, γ1e = −λu(0, 0)
(

= E
e1
S ψ

′ (e1
S

))

(2.10)

γ2 = λtt(0, 0)
(

= 1
S2 E ψ′′ ( e1

S

))

, γ2e = δt(0, 0)
(

= E
e1
S2 ψ

′′ ( e1
S

))

,

γ2ee = −δu(0, 0)
(

= E
(

e1
S

)2
ψ′′ ( e1

S

)

)

.

The formulae in the brackets are for the case of ψ sufficiently smooth (and integrable). We

omit the formulae for the case of a piecewise continuous ψ as they are rather complicated in

general case. By the assumptions SmSt.1-3 all these quantities are finite. Notice that

λtu(0, 0) = γ1 + γ2e and λuu(0, 0) = γ1e + γ2ee.

Theorem 2.4. Let the conditions X.1-4 and SmSt.1-2 be satisfied, then

sup
(t,u)∈T

∣

∣

∣

∣

∣

M̄n(t, u) + tT√
n

n
∑

i=1

ci xi
[

1
S ψ

′(ei/S) − γ1

]

+ u√
n

n
∑

i=1

ci
[

ei
S ψ

′(ei/S) − γ1e

]

∣

∣

∣

∣

∣

= oP (1).

Proof. Let us denote

Zni(t, u) = ci

[

ψ
(

e−un
−1/2

(ei − tTxi√
n

)/S
)

− ψ(ei/S) + tTxi
S
√
n
ψ′(ei/S) + u√

n
ei
S ψ

′(ei/S)
]

.

Then after a little algebra we get

|Zni(t, u) − Zni(s, v)| ≤
n
∑

i=1

|ci|

∣

∣

∣

∣

∣

∣

∫

tTxi√
n

sTxi√
n

[

1
Seu/

√
n ψ

′
(

ei−r
Seu/

√
n

)

− 1
S ψ

′
(

ei
Seu/

√
n

)]

dr

∣

∣

∣

∣

∣

∣

+

n
∑

i=1

|ci|
∣

∣

∣

∣

∣

∫ u/
√
n

v/
√
n

[

ei
Sew ψ

′ ( ei
Sew

)

− ei
S ψ

′ ( ei
S

)]

dw

∣

∣

∣

∣

∣

.

The rest of the proof is analogous to the proof of Theorem 2.1.

The following lemma approximate the expectation of the process Mn(t, u).

Lemma 2.5. Suppose that the conditions X.1-4 and SmSt.1-3 are satisfied and let us denote

Wn = 1
n

∑n
i=1 ci xix

T

i . Then uniformly in (t, u) ∈ T

E Mn(t, u) = −γ1 tT

√
n

n
∑

i=1

ci xi − γ1e u√
n

n
∑

i=1

ci

+ γ2
2 tTWnt + (γ2e+γ1)u tT

n

n
∑

i=1

ci xi +
(γ2ee+γ1e) u2

2n

n
∑

i=1

ci + o(1). (2.11)
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Proof. The proof of this lemma is akin to the proof of Lemma 2.2.

Remark 7. If
∑n

i=1 ci = 0, then the second and the fifth term in the expansion (2.11) disap-

pear. Even simpler situation occurs if the symmetry condition Sym is satisfied. In this case

γ2 = γ1e = γ2ee = 0, which yields a more ‘friendly’ expansion

E Mn(t, u) = −γ1 tT

√
n

n
∑

i=1

ci xi +
(γ2e+γ1)u tT

n

n
∑

i=1

ci xi + o(1). (2.12)

Combining Theorem 2.4 and Lemma 2.5 gives us the asymptotic representation of the

process Mn.

Corollary 2.6. Under conditions X.1-4 and SmSt.1-3 it holds uniformly in (t, u) ∈ T

Mn(t, u) + γ1 tT

√
n

n
∑

i=1

ci xi +
γ1e u√
n

n
∑

i=1

ci

= − tT√
n

n
∑

i=1

ci xi
[

1
S ψ

′(ei/S) − γ1

]

− u√
n

n
∑

i=1

ci
[

ei
S ψ

′(ei/S) − γ1e

]

+ γ2
2 tTWnt + (γ2e+γ1)u tT

n

n
∑

i=1

ci xi +
(γ2ee+γ1e)u2

2n

n
∑

i=1

ci + op(1). (2.13)

2.2 A step function ψ

In this section we suppose that the function ψ is a step-function, that is

ψ(x) = αj for qj−1 < x ≤ qj, j = 1, . . . ,m, (2.14)

where α0, α1, . . . , αm are real numbers (not all equal) and −∞ = q0 < q1 < . . . < qm = ∞,

where m is a positive integer.

For our purposes it is sometimes more convenient to rewrite the function ψ in a form

ψ(x) =

m
∑

j=1

βj I{x ≤ qj}, (2.15)

where βj = αj − αj+1 for j = 1, . . . ,m− 1 and βm = αm.

2.2.1 Fixed scale

In the following, we will be interested in the processes

Mn(t) =
1

n1/4

n
∑

i=1

ci

[

ψ(ei − tTxi√
n

) − ψ(ei)
]

, (2.16)

M̄n(t) = Mn(t) − E Mn(t), (2.17)
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with t ∈ T = {s ∈ Rp : |s|2 ≤ M}, where | · |2 stands for the euclidean norm, and M is an

arbitrary large but fixed constant.

Notice that in comparison to the case of a smooth ψ we scale the process Mn with n−1/4.

As we will see later, this is because for small t the variance var{ψ(e1 − t) − ψ(e1)} is not of

order t2 (as in the case of a smooth ψ) but only of order |t|.
Remark 8. To make the following results more precise, we need to make a few technical com-

ments. First, we look at the process Mn (M̄n) as a mapping from the underlying probability

space into ℓ∞(T ) (the space of bounded functions on T ). It is well known (see e.g. Billings-

ley (1968)), that the empirical distribution function viewed as a mapping into the space of

bounded functions is not Borel measurable. That is why we cannot expect our processes to

be measurable. In what follows, by the weak convergence of such processes we will mean the

(star) weak convergence in the sense of Hoffmann-Jørgensen (see Appendix Section 7.3).

Assumptions

We will need a slightly modified assumptions on the design x1n, . . . ,xnn and the constants

c1n, . . . , cnn.

X’.1
1

n

n
∑

i=1

c2in = O(1), lim
n→∞

max1≤i≤n |cin|
n1/4

= 0.

X’.2

lim
n→∞

max1≤i≤n |xin|2√
n

= 0.

X’.3
1

n

n
∑

i=1

|cin|2 |xin|2 = O(1).

X’.4 There exists a δ > 1
2 such that

B2
n =

1

n

n
∑

i=1

|cin| |xin|1+δ2 = O(1).

Notice that in comparison with the conditions X.1-4 for a smooth function ψ we have to

strengthen the convergence
max1≤i≤n |cin|√

n
→ 0 to

max1≤i≤n |cin|
n1/4 → 0. On the other hand we do

not need to assume so much about the design points x1n, . . . ,xnn. Finally if we put cin = xin,

the conditions X’.1-4 turns out to be

XX’.1
1

n

n
∑

i=1

|xin|32 = O(1), lim
n→∞

max1≤i≤n |xin|22
n1/2

= 0.
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Thus in comparison with the condition XX.1 we only need the third moment of the norm of

the rows of the matrix X to be finite. To simplify the notation we will write shortly ci and

xi.

As the function ψ is not continuous, we need to impose the following smoothness conditions

on the cdf F in neighbourhoods of the points of discontinuity of ψ.

Step.1 F has a continuous derivative in a neighbourhood of the points q1, . . . , qm.

Step.2 For every j ∈ {1, . . . ,m} there exist δj > 0, νj >
1
2 , and Cj <∞ such that for every

|t| < δj

|f(qj + t) − f(qj)| ≤ Cj |t|νj .

Similarly to the case of a smooth ψ, we need the first condition to prove the asymptotic

tightness of the process M̄n and the second one to approximate E Mn.

Remark 9. As there is only a finite number of discontinuities of ψ, the condition Step.2 is

certainly satisfied uniformly in j ∈ {1, . . . ,m} for ν, δ, C given by

ν = min
1≤j≤m

νj , δ = min
1≤j≤m

δj ∧ 1, C = max
1≤j≤m

Cj .

2.2.2 Theorems

Theorem 2.7. Provided the conditions X’.1-3 and Step.1 are satisfied, then the centered

process M̄n = Mn − E Mn is asymptotically tight.2

Moreover, if there exists a real function r : T × T → R such that for every t, s ∈ T

lim
n→∞

1

n

n
∑

i=1

|ci|2 min(|tTxi|, |sTxi|) I{tTxix
T

i s > 0} = r(t, s), (2.18)

then the process M̄n converges in distribution to a centered gaussian process Z with the co-

variance function

cov {Z(t), Z(s)} = r(t, s)





m
∑

j=1

α2
j [f(qj) − f(qj−1)]



 .

Notice that in comparison with Theorem 2.1 we are not able to find an approximation up

to a remainder term of order op(1), but only a limit process.

Proof. As the function ψ is a linear combination of jumps, without lost of generality it suffices

to consider ψ(x) = I{x ≤ q}.
Put

Mni(t) = ci

[

ψ(ei − tTxi√
n

) − ψ(ei)
]

= ci

[

I{ei ≤ q + tTxi√
n
} − I{ei ≤ q}

]

.

2See Definition 7.9 of Appendix
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To prove the theorem, we will verify the assumptions of Theorem 7.12 of Appendix.

Note that for arbitrary t, s ∈ T

|Mni(t) −Mni(s)| ≤ |ci| I{ei lies between q + tTxi√
n

and q + sTxi√
n
}.

By assumption Step.1 there exists δ > 0 such that the quantity K = sup|v|≤δ f(q + v) is

finite. Put εn = max1≤i≤n
M |xi|2√

n
. The convergence εn → 0 implies that for all sufficiently

large n it holds sup|v|≤εn f(q + v) ≤ K.

Let us define the metric ρ on T as ρ(t, s) = C
√

|t − s|2, where C is a constant which will

be specified later. Denote B(ε) (⊂ T ) a ρ-ball of radius ε. Further, for i = 1, . . . , n define

li = inf
w∈B(ε)

{wTxi√
n
}, ui = sup

w∈B(ε)
{wTxi√

n
}.

Obviously

ui − li ≤
|xi|2√
n

sup
t,s∈B(ε)

|t − s|2 ≤ 4 ε2|xi|2
C2

√
n
.

Thus we can bound

n
∑

i=1

E
∗ sup

t,s∈B(ε)
[Mni(t) −Mni(s)]

2

≤ 1√
n

n
∑

i=1

|ci|2 [F (q + ui) − F (q + li)] ≤
4 ε2K

C2n

n
∑

i=1

|ci|2|xi|2.

By the assumptions of the theorem we immediately see that our metric ρ satisfies the equa-

tion (7.3) as well as (7.4) provided we take the constant C in the definition of the metric ρ

large enough.

To verify the condition (7.2), calculate

n
∑

i=1

E
∗ ‖Mni‖T I{‖Mni‖T>η} ≤

n
∑

i=1

E
∗ ‖Mni‖T I

{

|ci|
n1/4 I{|ei − q| ≤ M |xi|2√

n
} > η

}

. (2.19)

By assumption X’.1 max1≤i≤n |ci| = o(n−1/4), which implies that the right hand side of (2.19)

diminishes for all sufficiently large n. This proves the asymptotic tightness of the process M̄n.

To prove the second part of the theorem, it remains to show that the process M̄n converges

marginally in distribution to the process Z. By Cramér-Wald device it would be enough to

verify that for any t1, . . . , tk ∈ T , λ1, . . . , λk ∈ R, k ≥ 1 the random variable
∑k

j=1 λj M̄n(tj)

converges in distribution to the random variable
∑k

j=1 λj Z(tj). But this will follow immedi-

ately by the Feller-Lindeberg theorem (Theorem 7.4) if we prove the pointwise convergence

of the covariance function of the process M̄n, that is

lim
n→∞

cov{Mn(t),Mn(s)} = r(t, s) f(q), for all t, s ∈ T.
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It is straightforward to calculate

cov{Mn(t),Mn(s)} =
n
∑

i=1

cov{Mni(t),Mni(s)}

=
1√
n

n
∑

i=1

|ci|2 E I{ei lies between q and q + tTxi√
n
}I{ei lies between q and q + sTxi√

n
}

− 1√
n

n
∑

i=1

|ci|2 E I{ei lies between q and q + tTxi√
n
}E I{ei lies between q and q + sTxi√

n
}

=
1√
n

n
∑

i=1

|ci|2
[

F
(

q + max
{

0, tTxi√
n

∧ sTxi√
n

})

− F
(

q + min
{

0, tTxi√
n

∨ sTxi√
n

})]

+O( 1√
n
)

=
1

n

n
∑

i=1

|ci|2f(q)min(|tTxi|, |sTxi|) I{tTxix
T

i s > 0} + o(1)
(2.18)−−−→
n→∞

r(t, s) f(q),

which proves the theorem.

Now we approximate E Mn(t).

Lemma 2.8. Under the conditions X’.1-4 and Step.1-2 it holds

E Mn(t) = tT

n3/4

n
∑

i=1

ci xi

m
∑

j=1

βjf(qj) + o(1) = γ1 tT

n3/4

n
∑

i=1

ci xi + o(1)

uniformly in t ∈ T .

Proof. Without loss of generality we can only consider the case ψ(x) = I{x ≤ q}. By the

assumption Step.2 there exists ν > 1
2 such that

∣

∣

∣

∣

∣

E Mn(t) − tT

n3/4

n
∑

i=1

ci xi f(q)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n1/4

n
∑

i=1

ci[F (q + tTxi√
n

) − F (q)] − tT

n3/4

n
∑

i=1

ci xi f(q)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

n1/4

n
∑

i=1

ci

∫

tTxi√
n

0
[f(q + v) − f(q)] dv

∣

∣

∣

∣

∣

∣

Step.2

≤ C

n1/4

n
∑

i=1

|ci|
∫

˛

˛

˛

˛

tTxi√
n

˛

˛

˛

˛

0
vνdv

≤ C

(ν + 1)n1/4

n
∑

i=1

|ci|
(

M |xi|2√
n

)ν+1
=

CMν+1

(ν + 1)n3/4+ν/2

n
∑

i=1

|ci| |xi|ν+1.

Notice that the last quantity does not depend on t and it converges to zero by the assump-

tion X’.4.

Combining Theorem 2.7 and Lemma 2.8 yields the asymptotic distribution for the pro-

cess {Mn(t), t ∈ T}.

Corollary 2.9. Under conditions X’.1-4, Step.1-2 and (2.18) the process

Mn(t) − γ1 tT

n3/4

n
∑

i=1

ci xi

m
∑

j=1

βjf(qj), t ∈ T
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converges in distribution to a centered gaussian process {Z(t), t ∈ T} with the covariance

function

cov {Z(t), Z(s)} = r(t, s)





m
∑

j=1

α2
j [f(qj) − f(qj−1)]



 ,

where the function r(t, s) is given in (2.18).

2.2.3 Studentized M-processes

Unlike in the case of a smooth ψ the studentization of the M -estimator based on a step ψ

brings no new conceptual problems. Denote

Mn(t, u) =
1

n1/4

n
∑

i=1

ci

[

ψ
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ(ei/S)
]

, |t|2 ≤M, |u| ≤M,

and put M̄n(t, u) = Mn(t, u) − E Mn(t, u). The index set is T = {(s, u) : |s|2 ≤ M, |u| ≤
M} (⊂ Rp+1) with the metric ρ((t, u), (s, v)) =

√

|t − s|2 +
√

|u− v|.
To prove the asymptotic results about the processMn, we can very closely follow the proofs

of the previous section. That is why the following theorem only summarizes the results. As

we will see, only the covariance structure of the limiting process is more complicated.

But before we state the theorem, we note that speaking about conditions Step.1-2 in the

studentized case, we require the smoothness assumptions on the cdf F hold in a neighbourhood

of the points S q1, . . . , S qm (instead of q1, . . . , qm).

Theorem 2.10. If the conditions X’.1-3 and Step.1 hold, then the process M̄n = Mn−E Mn

is asymptotically tight.

Moreover, if there exists a function r defined on T×T such that for every (t, u), (s, v) ∈ T

lim
n→∞

1

n

m
∑

j=1

β2
j

n
∑

i=1

|ci|2 min(|Sqju+ tTxi|, |Sqjv + sTxi|) I{tTxix
T

i s > 0} = r ((t, u), (s, v)) ,

then the process M̄n converges in distribution to a centered gaussian process Z with the co-

variance function

cov {Z(t, u), Z(s, v)} = r ((t, u), (s, v)) .

Finally, if in addition the conditions X’.4 and Step.2 are satisfied, then we can replace the

mean value E Mn(t, u) by

tT

n3/4

n
∑

i=1

ci xi

m
∑

j=1

βjf(S qj) + u
n3/4

n
∑

i=1

ci

m
∑

j=1

S qj βj f(S qj) = γ1tT

n3/4

n
∑

i=1

ci xi +
γ1e u
n3/4

n
∑

i=1

ci

uniformly in T .
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2.3 ψ is a sum of a continuous function and a step function

Sometimes, ψ = ψc+ψs, where ψc stands for a continuous function and ψs for a step function

(e.g. skipped mean is generated with ψ(x) = x I{|x < k|}). The simplest way how to handle

this situation is to assume that the continuous part ψc is absolutely continuous and then to

combine the results of the previous sections. But we have already seen that the order of the

convergence of M -processes is slower for step functions. That is why the continuous part ψc

only influences the expectation E Mn but not the limit process. In view of this, it would be

possible to weaken the assumptions on ψc from the first section of this chapter. For instance,

we do not need the existence of a derivative of ψc. It is certainly sufficient to assume the

existence of δ0 > 0 and η > 3
4 such that for any x

|ψ(x+ δ) − ψ(x)| ≤ h(x) δη , for any |δ| < δ0,

where E h(e1)
2 < ∞. In this case we can even weaken the assumptions about the design

x1, . . . ,xn to some sort of conditions similar to X’.1-4 (with 1 + δ replaced by 2 η).

But we will not investigate this situation as we believe that with the presented results one

can easily handle these special situations ad hoc.
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Chapter 3

SOAL of the R-processes with

Wilcoxon scores

To motivate the following technical results, recall the linear regression model (1.1). Let cin,

xin, 1 ≤ i ≤ n, n = 1, 2, . . . be triangular arrays of constants satisfying some conditions which

will be specified later. In this section we study the asymptotic behaviour of the processes

S̃n(t) =
1

n

n
∑

i=1

cinR
′
i(t) =

1

n

n
∑

i=1

cin

n
∑

j=1

I{ei − tTxin√
n

≥ ej − tTxjn√
n

}, (3.1)

Tn(t) = S̃n(t) − S̃n(0), (3.2)

T̄n(t) = Tn(t) − E Tn(t), (3.3)

where t = (t1, . . . , tp)
T and R

′
i(t) stands for the rank of ei− tTxin√

n
among e1 − tTx1n√

n
, . . . , en−

tTxnn√
n

. We will index these processes by the set T = {t ∈ Rp : |t|2 ≤ M}, where | · |2 stands

for the euclidean norm, and M is an arbitrarily large but fixed constant.

3.1 Assumptions, theorems

In this section we specify the conditions on the distribution of the errors F and on the

constants x1n, . . . ,xnn and c1n, . . . , cnn and formulate the results. The proofs of this results

are to be found in the following sections.

3.1.1 Assumptions

W.1 F is absolutely continuous with a derivative f such that E [f(e1)]
2 <∞.

W.2 The function f(e1 + s) is continuous in the quadratic mean at the point zero, that is

lim
s→0

E [f(e1 + s) − f(e1)]
2 = 0.
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W.3

lim
∆→0

1

∆2

∫ +∞

−∞

∫ +∆

−∆
[f(z + y) − f(y)]2dz dy = 0.

It follows from the proof of Lemma 2 of Antille (1976) that the condition W.2 is met if

W.1 holds and the density f is continuous except for a finite number of jump discontinuities.

Further, according to Antille (1976), the condition W.3 is satisfied in these two important

cases

(i). f is such that |f(x+ t) − f(x)| ≤ |t|αh(x), with α > 1
2 and h(x) ∈ L2(−∞,+∞),

(ii). f is absolutely continuous and f ′(x) ∈ L2(−∞,+∞).

Note that the second condition is satisfied if there exists a finite Fisher information of the

density f .

Remark 10. It is easy to show that the condition W.3 is met for many of the standard

distributions with smooth densities like normal, lognormal, t-, χ2- (with degrees of freedom

greater or equal 2), cauchy, and logistic distribution. But it is not satisfied for an exponential

distribution.

In addition to the conditions X.1-4 of the previous chapter (with ci replaced by cin), we

need:

X.5
n
∑

i=1

cin = 0.

To simplify the notation, in the following we will write ci,xi instead of cin,xin.

3.1.2 Theorems

Put γ = E f(e1) =
∫

f2(x) dx.

Theorem 3.1. Under conditions X.1-5 and W.1-2 the process {T̄n(t), t ∈ T} satisfies

uniformly in t ∈ T

sup
t∈T

∣

∣

∣

∣

∣

∣

T̄n(t) + tT√
n

n
∑

i=1



ci xi +
1
n

n
∑

j=1

cj xj



 (f(ei) − γ)

∣

∣

∣

∣

∣

∣

= op(1). (3.4)

Specially, if we put

A2
n =

1

n

n
∑

i=1

c2i xix
T

i + 3

(

1

n

n
∑

i=1

ci xi

)(

1

n

n
∑

i=1

ci x
T

i

)

,

and the matrix A2
n is regular for n large enough, then the process T̄ ′

n(t) = T̄n(A
−1
n t) converges

in distribution to a centered gaussian process {Y (t), t ∈ T} with the covariance function given

by cov(Y (t), Y (s)) = σ2 tTs, where σ2 =
∫

f3(x)dx − γ2.
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As the proof of this theorem is rather lengthy, we will postpone it and formulate the other

results of this chapter.

Lemma 3.2. Suppose that the density of the errors f satisfies the assumptions W.1-3 and

the conditions X.1-5 are satisfied as well. Then uniformly in t ∈ T

E Tn(t) = −γ tT

√
n

n
∑

i=1

ci xi + o(1).

Combining Theorem 3.1 and Lemma 3.2 yields the following corollary.

Corollary 3.3. Under conditions X.1-5 and W.1-3 it holds uniformly in t ∈ T

S̃n(t) − S̃n(0) + γ tT

√
n

n
∑

i=1

ci xi = − tT√
n

n
∑

i=1



ci xi +
1
n

n
∑

j=1

cj xj



 (f(ei) − γ) + op(1). (3.5)

3.2 Proof of Theorem 3.1

As a first step, we approximate the process {T̄n(t), t ∈ T} by the ‘Hájek projection’ (see

Hájek (1968) or Serfling (1980))

Pn =
n
∑

i=1

E
[

T̄n| ei
]

− (n− 1)E T̄n =
n
∑

i=1

E
[

T̄n| ei
]

.

In the following, we will show that the projection Pn (leading term) has the asymptotic

representation (3.4) and the remainder term Rn = T̄n − Pn is asymptotically negligible, that

is ‖Rn‖T = op(1).

3.2.1 The convergence of the process Pn

Calculating the projection of the process T̄n, we find out that Pn(t) = Vn(t)−E Vn(t), where

Vn(t) =
1

n

n
∑

i=1

n
∑

j=1

(ci − cj)
[

F (ei − tT(xi−xj)√
n

) − F (ei)
]

Say
=

n
∑

i=1

Vni(t). (3.6)

For i = 1, . . . , n define

Zni(t) = Vni(t) − tT

n3/2

n
∑

j=1

(ci − cj) (xi − xj)f(ei)

=
1

n

n
∑

j=1

(ci − cj)
[

F (ei − tT(xi−xj)√
n

) − F (ei) +
tT(xi−xj)√

n
f(ei)

]

and put Zn =
∑n

i=1 Zni.
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As the condition X.5 gives us

1

n

n
∑

i=1

n
∑

j=1

(ci − cj)(xi − xj) [f(ei) − γ] =

n
∑

i=1



ci xi +
1
n

n
∑

j=1

cj xj



 (f(ei) − γ),

it suffices to prove

‖Z̄n‖T = op(1). (3.7)

Similarly to the proof of Theorem 2.1, we verify that the assumptions of Corollary 7.13 are

satisfied.

For convenience of notation put yij(n) =
xi−xj√

n
, εn = max1≤i≤n

2M |xi|2√
n

, and rn =

sup|s|≤εn E [f(e1 − s) − f(e1)]
2. Notice that the condition W.2 implies rn → 0. With the

help of Cauchy-Schwartz inequality we can bound

E sup
|t−s|2<ε

|Zni(t) − Zni(s)|2 ≤ E





1

n

n
∑

j=1

|ci − cj | sup
|t−s|2<ε

∫ tTynij

sTynij

|f(ei) − f(ei − v)| dv





2

≤ 1

n2

n
∑

j=1

|ci − cj |2
n
∑

j=1

E sup
|t−s|2<ε

[

∫ tTynij

sTynij

|f(ei) − f(ei − v)| dv
]2

≤ 1

n2

n
∑

j=1

|ci − cj |2
n
∑

j=1

E sup
|t−s|2<ε

|tTynij − sTynij |
∫ +

M(|xi|2+|xj |2)√
n

−M(|xi|2+|xj |2)√
n

[f(ei) − f(ei − v)]2 dv

≤ 1

n2

n
∑

j=1

|ci − cj |2
n
∑

j=1

ε |xi − xj |2√
n

2M(|xi|2 + |xj |2)√
n

sup
|v|≤εn

E [f(ei) − f(ei − v)]2 dv

≤ 2M ε

n3

n
∑

j=1

|ci − cj |2
n
∑

j=1

(|xi|2 + |xj|2)2 rn

≤ 8M εrn
n3

n
∑

j=1

(

|ci|2 + |cj |2
)

n
∑

j=1

(

|xi|22 + |xj |22
)

.

Thus by the assumptions of the theorem we can find a sufficiently large constant C such that

for all n ∈ N
n
∑

i=1

E sup
|t−s|2<ε

|Zni(t) − Zni(s)|2 ≤ C ε rn = o(1),

which verifies the condition (7.5) of Corollary 7.13. The condition (7.6) trivially holds for

t0 = 0.

3.2.2 Asymptotic negligibility of Rn

In the following, we show that

‖Rn‖T = sup
t∈T

|Rn(t)| = op(1). (3.8)
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To prove (3.8), we adapt the theory of U-processes with the kernel of degree two introduced

in Nolan and Pollard (1987). For convenience we denote this reference as NP. Let us recall

that Rn = T̄n − Pn. With the help of (3.6) we can write Rn(t) = Un(t) − E Un(t), where

Un(t) =
1

n

n
∑

i=1

ci

n
∑

j=1

[

I{ei − tTxi√
n

≥ ej − tTxj√
n
} − I{ei ≥ ej}

]

− 1

n

n
∑

i=1

n
∑

j=1

[

(ci − cj)(F (ei − tT(xi−xj)√
n

) − F (ei))
]

=

n
∑

i=1

n
∑

j=1

gij(ei, ej ,
t√
n
), (3.9)

with

gij(u, v,w) = ci
n

[

I{u− wT(xi − xj) ≥ v} − I{u ≥ v}
]

− ci−cj
n

[

F (u− wT(xi − xj)) − F (u)
]

.

We divide the proof into several steps, which are common in the theory of empirical processes.

But before we proceed, we spend a few words about measurability. As the first part of the

process Un is a sum of indicators (depending on t), we cannot hope that Un, viewed as a

mapping from Ω into ℓ∞(T ), is measurable. But let us denote S = {s : |s|2 ≤M +1, s ∈ Qp},
where Q is the set of rational numbers. Then obviously

sup
t∈T

|Un(t) − E Un(t)| ≤ sup
s∈S

|Un(s) − E Un(s)|,

where the quantity on the right hand side is a supremum over a countable set and thus

measurable. In the following, let T stand for S. Then we do not need to worry about

measurability, which is particularly important in Lemma 3.5, where we use Fubini Theorem.

Symmetrization

The first step is the symmetrization of the process Rn(t). Let e′1, . . . , e
′
n be independent copies

of e1, . . . , en. Denote

U
′
n(t) =

n
∑

i=1

n
∑

j=1

gij(e
′
i, ej ,

t√
n
), R

′
n(t) = U

′
n(t) − E U

′
n(t),

U
′
n (t) =

n
∑

i=1

n
∑

j=1

gij(ei, e
′
j ,

t√
n
), R

′
n (t) = U

′
n (t) − E U

′
n (t),

U
′ ′
n (t) =

n
∑

i=1

n
∑

j=1

gij(e
′
i, e

′
j ,

t√
n
), R

′ ′
n (t) = U

′ ′
n (t) − E U

′ ′
n (t).

With the help of these processes we define the symmetrized process

Rsymn (t) = Rn(t) −R
′
n (t) −R

′
n (t) +R

′ ′
n (t)

=
n
∑

i=1

n
∑

j=1

[

gij(ei, ej ,
t√
n
) − gij(e

′
i, ej ,

t√
n
) − gij(ei, e

′
j ,

t√
n
) + gij(e

′
i, e

′
j ,

t√
n
)
]

=

n
∑

i=1

n
∑

j=1

gsymij (ei, ej , e
′
i, e

′
j ,

t√
n
), (3.10)
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where

gsymij (ei, ej , e
′
i, e

′
j ,

t√
n
) = gij(ei, ej ,

t√
n
) − gij(e

′
i, ej ,

t√
n
) − gij(ei, e

′
j ,

t√
n
) + gij(e

′
i, e

′
j ,

t√
n
).

Let σ1, . . . , σn be Rademacher random variables, that is they are independent, identically dis-

tributed with P[σ1 = 1] = P[σ1 = −1] = 1
2 . Suppose further that σ1, . . . , σn are independent

of (e1, . . . , en, e
′
1, . . . , e

′
n). Then the process Rsymn has the same distribution as the process

Rσn(t) =

n
∑

i=1

n
∑

j=1

σi σj g
sym
ij (ei, ej , e

′
i, e

′
j ,

t√
n
).

Let us introduce the process

R◦
n(t) =

n
∑

i=1

n
∑

j=1

σi σj gij(ei, ej ,
t√
n
).

It holds

E ‖Rn‖T ≤ E ‖Rsymn ‖T = E ‖Rσn‖T ≤ 4E ‖R◦
n‖T , (3.11)

where the first inequality is a complete analogy of Lemma 1 in NP (the important thing is

that the process Rn(t) is degenerated in the sense that its projection is a zero process) and

the second inequality follows simply by a triangular inequality. One more application of a

triangular inequality yields

E ‖R◦
n‖T ≤ E sup

t∈T

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

n
∑

j=1

σi σj
ci
n

[

I{ei − tTxi√
n

≥ ej − tTxj√
n
} − I{ei ≥ ej}

]

∣

∣

∣

∣

∣

∣

+ E sup
t∈T

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

n
∑

j=1

σi σj
ci−cj
n

[

F (ei − tT(xi−xj)√
n

) − F (ei)
]

∣

∣

∣

∣

∣

∣

Say
= E ‖R◦

n1‖T + E ‖R◦
n2‖T

In the sequel, we show that E ‖R◦
n1‖T = oP (1). The proof for the process R◦

n2 would be

completely analogous.

Exponential inequality

The second step is an exponential inequality. Denote E σ the operator of the expected value

induced by the random variables σ1, . . . , σn (we condition on the realizations of e1, . . . , en).

Lemma 3.4. For each real square matrix A = [aij ] with
∑n

i=1

∑n
j 6=i a

2
ij ≤ 1

4π2 it holds

E σ exp





n
∑

i=1

n
∑

j=1,j 6=i
σiσj aij



 ≤ exp





π2

2

n
∑

i=1

n
∑

j=1,j 6=i
a2
ij



 .
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Proof. This lemma follows easily by Lemma 3 of NP, where the lemma is proved for symmetric

matrices.

E σ exp





n
∑

i=1

n
∑

j=1,j 6=i
σi σj aij



 = E σ exp





n
∑

i=1

n
∑

j=1,j 6=i
σi σj

aij + aji
2





Lemma 3 of NP
≤ exp





n
∑

i=1

n
∑

j=1,j 6=i

π2

2

(aij + aji)
2

4



 ≤ exp





π2

2

n
∑

i=1

n
∑

j=1,j 6=i
a2
ij



 . (3.12)

Chaining and the maximal inequality

In the third, step we make use of the technique known as chaining. Let the index set T is

equipped with a pseudometric d. Then the covering number N(ε, T, d) is the minimal number

of balls of radius ε needed to cover the set T .

Suppose that the random variables e1, e2, . . . are defined on a common probability space Ω

and for 1 ≤ i, j ≤ n put

fij(t) = ci
n

[

I{ei − tTxi√
n

≥ ej − tTxj√
n
} − I{ei ≥ ej}

]

.

In fact, the fij are random functions depending on the realization of ω ∈ Ω. Let us define the

random pseudometric dω on T as

dω(t, s) =





n
∑

i=1

n
∑

j=1

[fij(t) − fij(s)]
2





1/2

.

To make use of Lemma 7.11 of Appendix (which can be found e.g. in NP), we need to find

a uniform upper bound for the (random) covering numbers N(ε, T, dω). For this purpose, we

use the technique of pseudodimension introduced in Pollard (1990). For future convenience

we denote this reference EP. Put

hij(ω, s) = I{ei(ω) − ej(ω) ≥ sT(xi − xj)} − I{ei(ω) − ej(ω) ≥ 0}.

Using Lemma 4.4 of EP, we can deduce that the subset of the euclidean space Rn(n−1)

Hnω = {(hij(ω, s), 1 ≤ i 6= j ≤ n), s ∈ Rp}

has for all ω ∈ Ω uniformly bounded pseudodimension. Now set

α = (αij , 1 ≤ i 6= j ≤ n) =
(

|ci|
n , 1 ≤ i 6= j ≤ n

)

and let α⊙h stand for the pointwise product in Rn(n−1) with the kth coordinate αkhk. Then

obviously

N(ε, T, dω) ≤ N(ε,α ⊙Hnω, | · |2). (3.13)
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Because |hij(ω, s)| ≤ 1, we can take the vector H = (1, 1, . . . , 1) as the envelope for Hnω.

Notice that uniformly in ω and n

|α ⊙ H|22 =

n
∑

i=1

n
∑

j 6=i

c2i
n2

≤ 1

n

n
∑

i=1

c2i .

For simplicity, but without lost of generality, we will suppose that 1
n

∑n
i=1 c

2
i ≤ 1. Now the

Corollary 4.10 of EP guarantees the existence of universal constants A a W such that for

any ω ∈ Ω, any ε (0 < ε ≤ 1) as well as any n ∈ N

N(ε,α ⊙Hnω, | · |2) ≤ A

(

1

ε

)W

.

Combining this inequality with the inequality (3.13) yields N(ε, T, dω) ≤ A(1
ε )
W . Thus we

can bound the covering integral for s < 1 uniformly in ω and n by

Jnω(s) =

∫ s

0
log(N(ε, T, dω)) dε ≤

∫ s

0
log(A) −W log(ε) dε

≤ s log(A) +W

∫ s

0

1√
ε
dε ≤ s log(A) + 2W

√
s. (3.14)

Now we are ready to formulate the analogy of Theorem 6 of NP.

Lemma 3.5. There exists a constant C such that for all n ∈ N

E ‖R◦
n‖T ≤ C E

[

θn +
√

θn

]

, (3.15)

where θn = 1
4 supt∈T dω(t,0).

Proof. Set Ψ(x) = 1
2 exp( x2π − 1

8 ). For a fixed ω we verify that the process R◦
n(t) meets the

conditions of Lemma 7.11. The only unobvious condition is (ii). With the help of Lemma 3.4

we can calculate

E σ exp

( |R◦
n(t) −R◦

n(s)|
2π dω(t, s)

)

≤ E σ exp

(

R◦
n(t) −R◦

n(s)

2π dω(t, s)

)

+ E σ exp

(−R◦
n(t) +R◦

n(s)

2π dω(t, s)

)

Lemma 3.4
≤ 2 exp

(

π2

2

∑n
i=1

∑

j 6=i [fij(t) − fij(s)]
2

4π2 dω(t, s)2

)

= 2exp(1
8).

This yields the desired exponential inequality E σ Ψ
(

|R◦
n(t)−R◦

n(s)|
dω(t,s)

)

≤ 1. The choice f0 = 0

in Lemma 7.11 implies

E σ ‖R◦
n‖T ≤ 8

∫ θn

0
ψ−1(N(ε, T, dω)) dε

≤ 8

∫ θn

0

π

4
+ 2π log [2N(ε, T, dω)] dε ≤ C1 [θn + Jnω(θn)]

(3.14)

≤ C2

[

θn +
√

θn

]

,

where C1 and C2 are sufficiently large constants. Averaging out over the ω ∈ Ω gives us the

inequality (3.15).
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Let us denote εn =
2(M+1) max1≤i≤n |xi|2√

n
. The condition X.2 implies εn = o(1). The simple

bound

[fij(t)]
2 ≤ c2i

n2
I{|ei − ej | ≤ εn},

yields

E θ2
n ≤

n
∑

i=1

c2i
n

E I{|e1 − e2| ≤ εn}
X.1-2, W.2−−−−−−−→

n→∞
0.

But the last inequality implies that both E θn and E
√
θn converge to zero, which with the

help of Lemma 3.5 implies E ‖R◦
n‖T → 0.

Finally using Markov’s inequality (Lemma 7.1) and the inequality (3.11) gives us

P {‖Rn‖T > ε} ≤ 1
ε E ‖Rn‖T ≤ 4

ε E ‖R◦
n‖T −−−→

n→∞
0. (3.16)

3.3 Proof of Lemma 3.2

Directly by the definition of Tn we see that

E Tn(t) =
1

n

n
∑

i=1

ci

n
∑

j=1

∫ +∞

−∞
[F (y − tT√

n
(xi − xj)) − F (y)] dF (y).

Along the lines given in Antille (1976) we can calculate

Dn(t) =
1

n

n
∑

i=1

ci

n
∑

j=1

∫ +∞

−∞
[F (y − tT√

n
(xi − xj)) − F (y)] dF (y) + γ tT

√
n

n
∑

i=1

ci xi

=
1

n

n
∑

i=1

ci

n
∑

j=1

∫ +∞

−∞

∫

tT(xi−xj)√
n

0
−f(y − v)f(y) + f(y)2dv dy

=
1

2n

n
∑

i=1

ci

n
∑

j=1

∫ +∞

−∞

∫

tT(xi−xj)√
n

0
[f(y − v) − f(y)]2 dv dy. (3.17)

With the help of the conditions W.3 and X.1-4 we get that for arbitrary ε > 0 and for all

sufficiently large n

|Dn(t)| ≤
ε

2n

∣

∣

∣

∣

∣

∣

n
∑

i=1

|ci|
n
∑

j=1

|t|22
n

|xi − xj |22

∣

∣

∣

∣

∣

∣

≤ εM2

2n

∣

∣

∣

∣

∣

∣

n
∑

i=1

|ci|



|xi|22 +
1

n

n
∑

j=1

|xj |22





∣

∣

∣

∣

∣

∣

= εO(1)

uniformly in T , which proves the lemma.
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3.4 Wilcoxon signed rank statistics

With the help of the techniques presented in the previous sections we are able to prove

analogous results for a signed rank statistic. This will generalize the results of Antille (1976).

Recall that we are considering the linear regression model (1.1). Let R+
i (b) stand for the

rank of |Yi − bTxi| among |Y1 − bTx1|, . . . , |Yn − bTxn|. Then the signed rank estimator β̂
+
n

(based on Wilcoxon scores) of β is usually defined as

β̂
+
n = arg min

b∈Rp

D+
n (b), where D+

n (b) =

n
∑

i=1

|Yi − bTxi|R+
i (b). (3.18)

Alternatively, we may define the estimator β̂
+
n as the solution of the following minimization

p
∑

j=1

|S+
nj(b)| := min, where S+

nj(b) =
1

n3/2

n
∑

i=1

(xij − x̄nj) sign(Yi − bTxi)R
+
i (b). (3.19)

To explore the asymptotic properties of this estimator, it turns out to be useful to study

the asymptotic behaviour of the processes

S̃n(t) =
1

n

n
∑

i=1

ci sign(ei − tTxi√
n

)R
′
i(t), (3.20)

Tn(t) = S̃+
n (t) − S̃+

n (0), (3.21)

T̄n(t) = Tn(t) − E Tn(t), (3.22)

where t = (t1, . . . , tp)
T, and R

′
i(t) stands for the rank of the random variable |ei− tTxi√

n
| among

|e1 − tTx1√
n
|, . . . , |en − tTxn√

n
|. As usual, we will index these processes by the set T = {s ∈ Rp :

|s|2 ≤ M}, where | · |2 stands for the euclidean norm, and M is an arbitrary large but fixed

constant.

In addition to the assumptions W.1-3, we need the symmetry of the distribution of the

errors.

W.4 The density of the distribution of the errors is symmetric, that is f(x) = f(−x), for

any x ∈ R.

Similarly to Antille (1976), we can show that Tn(t) = Tn1(t) + Tn2(t), where

Tn1(t) =
1

n

n
∑

i=1

n
∑

j=1,j 6=i
ci

[

I{|ej − tTxj√
n
| < ei − tTxi√

n
} − I{|ej | < ei}

+I{|ej | < −ei} − I{|ej − tTxj√
n
| < −ei + tTxi√

n
}
]

and

Tn2(t) =
2

n

n
∑

i=1

ci

[

I{ei > tTxi√
n
} − I{ei > 0}

]

.
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Put εn = max1≤i≤n
M |xi|2√

n
and estimate

E ‖Tn2‖T ≤ 2

n

n
∑

i=1

|ci| |F (0) − F (−εn)| −−−→
n→∞

0.

Thus Markov’s inequality (Lemma 7.1) gives us ‖Tn2‖T = oP (1). That is why we can only

concentrate on the process Tn1. Along the lines of the second section of this chapter we

approximate T̄n1 = Tn1 − E Tn1 by its projection Pn =
∑n

i=1 E
[

T̄n1|ei
]

. It is a matter of

simple but tedious algebraic manipulations to show that Pn = Vn − E Vn, where

Vn(t) =
1

n

n
∑

i=1

n
∑

j=1,j 6=i
ci

[

F
(

ei +
tT(xj−xi)√

n

)

− F (ei) − F
(

−ei + tT(xj+xi)√
n

)

+ F (−ei)
]

+
1

n

n
∑

i=1

n
∑

j=1,j 6=i
cj

[

F
(∣

∣

∣ei − tTxi√
n

∣

∣

∣− tTxj√
n

)

− F
(∣

∣

∣ei − tTxi√
n

∣

∣

∣+
tTxj√
n

)]

.

Analogously to Section 3.2.1 we can prove that

sup
t∈T

∣

∣

∣

∣

∣

∣

Pn(t) + 2 tT√
n

n
∑

i=1



ci xi +
1
n

n
∑

j=1

cj xj



 (f(ei) − γ)

∣

∣

∣

∣

∣

∣

= op(1). (3.23)

Further, by the same technique as in Section 3.2.2 we can show the asymptotic negligibility

of the remainder term Rn = T̄n1 − Pn. Finally, repeating the idea of the proof of Lemma 3.2

gives us that uniformly in t ∈ T

E Tn(t) = −2 γ tT

√
n

n
∑

i=1

ci xi + o(1).

Combining the previous results, we get the second order asymptotic linearity of the Wilcoxon

signed-rank statistics.

Theorem 3.6. Under conditions X.1-5 and W.1-4 it holds uniformly in t ∈ T

S̃+
n (t) − S̃+

n (0) + 2 γ tT

√
n

n
∑

i=1

ci xi = −2 tT√
n

n
∑

i=1



ci xi +
1
n

n
∑

j=1

cj xj



 (f(ei) − γ) + op(1).

3.5 Further generalizations

Although R-estimators defined by (1.7) are robust against outlying Y -values, they remain sen-

sitive to observations with outlying x-values, or high leverage points. Sievers (1983) proposed

to define the R-estimator as the minimum of the weighted loss function

Dn(b) =
n
∑

i=1

n
∑

j=1

wij |Yi − Yj − bT(xi − xj)|, (3.24)
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where {wij} are appropriate weights. As

n
∑

i=1

n
∑

j=1

|Yi − Yj − bT(xi − xj)| =
n
∑

i=1

(Yi − bTxi)(Ri(b) − n+1
2 ),

we see that the new weighted estimator coincides with the R-estimator based on the Wilcoxon

scores for wij ≡ 1. Naranjo and Hettmansperger (1994) made some proposals how to choose

the weights wij to achieve the robustness in the x-space. Comparing the gradient of the loss

function (3.24)

Swn (b) =
∂Dn(b)

∂b
= −

n
∑

i=1

n
∑

j=1

wij (xi − xj) sign(Yi − Yj − bT(xi − xj)) (3.25)

with the process from (3.1), we see that the only difference is in the absence or presence of the

weights wij . Thus, provided we impose some mild regularity conditions on the weights wij, we

can use the methods of previous sections to explore asymptotic properties of Swn (b) of (3.25).

Generally, we believe that the technique presented in this thesis may be also useful for

the processes in the form of weighted U -statistics of degree two, that is

Tn(t) =
n
∑

i=1

n
∑

j=1

wij g(Yi, Yj ,X, t), t ∈ T,

where wij are weights and X may represent a design matrix.

Another estimator whose exploration leads us to processes of the above type is the gen-

eralized S-estimators (GS-estimators). This estimator, proposed by Croux et al. (1994), is

defined as

b̂ = arg min
b
sn(b),

with

sn(b) = sup

{

s > 0,

(

n

2

)−1 n
∑

i=1

ρ
(

Yi−Yj−bT(xi−xj)
s

)

≥ k

}

,

where ρ is a loss function and k a tuning constant.
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Chapter 4

Applications of SOAL

In the first part of this Section we derive a two-term von Mises expansions for M -estimators

based on a smooth ψ function and for an R-estimator based on Wilcoxon scores. For M -

estimators based on a step function ψ, we find the second order distribution.

In the second part we propose an alternative procedure of constructing a confidence inter-

val (CI) for a single component of the vector parameter β in a linear model (1.1). We explore

the asymptotic properties of this CI and compare it with the standard Wald type CI.

4.1 SO asymptotic representations

In what follows, we heavily utilize the expansions of Chapter 2.

4.1.1 M-estimators – an absolutely continuous ψ

First order results

The work on the second order asymptotic representations of M -estimators was initiated by

Jurečková and Sen (1990). Their main interest was in comparison of an M -estimator defined

as the root of the equation
n
∑

i=1

ψ(Xi − t) = 0

and its one-step approximations (one step of a Newton-Raphson iterative procedure starting

from a consistent estimator). In the following, we will generalize their results to a regression

estimator, which is defined as a root of the system of equations

n
∑

i=1

xi ψ(Yi − bTxi) = 0

(

or
n
∑

i=1

xi ψ(Yi−bTxi
Sn

) = 0

)

. (4.1)

But before we proceed, we recall some first order asymptotic results. For each of the

following processes we assume that the corresponding conditions from the previous chapters
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hold. Of course, the first order results require weaker conditions, but as we are interested

primarily in the second order properties, it is sufficient to use these stronger requirements.

Moreover, we need some consistency conditions so that the parameter β is identifiable and

consistent.

GenFx.1 (GenSt.1) The function h(t) = E ρ(e1 − t) (or h(t) = E ρ(e1−tS )) has a unique

minimum at t = 0.

XX.2 There exists a limit (p× p) matrix V

V = lim
n→∞

Vn = lim
n→∞

1

n

n
∑

i=1

xi x
T

i ,

which is positive definite.

We say that a (fixed scale) vector M -process

Mn(t) =
1√
n

n
∑

i=1

xi ψ(ei − bTxi√
n

)

satisfies the first order asymptotic linearity (FOAL) if for an arbitrarily large but fixed con-

stant M

sup
|t|2≤M

‖Mn(t) −Mn(0) + γ1Vnt ‖ = op(1), (4.2)

where ‖ · ‖ stands for the maximum norm. Once we have this FOAL result, we can use the

technique of the proof of Theorem 5.5.1 of Jurečková and Sen (1996) to show that there exists

a root β̂n of the system (4.1) such that

√
n(β̂n − β) = Op(1). (4.3)

Now inserting
√
n(β̂n − β) for t in the FOAL of M-process (4.2) gives us the first order

asymptotic representation (FOAR) for a M -estimator β̂n

√
n(β̂n − β) = V−1

n

γ1
√
n

n
∑

i=1

xi ψ(ei) + op(1). (4.4)

Similarly we can handle studentized M -estimators. For simplicity of the following results,

but with only a minor loss of generality, we will assume that the model includes an intercept,

that is xi1 = 1 for i = 1, . . . , n. Moreover, we need to assume that the scale estimator is√
n-consistent, i.e. √

n(SnS − 1) = Op(1). (4.5)

Then the FOAL linearity result gives us

sup
‖t‖≤M

∥

∥

∥

∥

∥

1√
n

n
∑

i=1

xi

[

ψ
(

(ei − tTxi√
n

)/Sn

)

− ψ (ei/S)
]

+ γ1Vnt + γ1ev1

√
n(SnS − 1)

∥

∥

∥

∥

∥

= op(1), (4.6)
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where v1 is the first column of the matrix Vn and γ1, γ1e are defined in (2.10) of Section 2.1.3.

Analogously to the case of a fixed scale M -estimator we can derive the first order asymp-

totic representation (FOAR)

√
n(β̂n − β) = V−1

n

γ1
√
n

n
∑

i=1

xi ψ
(

ei
S

)

− γ1e
γ1

√
n(SnS − 1)u1 + op(1), (4.7)

where u1 = (1, 0, . . . , 0)T ∈ Rp. Notice that only the asymptotic distribution of the intercept

is influenced by the asymptotic distribution of the scale estimator.

Before we proceed, let us spend a few words about the choice of the scale estimator Sn.

It is natural to require that this estimator is regression invariant and scale equivariant, that

is

Sn(c (Y + Xb)) = c Sn(Y), for b ∈ Rp and c > 0.

Some possible choices of Sn are discussed in Welsh (1986) and Jurečková and Sen (1996) (see

also Section 7.4 of Appendix).

Second order results

We are ready to derive the second order asymptotic expansion (a two-term von Mises expan-

sion) of a regression M -estimator for an absolutely continuous ψ-function.

First, we restate Corollary 2.3, for the vector case by replacing the constants ci by xi. Put

Mn(t) =

(

n
∑

i=1

xi1 [ψ(ei − tTxi√
n

) − ψ(ei)], . . . ,

n
∑

i=1

xip [ψ(ei − tTxi√
n

) − ψ(ei)]

)

T

=

n
∑

i=1

xi [ψ(ei − tTxi√
n

) − ψ(ei)]

and let Wn stand for the (p2 × p) matrix written in the block form as [Wn1, . . . ,Wnp]
T,

where Wnl = 1
n

∑n
i=1 xli xix

T

i for l = 1, . . . , p. Further, by the symbol tTWnt we will mean

the vector (tTWn1t, . . . , t
TWnpt)

T.

Corollary 4.1. Under conditions XX.1 and SmFx.1-3 it holds uniformly in t ∈ T

Mn(t) + γ1

√
n tTVn = − tT√

n

n
∑

i=1

xi x
T

i [ψ′(ei) − γ1] +
γ2
2 tTWnt + op(1). (4.8)

Suppose that β̂n is a
√
n-consistent estimator which satisfies the first order asymptotic

representation (4.8). Thus we can insert
√
n(β̂n − β) for t in (4.8). With the help of (4.4)
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and after some algebra we get

√
n(β̂n − β) − V−1

n

γ1
√
n

n
∑

i=1

xi ψ(ei)

= − 1√
n

{

V−1
n

γ1
√
n

n
∑

i=1

xi x
T

i [ψ′(ei) − γ1]

}{

V−1
n

γ1
√
n

n
∑

i=1

xi ψ(ei)

}

+ γ2
2 γ1

V−1
n√
n

{

V−1
n

γ1
√
n

n
∑

i=1

xi ψ(ei)

}

T

Wn

{

V−1
n

γ1
√
n

n
∑

i=1

xi ψ(ei)

}

+ op(
1√
n
). (4.9)

The last expansion simplifies if the symmetry condition Sym is satisfied. This condition

implies γ2 = 0, which further gives us

√
n(β̂n − β) − V−1

n

γ1
√
n

n
∑

i=1

xi ψ(ei)

= − 1√
n

{

V−1
n

γ1
√
n

n
∑

i=1

xi x
T

i [ψ′(ei) − γ1]

}{

V−1
n

γ1
√
n

n
∑

i=1

xi ψ(ei)

}

Say
=

1√
n

Andn, (4.10)

where both quantities An (∈ Rp×p) and dn (∈ Rp) are asymptotically multivariate normal.

Moreover, as the symmetry condition Sym implies

E ψ(e1)[ψ
′(e1) − γ1] = E ψ(e1)ψ

′(e1) = 0,

the quantities An and dn are asymptotically independent.

Similarly, if the scale estimator is
√
n consistent (see (4.5)) and conditions SmSt.1-4

and XX.1-2 are satisfied, then we can find the second order distribution representation for

the studentized M -estimator by inserting
√
n(β̂n − β) for t,

√
n log(SnS ) for u and xi for ci

in (2.6). But as the resulting expression is rather awkward, we will assume the symmetry

condition Sym to hold. Under the above assumptions we get

√
n(β̂n − β) − V−1

n

γ1
√
n

n
∑

i=1

xi ψ(ei/S)

= − 1√
n

{

V−1
n

γ1
√
n

n
∑

i=1

xi x
T

i [ψ′(ei/S) − γ1]

}{

V−1
n

γ1
√
n

n
∑

i=1

xi ψ(ei/S)

}

− 1√
n

{

√
n(SnS − 1) V−1

n

γ1
√
n

n
∑

i=1

xi
[

ei
S ψ

′(ei/S)
]

}

+ γ2e+γ1
γ1

√
n

√
n(SnS − 1)

{

V−1
n

γ1
√
n

n
∑

i=1

xi ψ(ei/S)

}

+ op(
1√
n
). (4.11)

From the expansion (4.11) we see that although the first order asymptotic distribution of the

studentized M -estimator of the slope does not depend on the asymptotic distribution of Sn,

the second order distribution does even if the symmetry condition Sym holds.
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Numerical illustration

To get an idea of how does the second order approximation of an M -estimator work, we

performed a small numerical study. We worked with the simple linear regression model

Yi = β1 + β2xi + ei. The design points x1, . . . , xn were generated from the uniform distribu-

tion U [−1, 1] and centered. The errors e1, . . . , en were taken to be normally distributed. As an

M -estimator we used the Huber estimator generated by the function ψ = max(min(x, k),−k)
with the tuning constant k = 1.345.

In the following, we compare the first order remainder term

Rem1 =
√
n(β̂n − β) − V−1

n

γ1
√
n

n
∑

i=1

xi ψ(ei)

with the second order remainder term

Rem2 = Rem1 +
1√
n

{

V−1
n

γ1
√
n

n
∑

i=1

xi x
T

i [ψ′(ei) − γ1]

}{

V−1
n

γ1
√
n

n
∑

i=1

xi ψ(ei)

}

.

Notice that we do not need to calculate the second term on the right hand side of the expan-

sion (4.9), as the symmetry condition Sym implies γ2 = 0. By the above discussion we know

that ‖Rem1‖ = op(1) and ‖√nRem2‖ = op(1). Let us denote by R1 and R2 the second

components (corresponding to β2) of the quantities Rem1 and Rem2.

Table 1 shows estimated 10%, 20%,. . . ,90%-quantiles for the sample sizes n = 20, 50, 100,

500, 1 000, and 5 000. The number of random samples was always 10 000. Comparing the

columns with the quantities R1 and R2, we see that the two-term expansion really improves

on the first order approximation of the quantity
√
n(β̂n − β). On the other hand it is

worth noticing that the random variable
√
nR2 converges to zero much more slowly than the

quantity R1. This is in an agreement with the results of Lachout and Paulauskas (2000), who

studied the speed of convergence in the second order asymptotic results for M -estimators in

the location case.

Some further experiments show that the convergence of
√
nR2 is even slower if the errors

are asymmetric or if we increase the number of explanatory variables. This indicates that there

seems to be no point in deriving the third or even the fourth term in von Mises expansions.

Comparison with a one-step estimator

We can also use the asymptotic expansions from the previous chapters to find the two-term

von Mises expansions for one-step M -estimators. This estimator, which can be viewed as

an approximation to the M -estimator defined in (4.1), is constructed in the following way.

Suppose β̂
(0)
n to be an initial estimator of β. We assume that this estimator is

√
n-consistent,

that is
√
n(β̂

(0)
n − β) = Op(1).

Let us denote ri = Yi− (β̂
(0)
n )Txi (for i = 1, . . . , n) the residuals from this initial fit. Then

we define the one-step estimator β̂
(1)
n as

β̂
(1)
n = β̂

(0)
n + H−1

n gn,
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n = 20 n = 50 n = 100

q R1 R2

√
nR2 R1 R2

√
nR2 R1 R2

√
nR2

0.1 -0.320 -0.225 -1.006 -0.210 -0.107 -0.760 -0.149 -0.062 -0.619

0.2 -0.195 -0.094 -0.422 -0.121 -0.050 -0.357 -0.087 -0.030 -0.297

0.3 -0.114 -0.042 -0.187 -0.068 -0.022 -0.159 -0.049 -0.014 -0.141

0.4 -0.050 -0.016 -0.072 -0.030 -0.008 -0.056 -0.022 -0.005 -0.049

0.5 -0.001 -0.001 -0.003 0.000 0.000 -0.001 0.000 0.000 0.000

0.6 0.053 0.014 0.061 0.029 0.007 0.047 0.021 0.005 0.050

0.7 0.111 0.040 0.179 0.066 0.021 0.148 0.049 0.015 0.149

0.8 0.188 0.090 0.403 0.120 0.048 0.338 0.088 0.031 0.313

0.9 0.315 0.217 0.969 0.204 0.101 0.711 0.154 0.064 0.641

n = 500 n = 1000 n = 5000

q R1 R2

√
nR2 R1 R2

√
nR2 R1 R2

√
nR2

0.0 -0.066 -0.018 -0.402 -0.048 -0.011 -0.348 -0.022 -0.003 -0.238

0.1 -0.038 -0.009 -0.205 -0.028 -0.005 -0.173 -0.013 -0.002 -0.120

0.2 -0.021 -0.005 -0.103 -0.016 -0.003 -0.085 -0.007 -0.001 -0.057

0.3 -0.009 -0.002 -0.038 -0.007 -0.001 -0.033 -0.003 0.000 -0.020

0.4 0.001 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.001

0.5 0.010 0.002 0.035 0.007 0.001 0.029 0.003 0.000 0.024

0.6 0.022 0.004 0.094 0.015 0.003 0.081 0.007 0.001 0.061

0.7 0.037 0.009 0.190 0.027 0.005 0.169 0.012 0.002 0.122

0.8 0.064 0.017 0.378 0.048 0.011 0.345 0.022 0.003 0.235

Table 1: Comparison of the first and the second order remainder term for a fixed-scale M -

estimator.

where

gn =
n
∑

i=1

xi ψ
(

ri
Sn

)

and

Hn = 1
Sn

n
∑

i=1

xix
T

i ψ
′
(

ri
Sn

)

or Hn = 1
Sn

n
∑

i=1

xix
T

i

{

1

n

n
∑

i=1

ψ′
(

ri
Sn

)

}

.

The first choice of the matrix Hn corresponds to the Newton-Raphson method and the sec-

ond one to the scoring method. Welsh and Ronchetti (2002) discussed very carefully the

asymptotic expansions for one-step estimators. They even formally derive the third order von

Mises expansion in a more complex situation including different weights for observations Yi

and design points xi. In view of that, our results present a partial technical background for

the formal derivations of Welsh and Ronchetti. We note that the second order von Mises

expansions for the one-step estimators are rather complex in general, unless we assume the

symmetry condition Sym.

An interesting question, initiated by Jurečková and Sen (1990), is the impact of the

initial estimator on the distribution of the one-step estimator. The authors studied the
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case of M -estimators of location with fixed scale. One of their results states that if the

symmetric condition Sym is satisfied and the initial estimator is
√
n-consistent, then the

one-step estimator θ̂
(1)
n is not only first order (FO) equivalent with the M -estimator θ̂Mn (that

is
√
n(θ̂

(1)
n − θ̂Mn ) = op(1)) but also second order (SO) equivalent, that is

n(θ̂(1)
n − θ̂Mn ) = op(1). (4.12)

In what follows, we will suppose the scale estimator Sn is
√
n-consistent and the symmetry

condition Sym is satisfied. Writing down two-term expansions for an M -estimator and a

corresponding one-step M -estimator we can find out that the SO equivalence (4.12) holds for

the studentized estimators of location as well. This is in a good agreement with the empirical

findings of Andrews et al. (1972).

Some further straightforward but tedious algebra yields the generalization of the previous

results to the regression settings. Suppose that the initial regression estimator β̂
(0)
n is

√
n-

consistent. Then the SO equivalence (4.12) is true for the (studentized) regression estimators

too, provided we use the Newton-Raphson method. But the preceding statement is not

generally true for the scoring method. For this method, even in a very simple case of fixed

scale and the regression line going through the origin (Yi = β xi + ei), we get

n(β̂(1)
n − β̂Mn ) =

1

γ1Vn

[√
n(β̂(0)

n − β̂Mn )
]

[

1√
n

n
∑

i=1

(Vn − x2
i )(ψ

′(ei) − γ1)

]

+ op(1),

where Vn = 1
n

∑n
i=1 x

2
i . From the above expansion we see that n(β̂

(1)
n −β̂Mn ) = Op(1) unless the

initial estimator β̂
(0)
n and M -estimator β̂Mn are first order equivalent. This may happen, e.g.

if we use an R-estimator which is FO equivalent with the target M -estimator (see Jurečková

(1977)) as an initial estimator. As we have indicated by the simple example of a regression

line going through the origin, when using the scoring we need two steps so that the resulting

estimator is SO equivalent.

Remark 11. It should be stressed that the symmetry condition Sym is crucial for these results.

The problem of the linear model with asymmetric distributions is that different estimators of

the parameter β usually estimate different intercepts. If this happen to the initial estimator

and the (target) M -estimator, then the one-step estimator is not even first order equivalent

(see Simpson et al. (1992)).

4.1.2 M-estimators – a step function ψ

In this section we suppose that the function ψ = ρ′ is a nondecreasing step-function, that is

ψ(x) = αj for qj < x ≤ qj+1, j = 0, 1, . . . ,m, (4.13)

where α0 < α1 < . . . < αm are real numbers, −∞ = q0 < q1 < . . . < qm < qm+1 = ∞, and m

being a positive integer.
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Due to the discontinuity of the function ψ, there may not exist an exact root of the

system of equations (4.1). That is why we define the M -estimator of β as a solution of the

minimization problem

n
∑

i=1

ρ
(

Yi−tTxi
Sn

)

:= min, where ρ′ = ψ. (4.14)

As we suppose in this section that the ψ function is nondecreasing, the function ρ is convex,

which implies that there exists a solution to the minimization problem (4.14).

Remark 12. Without the assumption of convexity of the function ρ several complications

arise. First, it is rather complicated to prove
√
n-consistency of the estimator β̂n. Second, it

is nontrivial to show that

1√
n

n
∑

i=1

ψ

(

Yi−β̂
T

nxi
Sn

)

= op(1)
(

or even op

(

1
n1/4

))

, (4.15)

where the first equation is needed for the first order results and the equation to the quantity

in the brackets is needed for the second order results. To the present knowledge of the

author, the problems with the asymptotic behaviour of the regression M -estimators based on

a discontinuous ψ function which is not monotone have not been completely solved. But we

believe that the difficulties are only of technical character and they have not been solved yet,

because these estimators are not in the centre of attention. Nevertheless, once we have shown

the
√
n-consistency of the estimator β̂n and the equation (4.15), our further results hold.

Similarly to the case of a smooth ψ function, we would like use the FOAL of the M-

process (4.6) to prove the FOAR for the M-estimator (4.7). But due to the discontinuity of

the function ψ, it is not sufficient to have the
√
n-consistency of the estimates of regression

parameters (and the scale estimator), but we need the equation (4.15) to hold as well.

To show that, we adopt the technique of Jurečková and Sen (1996) (see pp. 167 for details).

Let us denote

Gj(t) = 1√
n

n
∑

i=1

ρ
(

(Yi − β̂
T

nxi − t xij)/Sn

)

,

and G+
j the right derivative of this function. As the function ψ is nondecreasing, the function

G+
j (t) = 1√

n

n
∑

i=1

xij ψ
(

(Yi − β̂
T

nxi − t xij)/Sn

)

,

is nondecreasing in t. Using further the fact that the function Gj has its minimum in 0, we

conclude that for every ε > 0 |G+
j (0)| ≤ G+

j (ε) −G+
j (−ε). Letting εց 0 implies

|G+
j (0)| ≤ p√

n

(

max
0≤l≤m

|αl| max
1≤i≤n

|xij |
)

XX’.1
= o

(

1
n1/4

)

,
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where the second inequality holds almost surely due to the continuity of the cdf of the errors F

(assumption Step.1). This gives us the desired result

1√
n

n
∑

i=1

xi ψ

(

Yi−β̂
T

n xi
Sn

)

= o( 1
n1/4 ) almost surely. (4.16)

The next step is to show the
√
n-consistency of the estimator β̂n. There are basically

two techniques to use. We can either exploit the monotonicity of ψ or use some convexity

arguments (see Jurečková and Sen (1996), pp. 167–169), or pp. 223–224). Once we have the√
n-consistency and (4.16), we can insert

√
n(β̂n −β) for t in (4.6) and get the FOAR (4.7).

Second order results

To simplify the following formulae, we will only consider the fixed-scale M -estimators. Let

us denote γ1 =
∑m

j=1 βjf(qj). Unlike the case of a smooth ψ-function, for which we have

derived a two-term von Mises expansion, the best we can do here is to find the asymptotic

distribution of the random variable

n1/4

(

√
n(β̂n − β) − 1

γ1
√
n

n
∑

i=1

V−1
n xi ψ(ei)

)

.

Before we do that, we need some auxiliary results.

Lemma 4.2. Suppose that the conditions XX’.1, XX.2, and Step.1-2 are satisfied and

there exists a (matrix) function r : T × T → Rp×p such that for every t, s ∈ T

lim
n→∞

V−1
n

n
∑

i=1

xix
T

i
n min(|tTxi|, |sTxi|) I{tTxix

T

i s > 0}V−1
n = r(t, s). (4.17)

Then the vector process

Zn = (Z1
n, . . . , Z

p
n)

T =
1

γ1 n1/4

n
∑

i=1

V−1
n xi

[

ψ(ei − tTxi√
n

) − ψ(ei)
]

− n1/4t, t ∈ T (4.18)

converges to a p-dimensional centered gaussian process Z, with the covariance structure

cov{Z(t),Z(s)} = r(t, s).

Proof. For simplicity of notation suppose that p = 2 and let us denote Xn = Z1
n and Yn = Z2

n.

From Corollary 2.9 we know that both Xn and Yn converge weakly to tight gaussian processes

in the space ℓ∞(T ) of bounded functions. By 1.3.8 Lemma of van der Vaart and Wellner (1996)

(VW), both sequences {Xn, n ∈ N} and {Yn, n ∈ N} are asymptotically tight. Further by

1.4.3 Lemma and 1.4.4 Lemma of VW, the sequence {(Xn, Yn), n ∈ N} is asymptotically tight

as well as asymptotically measurable. Now by Prohorov’s theorem (1.3.9 Theorem of VW)
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there exists a subsequence {(Xnj , Ynj), j ∈ N} that converges weakly to a tight Borel law,

say Z = (X,Y )T. It only remains to show that this limit is unique.

For this purpose, let us consider the collection F of all functions f : ℓ∞(T )× ℓ∞(T ) 7→ R

of the form

h(x,y) = f(x(t1), . . . , x(tk)) g(y(s1), . . . , y(sl)),

where f and g are continuous and bounded real functions on Rk and Rl respectively, and

t1, . . . , tk ∈ T , s1, . . . , sl ∈ T , k ∈ N and l ∈ N. The collection F forms a vector lattice

(vector space that is closed under taking positive parts), contains constant functions, and

separates points of the space ℓ∞(T ) × ℓ∞(T ). By 1.3.12 Lemma of VW a Borel measure L

on ℓ∞(T )× ℓ∞(T ) is uniquely determined by the expectations {
∫

f dL : f ∈ F}. That is why

we can conclude that Zn = (Xn, Yn)
T converges weakly to the process Z = (X,Y )T, if for all

k, l ∈ N and t1, . . . , tk, s1, . . . , sl ∈ T

(Xn(t1), . . . ,Xn(tk), Yn(s1), . . . , Yn(sl))
w−→ (X(t1), . . . ,X(tk), Y (s1), . . . , Y (sl)).

But this weak convergence follows follows easily by the assumptions of the lemma.

Theorem 4.3. Suppose that the conditions of Lemma 4.2 are satisfied and the FOAR (4.4)

holds for β̂n. Then the random vector

n1/4

(

√
n(β̂n − β) − 1

γ1
√
n

n
∑

i=1

V−1
n xi ψ(ei)

)

converges in distribution to the random variable Z(W), where the random vector W has the

limiting distribution of
√
n(β̂n − β) and Z is the limiting process of Lemma 4.2.

Proof. Let Zn be defined by (4.18) and put Wn =
√
n(β̂n − β). Then following the proof of

Lemma 4.2, we can show that the pair (Zn,Wn) converges in distribution to (Z,W) in the

product space [
∏p
i=1 ℓ

∞(T )] × Rp.

Recall that T = {t ∈ Rp : |t|2 ≤ M}, where M is an arbitrary large but fixed constant.

Put [Wn]M = Wn I{|Wn|2 ≤M}. We claim that, Zn([Wn]M ) weakly converges to Z([W]M ).

This statement will follow from the continuous mapping theorem (see 1.3.6 Theorem of van der

Vaart and Wellner (1996)), provided we show that the mapping ψ : [
∏p
i=1 ℓ

∞(T )] × T 7→
Rp defined by ϕ(x, φ) = x(φ) is continuous on a subset D0 ⊂ [

∏p
i=1 ℓ

∞(T )] × T such that

P {(Z,W) ∈ D0} = 1.

Put D0 = Cp(T ) × Rp, where Cp(T ) is a space of continuous (and therefore bounded)

vector functions on T . As Z is a p-variate Gaussian process, then P {(Z, [W]M ) ∈ D0} = 1.

Further let (x, φ) ∈ D0 and assume that xn converges to x (in
∏p
i=1 ℓ

∞(T )) and φn to φ

(in T ). We can estimate

|ϕn − ϕ|2 = |xn(φn) − x(φ)|2 ≤ |xn(φn) − x(φn)|2 + |x(φn) − x(φ)|2
≤ ‖|xn − x|2‖T + |x(φn) − x(φ)|2 −−−→

n→∞
0,
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because x is a continuous function on T . Thus ϕ is continuous on D0.

Now, let ε > 0 be given. As β̂n satisfies the expansion (4.4), we can find M > 0 and n0

such that for all n ≥ n0

P {[Wn]M 6= Wn} = P
{

|√n(β̂n − β)|2 > M
}

< ε, and P {|W|2 > M} < ε.

Further fix λ ∈ Rp (|λ|2 = 1). Then for each z ∈ R

lim sup
n→∞

P
{

λTZn(Wn) ≤ z
}

≤ lim sup
n→∞

P
{

λTZn([Wn]M ) ≤ z
}

+ ε

= P
{

λTZ([W]M ) ≤ z
}

+ ε ≤ P
{

λTZ(W) ≤ z
}

+ 2 ε. (4.19)

Similarly

lim inf
n→∞

P
{

λTZn(Wn) ≤ z
}

≥ P
{

λTZ(W) ≤ z
}

− 2 ε. (4.20)

As ε > 0 was arbitrary, the equations (4.19) and (4.20) together imply

lim
n→∞

P
{

λTZn(Wn) ≤ z
}

= P
{

λTZ(W) ≤ z
}

.

Finally, the Cramér-Wold device (Theorem 7.5 of Appendix) yields that Zn(Wn) converges

in distribution to Z(W). But this is just the statement of the theorem.

4.1.3 R-estimators based on Wilcoxon scores

Let us remind that

β̂n = arg min
b∈Rp

Dn(b), where Dn(b) =

n
∑

i=1

(Yi − bTxi)(
Ri(b)
n+1 − 1

2 ), (4.21)

and Ri(b) is the rank of Yi − bTxi among Y1 − bTx1, . . . , Yn − bTxn.

Our aim is to use the asymptotic expansion of the previous chapter to derive the second

order asymptotic representation for the estimator β̂n. But before that, we need to recall some

first order results. If conditions W.1, X.2, and XX.2 are satisfied, then the estimator β̂n

admits the following first order asymptotic representation (e.g. Ren (1994))

√
n(β̂n − β) = V−1

n

γ
√
n

n
∑

i=1

(xi − x̄) [F (ei) − 1
2 ] + op(1). (4.22)

For simplicity of notation we will suppose in the following that

n
∑

i=1

xi = 0. (4.23)

Otherwise we would work with xi − x̄.
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Second order results

As a preliminary step, it is convenient to restate Corollary 3.3 for a vector process

S̃n(t) =
1

n

n
∑

i=1

xiR
′
i(t), t ∈ T,

where R
′
i(t) stands for the rank of ei − tTxi√

n
among e1 − tTx1√

n
, . . . , en − tTxn√

n
.

Corollary 4.4. Under conditions XX.1, XX.2, and W.1-3 it holds uniformly in t ∈ T

S̃n(t) − S̃n(0) + γ
√
nVnt = − 1√

n

n
∑

i=1

(

xi x
T

i + Vn

)

(f(ei) − γ) t + op(1). (4.24)

Now we would like to insert t → √
n(β̂n − β) into the equation (4.24). But before we

do that, we need to verify that S̃n(
√
n(β̂n − β)) =

√
nSn(β̂n) is sufficiently small (for the

definition of Sn(b) see (1.7) or List of symbols on page 112).

It is well known (e.g. Hettmansperger (1984)) that we can rewrite the quantity Dn(b) as

Dn(b) =
n
∑

i=1

(Yi − bTxi)(Ri(b) − n+1
2 ) =

n
∑

i=1

n
∑

j=1,j 6=i
|Yi − Yj − bT(xi − xj)|. (4.25)

Put Zij = Yi− Yj and dij = xi − xj and replace the indices i, j with a single index l. We get

Dn(b) = 2
∑(n2)

l=1 |Zl − bTdl|. With the help of this representation of Dn(b) we can proceed

analogously to Section 4.1.2 (for details see Jurečková and Sen (1996), pp. 167) and show

that for all j = 1, . . . , p

|Snj(β̂n)| =

∣

∣

∣

∣

∣

1

n3/2

n
∑

i=1

(xij − x̄j)Ri(β̂n)

∣

∣

∣

∣

∣

a.s
≤ 4 pmax1≤i≤n |xi|2

n3/2

XX.1
= o( 1

n).

Thus
√
nSn(β̂n) = o( 1√

n
) almost surely.

Remark 13. By a very similar argument we could show that the signed rank statistics satisfies√
nS+

n (β̂
+
n ) = O( 1√

n
) almost surely as well.

Now we are ready to insert
√
n(β̂n −β) for t in (4.24). After some reorganization we get

√
n(β̂n − β) − V−1

n

γ
√
n

n
∑

i=1

xi
Ri(β)
n = −V−1

n

γ
√
n

n
∑

i=1

(

xi x
T

i + Vn

)

(f(ei) − γ) (β̂n − β) + op(
1√
n
)

(4.22)
= − 1√

n

{

V−1
n

γ
√
n

n
∑

i=1

(

xi x
T

i + Vn

)

(f(ei) − γ)

}{

V−1
n

γ
√
n

n
∑

i=1

xi F (ei)

}

+ op(
1√
n
). (4.26)

Specially, suppose that the lth-column of the matrix Xn is orthogonal to the other columns

of the matrix Xn, that is
∑n

i=1 xil xij = 0 for l 6= j. This implies that the lth-column of the

matrix Vn is given by T 2
nl el, where el = (0, . . . , 0, 1, 0, . . . , 0)T is a vector of zeros with the
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only one nonzero element in the lth coordinate and T 2
nl = 1

n

∑n
i=1 x

2
il. Now, taking only the

l-th component of the vector equation (4.26) gives us the second order representation for the

l-th component of β̂n

√
n(β̂l − βl) −

1

γ T 2
nl

√
n

n
∑

i=1

xil
Ri(β)
n

= − 1√
n

{

1
γ T 2

nl

√
n

n
∑

i=1

(

xi xil + el T
2
nl

)T
(f(ei) − γ)

}{

V−1
n

γ
√
n

n
∑

i=1

xi [F (ei) − 1
2 ]

}

+ op(
1√
n
),

say
= 1√

n
AT

n Bn + op(
1√
n
). (4.27)

The random vectors An, Bn have asymptotically multivariate normal distributions and their

asymptotic covariance is

lim
n→∞

cov{An,Bn} = lim
n→∞

V−1
n

γ2T 2
nl n

n
∑

i=1

[

xix
T

i xil + xiel
TT 2

nl

]

cov{F (ei), f(ei)}

= V−1

γ2 lim
n→∞

1
T 2
nl n

n
∑

i=1

[

xix
T

i xil

]

cov{F (ei), f(ei)}.

Thus An, Bn are asymptotically independent if 1
n

∑n
i=1 xT

i xi xil → 0 or cov{F (ei), f(ei)} = 0.

The second condition is certainly satisfied if the distribution of the errors is symmetric.

Numerical illustration

To get an idea of how does the second order approximation of an R-estimator works we

performed a small numerical study. We worked with a linear regression model with two ex-

planatory variables Yi = β0 + β1xi1 + β2xi2 + ei. The design points x1 = (x11, x12), . . . ,xn =

(xn1, xn2) were generated from the uniform distribution U [−1, 1] and centered in each coor-

dinate. The errors e1, . . . , en were taken to be normally distributed.

In the following, we focus on the coefficient β1. Let R1 be the first component of the

vector

Rem1 =
√
n(β̂n − β) − V−1

n

γ
√
n

n
∑

i=1

xi F (ei)

and R∗
1 be the first component of

Rem∗
1 =

√
n(β̂n − β) − V−1

n

γ
√
n

n
∑

i=1

xi
Ri
n .

We compare these first order remainder terms with the second order remainder term R2 which

is the first component of the vector

Rem2 =
√
n(β̂n − β) − V−1

n

γ
√
n

n
∑

i=1

xi
Ri(β)
n

+ 1√
n

{

V−1
n

γ
√
n

n
∑

i=1

(

xi x
T

i + Vn

)

(f(ei) − γ)

}{

V−1
n

γ
√
n

n
∑

i=1

xi F (ei)

}

. (4.28)
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From the theory presented above we know that R1 = op(1), as well as R∗
1 = op(1), and√

nR2 = op(1).

Table 2 shows estimated 10%, 20%,. . . ,90%-quantiles of the quantities R∗
1, R1, R2, and√

nR2 for the sample sizes n = 20, 100, 500, and 2 000. The number of random samples was

always 10 000.

n = 20 n = 100

q R∗

1
R1 R2

√
nR2 R∗

1
R1 R2

√
nR2

0.1 -0.638 -0.531 -0.514 -2.299 -0.261 -0.247 -0.171 -1.709

0.2 -0.401 -0.339 -0.330 -1.478 -0.153 -0.156 -0.109 -1.086

0.3 -0.242 -0.210 -0.198 -0.886 -0.090 -0.095 -0.065 -0.647

0.4 -0.117 -0.100 -0.094 -0.418 -0.044 -0.044 -0.031 -0.306

0.5 -0.005 0.000 -0.001 -0.006 -0.003 0.001 0.001 0.007

0.6 0.113 0.099 0.096 0.431 0.040 0.047 0.033 0.327

0.7 0.240 0.205 0.199 0.892 0.090 0.097 0.068 0.679

0.8 0.399 0.342 0.330 1.475 0.151 0.158 0.110 1.096

0.9 0.643 0.538 0.521 2.329 0.251 0.248 0.174 1.736

n = 500 n = 2000

q R∗

1 R1 R2

√
nR2 R∗

1 R1 R2

√
nR2

0.1 -0.095 -0.103 -0.051 -1.140 -0.044 -0.052 -0.020 -0.897

0.2 -0.055 -0.064 -0.032 -0.706 -0.026 -0.033 -0.013 -0.562

0.3 -0.031 -0.040 -0.019 -0.436 -0.015 -0.020 -0.008 -0.342

0.4 -0.014 -0.020 -0.009 -0.208 -0.006 -0.010 -0.004 -0.164

0.5 0.001 -0.001 0.000 0.008 0.000 0.000 0.000 -0.003

0.6 0.016 0.019 0.010 0.213 0.007 0.010 0.004 0.159

0.7 0.032 0.040 0.020 0.442 0.015 0.021 0.007 0.330

0.8 0.056 0.066 0.033 0.731 0.026 0.033 0.012 0.544

0.9 0.096 0.102 0.052 1.166 0.045 0.052 0.020 0.894

Table 2: Comparison of the first and second order remainder term for an R-estimator based

on Wilcoxon scores

Comparing the columns with the quantities R∗
1 and R1, we see that while the representa-

tion V−1
n

γ
√
n

∑n
i=1 xi F (ei) approximates

√
n(β̂n−β) better for small and moderate sample sizes,

the approximation V−1
n

γ
√
n

∑n
i=1 xi

Ri
n , works better for large sample sizes.

Next, we see that a two-term expansion improves the first order approximation of the

quantity
√
n(β̂n − β) in particular for large n. But notice that the random variable

√
nR2

converges to zero much more slowly than the quantity R1 does. Comparing the quantities√
nR2 in Table 1 and Table 2 we see that the convergence of the term

√
nR2 to zero is much

slower for the R-estimator than for the M -estimator. This may be explained by a higher

smoothness of the M -estimator (provided the function ψ and the underlying distribution of

the errors are sufficiently smooth).
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4.2 An alternative confidence interval

In this section we introduce an alternative way of constructing a confidence interval for a

single component of a regression parameter β in the model (1.1). We derive asymptotic

properties of this procedure and compare it with the standard Wald-type procedure.

4.2.1 Unstudentized M-estimators

Leaving out resampling procedures, the standard way for a construction of a confidence in-

terval is a Wald-type method. This method directly exploits FOAL of the M -estimator.

From (4.4) we immediately see that the random variable
√
n(β̂n − β) is asymptotically nor-

mally distributed with zero mean and the variance
σ2
ψ

γ2
1

V−1
n , where σ2

ψ = E ψ(e1)
2. Let us

denote {ωnij}j=1,...,p
i=1,...,p the elements of the matrix V−1

n and T 2
nl = 1

n

∑n
i=1 x

2
il. Then the random

variable
√
n(b̂l − βl) has asymptotically zero mean normal distribution with variance

σ2
ψ ω

n
ll

γ2
1

.

Thus we can construct the confidence interval for βl as

DI
n =

[

β̂l − zα√
n

σ̂ψ
√
ωnll

γ̂1
, β̂l +

zα√
n

σ̂ψ
√
ωnll

γ̂1

]

, (4.29)

where σ̂ψ and γ̂1 are estimates of the unknown quantities σψ and γ1, and zα = Φ−1(1 − α
2 ),

with Φ−1 being the inverse cdf of the standard normal distribution. We will call it a type I

confidence interval. Putting ri = Yi − β̂
T

nxi for the residuals, the most simple estimates

of σψ and γ1 are

σ̂ψ =

[

1

n− 1

n
∑

i=1

ψ2(ri)

]1/2

and γ̂1 =
1

n

n
∑

i=1

ψ′(ri). (4.30)

Sometimes we may find the confidence interval (4.29) inconvenient particularly for two

reasons. First, we need to estimate two unknown quantities (σψ and γ1). Second, we may

be doubtful whether the symmetry of the confidence interval (4.29) does not affect coverage

properties, especially in the presence of asymmetric distribution of errors or explanatory

variables in the model (1.1).

Boos (1980) proposed another method for the construction of confidence intervals from

M -estimates. He considered the case of location parameter and suggested the confidence

interval [θ̂−n , θ̂
+
n ], where

θ̂−n = sup

{

t : 1√
n

n
∑

i=1

ψ(Xi − t) ≥ σ̂ψ zα

}

(4.31)

θ̂+
n = inf

{

t : 1√
n

n
∑

i=1

ψ(Xi − t) ≤ −σ̂ψ zα
}

. (4.32)

We will call it a type II confidence interval. It is apparent from the definition that this

method can only work for monotone ψ in general. But we can easily modify the definition
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to include redescending ψ-functions as well. Suppose that θ̂n is the M -estimator. Then we

define the confidence interval [θ̂−n , θ̂
+
n ] = [θ̂n + δ−n , θ̂n + δ+n ], where

δ−n = sup

{

t < 0 : 1√
n

n
∑

i=1

ψ(Xi − θ̂n − t) ≥ σ̂ψ zα

}

,

δ+n = inf

{

t > 0 : 1√
n

n
∑

i=1

ψ(Xi − θ̂n − t) ≤ −σ̂ψ zα
}

.

The advantage of this approach is that we do not need to estimate the functional γ1. Boos

(1980) showed that this method is asymptotically correct and that the length of the confidence

interval multiplied by
√
n converges in probability to the same constant as for the type I

confidence interval. He also demonstrated by the means of simulation that his proposed

method sometimes has a slightly better coverage properties then the type I method. Some

partial explanation of this phenomenon can be found in Lloyd (1994).

In the following, we will modify the type II method for a linear model (1.1). We will show

that the length of the type II CI for a single component (multiplied by
√
n) has the same

probability limit as the CI of type I, but asymptotic distributions of properly standardized

lengths of CI’s are in general different.

4.2.2 Construction of the confidence interval

For the simplicity of notation we will construct the confidence interval for the last component

of β – parameter βp. The general case would follow by relabeling of the indices. To simplify the

subsequent formulae we will make use of the following notations. Let zi stand for the vector xi

without the first component, that is zi = (xi1, . . . , xi p−1)
T. Similarly Vz

n = 1
n

∑n
i=1 ziz

T

i and

β̂z = (β̂1, . . . , β̂p−1)
T. Further denote dx z = 1

n

∑n
i=1 xip zi and T 2

np = 1
n

∑n
i=1 x

2
ip.

Finally put

Mn(t) = 1√
n

n
∑

i=1

xip ψ(ri − t xip) (4.33)

and notice that

Mn(βp − β̂p) = 1√
n

n
∑

i=1

xip ψ(Yi − β̂
T

z zi − βp xip).

Then the confidence interval for the parameter βp is DII
n = [b̂−p , b̂

+
p ] = [β̂p+δ

−
n , β̂p+δ

+
n ], where

δ−n = sup
{

t < 0 : Mn(t) ≥ T 2
np

√

ωnpp σ̂ψ zα
}

, (4.34)

δ+n = inf
{

t > 0 : Mn(t) ≤ −T 2
np

√

ωnpp σ̂ψ zα
}

. (4.35)

Remark 14. There exist no solution to either of the equations (4.34) or (4.35) if

supt |ψ(t)|√
n

n
∑

i=1

|xip| < T 2
np

√

ωnpp σ̂ψ zα. (4.36)
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This may happen if
∑n

i=1 |xip| is ‘too small’ in comparison with
∑n

i=1 x
2
ip, that is if the second

moment of the p-th column of the design matrix is ‘too large’. To prevent this possibility

at least partially, it is advisable to center the explanatory variables. If the linear model

includes an intercept, this transformation does not affect the estimate of the slope coefficients.

Moreover, as in practice we are usually interested mainly in the slope coefficients, this simple

transformation does not cause any interpretation problems as well.

The second simple idea is whether the scale transformation x′ip =
xip
K (i = 1, . . . , n) for

an appropriate K would help. The answer is negative as we can easily see that (T ′
np)

2 =
T 2
np

K2

and (ωnpp)
′ = Kωnpp. That is why both sides of (4.36) for transformed variables are multiplied

by the same factor 1
K and the problem is left unchanged.

Good news is that numerical experiments show that unless the behaviour of the p-th

explanatory variable is ‘very wild’ and the sample size is very small (n < 15), the problematic

situation (4.36) occurs very rarely. Nevertheless, we strongly recommend to compute both

types of confidence intervals and compare the results. A huge difference is a good indication

to look at our data more carefully.

In the next, we will use the following simple estimator of σ2
ψ:

σ̂2
ψ =

1

n

n
∑

i=1

ψ2(ri). (4.37)

The next lemma justifies the usage of this estimator.

Lemma 4.5. Let the estimator β̂n be
√
n-root consistent, the function ψ of bounded variation,

and the condition X.2 satisfied. Then σ̂2
ψ = σ2

ψ + op(1), that is, the estimator σ̂2
ψ is weakly

consistent.

Proof. Let M be an arbitrarily large but fixed constant and denote

Sn(t) =
1

n

n
∑

i=1

ψ2
(

ei − tTxi√
n

)

, t ∈ T = {s ∈ Rp : |s|2 ≤M}.

In Lemma 5.6 we will prove that the quantity ‖Sn(t) − E ψ2(e1)‖T converges to zero almost

surely. Further, as the estimator β̂n is
√
n-root consistent, we can replace t with

√
n(β̂n−β)

and get the statement of the lemma.

Remark 15. Somebody may argue that some of the estimators

σ̃2
ψ =

1

n− p

n
∑

i=1

ψ2(ri), or σ̃2
ψ =

1

n− p

n
∑

i=1

[ψ(ri) − ψ̄]2,

where ψ̄ = 1
n

∑n
i=1 ψ(ri), would be more appropriate. But it is easy to see that all of these

estimators are asymptotically equivalent in the sense:
√
n(σ̂2

ψ − σ̃2
ψ) = op(1). To show this, it

suffices to verify that ψ̄ is ‘small enough.’ By the definition of the M -estimator ψ̄ = 0 if the
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linear model includes an intercept and the function ψ is continuous. If this is not the case, we

can use
√
n-consistency of β̂n, FOAL result 4.2 and the condition GenFx.1, which together

give us

Op(
1√
n
) =

1

n

n
∑

i=1

ψ(ei) =
1

n

n
∑

i=1

ψ(ri) + γ1
n

n
∑

i=1

xT

i (β̂n − β) + op(
1√
n
) = ψ̄ +Op(

1√
n
).

But this implies ψ̄ = Op(
1√
n
), which further yields

1

n− p

n
∑

i=1

[ψ(ri) − ψ̄]2 =
1

n− p

n
∑

i=1

ψ2(ri) −
n ψ̄ 2

n− p
=

1

n− p

n
∑

i=1

ψ2(ri) +Op(
1
n).

We see, that we have even proved
√
n(σ̂2

ψ − σ̃2
ψ) = Op(

1√
n
).

That is why the simplicity of notation is the main reason for working with the estima-

tor (4.37).

Before we state the theorem about basic asymptotic properties of the confidence interval

procedure, we need one more technical lemma for the case of a step function ψ.

Lemma 4.6. Let ψ be an increasing step function (4.13). Then there exists K < ∞ such

that almost surely it holds for all n ∈ N

|Mn(δ
−
n ) − T 2

np

√

ωnpp σ̂ψ zα| ≤
Kmax1≤i≤n |xip|√

n
(4.38)

as well as

|Mn(δ
+
n ) + T 2

np

√

ωnpp σ̂ψ zα| ≤
Kmax1≤i≤n |xip|√

n
. (4.39)

Proof. The proof is very similar to the considerations made in Section 4.1.2 to arrive at (4.16).

We will only prove the first part of the lemma for δ−n , because the proof for δ+n would be

completely analogous.

Let us denote c = T 2
np

√

ωnpp σ̂ψ zα and

Gn(t) = Mn(δ
−
n − t) − c = 1√

n

n
∑

i=1

xip ψ(ri − δ−n xip + t xip) − c.

By the definition of δ−n (4.34) and the monotonicity of the function ψ we see that for every ε >

0 it holds Gn(ε) ≥ 0 and Gn(−ε) ≤ 0. This gives us the inequality |Gn(0)| ≤ Gn(ε)−Gn(−ε).
Letting εց 0, we easily find K > 0 such that for every n ∈ N

|G+
n (0)| ≤ Kmax1≤i≤n |xip|√

n
a.s.,

which proves the lemma.
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Remark 16. If ψ is a step function, the monotonicity is an important technical assumption.

But as we have discussed in Remark 12, we believe that the difficulties for step functions are

only of technical character. Once there are solved, we justify the usage of type II confidence

intervals for these M -estimators as well. Some preliminary numerical experiments show that

the type II CI may be useful, for instance if we use the (skipped mean) ψ-function given by

ψ(x) =

{

x, |x| ≤ k

0, |x| > k.

As to construct type I confidence interval, we need to estimate the functional γ1, given by

γ1 = F (k)−F (−k)−k(f(k)+f(−k)). But this estimation may be rather difficult particularly

in not very large samples (< 100), when we do not have enough information to estimate the

density at the points k and −k.

The condition X’.2 implies that the quantities on the right-hand sides of (4.38) and (4.39)

in Lemma 4.6 are of order o(1) almost surely. This is sufficient for the first order results. For

the second order results we require the stronger condition XX’.1, which yields order o(n−1/4)

almost surely.

Suppose the condition XX.2 to hold and denote V−1 = [ωij ]
p
i,j=1. For the sake of sim-

plicity of notation put

anF =
σψ zα

√

ωnpp

γ1
, and aF = lim

n→∞
anF =

σψ zα
√
ωpp

γ1
. (4.40)

Theorem 4.7. Suppose that the FOAL of the M -process (4.2) as well as the condition X’.2

hold and β̂n admits FOAR (4.4), then

(i).

P (DII
n ∋ βp) −−−→

n→∞
1 − α

(ii). √
n(b̂+p − b̂−p ) = 2 anF + op(1)

Proof. Proof of (i)

Note that

P (DII
n 6∋ βp) = P (b̂−p > βp) + P (b̂+p < βp).

With the help of FOAL (4.2) and FOAR (4.4) we get

Mn(βp − β̂p) =
1√
n

n
∑

i=1

xip ψ(Yi − β̂
T

z zi − βp xip)

=
1√
n

n
∑

i=1

xip ψ(ei) − γ1

√
n(β̂z − βz)

Tdx z + op(1) (4.41)
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and

o(1) = Mn(0) =
1√
n

n
∑

i=1

xip ψ(ei)− γ1

√
n(b̂p − βp)T

2
np − γ1

√
n(β̂z −βz)

Tdx z + op(1). (4.42)

Comparing (4.41) and (4.42) yields

Mn(βp − β̂p) = γ1

√
n(β̂p − βp)T

2
np + op(1).

To finish the proof of (i), it suffices to realize that by Lemma 4.5 σ̂ψ → σψ in probability,

from which it follows

P (b̂−p > βp) = P (δ−n > βp − β̂p) = P
(

Mn(βp − β̂p) > T 2
np

√

ωnpp σ̂ψ zα

)

−−−→
n→∞

α
2 .

Analogously we can prove

P (b̂+p < βp) −−−→
n→∞

α
2 .

Proof of (ii)

First, we need to check that

√
n(b̂−p − βp) = Op(1) and

√
n(b̂+p − βp) = Op(1). (4.43)

Analogously to (4.41) we can calculate

P (
√
n(b̂−p − βp) > t) = P (b̂−p > βp + t√

n
) = P (δ−n > βp − β̂p + t√

n
)

= P
(

γ1T
2
np

√
n(βp − β̂p) < T 2

np

√

ωnpp σ̂ψ zα − t γ1 T
2
np + op(1)

)

.

As the random variable
√
n(b̂p−βp) is asymptotically normal, we can make the last probability

arbitrarily small for all sufficiently large n ∈ N by taking t large enough, which implies (4.43)

for b̂−p . Similarly we can prove (4.43) for b̂+p .

(4.43) enables us to insert b → √
n
(

(β̂z, b̂
+
p )T − β

)

as well as b → √
n
(

(β̂z, b̂
−
p )T − β

)

in the asymptotic linearity result (4.2) with xi = xip and get

Mn(b̂
+
p − β̂p) − 1√

n

∑n
i=1 xip ψ(ei) + γ1T

2
np

√
n(b̂+p − βp) + γ1

√
n(β̂z − βz)

Tdx z = op(1),

Mn(b̂
−
p − β̂p) − 1√

n

∑n
i=1 xip ψ(ei) + γ1T

2
np

√
n(b̂−p − βp) + γ1

√
n(β̂z − βz)

Tdx z = op(1).

Subtracting these two equations and Lemma 4.5 (and Lemma 4.6 in the case of a step-ψ)

yield

γ1T
2
np

√
n(b+p − b−p ) = Mn(b̂

−
p − β̂p) −Mn(b̂

+
p − β̂p) + o(1)

= Mn(δ
−
n ) −Mn(δ

+
n ) + o(1) = 2T 2

np

√

ωnpp σψ zα + op(1),

which yields the statement of the theorem.
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In the following, we will assume that the function ψ is absolutely continuous. The case

of a step function is treated separately in Section 4.2.4.

Before we proceed with a finer analysis of the length of the confidence interval, we need

to find the asymptotic distribution of the random variable
√
n(σ̂ψ−σψ). For this purpose, we

need to impose some further conditions on the function ψ and the distribution of the errors.

SmFx.4 There exists a δ > 0 such that sup|t|<δ E ψ4(e1 + t) <∞.

SmFx.5 The function λ(2)(t) = E ψ2(e1+t) is continuously differentiable in a neighbourhood

of the point zero.

As the function ψ is continuous, the condition SmFx.4 together with Lemma 7.17 imply

the continuity of the function ψ2(e1 + t) in the quadratic mean at the point zero, that is

lim
t→0

E
[

ψ2(e1 + t) − ψ2(e1)
]2

= 0. (4.44)

Let us denote γ01 = ∂
∂t

(

E ψ2(e1 + t)
)

t=0
. Usually we can interchange the derivative and

integral and get

γ01 = 2 E ψ(e1)ψ
′(e1).

Lemma 4.8. Suppose that the conditions XX.1-2, SmFx.1-5 (or Step.1-2), and GenFx.1

are satisfied. Then

√
n(σ̂ψ − σψ) =

1

2σψ
√
n

n
∑

i=1

[

(ψ2(ei) − σ2
ψ) − bi ψ(ei)

]

+ op(1), (4.45)

where bi =
γ01xT

i V
−1
n

γ1

∑n
j=1

xj
n .

Proof. Let us define the processes

Zn(t) = 1√
n

n
∑

i=1

[ψ2(ei − tTxi√
n

) − ψ2(ei)], Z̄n(t) = Zn(t) − E Zn(t),

where t ∈ T = {s ∈ Rp : |s|2 ≤M} and M is an arbitrarily large but fixed constant.

Then with the help of conditions XX.1-2 and SmFx.4 we can easily verify the assump-

tions of Corollary 7.13, which gives us sup|t|2≤M |Z̄n(t)| = op(1). Let us only note that (4.44)

would be utilized here.

As the next step we can use the assumption SmFx.5 to show that we can replace E Zn(t)

by − γ01t
T 1
n

∑n
i=1 xi. Combining this two results gives us

1√
n

n
∑

i=1

[ψ2(ei − tTxi√
n

) − ψ2(ei)] + γ01t
T

n
∑

i=1

xi
n = op(1).
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Because the estimate β̂n satisfies the first order representation (4.4), we can substitute√
n(β̂n − β) for t in the last equation and get

1√
n

n
∑

i=1

ψ2(ri) = 1√
n

n
∑

i=1

ψ2(ei) − γ01
γ1

√
n

n
∑

i=1

xT

i V
−1
n ψ(ei)

n
∑

j=1

xj
n + op(1),

which after some reorganization implies

√
n(σ̂2

ψ − σ2
ψ) =

1√
n

n
∑

i=1

[

(ψ2(ei) − σ2
ψ) − bi ψ(ei)

]

+ op(1).

The representation (4.45) now follows easily by a (Delta-)Theorem 7.3.

Fortunately, the awkward representation (4.45) simplifies considerable in two important

cased. First, if the linear model (1.1) includes an intercept, that is xi1 = 1 for i = 1, . . . , n,

then V−1
n

∑n
j=1

xj
n = u1, where u1 = (1, 0, . . . , 0)T ∈ Rp. This further implies

bi =
γ01xT

i V
−1
n

γ1

n
∑

j=1

xj
n = γ01

γ1
, i = 1, . . . , n.

Second, if the distribution of the errors satisfies the symmetry condition Sym, then γ01 = 0,

which implies bi = 0 for all i = 1, . . . , n.

Theorem 4.9. Suppose that the conditions XX.1-2, SmFx.1-5, and GenFx.1 are satisfied.

Put

LIIn =

√
n[
√
n(b̂+n − b̂−n ) − 2 anF ]

2 aF
. (4.46)

Then the random variable Ln is asymptotically normal with mean zero and the variance which

can be deduced from the following asymptotic representation

LIIn = − 1
γ1

√
n

n
∑

i=1

x2
ip

T 2
np

[ψ′(ei)− γ1]+

√
n(σ̂ψ − σψ)

σψ
+ γ2

γ1

√
n(β̂n−β)T

n
∑

i=1

x2
ip xi

nT 2
np

+ op(1). (4.47)

As we see from (4.47), the formula for the asymptotic variance of Ln (the standardized

length of CI) is rather complicated in general. But if the symmetry condition Sym is met,

then both of the functionals γ2 and γ01 are zero and using the representation (4.45) we get

LIIn = − 1

γ1
√
n

n
∑

i=1

x2
ip

T 2
np

[ψ′(ei) − γ1] +
1

2σ2
ψ

√
n

n
∑

i=1

[

ψ(ei)
2 − σ2

ψ

]

+ op(1).

Proof. Substitute
√
n(β̂

T

z − βT

z , b̂
+
p − βp) for tT in the second order asymptotic expansion of
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the M -process (2.8) (with ci = xip for i = 1, . . . , n) and get

−√
nT 2

np

√

ωnpp zα σ̂ψ + γ1 n(b̂+p − βp)T
2
np + γ1 n(β̂z − βz)

Tdx z

= −√
n(b̂+p − βp)

1√
n

n
∑

i=1

x2
ip [ψ′(ei) − γ1] −

√
n(β̂z − βz)

T 1√
n

n
∑

i=1

xip zi [ψ
′(ei) − γ1]

+
γ2

2

{

1

n

n
∑

i=1

x3
ip

[√
n(b̂+p − βp)

]2
+

2

n

n
∑

i=1

x2
ip z

T

i

√
n(β̂z − βz)

√
n(b̂+p − βp)

+
√
n(β̂z − βz)

T
1

n

n
∑

i=1

xip ziz
T

i

√
n(β̂z − βz)

}

+ op(1). (4.48)

Similarly substituting
√
n(β̂

T

z − βT

z , b̂
−
p − βp) for tT in (2.8) yields

√
nT 2

np

√

ωnpp zα σ̂ψ + γ1 n(b̂−p − βp)T
2
np + γ1 n(β̂z − βz)

Tdx z

= −√
n(b̂−p − βp)

1√
n

n
∑

i=1

x2
ip[ψ

′(ei) − γ1] −
√
n(β̂z − βz)

T 1√
n

n
∑

i=1

xip zi[ψ
′(ei) − γ1]

+
γ2

2

{

1

n

n
∑

i=1

x3
ip

[√
n(b̂−p − βp)

]2
+

2

n

n
∑

i=1

x2
ip z

T

i

√
n(β̂z − βz)

√
n(b̂−p − βp)

+
√
n(β̂z − βz)

T
1

n

n
∑

i=1

xip ziz
T

i

√
n(β̂z − βz)

}

+ op(1). (4.49)

Subtracting (4.48) from (4.49) gives us

γ1 n(b̂+p − b̂−p )T 2
np − 2T 2

np

√
n
√

ωnpp zα σ̂ψ = −√
n(b̂+p − b̂−p ) 1√

n

n
∑

i=1

x2
ip [ψ′(ei) − γ1]

+
γ2

2

{

1

n

n
∑

i=1

x3
ip

{

[√
n(b̂+p − βp)

]2
−
[√

n(b̂−p − βp)
]2
}

+
2

n

n
∑

i=1

x2
ip z

T

i

√
n(β̂z − βz)

√
n(b̂+p − b̂−p )

}

+ op(1), (4.50)

which further implies

LIIn = − 1
T 2
np

√
n

n
∑

i=1

x2
ip [ψ′(ei) − γ1] +

√
n(σ̂ψ − σψ)

2σψ

+
γ2

2T 2
np

{

1

n

n
∑

i=1

x3
ip

√
n(b̂+p + b̂−p − 2βp) +

2

n

n
∑

i=1

x2
ip z

T

i

√
n(β̂z − βz)

}

+ op(1). (4.51)

To prove the statement of the theorem, it only remains to show that the third term on the

right-hand side of (4.51) is asymptotically equivalent (up to a term of order op(1)) to the

third term in (4.47). But this is an immediate consequence of

√
n(b̂+p + b̂−p − 2βp) =

√
n(b̂+p + b̂−p − 2 β̂p) + 2

√
n(β̂p − βp) = op(1) + 2

√
n(β̂p − βp),
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where the last equality follows by
√
n(b̂+p + b̂−p − 2 β̂p) = op(1), whose proof is analogous to

the proof of the second part of Theorem 4.7.

Remark 17. As by the condition XX.2 aF = anF + o(1), we can replace the denominator of

LIIn in (4.47) by anF .

Comparison with the type I confidence interval

Recall that the confidence interval of type I for βp is

DI
n = [b̂′

−
p , b̂

′+

p ] =

[

β̂p − zα√
n

σ̂ψ
√
ωnpp

γ̂1
, β̂p + zα√

n

σ̂ψ
√
ωnpp

γ̂1

]

.

If the estimators γ̂1 and σ̂ψ are (weakly) consistent estimators of γ1 and σψ, it is pretty

straightforward to show that P (DI
n ∋ βp) → 1 − α and

√
n[ b̂′

+

p − b̂′
−
p ] = 2 aF + op(1).

Suppose that we use γ̂1 = 1
n

∑n
i=1 ψ

′(ri) as the estimator of the functional γ1. Then it is

not difficult to find the expansion for the standardized length of the confidence interval

LIn = − 1
γ1

√
n

n
∑

i=1

[ψ′(ei) − γ1] +

√
n(σ̂ψ − σψ)

σψ
+ γ2

γ1

√
n(β̂n − β)T

n
∑

i=1

xi
n + op(1). (4.52)

If we compare (4.52) with the expansion of LIIn (4.47) for type II confidence interval and realize

that (T 2
np)

2 ≤ 1
n

∑n
i=1 x

4
ip, we immediately see that the type I is more stable in the sense that

its standardized length has a smaller asymptotic variance. This is not so surprising if we

realize that the type II confidence interval ‘implicitly’ uses γ̂′1 = 1
nT 2

np

∑n
i=1 x

2
ip ψ

′(ri) as the

estimator of γ1 (this may be seen from the expansion of Mn(b̂
+
p − β̂p) or Mn(b̂

−
p − β̂p) around

the point zero derived in the proof Theorem 4.7). But this estimator is more variable then

the simple estimator γ̂1 = 1
n

∑n
i=1 ψ

′(ri). On the other hand the results presented in Omelka

(2006) indicate that the estimator γ̂′1 often prevents the worst in the case of heteroscedasticity.

Let us suppose for this moment that we use γ̂1 = 1
nT 2

np

∑n
i=1 x

2
ip ψ

′(ri) as the estimator

of γ1 in the type I confidence procedure. Then, after some algebra, we can find that the

standardized length of the confidence interval satisfies (4.47). This implies that the lengths

of the confidence intervals of type I and type II are asymptotically equivalent, that is

n (b̂
′+

p − b̂
′−
p ) = n(b̂+p − b̂−p ) + op(1).

But it is not generally true that n (b̂′
−
p − b̂−p ) = op(1) or n (b̂′

+

p − b̂+p ) = op(1). To see this,

consider the expansion of the function Mn(t) (defined in (4.33)) around the point 0 for t of
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order Op(
1√
n
)

Mn(t) = 1√
n

n
∑

i=1

xip ψ(ri − t xip)

= 1√
n

n
∑

i=1

xip ψ(ri) − t√
n

n
∑

i=1

x2
ipψ

′(ri) + γ2 t2√
n

n
∑

i=1

x3
ip + op(

1√
n
)

= −√
n t γ̂1T

2
np + γ2 t2√

n

n
∑

i=1

x3
ip + op(

1√
n
). (4.53)

As during the proof of Theorem 4.7 we have shown
√
n(b̂−p − βp) = Op(1), which further

implies (b̂−p − β̂p) = Op(
1√
n
), we can substitute δ−n = (b̂−p − β̂p) for t in the expansion (4.53)

and get

T 2
np

√

ωnpp σ̂ψ zα
(4.34)
= Mn(δ

−
n )

(4.53)
= −√

n (b̂−p − β̂p) γ̂
′
1T

2
np +Op(

1√
n
).

This further yields b̂−p = β̂p −
√
ωnpp σ̂ψ zα

γ̂′1
√
n

+ op(
1√
n
). Now we can insert b̂−p for t in the equa-

tion (4.53) once more and after some algebra get

b̂−p = β̂p −
√
ωnpp σ̂ψ zα

γ̂1
√
n

+
γ2 ωpp σ2

ψ z
2
α

γ3
1 T

2
np n

n
∑

i=1

x3
ip

n + op(
1
n). (4.54)

Comparing (4.54) with the lower bound of the type I confidence interval

b̂′
−
p = β̂p −

√
ωpp σ̂ψ zα
γ̂1

√
n

,

we see that n(b̂′
−
p − b̂−p ) = Op(1), but not n(b̂′

−
p − b̂−p ) = op(1) unless γ2 = 0 or

∑n
i=1

x3
ip

n = 0.

As an analogy of (4.54) holds for b̂+p as well, we conclude that the confidence interval DII
n

is asymptotically shifted ‘a little‘ to the right or left depending on the sign of the quan-

tity γ2
n

∑n
i=1 x

3
ip.

4.2.3 Studentized M-estimators

As in practice we usually do not know the scale, we prefer to use studentized M -estimators.

The difficulty with the inference for these estimators is that the asymptotic distribution of

the estimator of the location parameter depends on the asymptotic distribution of the scale

estimator (unless the underlying distribution is symmetric). That is why the confidence

interval constructed by Boos (1980) for the parameter of location [θ̂−n , θ̂
+
n ] given by

θ̂−n = sup

{

t : 1√
n

n
∑

i=1

ψ(Xi−tSn
) ≥ σ̂ψ zα

}

(4.55)

θ̂+
n = inf

{

t : 1√
n

n
∑

i=1

ψ(Xi−tSn
) ≤ −σ̂ψ zα

}

, (4.56)
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where σ̂2
ψ is an estimate of E ψ2(X1−θ

S ), is not generally asymptotically correct, that is

limn→∞ P (θ ∈ [θ̂−n , θ̂
+
n ]) 6= 1 − α. Let us note that the type I confidence interval is facing the

same problem.

Fortunately, if an intercept is included in the linear regression model (1.1), it turns out

that the asymptotic distribution of the slope parameters does not depend on the asymptotic

distribution of the scale estimate (see the FOAR of β̂n in (4.7)). This enables us to construct

an asymptotically correct confidence interval for a single component of the ‘slope’ part of the

vector parameter β.

In this section we will suppose the linear model model (1.1) includes an intercept, that is

xi1 = 1, for i = 1, . . . , n. Further, let Sn be an estimator of scale.

Put

Mn(t) = 1√
n

n
∑

i=1

xip ψ(
ri−t xip
Sn

).

Then the (type II) confidence interval for the parameter βp is given by DII
n = [b̂−p , b̂

+
p ] =

[β̂p + δ−n , β̂p + δ+n ], where

δ−n = sup
{

t < 0 : Mn(t) ≥ T 2
np

√

ωnpp σ̂ψ zα
}

(4.57)

δ+n = inf
{

t > 0 : Mn(t) ≤ −T 2
np

√

ωnpp σ̂ψ zα
}

(4.58)

with σ̂2
ψ = 1

n

∑n
i=1 ψ

2( riSn ).

The following theorem only restates the results of Theorem 4.7 and Theorem 4.9. We

note that we will use the symbols γ1 and γ2e in a way defined in (2.10) (Section 2.1.3) and

the quantity aF is defined by (4.40).

Theorem 4.10. If the conditions XX.1-2, SmSt.1-3, GenSt.1, and
√
n(SnS − 1) = Op(1)

hold, then the confidence interval DII
n defined by (4.57) and (4.58) satisfies:

(i).

P (DII
n ∋ βp) −−−→

n→∞
1 − α.

(ii). √
n(b̂+p − b̂−p ) = 2 aF + op(1).

(iii). Further suppose that
√
n(σ̂ψ − σψ) = Op(1) and put

LIIn =

√
n
[√

n(b̂+p − b̂−p ) − 2 anF

]

2 aF
.

Then the random variable Ln admits the first order asymptotic representation

LIIn = − 1
γ1

√
n

n
∑

i=1

x2
ip

T 2
np

[ψ′(ei/S) − γ1] +
γ1+γ2e
γ1

√
n
(

Sn
S − 1

)

+

√
n(σ̂ψ − σψ)

σψ
+ γ2

γ1

√
n(β̂n − β)T

n
∑

i=1

x2
ip xi

nT 2
np

+ op(1). (4.59)
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For this moment we postpone the discussion of the assumption
√
n(σ̂ψ − σψ) = Op(1) to

Section 5.2.2 of the next chapter. In that section we derive that the first order representation

of the quantity
√
n(σ̂ψ − σψ) is given by (5.24). To prove that expansion, we will need

conditions SmSt.4-5, which are analogous to the conditions SmFix.4-5.

Proof. The proof of the theorem is completely analogous (only a little more complicated) to

the proofs of Theorem 4.7 and Theorem 4.9. The only difference is that instead of FOAL of

M -process with fixed scale, we use FOAL of studentized M -process to prove statements (i)

and (ii). To prove the last statement we use Corollary 2.6 instead of Corollary 2.3.

Remark 18. As the statements (i) and (ii) of Theorem 4.10 are ‘only’ first order results, they

could be proved under weaker assumptions.

Numerical evidence

Some partial comparison of the finite sample performance of the confidence intervals of type I

and type II are to be found in Omelka (2006). We can summarize the results as follows.

Confidence intervals (CI’s) of type II are generally larger and more variable than the

type I CI’s. Moreover, in comparison with CI of type I, CI’s of type II are conservative, that

is their coverage is usually larger than the nominal value. On the other hand this higher

coverage property is worth considering in models in which errors or explanatory variables

are asymmetric. In such models the two-sided CI’s of type I often have a slightly lower

coverage than theirs nominal values and the one-sided CI’s may be completely misleading.

Moreover, the type II confidence intervals does not usually fail completely in the case of

heteroscedasticity.

4.2.4 M-estimators based on discontinuous ψ function

Suppose that the function ψ is a step function given by (2.14) or equivalently by (2.15). A

type II confidence intervals is an interesting alternative because a construction of a type I

confidence interval usually requires density estimation.

Theorem 4.7 (or the first two statements of Theorem 4.10 for the studentized case) covers

the first order results about asymptotic coverage and asymptotic length of the confidence

interval.

But it is a more delicate task to find the limiting distribution of the properly standardized

length of the confidence interval DII
n .

For every b ∈ B = {s : |s|2 ≤M, s ∈ Rp} we define the processes

Mb
n (t) =

1

n1/4

n
∑

i=1

xip

[

ψ(ei − bTxi√
n

− t xip√
n

) − ψ(ei − bTxi√
n

)
]

,

M̄b
n (t) = Mb

n (t) − E Mb
n (t),
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indexed by the set T = {t, |t| ≤M}.
It is a rather standard use of Theorem 7.12 to show that for every fixed b ∈ B the

process M̄b
n (t) converges weakly to a centered gaussian process {W (t), |t| ≤ M} with a

covariance function

cov(W (s),W (t))

{

T 3
p γ01 |s| ∧ |t|, t s > 0

0, t s ≤ 0,
(4.60)

where T 3
p = limn→∞

1
n

∑n
i=1 |xip|3 and γ01 = ∂

∂t(E ψ2(e1 + t))t=0 =
∑m

j=1 α
2
j [f(qj)− f(qj−1)].

In the following, we would like to show that this convergence is uniform in b ∈ B.

By a partition of T we will mean a decomposition of T into finitely many disjoint subsets

T1, . . . , TN such that T =
⋃N
j=1 Tj . Choose from each partitioning set Tj a fixed element and

denote it by tj. Finally, define the map π : T → {t1, . . . , tN} as π(t) = tj if t ∈ Tj .

Lemma 4.11. Let the conditions X’.1-3 and Step.1-2 be satisfied. Then for every ε > 0

there exists a finite partition T =
⋃N
j=1 Tj and a map π : T → {t1, . . . , tN} such that for all

sufficiently large n ∈ N

sup
|b|2≤M

E
∗ ‖M̄b

n (t) − M̄b
n (π(t))‖T < ε. (4.61)

Proof. Similarly to the proof of Theorem 2.7 let us define the metric ρ on T as ρ(t, s) =

C
√

|t− s|2, where C is a (large) constant. Notice that for this metric

N(ε, T, ρ) ≤
(

2M C2

ε2

)

∧ 1,

which implies condition (7.4). The other obvious but important fact is that the metric ρ does

not depend on b. Denote B(ε) (⊂ T ) a ρ-ball of radius ε. Then it is easy to show that by

taking C large enough for all sufficiently large n ∈ N it holds

sup
|b|2≤M

n
∑

i=1

E
∗ sup
t,s∈B(ε)

[

Mb
ni(t) −Mb

ni(s)
]2

≤ ε2, (4.62)

where Mb
ni(t) =

xip
n1/4

[

ψ(ei − bTxi√
n

− t xip√
n

) − ψ(ei − bTxi√
n

)
]

.

By the assumptions of the lemma and by the previous inequality (4.62) we can for every

q ∈ N construct a partition T =
⋃Nq
j=1 T

q
j such that

∞
∑

q=1

2−q
√

logNq <∞

and

sup
|b|2≤M

n
∑

i=1

E
∗ sup
t,s∈T qj

[

Mb
ni(t) −Mb

ni(s)
]2
<

1

2q
, for j = 1, . . . ,Nq.

We can argue similarly to the proof of Theorem 2.5.6 of van der Vaart and Wellner (1996) to

show that without loss of generality we can choose the sequence of partitions (for q = 1, 2, . . .)

as successive refinements.
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Now we can follow step by step the proof of Theorem 7.12 (2.11.11 Theorem of van der

Vaart and Wellner (1996)) and show that there exists a sufficiently large q◦ such that for all

q ≥ q◦ and for all n large enough

E
∗ ‖M̄b

n (t) − M̄b
n (Πq(t))‖T < ε.

As the construction of the partitions does not depend on b, we can take q0 sufficiently large

so that the last inequality holds uniformly in b (|b|2 ≤ M), which proves the statement of

the lemma.

In the following, we will make use of the bounded Lipschitz metric (see e.g. van der Vaart

and Wellner (1996)). This metric is an important tool as it metrizes the weak convergence to

a separable Borel limit.

Definition 4.12. Let Q1, Q2 be two probability measures on ℓ∞(T ) and BL1 be the set of

all real functions f on T with ‖f‖∞ ≤ 1 and |f(x)− f(y)| ≤ d(x, y), for every x, y ∈ T . Then

the bounded Lipschitz metric of the measures Q1 and Q2 is defined as

dBL(Q1, Q2) = sup
f∈BL1

∣

∣

∣

∣

∫

f dQ1 −
∫

f dQ2

∣

∣

∣

∣

.

Lemma 4.13. The process {Mb
n (t), t ∈ T} converges weakly to a gaussian process {W (t), t ∈

T} (with the covariance function specified in (4.60)) uniformly in b ∈ B, that is

sup
|b|2≤M

dBL(Mb
n (·),W (·)) → 0, as n→ ∞.

Proof. We will very closely follow the second part of the proof of Theorem 2.8.2 of van der

Vaart and Wellner (1996).

Fix ε > 0. With the help of Lemma 4.11 and by the fact that the limiting process W (·) is

gaussian, we can find a finite set T0 = {t1, . . . , tN} (T0 ⊂ T ) and a mapping π : T → T0 such

that for all sufficiently large n

sup
|b|2≤M

E
∗ ‖M̄b

n (t) − M̄b
n (π(t))‖T < ε2 (4.63)

as well as

E ‖W (t) −W (π(t))‖T < ε2. (4.64)

Now we claim that

Zb
n =

(

M̄b
n (t1), . . . , M̄

b
n (tN )

)

T w−−−→
n→∞

(W (t1), . . . ,W (tN ))T uniformly in b ∈ B. (4.65)

This may be justified as follows. Denote by µn the distribution of the random vector Zb
n and

put

Xi = (X1, . . . ,XN )T = n1/4
(

M̄b
ni(t1), . . . , M̄

b
ni(tN )

)

T

,
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where

Mb
ni(t) = xip

[

ψ(ei − bTxi√
n

− tT

1xi√
n

) − ψ(ei − bTxi√
n

)
]

and M̄b
ni(t) = Mb

ni(t) − E Mb
ni(t).

Then µn coincides with the distribution of the vector 1√
n

∑n
i=1 Xi. We immediately see

that E |Xi|32 < ∞ and ρ3 = 1
n

∑n
i=1 E |Xi|32 = O(n1/4) uniformly in B. By Theorem 7.19

the Prohorov distance between measure µn and the Gaussian measure νn with mean zero

and with the same covariance matrix as µn is of order smaller then o(n−1/32) uniformly in B.

Finally, as the covariance matrix of νn converges to the covariance matrix of the random vector

{W (t), t ∈ T0} uniformly in B, we can use Theorem 7.20 (with the subsequent discussion) to

conclude the proof of (4.65).

The uniform convergence in (4.65) further implies that

sup
b∈B

sup
h∈BL1

∣

∣

∣
E

∗ h(M̄b
n (π(·))) − E h(W (π(·)))

∣

∣

∣
→ 0. (4.66)

Next, since every h ∈ BL1 satisfies the inequality |h(x) − h(y)| ≤ 2 ∧ |x − y|, we get that

uniformly in B for every ε > 0

sup
h∈BL1

∣

∣

∣E
∗ h(M̄b

n (·)) − E h(M̄b
n (π(·)))

∣

∣

∣ ≤ 2 ∧ E
∗
∥

∥

∥M̄b
n (·)) − M̄b

n (π(·))
∥

∥

∥

T

≤ ε+ 2 P ∗
{

‖M̄b
n (t) − M̄b

n (π(t))‖T > ε
}

≤ ε+
2 E

∗ ‖M̄b
n (t) − M̄b

n (π(t))‖T
ε

(4.63)

≤ 3 ε. (4.67)

As the limit process W is gaussian, we can obtain an analogous result for the process W .

Combining the previous results (4.64), (4.66) and (4.67) we get that for sufficiently large n

uniformly in B

sup
h∈BL1

∣

∣

∣E
∗ h(M̄b

n (·)) − E h(W (·))
∣

∣

∣

≤ sup
h∈BL1

∣

∣

∣E
∗ h(M̄b

n (·)) − E h(M̄b
n (π(·)))

∣

∣

∣ + sup
h∈BL1

∣

∣

∣E h(M̄b
n (π(·))) − E h(W (π(·)))

∣

∣

∣

+ sup
h∈BL1

|E h(W (π(·))) − E h(W (·))|

≤ sup
h∈BL1

∣

∣

∣
E h(M̄b

n (π(·))) − E h(W (π(·)))
∣

∣

∣
+ 3 ε+ 3 ε −−−→

n→∞
6 ε,

which concludes the proof of the lemma.

Before we find the asymptotic distribution of the length of the confidence interval, notice

that uniformly in t ∈ T and b ∈ B

E Mb
n (t) + t γ1 n

1/4 T 2
np = o(1). (4.68)
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Theorem 4.14. Put

Ln =
n1/4[

√
n(b̂+n − b̂−n ) − 2 anF ]

2 aF
, (4.69)

then the random variable Ln is asymptotically normally distributed with mean zero and the

variance

σ2
n =

γ01 T
3
np

2 γ2
1 (T 2

np)
2 aF

, where T 3
np =

1

n

n
∑

i=1

|xip|3. (4.70)

Proof. First, notice that Lemma 4.8 implies σ̂ψ − σψ = op(
1

n1/4 ). That is why, we can replace

the estimate σ̂ψ in the definition of the confidence interval with the true value σψ.

Further, with the help of Lemma 4.13, equation (4.68), and the
√
n-consistency of β̂n we

get that the process

Wn(t) =
1

n1/4

n
∑

i=1

xip ψ(ei − β̂
T

nxi√
n

− t xip√
n

) − 1

n1/4

n
∑

i=1

xip ψ(ei − β̂
T

nxi√
n

) + γ1 T
2
np n

1/4 t, t ∈ T,

weakly converges to the process W (t). As the random variables
√
n(b̂+p − β̂p) and

√
n(b̂−p − β̂p)

are in probability equivalent to anF and −anF respectively, we can substitute them for t in the

process Wn. This substitution and subtraction of the two resulting equations yield

n1/4γ1T
2
np

[√
n(b̂+p − b̂−p ) − 2 anF

]

∼ AN(0, 2 γ01 T
3
np a

n
F ).

But as the random variable Ln equals the quantity on the left-hand side divided by 2γ1T
2
npa

n
F ,

the theorem is proved.

The situation is very similar for the studentized estimators. In this case we need to

study the process

{Mb,u
n (t) =

1

n1/4

n
∑

i=1

xip

[

ψ
(

e−u/
√
n(ei − bTxi√

n
− t xip√

n
)/S
)

− ψ
(

e−u/
√
n(ei − bTxi√

n
)/S
)]

,

|t| ≤M},

where |b|2 ≤M and |u| ≤M .

We can proceed along the lines of Lemma 4.11 and Lemma 4.13 and show that the pro-

cess {Mb,u
n (t), |t| ≤ M} converges uniformly in b ∈ B and u (|u| ≤ M) to the gaussian

process {W ( tS ), |t| ≤ M}. Thus if
√
n(SnS − 1) = Op(1) and the model (1.1) includes an

intercept, no new complications arise. We have to only incorporate the scale functional S

into our formulae.

Numerical illustration

Just to get an idea, how does the confidence interval of type II work in practice, we performed

a small Monte-Carlo experiment. We considered a simple linear model with one explanatory
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n = 20 n = 50 n = 100 n = 200

I II I II I II I II

Coverage 0.989 0.955 0.982 0.946 0.974 0.944 0.968 0.947√
n mean(length) 8.413 6.900 6.933 5.663 6.314 5.413 5.950 5.318√
n median(length) 8.122 6.583 6.859 5.530 6.281 5.325 5.935 5.254

n3/4 sd(length) 4.913 5.418 3.129 4.260 2.503 4.110 2.105 4.084

n3/4 IQR(length) 4.612 5.124 3.071 4.197 2.500 4.082 2.101 4.070

Table 3: Comparison of type I and type II CI; the nominal coverage is 0.95.

variable (plus intercept) Yi = β0 + β1 xi + ei and the median regression estimator with the

ψ function given by ψ(x) = I{x > 0}− 1
2 . To construct the type I confidence interval, we need

to estimate the functional γ1 = f(F−1(0)) (density of the errors evaluated at the median of

the distribution). In our study we used the estimate originally suggested by Siddiqui (1960)

(see p. 139 of Koenker (2005)).

We generated the errors from t-distribution with 3 degrees of freedom and the design

points from the uniform distribution on the interval (−1, 1). We set the nominal coverage

to 0.95. We took the sample sizes 20, 50, 100, and 200 respectively. The number of random

samples was 100 000.

Table 3 shows some of the results, which seem to be typical. We see that while the type I

confidence interval is rather conservative, the actual coverage of the type II confidence interval

is slightly less then the prescribed value. The fact that speaks for the type II CI is its average

shorter length. On the other hand we may be rather nervous that the length of the CI of

type II is much more variable than the length of the CI of type I.

We can also compare the quantities
√
nmean(length) and n3/4 sd(length) from the Table 3

with its asymptotic counterparts 2aF = 5.33 and σ′n = σn aF = 4.33, where the quantities aF

and σn are given by the equations (4.40) and (4.70). We see that for n ≥ 100 the approxima-

tion of the mean length CI (multiplied by
√
n) of the confidence interval by 2aF works very

satisfactorily. On the other hand the asymptotic variance of the length of CI overestimates

the true variance and it gives only a rough idea unless the sample size is very large. Some

further simulations show that the approximation of variance needs the sample size to be in

thousands to be trustworthy. Finally, we should note that the comparisons made in this para-

graph are only exploratory and not mathematically correct. The problem is that Theorem 4.7

and Theorem 4.14 only speak about the convergence in probability and distribution, none of

which implies the convergence of moments. The justification of comparisons of finite sample

mean (or variance) with the mean (or variance) of the asymptotic distribution would require

to show the uniform integrability of the sequence in question. But this is beyond the scope

of this thesis.

Some further numerical experiments show that a type II CI is not very convenient for

more than one explanatory variables, as its actual coverage is considerably smaller than
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the prescribed value unless the sample size is very large. Moreover, even if there is only

one explanatory variable the undercoverage of the type II CI is considerable higher if the

prescribed nominal value is less than 0.95.

We conclude that a type II CI is a good alternative to a type I CI for the models with

one explanatory variable (and an intercept) in particular for small and moderate sample

sizes. Finally, unless the sample size is extremely large, type II CI’s usually work better for

asymmetric errors too.

4.2.5 R-estimators based on Wilcoxon scores

The situation is analogous to the case of an absolutely continuous ψ. For the simplicity of

notation, we will construct the confidence interval for the last coordinate of the vector β. Let

β̂n be the R-estimator and r1, . . . , rn the residuals, that is ri = Yi− β̂
T

n xi for i = 1, . . . , n. We

define Snp(t) = 1
n3/2

∑n
i=1 xipRi(t), where Ri(t) is the rank of the random variable ri − t xip

among r1 − t x1p, . . . , rn − t xnp.

Then the (type II) confidence interval for the parameter βp can be constructed as DII
n =

[b̂−p , b̂
+
p ] = [β̂p + δ−n , β̂p + δ+n ], where

δ−n = sup

{

t < 0 : Snp(t) ≥
T 2
np zα

√
ωnpp√

12

}

, δ+n = inf

{

t > 0 : Snp(t) ≤
−T 2

np zα
√
ωnpp√

12

}

,

(4.71)

and zα = Φ−1(1 − α
2 ), with Φ−1 being the inverse cdf of the standard normal distribution.

Notice that we do not need to estimate any unknown parameters.

The following theorem is an analogy to Theorems 4.7 and 4.9. In fact, it only restates the

results of Section 5 of Jurečková (1973).

For the simplicity of notations we put

anF =
zα
√

ωnpp

γ
√

12
and aF = lim

n→∞
anF

XX.2
=

zα
√
ωpp

γ
√

12
,

where γ = E f(e1) =
∫

f2(x)dx.

Theorem 4.15. If the conditions XX.1-2, X.5, W.1-3, and the representation (4.22) hold,

then the confidence interval DII
n defined by (4.71) satisfies:

(i).

P (DII
n ∋ βp) −−−→

n→∞
1 − α.

(ii). √
n(b̂+p − b̂−p ) = aF + op(1).

(iii). Put

Ln =

√
n[
√
n(b̂+p − b̂−p ) − 2 anF ]

2 aF
, (4.72)
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then the random variable Ln is asymptotically normal and admits the first order asymp-

totic representation

Ln = − 1

γ
√
nT 2

np

n
∑

i=1



x2
ip +

n
∑

j=1

x2
jp

n



 [f(ei) − γ] + op(1). (4.73)

Proof. Completely analogous to the proof of Theorem 4.7 and Theorem 4.9. The first two

statements are ‘first’ order results, which can be deduced from (4.22). In the proof of the last

statement we utilize the asymptotic expansion derived in Corollary 3.3.

Remark 19. The confidence interval of type I for the parameter βp would be

DI
n = [b̂′

−
p , b̂

′+

p ] =
[

β̂p − zα√
n

√
ωpp

γ̂
√

12
, β̂p + zα√

n

√
ωpp

γ̂
√

12

]

, (4.74)

where γ̂ is an estimate of γ = E f(e1), with f being the density of the distribution of errors.

As the density f is unknown, it is not so straightforward to estimate the functional γ. Some

estimators of γ can be found in Hettmansperger (1984).

Numerical illustration

We performed some simulations to illustrate the results of Theorem 4.15. We considered a

linear model Yi = β0 + β1xi1 + β2xi2 + ei. We used the Meyer matrix of order 27 × 2 (see

Stigler (1986), pp. 16–25) as the design matrix. Further, we normalized this matrix such that
∑n

i=1 xij = 0 and 1
n

∑n
i=1 x

2
ij = 1 for j = 1, 2. We were interested in type I (R I) and type II

(R II) 95% confidence intervals for the parameter β2.

The type I CI requires the estimation of the functional γ. In our simulation we used the

estimate constructed as follows.

1. Denote

Hn(t) =
1
(n
2

)

∑

i<j

I{|ri − rj | ≤ t}

the distribution function of the pairwise differences of the residuals ri = Yi − β̂
T

n xi.

2. Put τn = H−1
n (0.8)√

n

3. Finally estimate γ by

γ̂ =

√
3H(τn)

τn

√

n− p− 1

n
.

Once we have estimated γ, we can define the type I CI by (4.74).

First, we were interested in small sample coverages and mean lengths of the type I and

type II CI’s. Some of the results, for the errors generated from standard normal distribu-

tion (N(0, 1)), logistic distribution with the density f(x) = ex

(1+ex)2
(logistic), and exponential

distribution with f(x) = e−xI{x > 0} (exp) are to be found in Table 4. The number of

random samples was 100 000. The first row of this table gives us the estimated two-sided

coverage probability, the second (the third) row estimates the one-sided coverage probability
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n = 27 N(0, 1) logistic exp

R I R II R I R II R I R II

Coverage 0.955 0.961 0.956 0.961 0.954 0.958

Coverage L 0.977 0.980 0.978 0.981 0.968 0.977

Coverage U 0.978 0.981 0.977 0.980 0.986 0.981

mean(length) 0.870 0.866 1.487 1.496 0.604 0.661√
n mean(length) 4.520 4.498 7.725 7.776 3.136 3.436√
n median(length) 4.481 4.466 7.625 7.675 3.071 3.348

n sd(length) 4.463 4.057 8.256 7.836 3.884 4.527

n IQR(length) 4.441 4.041 8.145 7.711 3.791 4.374

Table 4: Actual coverage probabilities of the true value of the parameter β2 for the sample

size n = 27.

n = 27 n = 54 n = 108 n = 216

R I R II R I R II R I R II R I R II

Coverage 0.959 0.958 0.956 0.953 0.952 0.957 0.947 0.951

Coverage L 0.970 0.976 0.971 0.974 0.970 0.976 0.969 0.976

Coverage U 0.989 0.983 0.986 0.979 0.983 0.981 0.978 .976

mean(length) 0.832 0.932 0.508 0.541 0.317 0.344 0.218 0.230√
n mean(length) 4.323 4.840 3.737 3.973 3.297 3.572 3.204 3.382√
n median(length) 4.174 4.601 3.677 3.877 3.272 3.534 3.190 3.361

2 aF 3.297 3.297 3.217 3.217 3.180 3.180 3.162 3.162

n sd(length) 6.209 8.088 5.060 6.242 4.755 5.324 4.628 4.994

n IQR(length) 5.896 7.340 4.956 5.910 4.690 5.221 4.528 4.843

n asd(length) * 4.298 * 4.194 * 4.145 * 4.121

Table 5: Results on confidence intervals for β2 for lognormal errors and different sample sizes.

P (b̂−p < β2) (P (b̂+p > β2)). The next two rows measures the mean and median length of

the confidence intervals and the final two rows the variability of the length of the confidence

intervals. By sd we mean standard deviation and by IQR interquantile range divided by

2Φ−1(3
4) (so that IQR is consistent to σ if the underlying distribution is normal).

We see that for symmetric errors both methods are almost equivalent. We were surprised

that type II method seems to work better for normal errors. Some further experiments

show that the picture is usually following. The type II method is usually a little bit more

conservative in terms of coverage probability and resulting CI’s are on average larger and

more variable than the type I CI’s. Let us notice more thoroughly what happens if the errors

are asymmetric. The last two columns of Table 4 as well as Table 5 indicate that although the

two-sided type I CI’s keep the nominal value very closely, the one-sided confidence intervals

may be slightly misleading.

Second, we wanted to assess the statements (ii) and (iii) of Theorem 4.15. We chose the

sample sizes n = 27, 54, 108 and 216 (we used appropriate multiples of Meyer matrix) and
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estimated the mean length of CI’s (multiplied by
√
n) and standard deviation of this length

(multiplied by n). We compared these empirical results with their theoretical counterparts –

2 aF and asymptotical standard deviation of Ln (asd(Ln)) based on the asymptotic expansion

(4.73). The number of samples was in each case at least 10 000. Notice that we are able to

calculate asd(Ln) only for type II method. The calculation of this quantity for type I method

would require a detailed study of the estimate γ̂.

Table 5 contains the results for errors following lognormal distribution (with density given

by the formula f(x) = 1
x
√

2π
exp{− log2(x)

2 } I{x > 0}). Comparing the finite sample results

with their asymptotic values (the seventh and the last column of the table), we see that to

approximate the mean and in particular the variance of length of CI’s with their asymptotic

values is too optimistic, even in the situations with more than one hundred observations

and only two explanatory variables. But to be fair, we chose one of the worst cases – with

heavily asymmetric errors (lognormal). For symmetric (e.g. normal) errors, the asymptotic

approximations work for n > 100 satisfactory, provided that the distribution of the columns

of the explanatory variable is not heavily skewed.
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Chapter 5

A bounded length confidence

interval

In this chapter we explore some asymptotic properties of a bounded length confidence interval

for a single parameter, which is based on a (studentized) M -estimator or an R-estimator

generated with the Wilcoxon scores. The results for M -estimators generalize the work of

Jurečková and Sen (1981a) and Jurečková and Sen (1981b).

5.1 Preliminaries

It is natural that sometimes we would like to estimate the parameter of interest with a

prescribed precision. But as the sampling distribution of the estimate usually depends on

some unknown (nuisance) parameters, which we mostly do not know in practice, we need to

incorporate a sequential procedure.

One of such procedures is a bounded length confidence interval. We can generally describe

it as follows. Suppose we are estimating a scalar parameter θ and for every fixed sample size n

we are able to construct an asymptotically correct confidence interval Dn. Denote Ln the

length of this interval. Now we prescribe the quantity d (the ‘precision’ of interval) and we

sample unless the length of the interval is shorter than 2d. More precisely, we denote the

stopping variable

Nd = inf{n ≥ n0 : Ln ≤ 2d}, (5.1)

where n0 may be interpreted as an initial (or the smallest reasonable) sample size. For the

resulting confidence interval DNd holds LNd ≤ 2d.

This procedure gives rise to some natural questions.

(i). What is the actual coverage probability?

(ii). Can we describe or at least approximate the behaviour of the stopping variable Nd ?
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Concerning the first question, we would like to show that limd→0+ P (DNd ∋ θ) = 1−α, which

would justify our approach at least asymptotically. As some numerical experiments show that

actual coverage for a fixed length d may be substantially smaller than nominal coverage, some

authors propose to define the stopping variable as

Nd = inf{n ≥ n0 : Ln + rn ≤ 2d},

where rn is a penalty term (e.g. rn = 1
n). This penalty should prevent very early stopping,

which results in taking too few observations. For simplicity, we will not consider the penalty

in what follows. By the definition of the stopping variable Nd we will mean (5.1).

Let us turn to the question (ii). As we will see later, we are usually able to find a

nonrandom quantity nd (depending on d) such that Nd
nd

P−−−−→
d→0+

1. Sometimes we can even show

that the random variable Nd
nd

, properly standardized, is asymptotically normally distributed.

5.2 Definitions and Theorem

Suppose that the model (1.1) includes an intercept, that is xi1 = 1 for i = 1, . . . , n. For

simplicity of notation we will be interested in βp (the last component of a regression param-

eter β).

In the following, we would like to explore the asymptotic properties of a bounded length

confidence interval DII
Nd

, where DII
n is defined with the help of (4.57) and (4.58). The stopping

variable Nd is given by

Nd = inf{n ≥ n0 : b̂+p,n − b̂−p,n ≤ 2d}, (5.2)

where the symbol n in the subscript indicates the number of observations used to construct

the estimate. Provided condition XX.2 holds, put V−1
n = [ωnij]

p
i,j=1 and V−1 = [ωij]

p
i,j=1.

Define

nd =
z2
α σ

2
ψ ωpp

γ2
1 d

2
=
a2
F

d2
, where aF = lim

n→∞

zα σψ
√

ωnpp

γ1
. (5.3)

Now we are ready to formulate the basic properties of this sequential procedure.

Theorem 5.1. Under the assumptions XX.1-2, SmSt.1-3 (or Step.1-2), and GenSt.1 it

holds:

(i). Nd is nonincreasing in d (d > 0);

(ii). P (Nd <∞) = 1 for any d > 0;

(iii). limd→0+ Nd = ∞ a.s.;

(iv). Nd
nd

P−−−−→
d→0+

1.
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Proof. The proof of the statements is analogous to the proof of Theorem 3.1.1 of Jurečková

(1978). We show it only for the sake of completeness.

Proof of (i). The monotonicity of Nd follows directly from the definition of Nd.

Proof of (ii). For any fixed d > 0 we can write

P (Nd = ∞) = P

{ ∞
⋂

n=1

[Nd > n]

}

≤ lim
n→∞

P (Ln > 2d) = 0,

where the last equality holds in view of Theorem 4.10.

Proof of (iii). limd→0+ Nd = ∞ if and only if

P

{ ∞
⋃

K=1

⋂

d>0

⋃

d′<d

[Nd′ ≤ K]

}

= 0. (5.4)

Due to the monotonicity of Nd, the left-hand side of (5.4) equals to

P

{ ∞
⋃

K=1

∞
⋂

m=1

[N 1
m

≤ K]

}

= P

{ ∞
⋃

K=1

∞
⋂

m=1

K
⋃

n=1

[Ln ≤ 2
m ]

}

= P

{ ∞
⋃

K=1

K
⋃

n=1

[Ln = 0]

}

= 0

as P (Ln > 0) = 1 for any n ∈ N.

Proof of (iv). Fix ε > 0 and put ndε = ⌊nd(1 + ε)⌋. Then for sufficiently small d

P
{

Nd
nd

> 1 + ε
}

= P {Ln > 2d,∀n0 ≤ n ≤ nd,ε} ≤ P
{√

nd,ε Lnd,ε > d
√
nd,ε

}

(5.3)

≤ P

{

√
nd,ε Lnd,ε >

(1+
ε
2 )σψ zα

√
ωpp

γ1

}

−−−−→
d→0+

0,

where the convergence follows by the statement (ii) of Theorem 4.10.

Similarly we can show that P
{

Nd
nd

< 1 − ε
}

−−−−→
d→0+

0.

5.2.1 Asymptotic coverage of the sequential confidence interval

In this section we prove that the sequential confidence interval DII
Nd

has an asymptotically

correct coverage, that is

lim
d→0+

P (DII
Nd

∋ βp) = 1 − α. (5.5)

The idea behind the following steps is very simple. From the first statement of Theorem 4.10

we know that the confidence interval DII
n = [b̂−pn, b̂

+
pn] is asymptotically correct. Now we would

like to replace the index n with a random stopping variable Nd. As we know that Nd
nd

P−−−−→
d→0+

1,

then by the results of Anscombe (1952) all we need is to show that the sequences of random

variables
√
n(b̂−pn − βp) and

√
n(b̂+pn − βp) are both uniformly continuous in probability.

72



Definition 5.2. We say that a sequence of random variables {Zn} is uniformly continuous

in probability (ucp) if given any small positive ε and η, there exist n◦ ∈ N and δ such that

for any n > n◦

P {|Zn − Zm| < ε, ∀m ∈ N : |n−m| < δ n} > 1 − η.

In the following, the symbol oupc(1) will stand for a random variable Rn which is of

order op(1) and which is uniformly continuous in probability. Further in this chapter we will

use β̂n instead of β̂n (or β̂n) to emphasize that the estimator depends on the sample size.

As a first step, we would like to prove that the remainder term in FOAR of the random

variable
√
n(β̂n − β) (4.7) is not only op(1), but oupc(1). For this purpose, we need several

technical lemmas. Similarly to Section 2.1.3 put T = {(t, u) : |t|2 ≤M, |u| ≤M} (⊂ Rp+1).

Lemma 5.3. Let the assumptions X.1-2 and SmSt.1-3 (or Step.1-2) be satisfied and define

Mnk(t, u) =
1√
n

k
∑

i=1

ci

[

ψ
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ(ei/S)
]

, (t, u) ∈ T.

Then for every ε > 0 and η > 0 there exists n◦ such that for all n > n◦

P ∗
{

max
k=1,...,n

∥

∥

∥

∥

∥

Mnk(t, u) + γ1tT

S

k
∑

i=1

ci xi
n + γ1eu

S

k
∑

i=1

ci
n

∥

∥

∥

∥

∥

T

> ε

}

< η.

Proof. For the simplicity of notation put M̄nk = Mnk−E Mnk. From the proof of Theorem 2.1

(or Theorem 2.7 for the case of step ψ) we know that
∑n

i=1 E
∗ ‖Z̄ni‖2

T = o(1), where

Zni = ci

[

ψ
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ(ei/S)
]

.

Corollary 7.14 yields

P ∗
{

max
k=1,...,n

‖M̄nk‖T > ε

}

−−−→
n→∞

0. (5.6)

Next, we claim that

max
k=1,...,n

∥

∥

∥

∥

∥

E Mnk(t, u) − γ1tT

S

k
∑

i=1

ci xi
n + γ1eu

S

k
∑

i=1

ci
n

∥

∥

∥

∥

∥

T

= o(1), (5.7)

which follows easily by the continuity of the first derivatives of the function λ(s, v) = E ψ(e1−sSev )

(condition SmSt.3 or Step.2) and by the assumptions X.1-2.

The lemma follows from (5.6) and (5.7).

Remark 20. Lemma 5.3 implies

∥

∥

∥

∥

∥

1√
n

n
∑

i=1

ci

[

ψ
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ(ei/S)
]

+ γ1tT

S

n
∑

i=1

ci xi
n + γ1eu

S

n
∑

i=1

ci
n

∥

∥

∥

∥

∥

T

= oucp(1). (5.8)

73



Now we would like to substitute
√
n(β̂n−β) for t and

√
n(SnS − 1) for u in (5.8). To keep

the remaining term of order oucp(1), we need a stronger condition than the
√
n-consistency

of β̂n and Sn.

We will say that the sequence of random variables {Zn} satisfies the condition SUB

(‘sequential uniform boundedness’) if for every η > 0 there exist C (C < ∞), δ (δ > 0) and

n◦ ∈ N such that for all n > n◦

P

{

max
k=n−δ,...,nδ

|Zk| > C

}

< η, (5.9)

where n−δ = ⌊n(1 − δ)⌋ and nδ = ⌈n(1 + δ)⌉.

Lemma 5.4. Let the conditions SmSt.1-3 and XX.1-2 be satisfied. If the sequence
√
n(SnS −

1) meets the condition SUB, then there exists a sequence {β̂n} of the solutions of the system

of equations (4.1) such that the sequence
√
n(β̂n − β) satisfies the condition SUB.

Proof. Our proof will be only a slight adaptation of the proof of Theorem 5.5.1. of Jurečková

and Sen (1996). Let us denote Vk = 1
k

∑k
i=1 xix

T

i and v1(k) = 1
k

∑k
i=1 xi. As our model

includes intercept, the vector v1(k) is just the first column of the matrix Vk. Further put

Enk(t, Sn) = 1√
n

k
∑

i=1

xi ψ
(

(ei − tTxi√
n

)/Sn

)

.

Because the sequence
√
n(SnS − 1) meets the condition SUB, Lemma 5.3 implies that for an

arbitrarily large but fixed constant M in the definition of T

∥

∥En(t, Sn) − En(0, S) + γ1Vnt + γ1ev1(n)
√
n (SnS − 1)

∥

∥

T
= oucp(1). (5.10)

With the help of this equation we will show that for every η > 0 there exist δ > 0, C > 0 and

n◦ ∈ N such that for all n > n◦

P

{

max
k=n−δ,...,nδ

sup
‖t‖=C

tTEk(t, Sk) ≥ 0

}

< η. (5.11)

Provided (5.11) holds, we can use Theorem 6.3.4 of Ortega and Rheinboldt (1970) (see Theo-

rem 7.15) to conclude that for all k = n−δ, . . . , nδ with probability exceeding 1−η the system

of equations
k
∑

i=1

xi ψ
(

(ei − tTxi√
n

)/Sk

)

= 0

has a root Tk such that ‖Tk‖ ≤ C. Defining β̂k = β+ Tk√
k

gives us the sequence of the solutions

of the system of equations (4.1) with the desired property (SUB).
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Let us return to the proof of (5.11). With the help of (5.10) for every ε > 0 and η > 0

we can find n◦, δ′ > 0, and M ′ > 0 such that for all n > n◦, δ < δ′, and M > M ′

P

{

max
k=n−δ,...,nδ

sup
‖t‖=M

tTEk(t, Sk) ≥ 0

}

≤ P

{

max
k=n−δ,...,nδ

sup
‖t‖=M

[

tTEk(0, S) − γ1t
TVkt − γ1ev1(k)

√
k(SkS − 1)

]

≥ −ε
}

+ η
2

≤ P

{

max
k=n−δ,...,nδ

|M | |Ek(0, S)|2 + |γ1e| |v1(k)|2
∣

∣

∣

√
k (SkS − 1)

∣

∣

∣
≥ γ1M

2λ1(k) − ε

}

+ η
2 ,

(5.12)

where λ1(k) is the smallest eigenvalue of the matrix Vk. We see that we can make the last

probability in (5.12) arbitrarily small by taking δ sufficiently small and n◦ and M sufficiently

large. This completes the proof of the lemma.

As the proof of Lemma 5.4 rests on the continuity of the function ψ, it has to be modified

for a step function ψ.

Lemma 5.5. Suppose that the function ψ is monotone. Then the conclusion of Lemma 5.4

holds if we replace the conditions SmSt.1-3 and XX.1 by Step.1-2 and XX.1’ respectively.

Proof. As the proof is only a minor modification of the proof of Theorem 4.7.1 of Jurečková

and Sen (1996), we only indicate the main steps.

Similarly to the proof of Lemma 5.4 put

Enk(t, Sn) = 1√
n

k
∑

i=1

xi ψ
(

(ei − tTxi√
n

)/Sn

)

.

With the help of (4.16), it is sufficient to prove that given any ε > 0, there exist M > 0,

η > 0, δ > 0 and a positive integer n0 such that for all n > n0

P ∗
{

min
k=n−δ,...,nδ

inf
‖t‖≥M

‖Enk(t, Sn)‖ < η

}

< ε.

First, exploiting the uniform asymptotic linearity result (5.10), we can show analogously to

the proof of Lemma 5.4 that there exists M > 0, δ > 0, and η > 0 such that for all sufficiently

large n it holds

P ∗
{

min
k=n−δ,...,nδ

inf
‖t‖=M

‖Enk(t, Sk)‖ < η

}

≤ P ∗
{

max
k=n−δ,...,nδ

sup
‖t‖=M

[

tTEnk(t, Sk)
]

> −Mη

}

< ε. (5.13)
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Second, we utilize that the function

G(τ) =
1√
n

n
∑

i=1

sTxi ψ
(

(ei − τ sTxi√
n

)/Sn

)

is nonincreasing for τ ≥ 1. This further gives us

P ∗
{

min
k=n−δ,...,nδ

inf
‖t‖≥M

‖Enk(t, Sn)‖ < η

}

≤ P ∗
{

max
k=n−δ,...,nδ

sup
‖t‖≥M

[

M
‖t‖ tTEnk(t, Sk)

]

> −Mη

}

≤ P ∗
{

max
k=n−δ,...,nδ

sup
‖s‖=M

sup
τ≥1

[

sTEnk(τ s, Sk)
]

> −Mη

}

= P ∗
{

max
k=n−δ,...,nδ

sup
‖s‖=M

[

sTEnk(s, Sk)
]

> −Mη

}

.

But we can make the last probability arbitrarily small by the first part of the proof.

With the help of Lemma 5.4 (or Lemma 5.5) we are ready to substitute
√
n(β̂n − β) for

t into the equation (5.10) and get the following refinement of the FOAR (4.7):

√
n(β̂n − β) = V−1

n

γ1
√
n

n
∑

i=1

xi ψ
(

ei
S

)

− γ1e
γ1

√
n(SnS − 1)u1 + oucp(1). (5.14)

The representation (5.14) together with the conditions XX.1-2 immediately imply that for

l ≥ 2 the sequence
√
n(β̂ln − βl) is uniformly continuous in probability (ucp). Moreover, if

the sequence
√
n(SnS − 1) is ucp, then the sequence

√
n(β̂1n − β1) is ucp as well.

As the definition of the confidence interval (4.57) and (4.58) includes the estimate of σψ,

we need to show that σ̂ψ−σψ = oucp(1). In the following lemma we assume that the function

ψ2 is of bounded variation. From the simple inequality

|ψ2(x) − ψ2(y)| ≤ 2 sup
t

|ψ(t)| |ψ(x) − ψ(y)|

we immediately see, that if the function ψ is of bounded variation, then the function ψ2 is of

bounded variation as well. Notice that all the most famous ψ-functions given in Remark 2

are of bounded variation.

Lemma 5.6. Suppose that the function ψ is monotone or ψ2 is of bounded variation and the

condition XX.1 is met. Further let the function λ(2)(t, u) = E ψ2(e1−tS eu ) be continuous in a

neighbourhood of the point (0, 0) and denote

Mn(t, u) =
1

n

n
∑

i=1

ψ2
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

, (t, u) ∈ T.

Then ‖Mn(t, u) − E ψ2(e1/S)‖T a.s.−−−→
n→∞

0.
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In fact, Lemma 5.6 gives us more than we need. For our purposes it would suffice to show

that ‖Mn(t, u) − E ψ2(e1/S)‖T = oucp(1). This would follow trivially by a finer analysis of

the process Mn given in Lemma 5.10, but this lemma requires slightly stronger assumptions.

Proof. As ψ is monotone or ψ2 of bounded variation, we can write ψ2(x) = Φ1(x) + Φ2(x),

where Φ1(x) is nonincreasing and Φ2(x) is nondecreasing. Thus

Mn(t, u) =
1

n

n
∑

i=1

[

Φ1

(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− Φ1(ei/S)
]

+
1

n

n
∑

i=1

[

Φ2

(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− Φ2(ei/S)
]

Say
= M1

n(t, u) +M2
n(t, u).

It will suffice to deal only with the process M1
n because the proof for the process M2

n would

be completely analogous.

Let ε > 0 be given. By the assumptions of the lemma we can find δ > 0 such that

sup
max{|t|,|u|}≤δ

|E [Φ1 (eu(e1 − t)/S) − Φ(e1/S)] | < ε
2 . (5.15)

Let us bound

∥

∥M1
n(t, u) − E Φ1(e1/S)

∥

∥

T
≤
∥

∥

∥

∥

∥

1

n

n
∑

i=1

[

Φ1

(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− Φ1(ei/S)
]

∥

∥

∥

∥

∥

T

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[Φ1(ei/S) − E Φ1(e1/S)]

∣

∣

∣

∣

∣

Say
= An +Bn.

As the term Bn converges to zero almost surely by the strong law of large numbers, it suffices

to deal with An. As usual, denote εn = max1≤i≤n
M |xi|2√

n
and further put

φn(t, u) =
1

n

n
∑

i=1

Φ1

(

ei−t
S eu

)

and φ(t, u) = E Φ1

(

e1−t
S eu

)

.

Exploiting the monotonicity of the function Φ1 once more, we get that for all sufficiently

large n (such that εn < δ)

An ≤
∣

∣

∣φn(−εn,− M√
n
) − φn(0, 0)

∣

∣

∣ +
∣

∣

∣φn(εn,
M√
n
) − φn(0, 0)

∣

∣

∣

≤ |φn(−δ,−δ) − φn(0, 0)| + |φn(δ, δ) − φn(0, 0)|
≤ |φn(−δ,−δ) − φ(−δ,−δ)| + |φ(−δ,−δ) − φ(0, 0)| + |φn(δ, δ) − φ(δ, δ)|

+ |φ(δ, δ) − φ(0, 0)| + 2 |φn(0, 0) − φ(0, 0)| a.s.−−−→
n→∞

ε
2 + ε

2 = ε.

where the convergence of the first, the third and the fifth term follows by the strong law of

large numbers and the second and the fourth term are bounded by (5.15). Because we can

take ε arbitrary small, the proof is completed.
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As the almost sure convergence is a stronger condition than ucp, then with the help of

the just proved Lemma 5.6 and the fact that both sequences
√
n(β̂n − β) and

√
n(SnS − 1)

satisfy the SUB condition, we immediately get

σ̂2
ψ − σ2

ψ =
1

n

n
∑

i=1

ψ2(Yi−β̂
T

nxi
Sn

) − σ2
ψ = oucp(1), (5.16)

which further implies σ̂ψ − σψ = oucp(1).

Lemma 5.7. If the conditions of the previous lemmas are satisfied, then both sequences√
n(β̂−pn − βp) and

√
n(β̂+

pn − βp) satisfy the SUB condition.

Proof. First, we notice that with the help of (5.8) (with ci replaced by xip) we get that for

t = O( 1√
n
)

1√
n

n
∑

i=1

xip ψ(
ri−t xip
Sn

) = γ1T
2
np

√
n t+ oucp(1). (5.17)

With the help of this equation we can calculate

P

{

max
k=n−δ,...,nδ

√
k(b̂−pk − β̂pk) > C

}

= P

{

max
k=n−δ,...,nδ

δ−k > C√
k

}

= P

{

max
k=n−δ,...,nδ

1√
k

k
∑

i=1

xip ψ
(

ri−(C/
√
k)xip

Sk

)

> T 2
kp

√

ωpp(k) σ̂ψ(k) zα

}

≤ P

{

max
k=n−δ,...,nδ

−γ1C T
2
kp + oucp(1) > T 2

kp

√

ωpp(k) σ̂ψ(k) zα

}

,

which can be made arbitrarily small by taking C large enough. Thus, the random sequence√
n(b̂−pn − β̂pn) is SUB. By Lemma 5.4 (or Lemma 5.5) the sequence

√
n(β̂pn − βp) is SUB

as well. Now the simple equality

√
n(b̂−pn − βp) =

√
n(b̂−pn − β̂pk) +

√
n(β̂pn − βp)

yields that
√
n(β̂pn − βp) satisfies the SUB condition too.

Similarly we can show that the sequence
√
n(β̂+

pn − βp) satisfies SUB as well.

With the help of the just proved lemma we can justify the replacement of t in (5.17)

by b̂−pn, which, after a slight rearrangement, gives us

√
n(b̂−pn − βp) =

√
n(β̂pn − βp) − 1

γ1

√

ωnpp σ̂ψ zα + oucp(1)

=
√
n(β̂pn − βp) − 1

γ1

√
ωpp σψ zα + oucp(1), (5.18)

where the last equation follows by (5.16) and the conditions XX.2. Finally as the sequence√
n(β̂pn − βp) is ucp, we see from (5.18) that the sequence

√
n(b̂−pn − βp) is ucp as well.

Analogously we can prove that the sequence
√
n(b̂+pn − βp) is ucp.

Now we are ready to summarize the partial results of this section.
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Theorem 5.8. Let the conditions SmSt.1-3 and XX.1-2 (or Step.1-2, XX’.1, and XX.2)

be satisfied. Further suppose that the sequence
√
n(SnS − 1) is SUB. Then the sequential

confidence interval DII
Nd

has the asymptotic coverage 1 − α as d→ 0+, that is (5.5) holds.

5.2.2 Asymptotic distribution of the stopping variable Nd

Absolutely continuous ψ-function

For the simplicity of notation put ℓn = b̂+pn− b̂−pn. Notice that by (5.3)
√
nd = aF

d , which gives

us
aF
d

(

√

Nd
nd

− 1

)

=
√
nd

(

d
√
Nd
aF

− 1
)

. (5.19)

From the following inequalities

√
nd

(

ℓNd
√
Nd

2 aF
− 1

)

≤ √
nd

(

d
√
Nd

aF
− 1

)

≤ √
nd

(

ℓNd−1

√
Nd

2 aF
− 1

)

(5.20)

and by the previously proved fact that Nd
nd

P−−−−→
d→0+

1, we see that the problem of finding

asymptotic distribution of the random variable aF
d

(√

Nd
nd

− 1
)

is the same as the problem

of finding the asymptotic distribution of
√
Nd

(

ℓNd
√
Nd

2 aF
− 1
)

. But the last quantity can be

rewritten as

√

Nd

(
√
Nd ℓNd
2aF

− 1
)

=
√

Nd

√
Nd ℓNd−2a

Nd
F

2aF
+

√
Nd(a

Nd
F −aF )
aF

= LNd +
√
Nd(a

Nd
F −aF )
aF

. (5.21)

To take care about the second term in the last equation we will assume:

XX.3 There exists a ∆ ∈ R such that

∆ = lim
n→∞

√
n(
√

ωnpp −
√
ωpp).

Remark 21. Notice that the assumption XX.3 is tied down to the situation of a fixed design.

If we consider a correlation model with random covariates, this assumption is untenable. In

this case we would need to find the asymptotic distribution of
√
n(
√

ωnpp−
√
ωpp) and to show

that this sequence is ucp.

Let us turn our attention to LNd – the first term on the right-hand side of equation (5.21).

The asymptotic behaviour of the random variable Ln was studied in Subsection 4.2.3. Theo-

rem 4.10 states that Ln is asymptotically normal with zero mean and variance which follows

by the asymptotic expansion (4.59). Thus it only remains to show that the sequence Ln is

ucp. Using the above mentioned expansion (4.59), we immediately see that all we need is to

show that

(i). the term op(1) in (4.59) is ucp,
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(ii). the sequence
√
n(σ̂ψ − σψ) is ucp,

(iii). the sequence
√
n(SnS − 1) is ucp.

In the following, we will be dealing with the items (i) and (ii). The item (iii) depends heavily

on the choice of a scale estimator. The verification of this item for two simple scale estimators

can be found in Appendix.

The following lemma strengthen the results of Corollary 2.6. Recall that T = {(t, u), |t|2 ≤
M, |u| ≤M}.

Lemma 5.9. Let the assumptions of Corollary 2.6 be satisfied. Then the remainder term op(1)

in the expansion (2.13) is ucp.

Proof. First, let us define

Mnk(t, u) =
k
∑

i=1

ci

[

ψ
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ(ei/S)
]

− tT√
n

n
∑

i=1

ci xi
[

1
Sψ

′(ei/S) − γ1

]

− u√
n

n
∑

i=1

ci
[

ei
S ψ

′(ei/S) − γ1e

]

, (t, u) ∈ T.

As from the proof of Theorem 2.1 we know that E ‖Mn‖T = op(1), we can use Corollary 7.14

to show that for every ε > 0 and η > 0 there exists n◦ such that for all n > n◦

P

{

max
k=1,...,n

‖Mnk − E Mnk‖T > ε

}

< η.

Second, by virtue of Lemma 2.5 we get that uniformly in k = 1, . . . , n and (t, u) ∈ T

E Mnk(t, u) = −γ1 tT

√
n

k
∑

i=1

ci xi − γ1e u√
n

k
∑

i=1

ci

+ γ2
2 tTWkt + (γ2e+γ1)u tT

n

k
∑

i=1

ci xi +
(γ2ee+γ1e) u2

2n

k
∑

i=1

ci + o(1). (5.22)

Combining these facts yields the statement of the lemma.

To find the asymptotic distribution of the sequence
√
n(σ̂ψ−σψ), we need to impose some

further conditions on the function ψ and the distribution of the errors.

SmSt.4 There exists δ > 0 such that sup|t|<δ,|u|<δ E ψ4(e1+tSeu ) <∞.

SmSt.5 The function λ(2)(t, u) = E ψ2(e1+tSeu ) is continuously differentiable in a neighbour-

hood of the point (0, 0).
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As the function ψ is continuous, the condition SmSt.4 together with Lemma 7.17 imply the

continuity of the function λ(2)(t, u) = ψ2(e1+t
S ev ) in the quadratic mean at the point (0, 0), that

is

lim
(t,u)→(0,0)

E
[

ψ2(e1+t
S eu ) − ψ2(e1S )

]2
= 0. (5.23)

The condition SmSt.5 is certainly satisfied if the functions

e(t, u) = E ψ′(e1+tSeu )ψ(e1+t
Seu ),

f(t, u) = E e1 ψ
′(e1+tSeu )ψ(e1+t

Seu )

are bounded and continuous in a neighbourhood of the point (0, 0).

Remark 22. The conditions Step.1-2 trivially imply the conditions SmSt.4-5.

Lemma 5.10. Suppose that the conditions SmSt.4-5 and XX.1 are satisfied. Define

Mnk(t, u) =
1√
n

k
∑

i=1

[

ψ2
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ2(ei/S)
]

, M̄nk = Mnk − E Mnk.

Then maxk=1,...,n ‖M̄nk‖T = op(1).

Proof. The proof of this lemma is rather standard. For i = 1, . . . , n define the processes

Zni(t, u) = 1√
n

[

ψ2
(

e−n
−1/2u(ei − tTxi√

n
)/S
)

− ψ2(ei/S)
]

, (t, u) ∈ T.

Now we can proceed along the lines of the proof of Theorem 2.1 and show that this process

meets the conditions of Corollary 7.14 (the continuity in the quadratic mean (5.23) of the

function ψ2(e1+t
Seu ) is utilized here).

Remark 23. Provided the condition SmSt.4 is satisfied, it does not matter whether ψ is

continuous or not.

Let us denote

γ01 = λ
(2)
t (0, 0)

(

= 2
S E ψ

(

e1
S

)

ψ′ (e1
S

))

, γ01e = −λ(2)
u (0, 0)

(

= E
e1
S ψ

(

e1
S

)

ψ′ (e1
S

))

.

The assumption SmSt.5 implies that all these quantities are finite. If the condition Sym

holds, then γ01 = 0, but γ01e > 0.

With the help of the assumption SmSt.5 we can easily find out that uniformly in k =

1, . . . , n and uniformly in T

E Mnk(t, u) = −2γ01 tT

n

k
∑

i=1

xi − 2 γ01e u+ o(1).
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Combining the last equation with Lemma 5.10 and inserting
√
n(β̂n − β) for t and√

n log(SnS ) for u give us

√
n(σ̂2

ψ−σ2
ψ) = 1√

n

n
∑

i=1

[

ψ2(ei/S) − σ2
ψ

]

− 2γ01
√
n(β̂n−β)T

n

n
∑

i=1

xi−2 γ01e

√
n(SnS −1)+oucp(1)

= 1√
n

n
∑

i=1

[

ψ2(ei/S) − σ2
ψ

]

− 2γ01
γ1

√
n

n
∑

i=1

ψ(ei/S) − 2 γ01e

√
n(SnS − 1) + oucp(1). (5.24)

We have utilized that
∑n

i=1
xi
n is the first column of the matrix Vn and that

√
n(β̂n − β)

admits expansion (5.14).

The asymptotic representation of
√
n(σ̂ψ − σψ) now follows by the ‘delta-type’ approxi-

mation √
n(σ̂ψ − σψ) =

√
n

2σψ
(σ̂2
ψ − σ2

ψ) + oucp(1). (5.25)

Expansion (5.24) implies that the sequence
√
n(σ̂ψ − σψ) is ucp if the sequence

√
n(SnS − 1)

is ucp.

Theorem 5.11. Let the conditions SmSt.1-5 and XX.1-3 be satisfied. Further suppose

that the sequence
√
n(SnS − 1) is ucp. Then the stopping variable Nd admits the following

expansion as d→ 0+

aF
d

(

√

Nd
nd

− 1

)

= − 1
γ1

√
nd

nd
∑

i=1

x2
ip

T 2
ndp

[ψ′(ei/S) − γ1] + γ1+γ2e
γ1

√
nd

(

Snd
S − 1

)

+

√
nd(σ̂ψ − σψ)

σψ
+ γ2

γ1

√
nd (β̂nd − β)T

nd
∑

i=1

x2
ip xi

nd Tndp
+ ∆√

ωpp
+ op(1). (5.26)

Proof. The theorem follows by (4.59), (5.19), (5.22), (5.24), and (5.25).

Numerical illustration

To illustrate the theoretical results, we performed a small numerical experiment. We con-

sidered a simple linear model with one explanatory variable Yi = β0 + β1xi + ei. We took

the errors independent identically distributed following the contaminated normal distribution

given by the cdf F (x) = 0.9Φ(x) + 0.1Φ(x − 2), where Φ(x) is a cdf of a standard normal

random variable. We generated the explanatory variable as the random sample from the

uniform distribution on the interval (−1, 1).

We were interested in the behaviour of the bounded-width confidence interval for the slope

(parameter β1). We studied the actual coverage of the 95%-confidence intervals of type I and

type II for (the half-length of a CI) d decreasing from 0.6 to 0.3, which corresponds to the

increasing of the ’theoretical’ sample size nd from 43 to 173. The initial sample size was 20

and the number of repetitions of our experiments 20 000.

Figure 5.1 presents the results for type I CI and type II CI. The first picture shows the

actual coverage of confidence intervals for different values of d and the second picture presents
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Figure 5.1: Actual coverage of CI’s and the quantiles of the random variables Nd/nd for CI

of type I (solid line) and CI of type II (dashed).

the 10%, 30%, 50%, 70%, 90%-quantiles of the quantity Nd/nd. From the first picture we see

that both coverage probabilities converge to the prescribed nominal value 0.95 and that the

actual coverage of type II CI is slightly closer to the target value. On the other hand, the
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second pictures indicates that we usually need more observations to stop sequential procedure

for a type II CI. Moreover (in agreement with our theoretical results), the quantity Nd/nd for

type II CI is more variable than for the type I methods.

Unsmooth ψ-function

By the same trick as in (5.20) we can find out that the problem of deriving asymptotic distri-

bution of the random variable
√

aF
d

(√

Nd
nd

− 1
)

is the same as the problem of the asymptotic

distribution of the random variable

L′
Nd

= N
1/4
d

(
√
Nd ℓNd
2aF

− 1
)

= N
1/4
d

√
Nd ℓNd−2aF

2aF
.

In the following, we will for simplicity assume that the condition XX.3 holds, which implies

n1/4(
√

ωnpp −
√
ωpp = o(1)). Thus

L′
Nd

= N
1/4
d

√
Nd ℓNd−2a

Nd
F

2aF
+ o(1) = LNd + o(1), as d→ 0+.

The asymptotic behaviour of the random variable Ln was studied in Section 4.2.4. Theo-

rem 4.14 states that Ln is asymptotically normal with a zero mean and a variance given

by (4.70). That is why we only need to prove that Ln is ucp. As Lemma 5.10 implies

n1/4(σ̂ψ − σψ) = oucp(1), (5.27)

it suffices to strengthen the result of Lemma 4.13. Before we do that, it is convenient to

introduce some notation. Let us denote

Bk =
k
∑

i=1

|xip|3, Bn =
n
∑

i=1

|xip|3 = nT 3
np

and

n[s] = max{k : Bk ≤ sBn}, s ∈ [0, 1]. (5.28)

For simplicity we will suppose that there exists a finite and positive limit of the quantity 1
n Bn.

In the next, we will be dealing with a partial sum process (b ∈ B)

Mb
n (s, t) =

1

n1/4

n[s]
∑

i=1

xip

[

ψ(ei − bTxi√
n

− t xip√
n

) − ψ(ei − bTxi√
n

)
]

, |t| ≤M, 0 ≤ s ≤ 1.

Put M̄b
n = Mb

n − E Mb
n .

Lemma 5.12. If the conditions X’.1-3 and Step.1-2 holds, then the process M̄b
n (s, t) con-

verges weakly to a zero mean gaussian process W (s, t) uniformly in b ∈ B. The limiting

process has the covariance structure

cov{W (s1, t1), W (s2, t2)},= (s1 ∧ s2) g(t1, t2),
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where

g(t1, t2)

{

T 3
np γ01 |t1| ∧ |t2|, t1 · t2 > 0,

0, t1 · t2 ≤ 0.

Proof. Our proof will imitate the proof of Theorem 2.12.1 of van der Vaart and Wellner

(1996).

We can look at the partial-sum process M̄b
n (s, t) as a process indexed by the index set

[0, 1] × T , which we equip with the metric ρ((s1, t1), (s2, t2)) = |s1 − s2| + |t1 − t2|.
As it is easy to verify that the process M̄b

n (s, t) converges marginally, it suffices to show

the asymptotic equicontinuity of the sequence M̄n. Thus, for every ε > 0, η > 0 there should

exist δ > 0 and n1 such that for all n ≥ n1

P ∗
{

sup
|s1−s2|+|t1−t2|<δ

|M̄b
n (s1, t1) − M̄b

n (s2, t2)| > ε

}

< η. (5.29)

Let us denote Tδ = {(t1, t2) : |t1 − t2| < δ, t1, t2 ∈ T}. A triangular inequality yields

sup
|s1−s2|+|t1−t2|<δ

|M̄b
n (s1, t1) − M̄b

n (s2, t2)|

≤ sup
|s1−s2|<δ

‖M̄b
n (s1, t) − M̄b

n (s2, t)‖T + sup
0≤s≤1

‖M̄b
n (s, t1) − M̄b

n (s, t2)‖Tδ . (5.30)

In the second term on the right-hand side the parameter s may be restricted to the points

k/n with k ranging over 1, 2, . . . , n. Further by Ottaviani’s inequality (Lemma 7.6) we get

P ∗
{

sup
0≤s≤1

‖M̄b
n (s, t1) − M̄b

n (s, t2)‖Tδ > ε

}

= P ∗
{

max
k≤n

‖M̄b
nk(t1) − M̄b

nk(t2)‖Tδ > ε

}

≤ P ∗ {‖M̄b
n (t1) − M̄b

n (t2)‖Tδ > ε
}

1 − maxk≤n P ∗ {‖M̄b
nk(t1) − M̄b

nk(t2)‖Tδ > ε
} . (5.31)

By Lemma 4.13 the process M̄b
n (t) converges in distribution, which implies that it is asymp-

totically equicontinuous (see (7.1) of Appendix). Thus we can make the probability in the

numerator arbitrarily small by taking δ small and n large enough.

To show that the denominator is bounded away from zero for all sufficiently large n, we

can use a similar trick as in the proof of Corollary 7.14.

To prove the same for the first term on the right-hand side of (5.30), we estimate

P ∗
{

sup
|s1−s2|<δ

‖M̄b
n (s1, t) − M̄b

n (s2, t)‖T > 3 ε

}

≤ 3 P ∗
{

max
0≤j δ≤1

sup
j δ≤s≤(j+1)δ

‖M̄b
n (s, t) − M̄b

n (j δ, t)‖T > ε

}

≤ 3

⌈1/δ⌉
∑

j=1

P ∗
{

sup
j δ≤s≤(j+1)δ

‖M̄b
n (s, t) − M̄b

n (j δ, t)‖T > ε

}

. (5.32)
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With the help of Ottaviani’s inequality we can bound each term in the last sum by

P ∗
{

sup
j δ≤s≤(j+1) δ

‖M̄b
n (s, t) − M̄b

n (j δ, t)‖T > ε

}

≤ P ∗ {‖M̄b
n ((j + 1) δ, t) − M̄b

n (j δ, t)‖T > ε
}

1 − maxn[j δ]≤k≤n[(j+1) δ] P
∗
{

‖M̄b
nn[(j+1) δ](t) − M̄b

nk(t)‖T > ε
} . (5.33)

Lemma 4.13 and the construction of n(s) in (5.28) yields that the process

Wn(t) = M̄b
n ((j + 1) δ, t) − M̄b

n (j δ, t)

converges in distribution to the process
√
δW , where W is a zero mean gaussian process

with the covariance function given by (4.60). By the portmanteau theorem (Theorem 7.8),

the lim sup of the probability in the numerator of (5.33) is bounded by P
{

‖W‖T ≥ ε/
√
δ
}

.

Since the norm ‖W‖T has moments of all orders (Proposition A.2.3 of van der Vaart and

Wellner (1996)), the latter probability converges to zero faster than any power of δ as δ ց 0.

We conclude that we are able to make the numerator of (5.30) smaller as δ2 by choosing δ

sufficiently small and n large enough. By an argument similar to the argument used in the

investigation of the denominator in (5.31), but now also using the fact that P (‖W‖T ≥ ε) < 1,

we can show that for every ε > 0, the denominator in (5.33) remains bounded away from

zero.

Thus we can make the probability in (5.32) (for sufficiently large n and small δ) arbitrarily

small, which concludes the proof of the lemma for any fixed b ∈ B.

A closer inspection of the proof shows that all the arguments hold uniformly in b ∈ B,

that is (5.29) holds uniformly in B. This enables us for every ε > 0 and η > 0 to find a finite

subset S0 of [0, 1] × T and a mapping π : [0, 1] × T 7→ S0 such that

sup
b∈B

P ∗
{

sup
(s,t)∈[0,1]×T

|M̄b
n (s, t) − M̄b

n (π(s, t))| > ε

}

< η. (5.34)

Now we can use the bounded Lipschitz metric (Definition 4.12) and finish the proof along the

lines of Lemma 4.13.

Remark 24. For the case of studentized M -estimator we need to study the process

{Mb,u
n (s, t) =

1

n1/4

n[s]
∑

i=1

xip

[

ψ(e−u/
√
n(ei − bTxi√

n
− t xip√

n
)/S) − ψ(e−u/

√
n(ei − bTxi√

n
)/S)

]

,

0 ≤ s ≤ 1, |t| ≤M},

where |b|2 ≤ M and |u| ≤ M . We could proceed completely analogously to show that

Lemma 5.12 holds for this ‘studentized’ process uniformly in u and b as well.
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Theorem 5.13. Let the conditions XX’.1, XX.2-3, and Step.1-2 be satisfied. Further

suppose that the sequence
√
n(SnS −1) satisfies the SUB condition. Then for d→ 0+ the ran-

dom variable
√

aF
d

(√

Nd
nd

− 1
)

is asymptotically normal with the zero mean and the variance

given by

σ2 =
γ01 κ

2 γ2
1 aF

, where κ = lim
n→∞

T 3
np

(T 2
np)

2
. (5.35)

Proof. The uniform continuity in probability of Ln follows from (5.27), Lemma 5.12 (and its

generalization to the studentized processes as indicated in Remark 24), and the assumption

that
√
n(SnS − 1) satisfies the SUB condition.

Once we have proved that Ln is ucp, Theorem 4.14 gives us the asymptotic distribution

of LNd .

5.3 Bounded length confidence interval for R-estimators based

on Wilcoxon scores

In this section we discuss the asymptotic properties of a bounded length confidence interval

based on an R-estimator generated with Wilcoxon scores. As the treatment of this situation

will be very similar to the case of a smooth ψ-function, we will not go into great details.

Recall that the confidence interval (of type II) DII
n is defined by (4.71). The theoretical

counterpart of the random stopping time Nd defined in (5.2) is

nd =
z2
α ωpp

12 γ2 d2
=
a2
F

d2
, where aF =

zα
√
ωpp

γ
√

12
. (5.36)

With the help of Theorem 4.15 we can follow the proof of Theorem 5.1 to show that under

the conditions W.1 and XX.2 the statements of Theorem 5.1 hold for Nd as well.

5.3.1 Asymptotic coverage

Similarly to Section 5.2.1, we need to strengthen some first order results to prove that the

confidence interval DII
Nd

is asymptotically correct for d→ 0+.

Put S̃n(t) = 1
n

∑n
i=1 xiR

′
i(t), where R′

i(t) is the rank of the random variable ei − tTxi√
n

among e1 − tTx1√
n
, . . . , en − tTxn√

n
. We would like to show that

∥

∥

∥

1√
n
S̃n(t) − 1√

n
S̃n(0) + γVnt

∥

∥

∥

T
= oucp(1). (5.37)

To prevent some minor measurability difficulties, we can argue similarly as in Subsection 3.2.2,

that instead of T = {t ∈ Rp : |t|2 ≤M} we can take T = {t ∈ Qp : |t|2 ≤M+1}, which makes

the supremum on the left-hand side of the equation (5.37) a measurable random variable.

With the help of the linearity result (5.37) we will be able to proceed similarly as in

Lemma 5.5 to show that
√
n(b̂n − β) satisfies the SUB condition. This will enable us to
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substitute
√
n(b̂n − β) for t in (5.37) and get that the remainder term op(1) in (4.22) of

the asymptotic expansion for
√
n(b̂n − β) is oucp(1) in fact. Combining this result with the

uniform asymptotic linearity (5.37) immediately yields that the random variables
√
n(b̂+np−βp)

and
√
n(b̂−np − βp) are both ucp, which would imply the asymptotic correctness of DII

Nd
.

As it is sufficient to show that the statement (5.37) holds for every single component,

it is enough to deal with one-dimensional processes. In the following, we will make use of

the notations introduced in Chapter 3 (we please the reader to recall the definitions of the

processes S̃n, Tn and T̄n of (3.1)–(3.3)).

To show that the statement (5.37) holds, it is useful to decompose the process T̄n into its

projection and a remainder term, that is T̄n = Pn +Rn.

First, we will be dealing with the remainder term Rn. From Section 3.2.2 we know that

Rn = Un − E Un with the process Un defined by (3.9). Let us define Rnk = Unk − E Unk,

where

Unk(t) =
1

n

k
∑

i=1

ci

k
∑

j=1

[

I{ei − tTxi√
n

≥ ej − tTxj√
n
} − I{ei ≥ ej}

]

− 1

n

k
∑

i=1

k
∑

j=1

[

(ci − cj)(F (ei − tT(xi−xj)√
n

) − F (ei))
]

. (5.38)

Lemma 5.14. Under the conditions X.1-5 and W.1-3

max
k≤n

‖Rnk‖T = op(1).

Proof. From the definition of the process Rn we see that for all i = 1, . . . , n and all t ∈ T it

holds E [Rnk(t)|ei] = 0. Let Bk be the σ-field generated by {ei, i ≤ k} and B0 be the trivial

σ-field. Then, for every n ≥ 1,

{Rnk(t), t ∈ T, Bk, k ≤ n}

is a martingale (process), which implies that {‖Rnk‖T , Bk, k ≤ n} is a nonnegative sub-

martingale. Therefore, by Kolmogorov’s inequality for submartingales (see Lemma 7.2), for

every ε > 0

P

{

max
k≤n

‖Rnk‖T > ε

}

≤ 1
ε E ‖Rn‖T .

But from (3.16) (Section 3.2.2) we know E ‖Rn‖T = o(1), which proves the lemma.

Let us turn our attention to the leading term Pn. Recall that Pn = Vn − E Vn, where Vn

is defined in (3.6) (cf. Section 3.2.1). Similarly to the case of Un put

Vnk(t) =
1

n

k
∑

i=1

k
∑

j=1

(ci − cj)
[

F (ei − tT(xi−xj)√
n

) − F (ei)
]

.

In the following we will need this technical lemma.
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Lemma 5.15. Let the conditions X.1-5 and W.1-3 be satisfied. Then for every ε > 0 and

η > 0 there exist δ > 0 and n0 such that for every n > n0

P

{

max
n−δ≤k≤nδ

∥

∥

∥

1√
n
V̄nk − 1√

n
V̄n

∥

∥

∥

T
> ε

}

< η,

where n−δ = ⌊n(1 − δ)⌋ and nδ = ⌈n(1 + δ)⌉.

Proof. Obviously it is sufficient to prove

P

{

max
n−δ≤k≤n

∥

∥

∥

1√
n
V̄nk − 1√

n
V̄n

∥

∥

∥

T
> ε

}

< η.

For the simplicity of notation define

Wij(t) =
ci − cj

n3/2

[

F (ei − tT(xi−xj)√
n

) − F (ei)
]

.

Note that Vnn − Vnk = Ank +Bnk, where

Ank =

n
∑

i=k+1

n
∑

j=1

Wij, and Bnk =

k
∑

i=1

n
∑

j=k+1

Wij.

We can exploit the martingale structure of the process Ānk and with the help of Kolmogorov’s

inequality (Lemma 7.2) get

P

{

max
k≤n

‖Ānk‖T > ε

}

≤ 1

ε
E

∥

∥

∥

∥

∥

∥

n
∑

i=1

n
∑

j=1

W̄ij

∥

∥

∥

∥

∥

∥

T

=
1

ε
E ‖ 1√

n
V̄n‖T .

But it is easy to verify the assumptions of Corollary 7.13 with Zni =
∑n

j=1 W̄ij, which yields
1√
n

E ‖V̄n‖T → 0.

Now turn our attention to the process Bnk. For i = 1, . . . , n and j = 1, . . . , n put

lij = inf
w∈T

{wT(xi−xj)√
n

}, uij = sup
w∈T

{wT(xi−xj)√
n

}.

Then we can bound each term Wij by

‖Wij‖T ≤ |ci| + |cj |
n3/2

[F (ei + uij) − F (ei + lij)]
Say
= W ◦

ij ,

which further gives us

max
n−δ≤k≤n

‖Bnk‖T ≤
n
∑

i=1

n
∑

j=n−δ

W ◦
ij

Say
= W ◦

n .

Notice that for sufficiently large n with the help of our assumptions

E W ◦
n ≤ 1

n3/2

n
∑

i=1

n
∑

j=n−δ

(|ci| + |cj |)E [F (ei + uij) − F (ei + lij)]

≤ 2CM

n2

n
∑

i=1

n
∑

j=n−δ

(|ci| + |cj |) (|xi|2 + |xj |2) ≤ C ′δ,
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where C and C ′ are sufficiently large constants independent of n. Thus by taking δ small

enough, we can make E W ◦
n arbitrarily small. Now the statement of the lemma follows by the

inequalities

P

{

max
n−δ≤k≤n

∥

∥

∥

∥

1√
n
V̄nk −

1√
n
V̄n

∥

∥

∥

∥

T

> ε

}

≤ P

{

max
n−δ≤k≤n

‖Ānk‖T > ε
2

}

+ P

{

max
n−δ≤k≤n

‖B̄nk‖T > ε
2

}

≤ 2

ε
E ‖ 1√

n
V̄n‖T +

4

ε
E ‖W ◦

n‖T .

Now, by a standard computation it is possible to show that uniformly in k = n−δ, . . . , nδ

E
1√
n
Vnk = 2 γ k tT

n2

k
∑

i=1

(ci − c̄k)xi + o(1). (5.39)

Combining the last equation (5.39) together with the Lemma 5.14 and Lemma 5.15 gives us

the strengthened uniform linearity result (5.37).

Theorem 5.16. Let the conditions W.1-2 and XX.1-2 be satisfied. Then the sequential

confidence interval DII
Nd

has the asymptotic coverage 1 − α as d→ 0+, that is (5.5) holds.

5.3.2 Asymptotic distribution of the stopping variable Nd

We can use the same trick as in (5.20) to show that aF
d

(√

Nd
nd

− 1
)

is asymptotically equivalent

(as d→ 0+) with the random variable

L′
Nd

=
√

Nd(
√
Nd ℓNd
2aF

− 1) = LNd +
√
Nd(a

Nd
F −aF )
aF

.

As Theorem 4.15 gives us the asymptotic expansion for the random variable Ln (4.73), all we

need is to prove that the term op(1) in that expansion is oucp(1) in fact.

Unfortunately, we have not succeeded to proceed without the following assumption:

W.5 There exist δ > 0 and C <∞ such that for all |t| ≤ δ

E |f(e1 − t) − f(e1)| ≤ Ct.

Remark 25. The condition W.5 is certainly satisfied if f has a bounded derivative.

If we recall the previous sections of this chapter, we see that it suffices to show that
∥

∥

∑n
i=1 Z̄ni

∥

∥

T
= oucp(1), where

Zni(t) =
1

n

n
∑

j=1

(ci − cj)
[

F (ei − tT(xi−xj)√
n

) − F (ei) +
tT(xi−xj)√

n
f(ei)

]

.
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Similarly to the previous section define

Vnk(t) =
1

n

k
∑

i=1

k
∑

j=1

(ci − cj)
[

F (ei − tT(xi−xj)√
n

) − F (ei) +
tT(xi−xj)√

n
f(ei)

]

.

Lemma 5.17. Let the conditions X.1-5, W.1-3 and W.5 be satisfied. Then for every ε > 0

there exist δ > 0 and n0 such that for every n > n0

P

{

max
n−δ≤k≤nδ

∥

∥V̄nk − V̄n
∥

∥

T
> ε

}

< η,

where n−δ = ⌊n(1 − δ)⌋ and nδ = ⌈n(1 + δ)⌉.

Proof. The proof is completely analogous to the proof of Lemma 5.15. First, we define

Wij(t) =
ci − cj
n

[

F (ei − tT(xi−xj)√
n

) − F (ei) +
tT(xi−xj)√

n
f(ei)

]

.

and note that Vnn − Vnk = Ank +Bnk, where

Ank =
n
∑

i=k+1

n
∑

j=1

Wij and Bnk =
k
∑

i=1

n
∑

j=k+1

Wij.

As from the proof of Theorem 3.1 we know that E ‖V̄n‖T −−−→
n→∞

0, we can use Kolmogorov’s

inequality for submartingales (Lemma 7.2) and get

P

{

max
k≤n

‖Ānk‖T > ε

}

≤ 1

ε
E

∥

∥

∥

∥

∥

∥

n
∑

i=1

n
∑

j=1

W̄ij

∥

∥

∥

∥

∥

∥

T

=
1

ε
E ‖V̄n‖T −−−→

n→∞
0.

Now turn our attention to the process Bnk. For sufficiently large n we can bound

E ‖Wij‖T ≤ |ci| + |cj |
n

∫

(M+1)(|xi|2+|xj |2)√
n

− (M+1)(|xi|2+|xj |2)√
n

E |f(ei − v) − f(ei)| dv

W.5

≤ C(M + 1)2
(|ci| + |cj |)(|xi|22 + |xj |22)

n2
.

Thus there exists C ′ > 0 such that

E max
n−δ≤k≤nδ

‖Bnk‖T ≤
n
∑

i=1

n
∑

j=n−δ

E ‖Wij‖T ≤ C ′δ.

Now we can finish the proof by the same argument as the proof of Lemma 5.15.

We are ready to formulate the theorem about the asymptotic behaviour of Nd as d→ 0+.

Theorem 5.18. Let the conditions W.1-3, W.5, and XX.1-3 be satisfied. Then the stop-

ping variable Nd admits the following expansion as d→ 0+

aF
d

(

√

Nd
nd

− 1

)

= − 1

γ
√
nd T 2

nd p

nd
∑

i=1



x2
ip +

nd
∑

j=1

x2
jp

nd



 [f(ei) − γ] + ∆
ωpp

+ op(1).
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Numerical illustration

To illustrate the theoretical results we performed a small numerical experiment. We consid-

ered a linear model with two explanatory variables, that is Yi = β0 + β1xi1 + β2xi2 + ei. We

took the errors to be independent identically distributed following the logistic distribution

given by the cdf F (x) = e−x

1+e−x . The coordinates of the explanatory variable were independent

and followed uniform distribution on the interval (−1, 1).

We were interested in the behaviour of the bounded-width confidence interval for the slope

parameter β1, which is based on an R-estimator generated by Wilcoxon scores. We studied

the actual coverage of the 95%-confidence intervals of type I and type II for (the half-length

of a CI) d decreasing from 0.45 to 0.225, which corresponds to the ’theoretical’ sample size nd

increasing from 43 to 171. We estimated the functional γ, needed to construct type I CI, by

the same procedure as was used in Numerical illustration of Section 4.1.3. The number of

repetitions of our experiments was 20 000.

The results of our small study are to be found in Figure 5.2. The first picture shows the

actual coverage of confidence interval for different values of d and the second picture presents

the 10%, 30%, 50%, 70%, 90%, quantiles of the quantity Nd/nd. From the first picture we see

that while the coverage probability of type I CI converges to the prescribed nominal value 0.95

from below (starting at 0.938), the actual coverage of type II CI oscillates around the target

value. On the other hand the second pictures clearly indicates that we usually need more

observations to stop the sequential procedure based on the type II CI.

We conclude that the actual coverage of type II CI is closer to its nominal value at the

cost of a larger number of observations needed. Some further numerical simulations show

that the above results are quite typical.
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Figure 5.2: Actual coverage of CI’s and the quantiles of the random variables Nd/nd for CI

of type I (solid line) and CI of type II (dashed).
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Chapter 6

Conclusion

This chapter contains a short discussion of the results obtained in the thesis as well as some

possible suggestions for future work.

M-estimators

M-estimators generated by an absolutely continuous ψ

We derived the two-term von Mises expansion for regression M -estimators. This enables us,

e.g. to make a finer (second order) comparison of M -estimator with its one-step approxima-

tion. The possible further development would be to show that the remainder term Rn in the

von Mises expansion is not only of order op(
1√
n
), but E

√
nRn = o(1) or even E [

√
nRn]

2
=

o(1). This would justify the heuristic results of Huber (1973) about the approximation of

finite-sample bias and variance of the regression M -estimators.

If ψ′ and the distribution of the errors are sufficiently smooth, then with the machinery

introduced in this thesis (together with some algebraic manipulation software) we can derive

von Mises-expansion of the third or even higher order. But our numerical illustrations indicate

that even the second order asymptotics needs a very large number of observations to kick in.

That is why we do not see any practical importance for this higher order analysis.

M-estimators generated by a step function ψ

We derived the asymptotic distribution of the remainder term in the first order expansion.

Unfortunately, as to the best of our knowledge the
√
n-consistency of these estimators have

been generally treated only for a monotone ψ, our results are limited only to this special type

of ψ functions.
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R-estimators

We studied ‘rank’-processes for a special case of Wilcoxon scores. This enabled us to derive a

two-term von Mises expansion for R-estimators based on Wilcoxon scores. It would be inter-

esting to show analogous results for the scores generated by a different (possibly unbounded)

score function. But this would require to use some other techniques, as our approach applies

only to a generalized U -statistics with a kernel of degree two. Nevertheless, we believe that

our technique would be useful to prove some auxiliary results.

Our numerical illustrations indicates that the second order asymptotics ‘works even slower’

than in the case of M -estimators. This is probably explained by the fact, that R-estimators

are based on ranks, so that we cannot hope them to be very smooth functionals.

Alternative confidence intervals

We proposed an alternative to a traditional Wald-type procedure to construct a confidence

interval for a single regression parameter. We used the technical tools derived earlier in the

thesis to explore asymptotic properties of the alternative method and compare it with the

standard approach. We derived that these two methods are asymptotically equivalent in the

sense of the asymptotic coverage and the length of the confidence interval (multiplied by
√
n).

A finer analysis showed that Wald-type confidence intervals are more stable in the sense, that

their lengths (properly standardized) have smaller variances. The degree of the difference

in the variances of lengths depends on the ratio of the fourth to the second moment of the

corresponding explanatory variable. This was confirmed with several numerical experiments,

some of which are to be found in this thesis and some in Omelka (2006).

Our experiments show that in the case of M -estimators with a smooth ψ, our proposed

confidence intervals have actual coverage larger than nominal coverage and they are on average

longer than its standard competitors. On the other hand, the proposed confidence intervals

usually work better in the presence of strong asymmetry, heteroscedasticity or if we are

interested only in one-sided confidence intervals.

It is interesting that for M -estimators which are generated by a step function ψ the

proposed confidence intervals are undersized, which is in opposite to the case of a smooth ψ.

Our experience is that this lack of coverage is reasonably small if there is only one explanatory

variable (plus an intercept).

Finally, if ψ is a sum of a smooth and a step function, our experiments indicate that unless

the sample size is very large, the proposed procedure may be of interest, as it does not require

density estimation. Unfortunately, as it has been said before, we miss
√
n-consistency results

for such M -estimators.

The results for the R-estimator based on the Wilcoxon scores are similar to the results for

the M -estimators based on a smooth ψ. The coverage of the proposed procedure is slightly
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oversized and the confidence intervals are on average longer than their standard competitors.

On the other hand, if we are dealing with a bounded length confidence interval problem,

then unless the prescribed length of the confidence interval is very small, the coverage of our

proposed procedure is usually closer to the nominal value. But this is at the cost of a larger

number of observations, which the procedure usually requires.

Although it is not very common to criticize own proposed procedures, it is fair to end this

short discussion with a few cautionary notes. Our experience showed that the performance

of our suggested confidence interval depends heavily on a reasonable behaviour of the corre-

sponding explanatory variable. That is why applying our confidence limits cannot be done

automatically and the amount of care should be higher than for the Wald-type procedure.

One of the strategies may be as follows. Compute both type of confidence intervals and if

the results are comparable, we can choose our proposal. If there is a huge difference, then

something wrong is happening and man should look carefully into data. But to justify this

strategy, a larger simulation study is required.
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Chapter 7

Appendix

7.1 Probability Inequalities

Lemma 7.1. (Markov’s inequality) For a > 0

P (|X| ≥ a) ≤ E |X|
a

.

Lemma 7.2. (Kolmogorov’s inequality) Let {Sk, k = 1, . . . , n} be a nonnegative submartin-

gale. Then for every ε > 0

P

{

max
k≤n

Sk > ε

}

≤ 1
ε E Sn.

7.2 Limit Theorems

We say that a sequence of random variables {Xn} is asymptotically normal with ‘mean’ µn

and ‘variance’ σ2
n if σn > 0 for all n sufficiently large and Xn−µn

σn
converges in distribution

to N(0, 1). We write ‘Xn is AN(µn, σ
2
n).’

The following theorem is sometimes called Delta-Theorem.

Theorem 7.3. Suppose that Xn is AN(µ, σ2
n), with σn → 0. Let g be a real-valued function

differentiable at x = µ, with g′(µ) 6= 0. Then g(Xn) is AN
(

g(µ), [g′(µ)]2σ2
n

)

.

Theorem 7.4. Consider a triangular array (of row-wise independent r.v.’s) Xnj , j ≤ kn,

n ≥ 1, where kn → ∞ as n→ ∞. Let

E Xnk = 0, var{Xnk} = σ2
nk, k = 1, . . . , kn, n ≥ 1.

Then Zn =
∑kn

j=1Xnj is AN(0, 1) provided the Feller-Lindeberg condition holds, that is for

any ε > 0

1

σ2
n

kn
∑

k=1

E X2
nk I{|Xnk| > εσn} −−−→

n→∞
0,

where σ2
n =

∑kn
k=1 σ

2
nk.
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Theorem 7.5. (Cramér-Wold device) Let Tn = (Tn1, . . . , Tnp)
T be a sequence of random

vectors. Then Tn
D−→ T if and only if for every fixed λ = (λ1, . . . , λp)

T ∈ Rp, λTTn
D−→ λTT.

7.3 Outer probability, outer expectation, and star weak con-

vergence

By the word random element we will mean an arbitrary map from the probability space to a

metric space D. To be able to introduce the concept of weak convergence of random elements,

we need to give some terminology (for more details see, e.g. the first part of the book van der

Vaart and Wellner (1996)).

Let (Ω,A,P ) be an arbitrary probability space and T : Ω 7→ R∗ = [−∞,+∞] be an

arbitrary map from this space to the extended real line. The outer integral of T with respect

to P is defined as

E
∗ T = inf {E U : U ≥ T,U is measurable and E U exists} .

The outer probability of an arbitrary subset B of Ω is

P ∗(B) = inf{P (A) : B ⊂ A,A ∈ A}.

Similarly the inner probability is defined as

P∗(B) = sup{P (A) : A ⊂ B,A ∈ A}.

It turns out that these definitions are very natural. E.g. it can be easily shown that the

inequalities of Section 7.1 hold even for random elements if we replace P and E with its

‘outer versions’ P ∗ and E
∗. Before we define the (star) weak convergence, we give one very

useful inequality.

Lemma 7.6. (Ottaviani’s inequality) Let X1, . . . ,Xn be independent stochastic processes in-

dexed by an arbitrary set and Sk = X1 + . . . +Xk the partial sum of these processes. Then

for every λ, µ > 0

P ∗
{

max
k≤n

‖Sk‖ > λ+ µ

}

≤ P ∗ {‖Sn‖ > λ}
1 − maxk≤nP ∗ {‖Sn − Sk‖ > µ} .

Definition 7.7. Let {Xn, n ∈ N} be arbitrary maps from the probability space (Ω,A, P ) into

a metric space D and X : (Ω,A, P ) 7→ D be Borel measurable. We say that the sequence Xn

converges weakly to X if

E
∗ f(Xn) −−−→

n→∞
E f(X), for every bounded and continuous function f on D.
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Notice that ifXn are measurable, then Definition 7.7 coincides with the standard definition

of weak convergence.

The concept of the weak convergence in the sense of Definition 7.7 proved to be very

fruitful. We can reformulate many of the ‘classic theorems’ by using outer expectations and

outer probabilities.

In the proof of Lemma 5.12 we make use of the following version of Portmanteau theorem.

Theorem 7.8. Let X1,X2, . . . be a sequence of random elements and X be a random variable.

Then the following statements are equivalent:

(i). Xn converges weakly to X;

(ii). lim infn→∞ P∗(Xn ∈ G) ≥ P (X ∈ G) for every open G;

(iii). lim supn→∞ P ∗(Xn ∈ F ) ≤ P (X ∈ F ) for every closed F .

The role of tightness in the ‘classic theory’ of weak convergence is played by asymptotic

tightness, which is defined as follows.

Definition 7.9. We say that the sequence of random elements {Xn, n ∈ N} on a metric space

(D, d) is asymptotically tight if for every ε > 0 there exists a compact set K such that

lim inf
n→∞

P∗(Xn ∈ Kδ) ≥ 1 − ε, for every δ > 0,

where Kδ = {y ∈ D : d(y,K) < δ}.

It can be shown that for measurable random variables on separable and complete metric

spaces the concept of asymptotic tightness and tightness coincide.

Theorem 7.10. Let {Xn, n ∈ N} be random elements on ℓ∞(T ). Then Xn converges weakly

to a tight limit X if and only if the sequence {Xn} is asymptotically tight and the marginals

(Xn(t1), . . . ,Xn(tk)) converge weakly to the marginals (X(t1), . . . ,X(tk)) of X.

The weak convergence implies the paths of the sequence of processes to be asympotically

uniformly ρ-continuous in probability. More precisely, let ρ be a semimetric such that the

space (T, ρ) is totally bounded and Xn converges weakly to X in ℓ∞(T ) (the space of bounded

functions). Then for every ε, η > 0, there exists a δ > 0 such that

lim sup
n→∞

P ∗
(

sup
ρ(s,t)<δ

|Xn(s) −Xn(t)| > ε

)

< η. (7.1)
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7.4 Clippings from empirical process theory

The following Lemma can be found in Nolan and Pollard (1987). We only change the notation

so that it is consistent with the notation used in van der Vaart and Wellner (1996).

Let (F , ρ) be an index class equipped with the pseudometric ρ. Then the covering num-

ber N(ε,F , ρ) is the minimal number of balls of radius ε needed to cover the set F .

Lemma 7.11. Let Ψ be a convex, strictly increasing function on [0,∞) with 0 ≤ Ψ(0) ≤ 1.

Suppose that the stochastic process Z indexed by the class (F , ρ) satisfies:

(i). if ρ(f, g) = 0, then Z(f) = Z(g) almost surely;

(ii). if ρ(f, g) > 0, then E Ψ
(

Z(f)−Z(g)
ρ(f,g)

)

≤ 1;

(iii). there exists a point f0 ∈ S for which supf∈F ρ(f, f0) <∞;

(iv). the sample paths of Z are continuous on (F , ρ).

Then

E sup
f∈F

|Z(f) − Z(f0)| ≤ 8

∫ θ

0
Ψ−1(N(ε,F , ρ))d ε,

where θ equals one quarter of the supremum in (iii).

The following theorem is a minor modification of 2.11.11 Theorem of van der Vaart and

Wellner (1996).

Theorem 7.12. For each n, let Zn1, . . . , Znmn be independent stochastic processes indexed

by an arbitrary index set F . Let

mn
∑

i=1

E
∗ ‖Zni‖F I{‖Zni‖F>η} → 0, for every η > 0, (7.2)

and suppose there exists a semimetric ρ such that for every ρ-ball B(ε) ⊂ F
mn
∑

i=1

E
∗ sup
f,g∈B(ε)

[Zni(f) − Zni(g)]
2 ≤ ε2, for every ε > 0, (7.3)

and
∫ ∞

0

√

logN(ε,F , ρ) dε <∞. (7.4)

Then the sequence
∑mn

i=1(Zni − E Zni) is asymptotically tight in ℓ∞(F). It converges in dis-

tribution provided it converges marginally.

In comparison with 2.11.11 Theorem of van der Vaart and Wellner (1996), the only dif-

ference is that we replaced the original conditions

mn
∑

i=1

(Zni(f) − Zni(g)) ≤ ρ2(f, g), for every f, g ∈ F ,
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and

sup
t>0

mn
∑

i=1

t2 P ∗
(

sup
f,g∈B(ε)

|Zni(f) − Zni(g)| > t

)

≤ ε2

with a slightly stronger, but in our situation easily verifiable, condition (7.3).

For our purposes, it is convenient to formulate this simple corollary of Theorem 7.12.

Corollary 7.13. For each n, let Zn1, . . . , Znmn be independent stochastic processes indexed

by T – a bounded subset of the Euclidean space Rp. Put Z̄n =
∑mn

i=1(Zni − E Zni). Suppose

there exists a quantity rn of order o(1) as n→ ∞, a constant C > 0, and t0 ∈ T such that

mn
∑

i=1

E
∗ sup
|s−t|2<ε

[Zni(s) − Zni(t)]
2 ≤ C ε rn, for every ε > 0, n ∈ N, (7.5)

and
mn
∑

i=1

E
∗ |Zni(t0)|2 → 0, as n→ ∞. (7.6)

Then E
∗ ‖Z̄n‖T −−−→

n→∞
0.

Proof. It is easy to verify the conditions of Theorem 7.12, with the semimetric ρ(s, t) =
√

|t − s|2.
Let ε > 0 be given. By the assumptions of Theorem 7.12 we can for every q ∈ N construct

a partition T =
⋃Nq
j=1 T

q
j (which does not depend on n) such that

∞
∑

q=1

2−q
√

logNq <∞

and
n
∑

i=1

E
∗ sup

t,s∈T qj
[Zni(t) − Zni(s)]

2 <
1

2q
for every n ∈ N.

We can argue similarly to the proof of 2.5.6 Theorem of van der Vaart and Wellner (1996)

to show that without loss of generality we can choose the sequence (for q = 1, 2, . . .) of

partitions as successive refinements.

Further choose an element tqj from each partitioning set Tqj and define a mapping

πq : T → Fq = {tq1, . . . , tqNq} (7.7)

such that πq(t) = tqj if t ∈ Tj .

Now we can follow step by step the proof of Theorem 7.12 and show that for every ε > 0

there exist sufficiently large q◦ and n0 such that for all n ≥ n◦

E
∗ ‖Z̄n(t) − Z̄n(πq◦(t))‖T < ε. (7.8)
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As the set Fq in (7.7) is finite, it follows by the assumption (7.5) that

max
t∈Fq

E |Z̄n(t)|2 = max
t∈Fq

mn
∑

i=1

var{Z̄ni(t)} ≤
mn
∑

i=1

E
∗ ‖Zni‖2

T → 0, (7.9)

which implies that maxt∈Fq E |Z̄n(t)| → 0.

Combining (7.8) and (7.9) gives the statement of the corollary.

Corollary 7.14. Let the conditions of Corollary 7.13 be satisfied and for k = 1, . . . ,mn put

Zkn =
∑k

i=1 Zni. Then

P ∗
{

max
1≤k≤mn

‖Zkn − E Zkn‖T > ε

}

−−−→
n→∞

0.

Proof. By Ottaviani’s inequality for every ε > 0

P ∗
{

max
k=1,...,mn

‖Z̄kn‖T > 2 ε

}

≤ P ∗ {‖Z̄n‖T > ε
}

1 − maxk=1,...,mn P ∗ {‖Z̄mnn − Z̄kn‖T > ε
} . (7.10)

By Markov’s inequality we can bound the numerator in (7.10) by 1
ε E

∗ ‖Z̄mnn ‖T , which con-

verges to zero by Corollary 7.13. Now, if the processes Zni were measurable, we could exploit

the fact that Yk = ‖Z̄mnn − Z̄kn‖T is an inverse submartingale and estimate

P
{

‖Z̄mnn − Z̄kn‖T > ε
}

≤ 1

ε
E ‖Z̄mnn − Z̄kn‖T ≤ 1

ε E ‖Z̄mnn ‖T → 0.

Unfortunately to the presence knowledge of the author, the case of the unmeasurable Zni

cannot be handle in such a simple way. As we need this type of considerations in the proof

of Lemma 5.12, we will argue more generally than we would need only for the purpose of this

lemma.

Let us for contradiction suppose that there exists ε > 0 such that

lim sup
n→∞

max
k=1,...,kn

P ∗
{

‖Z̄mnn − Z̄kn‖T > ε
}

= 1. (7.11)

Thus for every j ∈ N we can find nj ≥ j and kj such that

P ∗
{

‖Z̄mnjnj − Z̄
kj
nj‖T > ε

}

> 1 − 1
j .

Let us now consider the triangular array Znj kj+1, Znj kj+2, . . . , Znj mnj , where j = 1, 2, . . .. As

this array is chosen from the original array Zn1, . . . , Znmn , it surely satisfies the assumptions

of Corollary 7.13, which further implies

E
∗ ‖Z̄mnjnj − Z̄

kj
nj‖T −−−→

j→∞
0.

This convergence together with Markov’s inequality contradict the assumption (7.11). Thus

we conclude that the denominator in (7.10) stays away bounded from zero, which finishes the

proof of this lemma.
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Miscellaneous

The following theorem showed to be useful when proving the existence of a consistent root

of the defining equations (4.1) for M -estimators. It can be found in Ortega and Rheinboldt

(1970) as Theorem 6.3.4.

Theorem 7.15. Let C be an open, bounded set in Rp and assume that the mapping H : C ⊂
Rp → Rp is continuous and satisfies (x−x0)H(x) ≥ 0 for some x0 ∈ C and all x ∈ ∂C. Then

the system of equations H(x) = 0 has a solution in C.

Applying Theorem 7.15 to the function H ′(x) = −H(x), we see that the condition (x −
x0)H(x) ≥ 0 (for some x0 ∈ C and all x ∈ ∂C) may be equivalently rewritten as (x −
x0)H(x) ≤ 0.

Definition 7.16. A sequence of random variables {Yn} is uniformly integrable if

lim
c→∞

sup
n∈N

E |Yn| I{|Yn|>c} = 0.

Some conditions for the sequence of random variables to be uniformly integrable can be

found, e.g. in Serfling (1980).

Lemma 7.17. Suppose that the function g(x) is continuous and let X be a random variable

such that there exists a δ◦ > 0 for which

sup
(t,s)∈U

E g2
(

X+t
s

)

<∞, where U = [−δ◦, δ◦] × [1 − δ◦, 1 + δ◦].

Then the (random) function g
(

X+t
s

)

is continuous in the quadratic mean at the point (0, 1),

that is

lim
(t,s)→(0,1)

E
[

g
(

X+t
s

)

− g(X)
]2

= 0.

Proof. Let ε > 0 be given. First find K > 0 such that E g2(X) I{|X| ≥ K} < ε. Without loss

of generality we can assume δ◦ <
1
2 . Then |X| ≥ 2K + 1 implies |X+t

s | > K for all (t, s) ∈ U .

This yields

sup
(t,s)∈U

E g2
(

X+t
s

)

I{|X| ≥ 2K + 1} < ε.

As the function (x, t, s) → x+t
s is continuous on A = [−K,K] × [−1

2 ,
1
2 ] × [12 ,

3
2 ] and the

function g is continuous, the composition of these functions h(x, t, s) = g(x+ts ) is continuous

on A. Because the set A is compact, the function h(x, t, s) is even uniformly continuous

on A. That is, there exists δ (0 < δ < δ◦) such that |t| < δ together with |s − 1| < δ imply

|h(x, t, s) − h(x, 0, 1)| < ε. This further gives us for all (t, s) ∈ [−δ, δ] × [1 − δ, 1 + δ]

E
[

g
(

X+t
s

)

− g(X)
]2

= E
[

g
(

X+t
s

)

− g(X)
]2

I{|X| > 2K + 1} + E
[

g
(

X+t
s

)

− g(X)
]2

I{|X| ≤ 2K + 1}
≤ 4 ε+ ε2.
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Some scale estimators in linear models

In this section we give some estimators of scale for studentization of regression M -estimators.

The aim of the section is not to give comprehensive list of possible scale estimators, but to

show that there exist simple estimators which are not only
√
n-consistent, but moreover, the

sequence
√
n(Sn−S) meets the SUB condition and it is usually ucp as well. In fact, we only

generalize slightly the results of Welsh (1986), who found the first order representation for

the interquantile range (IQR) and the median absolute deviation (MAD) computed from the

residuals of a preliminary regression fit.

More precisely, suppose that the β̂
(0)

is an initial estimator of the parameter β. Put

ri = Yi− (β̂
(0)

)Txi for the residuals from this preliminary fit and denote Qn the interquantile

range and Sn the median absolute deviation of these residuals. We immediately see that if the

initial estimator β̂
(0)

is regression equivariant and scale invariant, then both scale estimators

Qn and Sn are regression invariant and scale equivariant.

In the following, we will suppose that the linear model (1.1) includes an intercept, the

initial estimator is
√
n-consistent, that is

√
n(β̂

(0) − β) = Op(1), (7.12)

and the condition XX.2 is satisfied. Further, let us denote ξq = F−1(q) and ξ̂qn = F̂−1
n (q),

where F̂n is the empirical distribution function of the residuals.

Interquantile range Qn

Welsh (1986) showed that provided the distribution function F of the errors has a positive and

continuous derivative at the points ξ1/4 = F−1(1/4) and ξ3/4 = F−1(3/4), then the estimator

Qn admits the expansion

√
n(Qn −Q(F )) =

1√
nf(ξ3/4)

n
∑

i=1

[

3
4 − I{ei ≤ ξ3/4}

]

− 1√
nf(ξ1/4)

n
∑

i=1

[

1
4 − I{ei ≤ ξ1/4}

]

+ op(1), (7.13)

where Q(F ) = ξ3/4 − ξ1/4. Our aim is to strengthen this result and show that the remainder

term in the expansion (7.13) is oucp(1) in fact.

For this purpose we define the process

Mn(t, s) =
1√
n

n
∑

i=1

[

q − I{ei ≤ ξq + s
n + tTxi√

n
}
]

, |t|2 ≤M, |s| ≤M,

where M is an arbitrarily large but fixed constant.

It is rather standard (see Section 5.2.1) to show that if F has a continuous derivative at

the point ξq, then

sup
|t|2≤M,|s|≤M

∣

∣

∣

∣

∣

Mn(t, s) −Mn(0, 0) + s f(ξq) +
f(ξq) tT

n

n
∑

i=1

xi

∣

∣

∣

∣

∣

= oucp(1). (7.14)
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Now we would like to show that the sequence
√
n(ξ̂qn− ξq) meets the SUB condition. But to

show that we need that the sequence
√
n(β̂

(0) − β) meets the SUB condition as well. Thus

it may seem that we are moving in a circle. But fortunately, there exist regression estimators

which are scale invariant but which do not require to estimate the scale. Probably the most

popular ones are the least squares estimator and least absolute deviation (LAD) estimator.

To keep our procedure robust we will choose the LAD method. This method also fits into our

frame, because the LAD-estimator can be viewed as an M -estimator with the psi-function

ψ(x) = sign(x). Thus we can use the results of Section 5.2.1 to conclude that

√
n(β̂LAD − β) = V−1

n√
nf(ξ1/2)

n
∑

i=1

xi
[

1
2 − I{ei ≤ ξ1/2}

]

+ oucp(1), (7.15)

provided f exists and is continuous and positive at the point ξ1/2. It is easy to verify that

(7.15) is even a stronger result than the SUB condition for
√
n(β̂LAD − β). With the help

of the linearity result (7.14) and the fact that
√
n(β̂

(0) − β) meets the SUB condition for

sufficiently large n it holds

P

{

max
n−δ≤k≤nδ

√
k(ξ̂qk − ξq) > C

}

≤ P

{

max
n−δ≤k≤nδ

1√
k

k
∑

i=1

[

q − I

{

ei ≤ ξq + C√
k

+
√
k(β̂

(0)

k − β)

k
∑

i=1

xi
k

}]

> 0

}

≤ P

{

max
n−δ≤k≤nδ

1√
k

k
∑

i=1

[q − I{ei ≤ ξq}] − f(ξq)
√
k(β̂

(0)

k − β)

k
∑

i=1

xi
k > f(ξq)

C
2 + oucp(1)

}

.

(7.16)

From (7.16) we see that if f(ξq) > 0 we can make P
{

maxn−δ≤k≤nδ
√
k(ξ̂qk − ξq) > C

}

arbi-

trarily small for all sufficiently large n by taking C large enough and δ small enough. Similarly

we can estimate P
{

maxn−δ≤k≤nδ
√
k(ξ̂qk − ξq) < −C

}

.

Now we are ready to substitute
√
n(ξ̂qn − ξq) for s and

√
n(β̂

(0)

n − β) for t in (7.14) and

after some rearrangements we get

√
n(ξ̂qn − ξq) = 1

f(ξq)
√
n

n
∑

i=1

[q − I{ei ≤ ξq}] −
√
n(β̂

(0)

n − β)

n
∑

i=1

xi
n + oucp(1). (7.17)

Combining (7.17) for q = 3
4 and for q = 1

4 we arrive at (7.13) with the remainder term oucp(1).

Median absolute deviation Sn

By the median absolute deviation we mean

Sn = med{|ri − ξ̂ 0.5n|, i = 1, . . . , n}. (7.18)
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But as the scale estimator we usually use S′
n = Sn/Φ

−1(0.75), so as the estimator is consistent

for the normal errors. For simplicity of notation we will be dealing with Sn defined by (7.18).

Welsh (1986) showed that provided F has a continuous derivative at the points ξ 0.5−S, ξ 0.5,

and ξ 0.5 + S, and f(ξ 0.5) > 0, f(ξ 0.5 − S) + f(ξ 0.5 + S) > 0, then Sn admits the first order

expansion

√
n(Sn − S) = 1

g1
√
n

n
∑

i=1

[

1
2 − I{ξ 0.5 − S < ei < ξ 0.5 + S}

]

− g2
g1 f(ξ 0.5)

√
n

n
∑

i=1

[

1
2 − I{ei < ξ 0.5}

]

+ op(1) (7.19)

where g1 = (f(ξ 0.5 + S) + f(ξ 0.5 − S)) and g2 = (f(ξ 0.5 + S) − f(ξ 0.5 − S)). Our aim is to

prove that the remainder term in (7.19) is oucp(1). For this purpose it is useful to study the

process

Mn(t, s, r)

=
1√
n

n
∑

i=1

[

1
2 − I{ξ 0.5 − r√

n
− S − s√

n
+ tTxi√

n
< ei < ξ 0.5 − r√

n
+ S + s√

n
+ tTxi√

n
}
]

,

where |t|2 ≤M, |s| ≤M, |r| ≤M .

With the techniques of Section 5.2.1 it is easy to show

sup
max{|t|2,|s|,|r|}≤C

∣

∣

∣

∣

∣

Mn(t, s, r) −Mn(0, 0, 0) − g1 s− g2 r + g2 tT

n
∑

i=1

xi
n

∣

∣

∣

∣

∣

= oucp(1) (7.20)

From the discussion of interquantile range Qn we know that if the sequence
√
n(β̂

(0)

n − β)

meets SUB, then
√
n(ξ̂ 0.5n − ξ 0.5) satisfies SUB too. Then analogously to (7.16) we can

show that
√
n(Sn − S) satisfies SUB as well. Now we are ready to substitute

√
n(β̂

(0)

n − β)

for t,
√
n(Sn − S) for s and

√
n(ξ̂ 0.5n − ξ 0.5) for r in (7.20). With the help of (7.17) we get

1√
n

n
∑

i=1

[

1
2 − I{ξ̂ 0.5n − Sn < ri < ξ̂ 0.5n + Sn}

]

+
1√
n

n
∑

i=1

[

1
2 − I{ξ 0.5 − S < ei < ξ 0.5 + S}

]

− g1
√
n(Sn − S) + − g2

f(ξ 0.5)
√
n

n
∑

i=1

[

1
2 − I{ei ≤ ξ 0.5}

]

= oucp(1).

It is not difficult to show that the first term on the left-hand side is of order o(1). Then after

some algebra we get exactly (7.19) with the remainder term oucp(1).

Notice that, similarly to the interquantile range Qn, we need the sequence
√
n(β̂

(0)

n −β) to

meet SUB but we do not need it to be ucp. Further, the asymptotic distributions of Qn and

Sn do not depend on the asymptotic distribution of the preliminary regression estimator β̂
(0)

n .

Welsh (1986) also pointed out, that if the distribution of the errors is symmetric, then g2 = 0,

S = ξ3/4 and the expansions (7.13) and (7.19) for the estimators Qn and Sn coincide (up to

a multiplication by a factor 2).
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7.5 Prohorov metric for probability measures

Definition 7.18. Let µ and ν be Borel measures on a metric space (S, d). Then the Prohorov

distance between measures µ and ν is defined as

dP (µ, ν) = inf{ε > 0 : µ(B) ≤ ν(Bε) + ε for all Borel sets B},

where Bε = {x : infy∈B d(x, y) ≤ ε}.

Prohorov metric is very important because it metrizes the weak convergence. The follow-

ing two useful theorems are to be found in Dehling (1983).

Theorem 7.19. Let X1, . . . ,Xn be independent Rd-valued random variables with E Xi = 0

and E |Xi|32 < ∞. Denote the distribution of 1√
n

∑n
i=1 Xi by µn and let νn be the Gaussian

measure with mean zero and same covariance as µn. Then:

dP (µn, νn) ≤ c d1/4ρ
1/4
3 n−1/8(1 + | log(ρ3 n

−1/2d−1)|1/2)

where ρ3 = n−1
∑n

i=1 E |Xi|32 and c is an absolute constant.

Theorem 7.20. Let µ and ν be two Gaussian measures on Rd with mean zero and covariance

functions T and S. Then the following estimation for their Prohorov distance holds:

dP (µ, ν) ≤ C ‖T − S‖1 d
1/6(1 + | log(‖T − S‖−1

1 d)|1/2)

where C is an absolute constant and ‖A‖1 =
∑d

i=1 |λi|, with λi being the eigenvalues of the

(symmetric) d× d matrix A.

If we denote λmax the largest eigenvalue of the matrix A then

‖A‖1 ≤ dλmax ≤ d





d
∑

i=1

d
∑

j=1

|aij |2,





1/2

(7.21)

where the first inequality is obvious and the second one is the well known relation of the

largest eigenvalue and the Frobenius norm (see e.g. Theorem 3.1.3 of Dennis and Schnabel

(1996)). For our purposes it is suffices that inequality (7.21) implies that ‖A‖1 converges to

zero, provided all its elements converges to zero.
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List of Symbols

a ∧ b a ∧ b = min(a, b)

a ∨ b a ∨ b = max(a, b)

β̂n M -estimator of the parameter β

β̂n R-estimator of the parameter β based on Wilcoxon scores

β̂
+
n signed R-estimator of the parameter β based on Wilcoxon scores

βz βz = (β1, . . . , βp−1)
T

β̂z β̂z = (β̂1, . . . , β̂p−1)
T

dx z dx z = 1
n

∑n
i=1 xip zi

DI
n type I confidence interval

DII
n type II confidence interval

Dn(b) Dn(b) =
∑n

i=1(Yi − bTxi)(Ri(b) − n+1
2 )

f density of the errors in the model (1.1)

F cumulative distribution function of the errors in the model (1.1)

Φ cumulative distribution function of N(0, 1)

ℓ∞(T ) set of all uniformly bounded real functions on T

n−δ n−δ = ⌊n(1 − δ)⌋
nδ nδ = ⌈n(1 + δ)⌉
N (µ, σ2) normal (Gaussian) distribution on R

Nk(µ,Σ) normal (Gaussian) distribution on Rk

Q rational numbers

R real numbers

R∗ extended real line – [−∞,+∞]

Rp p-dimensional euclidean space

Sn(b) Sn(b) = 1
n3/2

∑n
i=1(xi − x̄n)Ri(b)

S+
n (b) S+

n (b) = 1
n3/2

∑n
i=1(xi − x̄n) sign(Yi − bTxi)R

+
i (b)

ul the vector with the l-th component 1 and the other components 0

T 2
np T 2

np = 1
n

∑n
i=1 x

2
ip

T 3
np T 3

np = 1
n

∑n
i=1 |xip|3

v1 the first column of the matrix Vn

Vn the matrix 1
n

∑n
i=1 xix

T

i
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Vz
n the matrix 1

n

∑n
i=1 ziz

T

i

ωnii the i-th diagonal element of the matrix Ωn = V−1
n

Ω the limit of V−1
n , that is Ω = limn→∞ Vn

ωii the i-th diagonal element of the matrix Ω

xi the i-th row of the design matrix X

X the design matrix, X = (xij)
j=1,...,p
i=1,...,n

Y the vector of observations, Y = (Y1, . . . , Yn)
T

zα zα = Φ−1(1 − α
2 ), with Φ−1 being the inverse cdf of N(0, 1)

zi zi = (xi1, . . . , xi p−1)
T

List of symbols depending on the type of estimator

The partial derivatives are denoted by lower subscripts.

M-estimator with fixed scale

Let us denote λ(t) = E ψ(e1 + t) and λ(2)(t) = E ψ2(e1 + t). Then

γ1 = λ′(0), γ2 = λ′′(0), γ01 = λ
(2)
t (0).

For ψ absolutely continuous (plus some integrability conditions)

γ1 = E ψ′(e1), and γ01 = 2 E ψ(e1)ψ
′(e1).

For ψ a step function (2.14) or equivalently (2.15),

γ1 =

m
∑

j=1

βj f(qj) and γ01 =

m
∑

j=1

α2
j [f(qj) − f(qj−1)].

Finally

anF =
zα σψ

√

ωnpp

γ1
, aF =

zα σψ
√
ωpp

γ1
, where σ2

ψ = E ψ2(e1).

Studentized M-estimator

Let us denote λ(t, u) = E ψ(e1+t
Seu ) and δ(t, u) = E

e1
S ψ

′(e1+t
Seu ). Then

γ1 = λt(0, 0), γ1e = −λu(0, 0), γ2 = λtt(0, 0), γ2e = δt(0, 0), γ2ee = −δu(0, 0).

Let us denote λ(2)(t, u) = E ψ2(e1+tSeu ). Then

γ01 = λ
(2)
t (0, 0), γ01e = −λ(2)

u (0, 0).
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For ψ absolutely continuous (plus some integrability conditions)

γ1 = E
1
S ψ

′(e1S ), γ1e = E
e1
S ψ

′(e1S ), γ01 = 2 E ψ(e1S )ψ′(e1S ), γ01e = 2 E
e1
S ψ(e1S )ψ′(e1S ).

For ψ a step function

γ1 =
m
∑

j=1

βj f(S qj), γ1e = −
m
∑

j=1

S qjβj f(S qj), γ01 =
m
∑

j=1

α2
j [f(qj) − f(qj−1)].

Finally

anF =
zα σψ

√

ωnpp

γ1
, aF =

zα σψ
√
ωpp

γ1
, where σ2

ψ = E ψ2(e1S ).

R-estimator with Wilcoxon scores

γ = E f(e1), anF =
zα
√

ωnpp

γ
√

12
, aF =

zα
√
ωpp

γ
√

12
.

List of abbreviations

a.s. almost surely

cdf cumulative distribution function

CI confidence interval

FOAL first order asymptotic linearity

FOAR first order asymptotic representation

SOAL second order asymptotic linearity

SOAR second order asymptotic representation

SUB ‘sequential uniformly bounded’ (see (5.9))

ucp uniformly continuous in probability (see Definition 5.2)

List of conditions

Conditions on the design points

X.1
1

n

n
∑

i=1

c2in = O(1), lim
n→∞

max1≤i≤n |cin|√
n

= 0.

X.2
1

n

n
∑

i=1

|xin|22 = O(1), lim
n→∞

max1≤i≤n |xin|2√
n

= 0.
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X.3

lim
n→∞

max
1≤i≤n

|cin| |xin|2√
n

= 0.

X.4

B2
n =

1

n

n
∑

i=1

c2in |xin|22 = O(1).

X.5
n
∑

i=1

cin = 0.

XX.1
1

n

n
∑

i=1

|xin|42 = O(1), lim
n→∞

max1≤i≤n |xin|2√
n

= 0.

XX.2 There exists a limit (p× p) matrix V

V = lim
n→∞

Vn = lim
n→∞

1

n

n
∑

i=1

xin xT

in,

which is positive definite.

XX.3 There exists a ∆ ∈ R such that

∆ = lim
n→∞

√
n(
√

ωnpp −
√
ωpp).

X’.1
1

n

n
∑

i=1

c2in = O(1), lim
n→∞

max1≤i≤n |cin|
n1/4

= 0.

X’.2

lim
n→∞

max1≤i≤n |xin|2√
n

= 0.

X’.3
1

n

n
∑

i=1

|cin|2|xin|2 = O(1).

X’.4 There exists a δ > 1
2

B2
n =

1

n

n
∑

i=1

|cin| |xin|1+δ2 = O(1).

XX’.1
1

n

n
∑

i=1

|xin|32 = O(1), lim
n→∞

max1≤i≤n |xin|22
n1/2

= 0.
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Conditions on the ψ function and cdf F used in M-estimation

A.1 ψ is a continuous piecewise linear function with the derivative

ψ′(x) = αj , for rj < x ≤ rj+1, j = 1, . . . , k,

where α0, α1, . . . , αk are real numbers, (usually α0 = αk = 0) and −∞ = r0 < r1 <

. . . < rk < rk+1 = ∞.

A.2 The cumulative distribution function F is continuous at the points r1, . . . , rk.

A.3 The cumulative distribution function F is absolutely continuous with a derivative which

is continuous at the points r1, . . . , rk.

GenFx.1 (GenSt.1) The function h(t) = E ρ(e1 − t) (or h(t) = E ρ(e1−tS )) has a unique

minimum at t = 0.

SmFx.1 ψ is absolutely continuous with a derivative ψ′ such that E ψ′(e1)2 <∞.

SmFx.2 The function ψ′(e1 + t) is continuous in the quadratic mean at the point 0, that is

lim
t→0

E [ψ′(e1 + t) − ψ′(e1)]
2 = 0.

SmFx.3 The second derivative of the function λ(s) = E ψ(e1 + t) is finite and continuous at

the point 0.

SmFx.4 There exists a δ > 0 such that sup|t|<δ E ψ4(e1 + t) <∞

SmFx.5 The function λ(2)(t) is continuously differentiable in a neighbourhood of the point

zero.

SmSt.1 ψ is absolutely continuous with a derivative ψ′ such that E ψ′ (e1
S

)2
<∞.

SmSt.2 There exists δ > 0 such that

lim
t→0

sup
|u|<δ

E [ψ′ ( e1+t
Seu

)

− ψ′ ( e1
Seu

)

]2 = 0

and

lim
u→0

E [ψ′ ( e1
Seu

)

− ψ′ ( e1
S

)

]2 = 0.

SmSt.3 The function λ(t, u) = E ψ(e1+t
Seu ) is twice differentiable and the partial derivatives

are continuous and bounded in a neighbourhood of the point (0, 0).

SmSt.4 There exists δ > 0 such that sup|t|<δ,|u|<δ E ψ4(e1+tSeu ) <∞.

SmSt.5 The function λ(2)(t, u) = E ψ2(e1+tSeu ) is continuously differentiable in a neighbour-

hood of the point (0, 0).
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Step.1 F has a continuous derivative in a neighbourhood of the points q1, . . . , qm.

Step.2 For every j ∈ {1, . . . ,m} there exists a δj > 0, νj >
1
2 and a Cj < ∞ such that for

every |t| < δj

|f(qj + t) − f(qj)| ≤ Cj |t|νj .

Sym The distribution of the errors is symmetric and the ψ-function is antisymmetric, that

is F (x) = 1 − F (−x) and ψ(x) = −ψ(−x) for all x ∈ R.

Conditions on the distribution function and density used in R-estimation

W.1 F is absolutely continuous with a derivative f such that E [f(e1)]
2 <∞.

W.2 The function f(e1 + s) is continuous in the quadratic mean at the point zero, that is

lim
s→0

E [f(e1 + s) − f(e1)]
2 = 0.

W.3

lim
∆→0

1

∆2

∫ +∞

−∞

∫ +∆

−∆
[f(z + y) − f(y)]2dz dy = 0.

W.4 The density of the distribution of the errors is symmetric, that is f(x) = f(−x), for

any x ∈ R.

W.5 There exist δ > 0 and C <∞ such that for all |t| ≤ δ

E |f(e1 − t) − f(e1)| ≤ Ct.
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