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Chapter 1

Introduction

Statistical inferences could not be based solely upon the observations. To be able to answer the
questions of scientific interest, statisticians have to assume, that there is a random mechanism
producing data. This random mechanism is usually called a model. Obviously, the more we
know about the model, the more efficiently we can handle data. There exists huge literature
about optimal procedures for models, which are specified in a great detail.

Nevertheless, the research initiated by Peter J. Huber showed that even very tiny depar-
tures from model assumptions may have a dramatic effect on optimality of procedures. This
initiated a highly dynamic growth of research literature on statistical methods, which are not
so sensitive to the departures from a model, but remain efficient if this model holds. Roughly
speaking, we can distinguish robust methods and nonparametric methods, which present very
broad and lively parts of mathematical statistics.

Although the range of statistical methods is very diverse these days, the basic problem
remains estimation in location and regression problems. Robust and nonparametric statistics
offer us basically three families of estimators — M-estimators, L-estimators and R-estimators.

The aim of this thesis is to give some further insights into the asymptotic properties of
the M-estimators (of location and regression) as well as an R-estimator based on Wilcoxon

scores, which belongs to the most popular R-estimators.

1.1 M-estimators

Suppose that our observations Y = (Y1,...,Y,)T follow the linear model
Y;-:ﬁlxil—l—...—kﬂpxip—i—ei:ﬁTxi—i—ei, 1=1,...,n, (1.1)

where B = (B1,...,8,)7 is a vector of unknown parameters, x; = (z;1,...,%ip)", for i =

1,...,n, are rows of a known matrix X,, and eq,...,e, are independent, identically dis-

tributed random variables with an unknown cumulative distribution function (cdf) F'.



Then given an absolutely continuous function p with a derivative v, we define a fixed scale

(studentized) M-estimator Bn of the parameter 3 as the solution of the minimization

p (YZ - th,-> := min, (or p (YZ%T’“) = min) ,

n

where S, is an appropriate scale estimator.
If the function ¢ = p’ is continuous, then the estimator ,C:}n is a solution of the system of

equations
n
ZXW(YZ' —b'x;)=0 (or le IZL Xi) = 0) ) (1.2)
i=1

As the defining equation (1.2) gives us more ﬂex1b1hty in tuning properties of M-estimators
by a choice of a function v, B, is usually defined as a carefully chosen root of (1.2). For
simplicity, we will focus on an M-estimator with a fixed scale for this moment.

As the M-estimator is defined implicitly, it is not obvious how to make statistical inference
based on it. A very elegant approach to the investigation of asymptotic properties of Bn
(consistency, asymptotic normality) is based on the ‘uniform linearity results’. This approach

studies the (vector) process

le [ e — L) — ()| + VA Vat,  teT={seR:[s| <M},

(1.3)

where V,, = %Z?:l X,-x;'—7 v = E4/(e1), M is an arbitrarily large but fixed constant, and
| - |2 stands for the euclidean norm.

It is well known that under some mild conditions supye7 |Tr(t)| = 0p(1). This result,

sometimes called the first order asymptotic linearity (FOAL), is the main tool in proving the

first order asymptotic representation of the estimator Bn, that is

\/E(Bn ’Yl\f ZXZ ez + Rny (14)

where the remainder term R,, is of order o,(1). It turns out that to investigate the remainder
term R, more carefully, a more delicate analysis of the process T,, defined in (1.3) is needed.
Jureckova and Sen (1989b) proved that if the function ¢ and the distribution of errors F' are
sufficiently smooth, then supicr [T5,(t)| = ( =), which further gives us that the remainder
term R, is of the same order. The asymptotlc distribution of the random variable \/n R,
was studied by Boos (1977) for the special case of a location model and by Jureckova and Sen
(1990) for a general M-estimator of a scalar parameter. Arcones and Mason (1997) generalize
these results to multivariate M-estimators.

Our thesis extends these results in the following way. If ¢ and the underlying distributions
of the errors are sufficiently smooth, then we find a simple process P,, (with a limiting gaussian
distribution) linear in the parameter t such that

sup |\/ﬁ Ty (t) — Pu(t)] = 0117(1)'

teT



This gives us not only the asymptotic distribution of the remainder term n'/2R,, of (1.4),
but we even derive a two-term von Mises expansion for the M-estimator Bn This expansion
enables us to compare the M-estimator with its one-step approximations or with some other
estimators which are first order equivalent to the chosen M-estimator. Our results include
studentized M-estimators as well.

The situation is qualitatively different if 1 is a step function. In this case we are only able
to find the asymptotic distribution of the remainder term n'/4R,,. This extends the results
of Jureckova and Sen (1989a), who dealt with the (unstudentized) location case, as well as

the results of Knight (1997), who consider the special case of quantile regression.

1.2 R-estimators

Consider the linear regression model (1.1). Let R;(b) be the rank of Y; — b'x; among Y7 —
b'xi,....Y, —b'x, and %, = (Tny--- ,inp)T be the vector of the column means of the

design matrix X. Further let a,(i),i = 1,...,n be a nondecreasing set of scores, satisfying

> an(i) =0.
=1

These scores are usually generated as a,(i) = qb(n%rl), or an(i) = E ¢(Up:i), where ¢ is a
nondecreasing function defined on (0,1) and U,,; is the i-th order statistic from a sample of n
independent random variables uniformly distributed on (0, 1).
The R-estimator (3,, is usually defined as the argument of the minimum of the ‘Jaeckel’
measure of dispersion (Jaeckel (1972)), that is
n
3, = arg min D,,(b), where Dy(b) = (¥; —b'x;)ay (Ri(b)). (1.5)
beER, —
Jaeckel (1972) showed that the function D, (b) is nonnegative, continuous and convex in b €
R,. The convexity ensures that D,(b) is differentiable in b almost everywhere with the

derivative

ODn(b) <~ ‘
o ——;xlan(RZ(b)).

Thus B may be defined as the solution of the following minimization (see Jureckova (1971))
p n
. 1
Z |S;(b)| := min, where S,,(b) = meYo] Za:,-j an(R;(b)). (1.6)
j=1 i=1

It can be shown that both definitions are asymptotically equivalent (Jaeckel (1972), or
Jureckovd and Sen (1996)). For our purposes it will be more convenient to work with the
definition (1.5).



In fact, we will only consider the case of Wilcoxon scores, that is a, (i) = n+r1 — % The
reason is that these scores give the resulting R-estimator a relatively simple structure. On the
other hand this “Wilcoxon type’ R-estimators belong to the most widely used R-estimators,
see e.g. McKean (2004) or Terpstra and McKean (2004).

From any of the definitions of R-estimators we see that, informally speaking, a regression

estimator ‘almost’ solves the following system of equations

1 & _ !
Su(b) = (Sp1(b), ..., Spp(b)T = =7 > (xi — Xn)Ri(b) = 0. (1.7)
i=1
Let ¢in, 1 < i < n,n = 1,2,... be a triangular array of constants satisfying some

conditions which will be specified later. In view of the ‘normal equations’ (1.7), and similarly
to M-estimation, it is not surprising that to investigate the asymptotic properties of ,@n, it

turns out to be useful to study the asymptotic behaviour of the processes

- 1< , 1< - Tx, Tx,
Sn(t) = E ;Cin Rl(t) = E Z_;C”LZ_;H{EZ — tﬁ Z ej — tTnj}’ (18)
Tn(t) = Sn(t) - gn(o)a (19)
Tn(t) = Tn(t) —E Tn(t)a (1'10)
/ Txi Tx Txn
where t = (t1,...,t,)T and R;(t) stands for the rank of ei—t\/ﬁ among el—t\/ﬁl b ,en—t\/ﬁ .

Similarly to the previous section, we will index these processes by the set T'= {s € RP : |s|y <
M}, where |- |2 stands for the euclidean norm, and M is an arbitrarily large but fixed constant.

The process Syj(b) of the equation (1.6) and the process S, (t) of (1.8) are connected
through the equation

Snji(b) = ﬁ S, (vn(b — B)), where ¢, = 345 — ;.

The standard result, which is usually called the first order asymptotic uniform linearity,

states that
1

sup — Tnt—ﬁ ¢ Xi| = 0,(1), where =E f(e :/ 2(z) dx. 1.11
sup (t) ﬁ; »(1) v =E f(e1) [ (@) (1.11)

The results of this type proved to be very useful as they made possible an elegant asymptotic
approach to statistical inference based on R-estimators. The research in this area was initiated
by Jureckova (1971). For an overview of results see Jureckovéd and Sen (1996) and Koul (2002).

For the case of a simple regression (a one-dimensional parameter 3) and Wilcoxon scores
Jureckova (1973) showed that if we leave out the scaling factor 1/4/n in (1.11), we obtain
a stochastic process which converges weakly to a linear process. This result was further
generalized for the Wilcoxon signed-rank statistics by Antille (1976) and for some other types
of score functions by Huskova (1980), Puri and Wu (1985) and Kersting (1987).

In our thesis, we generalize the work of Jureckova (1973) to the case of a multi-dimensional
parameter 3 = (f,... ,ﬁp)T. Our approach can be modified for a Wilcoxon-signed rank

statistic (Section 3.4) and some other estimators (Section 3.5).

4



1.3 Thesis outline

The rest of this thesis is organized as follows.
Chapter 2 and Chapter 3 are of technical character. In Chapter 2 we are dealing with the

M-processes of type (1.3) and with the ‘studentized’ processes of the form

1/2

M, (t,u) = En:ci [¢ <e_"7

1=1

“es = £2)/8) = wler/9)]

where T = {(t,u) : |t|a < M, |u| < M} (C RPHY).

Chapter 3 is dealing with the processes of the form (1.8) and (1.10).

The next two chapters, that is Chapter 4 and Chapter 5 are based on the technical results
of the previous chapters.

In the first part of Chapter 4 we derive a two-term von Mises expansion for an M-
estimator based on a ‘smooth’ function % and for an R-estimator based on Wilcoxon scores.
Next we use these results to compare an M-estimator with its one-step approximation. This
generalizes the work of Jureckova and Sen (1990) as well as it provides a partial theoretical
background for the work of Welsh and Ronchetti (2002). For an M-estimator generated by
an ‘unsmooth’ function ¢, we find the asymptotic distribution of the remainder term in the
first order asymptotic representation (1.4).

In the second part of Chapter 4 we propose an alternative way of constructing a confidence
interval for a single regression parameter and we investigate its properties. We compare this
alternative procedure with the ‘traditional’ (Wald type) approach. This extends the results
of Boos (1980), who proposed this alternative way of constructing confidence intervals for a
location problem. In the case of R-estimators we generalize some results of Jureckova (1973).

Chapter 5 is dealing with a sequential problem of a confidence interval of a fixed size.
The results of this chapter for M-estimators extend the work of Jureckovd and Sen (1981a)
and Jureckovd and Sen (1981b), where the linear model (1.1) with one explanatory variable
(without intercept or studentization) was treated. The results for R-estimators generalize the
work of Jureckova (1978) and Huskova (1980) for a special case of Wilcoxon scores.

In Chapter 6 we briefly review the results obtained in this thesis and discuss some further
possible extensions of this work.

The appendix in Chapter 7 contains most of the auxiliary results used in the proofs. We
present the proofs for those results that could not be found in the literature.

Finally, following References we add a list of symbols and regularity conditions which are

used throughout the text.



Chapter 2

SOAL of M-processes

In this chapter we generalize the results of Jureckova and Sen (1989b), Jureckovd and
Sen (1990), and Knight (1997). The basic building stone of our proofs is 2.11.11 Theo-
rem of van der Vaart and Wellner (1996). The idea of using this theorem for our purposes
originated from Knight (1997), who used this theorem to find the second order asymptotic
distribution of L regression estimators. For the sake of future reference, we derived several
modifications of this theorem, which are to be found in Appendix.

The chapter is divided into two sections depending on the smoothness of the function .

Primarily we distinguish two cases:
e 1) is an absolutely continuous function;
e 1 is a step function.

To shorten the terminology, by ‘smooth-1’ we will mean that ¢ is absolutely continuous and
by ‘unsmooth-1)’ we will mean that v is a step function.
As the studentization of M-estimators brings in new technical and theoretical difficulties,

we will usually treat fixed scale estimators and studentized estimators separately.

2.1 An absolutely continuous v

2.1.1 Fixed scale
To motivate the following investigation, let us recall that we are considering the linear model
Kzﬂlwil—i_"'—’_ﬂpwip—i_ei:ﬁTXi+ei7 izla"'7n7

where B = (B1,...,8,)7 is a vector of unknown parameters, x; = (z;1,...,%ip)", for i =
1,...,n, are known constants, and ey, ..., e, are independent, identically distributed random

variables with a cumulative distribution function (cdf) F.



Notations

Let t = (t1,... ,tp)T. We will be interested in the asymptotic behaviour of the processes
" TX‘
Ma(t) =3 e [w(es = ) —v(e)] (2.1)
Mn(t) = Mn(t) —E Mn(t)v (2'2)

witht € T = {s € RP : |s|a < M}, where |- |2 stands for the euclidean norm, and M is an
arbitrarily large but fixed constant.
Assumptions

First we formulate assumptions on the design x1,...,x, and the constants cq,...,c,. As it

is sometimes convenient to allow to vary these quantities with n, we formulate the conditions

for the triangular arrays x5, ..., Xpn and cin, ..., Con.
X.1 .
LYo, mEsselinl
X.2 .
DY bl =0, i sk
a el i
e R =0,
X.4

ZC |Xm|2— O(1).

The conditions X.1-3 are analogous to the conditions in Jureckova (1973). The last con-

dition X.4 is for our convenience. If B2 = O(1) was not satisfied, we would work with the

process M/, (t) = Mg( ). To simplify the notation, we will write x; instead of x;,, and ¢; instead
of ¢;p,.
Remark 1. Put e, = maxi<i<p M]x ‘ . We will often use this simple observation:
t'x; M |x;
max sup ‘| < g, = max X2 X2, (2.3)
1<i<n g n 1<i<n y/n n—oo
Later, we will substitute z;; (j = 1,...,p) for ¢; to find the second order asymptotic
distribution of the regression M-estimator Bn Taking ¢, = |Xin|2 we get the following

requirements on the design:



XX.1

1 & 4 . Inaxi<i<n Xin |2
= Zl Xinls =O(1),  and - Jim =S 0, (2.4)
1=

In the next, we will simultaneously impose conditions on the distribution function F' and

the function . The abbreviation SmFx stands for ‘a Smooth ¢ and a Fixed scale’.

SmFx.1 1 is absolutely continuous with a derivative 1’ such that E ¢/(e1)? < oo.

SmFx.2 The function v¢’(e; + t) is continuous in the quadratic mean at the point 0, that is
}/iH(l) E [¢/(€1 + t) — ¢/(€1)]2 =0.

SmFx.3 There exists a continuous second derivative of the function A(¢) = E ¢(e; + t) at
the point 0.

As we will see later, the first two conditions are used to study the asymptotic behaviour of
the process M,,. The third condition is necessary to approximate E M,, (the mean function
of M,).

If the function v is twice differentiable, v/’ and 1" are both bounded continuous, then it
is easy to verify that conditions SmFx.2-3 are met. Notice that in this case we do not need
to make any assumptions about the distribution of the errors.

An important class of functions which do not possess a smooth second derivative are piece-

wise linear functions. We will need the following assumptions about this class of functions.

A.1 ¢ is a continuous piecewise linear function with the derivative
Y (x) =, forrj<z<rj, j=1,...,k,

where ag, a1, ..., q are real numbers, (usually ag = o = 0) and —oco = 19 < 1] <

e < T < Tpy1 = OO
A.2 The cumulative distribution function F' is continuous at the points rq,..., 7.

A.3 The cumulative distribution function F' is absolutely continuous with a derivative which

is continuous at the points rq,...,rg.

The condition A.1 trivially implies SmFx.1. Analogously A.2 ensures SmFx.2 and A.3

ensures SmFx.3.

Remark 2. Probably the most famous 1 functions are (in alphabetical order)

e Andrews’ sine wave ¢(z) = sin (¥ z) I{|z| < k}



SmFx.2 SmFx.3
Andrew F' is continuous at +k f exists and is continuous at +k
Hampel F is continuous at *+a, £b,+c f exists and is continuous at +a, +b, £c
Huber F' is continuous at +k f exists and is continuous at +k
Tukey OK F' is continuous at *+k
P(x) = e OK OK

Table 1: Conditions on the underlying distribution for different ) functions

e Hampels’ function

2 08
e o
8

Q

Y(x) = (

(@)
S
vV
o

and ¢ (z) = —¢(—=z) for z < 0.

e Hubers’ function ¢(z) = max{min{z, k}, —k}

2

2
o Tukeys’ biweight ¢ (z) = % (1 - z—2> I{|x| <k}

Let f stand for the derivative of the cumulative distribution function F'. Table 1 present the
requirements on the underlying distribution of the errors so as the conditions SmFx.2 and

SmFx.3 are met.

Many of the following results (in particular for studentized M-estimators) simplify signif-
icantly under some symmetric assumptions. For the sake of future reference, we state this

assumption explicitly.
Sym The distribution of the errors is symmetric and the -function is antisymmetric, that

is F(z) =1— F(—z) and ¥(z) = —¢(—=x) for all z € R.

2.1.2 Theorems
For a function g : T'— R set
gl = sup [g(s)|.
seT

Theorem 2.1. Under conditions X.1-4 and SmFzx.1-2 it holds that

I RN B
flelg Mn(t)"‘\/ﬁ;‘%xzw (ei) — 7] op(1), (2.5)

where y1 = E ¢/ (e1).



Specially, if we put
1 n
= Z & xix]
i=1

and the matriz B, is positive definite for all n large enough, then the process M/ (t) =
Mn(BT_Llﬂt) indexed by the set T converges in distribution to a centered Gaussian process
{Y (t),t € T} with the covariance function cov(Y (t),Y (s)) = 02t's, where 0? = var{y/(e1)}.

Remark 3. One may wonder, whether the quantity on the left-hand side of (2.5) is measurable,
as we are taking supremum over an uncountable set. But all the the processes involved in the
supremum are continuous in the parameter t and the index set T' is compact, which ensures

the measurability of the supremum in (2.5).

Proof. Let us denote

Tx; Tx _
Zuilt) = i [U(es = £25) = h(es) + 2/ (er)]  amd  Zo(t) = > Zut).
Then our theorem states that
1Z0llp = 120 — E Znllg = 0p(1). (2.6)

To prove (2.6), we need to check the assumptions of Corollary 7.13. As Z,;(0) = 0 for
i=1,...,n, it is sufficient to verify (7.5).
First, we notice that for arbitrary t,s € T'

|Zni(t) — Zni(s)| < leil

M .
Put &, = max;<j<, \‘;%"2 and calculate

n tTx; 2
Jn
Z E sup [Zn(t) — 2 < Z lc;]?E  sup /sTx- [¢'(e; —v) — ' (e;)]dv
=1 |t—sl2<e [t—s|2<e \/ﬁ’
- Ty sTx, f
< Z |ci|*E  sup t\/g - 25 o, W(ei—v) - W (e5)Pdv
i1 [t—s|2<e nl
M\xl|2
< Z |Cz|2 E\Xzb / M\x ‘2 ei _ ’U) o zﬁ'(ei)]de
2€M

Z\cz\ Ixi[3 sup E [ (er —v) — /(1)) < Cery,

lv|<en

where 7, = supj,<., E [¢'(e1 —v) —¢'(e1)]. By the assumptions of the theorem we can
take C' large enough, so that the last inequality holds uniformly in n and 7, = o(1), which
verifies (7.5) and proves the first part of the theorem.

10



To show the second part of the theorem, about the process M/ (t) = Mn(Blept), we
utilize the asymptotic expansion (2.5), which gives us that uniformly in T
_ B;l/2t'|' n
M, (t) = BV Z ci X [ (e;) — ] + op(1).

i=1
Now it is quite easy to verify the convergence of the process on the right-hand side by Theo-
rem 7.12 (condition X.3 is utilized here). O

Remark 4. Let us replace the condition B.3 by an assumption that there exists § > 0 such

that the set of random variables
G = {[W'(er = 5)% |s| < 6} (2.7)

is uniformly integrable (Definition 7.16). Then we can still prove the tightness of the pro-
cess M, which yields ||M,|r = O,(1).

The proof is based directly on Theorem 7.12. Put €, = maxi<;<p M\'}%‘Q and define the
metric p on T as p(t,s) = C+/]t — s|z, where C is a constant which will be specified later.

Denote B(e) (C T') a p-ball of radius €. Then

Z E sup [Myi(t) — My(s)]? < Z i E sup / f Y (e; —v)dv

i—1 tsE€B(e) i—1 t,seB(e
2 tTXi _ STXZ‘ \/ﬁl I, _ 2
< Z il E ) Ss;lé) Aol ST? [¢'(e; —v)] " dv
2
(¢ (e1 — v)]
|v|<en

We immediately see that if we take C' large enough then our assumptions X.3-4 and (2.7)
imply the metric p(t,s) = C'/|t — s|a to satisfy both (7.3) and (7.4) of Theorem 7.12.
Analogously

2 N

M M vlxilp )12
Z E I Maillr Tty < 30 D leil il E /_M v (-] o

i=1 =1

1d Mleil?xil? M[¢'<el_”|"—”)rdv>772 ——0
n M NG n—oo

which implies that the assumption (7.2) is satisfied as well.

Now we would like to approximate the expectation of the process M, (t). Let 7, stand
for the second derivative of the function A(t) = E ¢(e; + t) at the point 0. That is o =
Z?:o aj [f(rj+1)—f(r;)] for a piecewise linear ¢ and 2 = E 1" (e;) for a sufficiently smooth ¢.!

! This is not correct in a strict mathematical sense as the smoothness of v alone does not allow us to
interchange differentiation and integration. But as we write down the formulae for 71,2, ... only to give the

reader an intuition behind this quantities, we will not discuss this problem in this thesis.
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Lemma 2.2. Under the conditions X.1-4 and SmFx.1-3 it holds uniformly int € T
T n
E M,(t) = _% D cixi+ B tTWat +o(1),
i=1
where W,, = % S exix].

Proof. By the assumption SmFx.3 the function A(t) = E A(e; + t) has a second derivative.

This enables us to calculate

Ru(t) = E My (t) + ’%T Y cixi — ZtTWt
=1

= ;CiE [¢(el _ tj/:g) —1p(e1) + t\T/%i W (er) — 7_22(%)2}

[\

- Z € [A(_t\-r/%) B )‘(0) + t\-r/%i /\,(0) — l( \/’%i)2>\//(0)]

_nc, L\/%i_l_v / —U// U:nC' \/ﬁl ! //_w_// w dv
=3 [ [N X0 X O] do = Yo [ [ ) - v0) dwa

Let &, be given by (2.3). We get

M?2
[ RnllT < - Z lei| [x3]3 sup [N'(t) — X"(0)].

i=1 [t|<en

But the last quantity converges to zero as the second derivative of the function A(t) is con-

tinuous at zero and as the Cauchy-Schwartz inequality implies us

1 & 1 « g 1/2)(2 X.4
O SCNER L Sl B e O
i=1 i=1 i=1

The lemma is proved. O

Combining Theorem 2.1 and Lemma 2.2 yields the asymptotic representation for the
process {M,(t), t € T'}.

Corollary 2.3. Under conditions X.1-4 and SmFx.1-3 it holds uniformly int € T
T n
.
M, (t) + % > exi = - D axily () — )+ B tTWat + 0p(1). (2.8)
j i=1
Remark 5. The symmetry condition Sym implies 72 = 0 and the term l;tTWnt in the

expansion (2.8) vanishes.
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2.1.3 Studentized M-processes

As M-estimators are generally not scale invariant, in practice they are usually studentized.
Let S, be an estimator of a scale, which converges to in probability to S.
To investigate properties of studentized estimators, we need to study the studentized

M-processes and consider
- —n~1/2y Txi
My(t,u) = Y e v (77" (e — £2)/8) = v(ei/ )]
i=1
Put M, (t,u) = M, (t,u) — E M,(t,u) and take T = {(s,u) : |s|a < M, |u| < M} (C RP!) as
the index set with the metric p((t,u), (s,v)) = |t — 8|2 + |u — v|.

Assumptions

In the following, the abbreviation SmSt stands for Smooth Studentized.
SmSt.1 1 is absolutely continuous with a derivative ¢’ such that E ¢’ (%)2 < 0.

SmSt.2 the function 1)’ (651;?) is continuous at the point (0,0) in the quadratic mean, that

is
: I (et r(er)]? —
(t,u%ln%0,0) E[¢ (%5) —v¢' (%)] 0. (2.9)

SmSt.3 There exist second partial derivatives of the function A(t,u) = E 1(%42!) in a neigh-

bourhood of the point (0,0), which are continuous at the point (0, 0).

By Lemma 7.17, the equation (2.9) is certainly satisfied, if ¢’ is continuous.
If we suppose the function 1 to be twice differentiable then the condition SmSt.3 is met

provided the following functions

a(t,u) = Ew”(esl;rf,

btw) = E (%) (%)
o) = E[gEug),
d(t,u) = E [ (%]

are bounded and continuous in the neighbourhood of the point (0,0) and we can interchange
the derivative and the expectation. This condition is certainly satisfied if ¢ is constant for
all |z| > K (K is sufficiently large) and if ¢” is uniformly continuous.

If v/ is a piecewise linear function, then the conditions SmSt.1-3 are satisfied if we simply

replace the points rq,...,7; in the conditions A.2 and A.3 by the points Srq,...,S5 7.

13



Remark 6. Recall that in Remark 2 in Table 1, we gave a list of assumptions which ensures
the conditions SmFx.2-3 to hold for some of the most famous 1 functions. It is easy to
verify that we can construct an analogous table for the conditions SmSt.2-3. The only thing
we should do is to replace the points a,b, ¢,k with Sa,Sb,S¢c,Sk.

Before we proceed, it is useful to introduce some notation. In the following, the partial

derivatives of the functions A(t,u) = E ¢(%%!) and 6(t,u) = E % ¢/(4E) will be indicated

by lower subscripts. Put
WEN0.0) (CLEW(R). = M0.0) (FESV(R) 210

1= 2e0.0) (= HEW(2)). 2 =a0.0) (SE S (%)),
e = 5,00) (=€ (3747 (3)).

The formulae in the brackets are for the case of ¢ sufficiently smooth (and integrable). We

0

omit the formulae for the case of a piecewise continuous v as they are rather complicated in

general case. By the assumptions SmSt.1-3 all these quantities are finite. Notice that
)\tu(oa 0) =71+ V2 and )\uu(oy O) = Y1e T V2ee-

Theorem 2.4. Let the conditions X.1-4 and SmSt.1-2 be satisfied, then

]\Zn(t,u)—l—:‘/—%E:CixZ < (e;/S) — \/—ch 3 Y (e;/S) 716] =op(1).

i=1

sup
(t,u)eT

Proof. Let us denote
Zni(t,u) = i [0 (7 (e = £2)/8 ) = h(ei/ ) + §28 0 (e4/S) + =S (ei/S)]

Then after a little algebra we get

—1/2

| Zni(t, u) = Zni(s,v)| < Z |cil S x; [seul/\/ﬁ W/ (3217\7}5) - %T// (sef;x/ﬁﬂ dr

n e /U/\/ﬁ[ Vv (g%) V(%)) d
+ E Ci i ) — 2 L) | dwl .
P o/ S S S S

The rest of the proof is analogous to the proof of Theorem 2.1. O

The following lemma approximate the expectation of the process M, (t,u).

Lemma 2.5. Suppose that the conditions X.1-4 and SmSt.1-3 are satisfied and let us denote
W, = % S eixix!. Then uniformly in (t,u) € T

n
E M,(t,u) = '“t E CiX; — 716“5 ci
n
i=1

n
i
+ 2t TW,t 4 D2t N7y (et Z ci+o(1). (2.11)
i=1

14



Proof. The proof of this lemma is akin to the proof of Lemma 2.2. O

Remark 7. If "7 | ¢; = 0, then the second and the fifth term in the expansion (2.11) disap-
pear. Even simpler situation occurs if the symmetry condition Sym is satisfied. In this case

Y2 = Yie = Y2ee = 0, which yields a more ‘friendly’ expansion
E M, (t,u) —ntl ch i + (WE—FM Jut? ch x; + o( (2.12)

Combining Theorem 2.4 and Lemma 2.5 gives us the asymptotic representation of the

process M,.

Corollary 2.6. Under conditions X.1-4 and SmSt.1-3 it holds uniformly in (t,u) € T

n
T
M)+ 25 e+ 252 zcz

Zczxz 5v/S) =m] = 2 alg v/ - me]

n
+ 2T 4 2elut N, o Opeedmo)? Z ci+op(1). (2.13)
i=1

2.2 A step function v
In this section we suppose that the function 1 is a step-function, that is
P(z) = for g1 <x<qj, j=1,...,m, (2.14)

where g, aq, ..., ay, are real numbers (not all equal) and —co = ¢y < @1 < ... < g = 00,
where m is a positive integer.

For our purposes it is sometimes more convenient to rewrite the function v in a form

=Y Bz < g5}, (2.15)

i=1

where 3; = a; —ajyq1 for j=1,...,m —1 and B, = .

2.2.1 Fixed scale

In the following, we will be interested in the processes

M 1/4 ch [ e — & ) — (e (2.16)

Mn(t) = Mn(t) —E Mn(t)a (2'17)
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witht € T'={s € RP : |s|o < M}, where | - |5 stands for the euclidean norm, and M is an
arbitrary large but fixed constant.

Notice that in comparison to the case of a smooth v we scale the process M,, with n~1/4,
As we will see later, this is because for small ¢ the variance var{¢)(e; —t) — 9 (e1)} is not of

order ¢? (as in the case of a smooth ) but only of order |¢|.

Remark 8. To make the following results more precise, we need to make a few technical com-
ments. First, we look at the process M,, (M,) as a mapping from the underlying probability
space into £°°(T') (the space of bounded functions on T'). It is well known (see e.g. Billings-
ley (1968)), that the empirical distribution function viewed as a mapping into the space of
bounded functions is not Borel measurable. That is why we cannot expect our processes to
be measurable. In what follows, by the weak convergence of such processes we will mean the

(star) weak convergence in the sense of Hoffmann-Jgrgensen (see Appendix Section 7.3).

Assumptions
We will need a slightly modified assumptions on the design xi,,...,X,, and the constants
Clny---yCnn-
X’.1 .
1 9 . Inaxj<i<n |Cin|
EZCm 20(1), JI_)H;OT =0.
=1
X’.2
. MaXi<i<n |Xin|2
lim =0.
n—oo \/ﬁ
X’.3

1 n
= " Jeinl? [xinl2 = O(1).
ni4

X’.4 There exists a § > % such that

1 n
B = 5 Llewnl binls™ = 00
1=

Notice that in comparison with the conditions X.1-4 for a smooth function @ we have to

strengthen the convergence mlglfw — 0 to %ﬁf'w — 0. On the other hand we do
n n

not need to assume so much about the design points x1,,...,X,,. Finally if we put ¢;, = x;p,

the conditions X’.1-4 turns out to be

XX’.1

1< . 12
LS =0, gm DNzl
n & nooo pl/?

1=
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Thus in comparison with the condition XX.1 we only need the third moment of the norm of
the rows of the matrix X to be finite. To simplify the notation we will write shortly ¢; and
X;.

As the function 1 is not continuous, we need to impose the following smoothness conditions

on the cdf F' in neighbourhoods of the points of discontinuity of .

Step.1 F has a continuous derivative in a neighbourhood of the points ¢, ..., ¢n.

Step.2 For every j € {1,...,m} there exist 6; > 0, v; > %, and C; < oo such that for every
[t] < 9;
|flaj +1) = flag)| < C[t]".

Similarly to the case of a smooth ), we need the first condition to prove the asymptotic

tightness of the process M,, and the second one to approximate E M,,.
Remark 9. As there is only a finite number of discontinuities of v, the condition Step.2 is
certainly satisfied uniformly in j € {1,...,m} for v, d,C given by

v = min v, 0= min d; A1, C = max C}.
1<j<m 1<j<m 1<j<m

2.2.2 Theorems

Theorem 2.7. Provided the conditions X’.1-83 and Step.1 are satisfied, then the centered
process M, = M, — E M, is asymptotically tight.?

Moreover, if there exists a real function v : T X T — R such that for every t, s €T

1 n
lim — g les)? min([tTx;], [sTx; ) I{tTx;x]s > 0} = r(t,s), (2.18)
nmee

then the process M, converges in distribution to a centered gaussian process Z with the co-

variance function

cov{Z(t),Z(s)} =r(t,s) 204? [f(g;) — f(gj-1)]
j=1

Notice that in comparison with Theorem 2.1 we are not able to find an approximation up

to a remainder term of order o,(1), but only a limit process.

Proof. As the function v is a linear combination of jumps, without lost of generality it suffices
to consider ¥ (z) = I{z < ¢}.
Put

tT

Mui(t) = ci [(es = 52) — wler)| = i [I{er < g+ %) ~ e < g}

n

2See Definition 7.9 of Appendix
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To prove the theorem, we will verify the assumptions of Theorem 7.12 of Appendix.
Note that for arbitrary t,s € T

. Ty Ty .
|Mp;(t) — Mypi(s)| < |ci| I{e; lies between ¢ + t\/’g and g+ =2}

By assumption Step.1 there exists § > 0 such that the quantity K = SUP|y| <6 flg+w) is
finite. Put e, = maxj<i<p M\';%‘Q. The convergence ¢, — 0 implies that for all sufficiently
large n it holds supj, <., f(g +v) < K.

Let us define the metric p on T as p(t,s) = C'\/[t — s|2, where C is a constant which will

be specified later. Denote B(e) (C T') a p-ball of radius e. Further, for i = 1,...,n define

l' — : f WTX,L' J— WTX,L' .
= R s e )
Obviously
% |2 4€2|%;]o
u; —l; < sup |t —slo < ——.
' ' T t,s€B(e) 02\/ﬁ

Thus we can bound

n

E* sup [Mpi(t) — My(s))?
=1 t,seB(e)

1 o, o 42K N, o
< 121F N F 1) < ) o
=/ ; |cil” [F'(q + uq) (q+1)] < C2n ; el % [xil2
By the assumptions of the theorem we immediately see that our metric p satisfies the equa-
tion (7.3) as well as (7.4) provided we take the constant C' in the definition of the metric p
large enough.

To verify the condition (7.2), calculate

n n
> B I Muillr L, firsny < B IMuillr T{ L85 le: — o] < 2222} > 9} (2.19)
i=1 =1

By assumption X’.1 max;<;<,, |c;| = o(n~'/4), which implies that the right hand side of (2.19)

diminishes for all sufficiently large n. This proves the asymptotic tightness of the process M,,.

To prove the second part of the theorem, it remains to show that the process M,, converges
marginally in distribution to the process Z. By Cramér-Wald device it would be enough to
verify that for any t1,...,tx € T, A1,..., A\ € R, k > 1 the random variable Z?:l A My, (t5)
converges in distribution to the random variable Z;?:l A\j Z(t;). But this will follow immedi-
ately by the Feller-Lindeberg theorem (Theorem 7.4) if we prove the pointwise convergence
of the covariance function of the process M,,, that is

lim cov{M,(t), M,(s)} = r(t,s) f(¢g), forallt,seT.

n—oo
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It is straightforward to calculate

cov{M,(t Z cov{Mp;i(t), Mpi(s)}

= % Z |ci|? E I{e; lies between ¢ and g + tTx; }H{el lies between ¢ and ¢ + S\/’il}
i=1

1 n
- — Z lci|? E I{e; lies between ¢ and g + & =} E I{e; lies between ¢ and ¢ + s’ o

\/ﬁ i=1

_ %gycﬁ [F <q+max{0, IR <q+min {2y STT’;})] +0(4)

2.18
- —Z|cz| £ (@) min(itTx . [T e Txix]'s > 0} 4+ 0(1) 22 1 (6,5) £(g),
which proves the theorem. O

Now we approximate E M, (t).

Lemma 2.8. Under the conditions X’.1-4 and Step.1-2 it holds

EM = 3/42627(2 Zﬁj QJ +O :113‘;4 ZCZX2+0

uniformly int € T.

Proof. Without loss of generality we can only consider the case ¥ (x) = I{z < ¢}. By the

assumption Step.2 there exists v > % such that

1/4§ch +£5) — F(q)] - 55 > eixi £(q)
i=1

thl

E M,(t) — 3/4chx2

tT

Step 2

_ ﬁzcz’/oﬁ[ﬂqﬂ)—f(q)]d nwz"’/

i—1
_ ¢ - Mlxifo |V cmrH v+1
= (v +1)nt/4 2_; il ( Vn > - (v + 1)n3/4+v/2 E_; |cal [T

Notice that the last quantity does not depend on t and it converges to zero by the assump-
tion X’.4. O

Combining Theorem 2.7 and Lemma 2.8 yields the asymptotic distribution for the pro-
cess {Mp(t), t € T'}.

Corollary 2.9. Under conditions X’.1-4, Step.1-2 and (2.18) the process
713‘;4 Zczxz Zﬁ] QJ teT
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converges in distribution to a centered gaussian process {Z(t),t € T} with the covariance

function
cov {Z(t), Z()} = r(t,9) }ja ~ flai-0)] ) |
where the function r(t,s) is given in (2.18).

2.2.3 Studentized M-processes

Unlike in the case of a smooth i the studentization of the M-estimator based on a step ¥

brings no new conceptual problems. Denote

My (t.u) 1MZ@[( e = S2)/S) — e/ )| [l < M, ful <M,

and put M, (t,u) = M, (t,u) — E M,(t,u). The index set is T = {(s,u) : [s|]o < M, |u| <
M} (C RPHY) with the metric p((t,u), (s,v)) = /[t —s[2 +/|u — v].

To prove the asymptotic results about the process M,,, we can very closely follow the proofs

of the previous section. That is why the following theorem only summarizes the results. As
we will see, only the covariance structure of the limiting process is more complicated.

But before we state the theorem, we note that speaking about conditions Step.1-2 in the
studentized case, we require the smoothness assumptions on the cdf F' hold in a neighbourhood

of the points Sqi,...,S ¢ (instead of q1,...,qm).

Theorem 2.10. If the conditions X’.1-8 and Step.1 hold, then the process M,, = M, —E M,
1s asymptotically tight.
Moreover, if there exists a function r defined on T X T such that for every (t,u), (s,v) € T

R - : T T T T
T}Lnéoﬁzgﬁ]22|cz|2mln(|5q]u+t Xi|7|SQJv+S x;|) {t x;x; s > 0} =7 ((t,u),(s,0)),
j=1 =

then the process M, converges in distribution to a centered gaussian process Z with the co-
variance function
cov{Z(t,u), Z(s,v)} = r((t,u),(s,v)).

Finally, if in addition the conditions X’.4 and Step.2 are satisfied, then we can replace the
mean value E M, (t,u) by

n

m n
57T Z Ci X Z Bif(Sa5) Z Z 95 3 1 (S ¢j) Z cixi+ Lop Y
=1 : =1 =1

uniformly in T.




2.3 1 is a sum of a continuous function and a step function

Sometimes, 1) = 1. + 15, where 1. stands for a continuous function and v for a step function
(e.g. skipped mean is generated with ¢(x) = xI{|z < k|}). The simplest way how to handle
this situation is to assume that the continuous part 1. is absolutely continuous and then to
combine the results of the previous sections. But we have already seen that the order of the
convergence of M-processes is slower for step functions. That is why the continuous part .
only influences the expectation E M,, but not the limit process. In view of this, it would be
possible to weaken the assumptions on . from the first section of this chapter. For instance,
we do not need the existence of a derivative of .. It is certainly sufficient to assume the

existence of g > 0 and n > % such that for any x
(x4 6) = p(x)| < h(z)d",  for any [0] < do,

where E h(e1)? < co. In this case we can even weaken the assumptions about the design
X1,...,X, to some sort of conditions similar to X’.1-4 (with 1 + § replaced by 27).
But we will not investigate this situation as we believe that with the presented results one

can easily handle these special situations ad hoc.
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Chapter 3

SOAL of the R-processes with

Wilcoxon scores

To motivate the following technical results, recall the linear regression model (1.1). Let ¢,
Xin, 1 <1< mn,n=1,2,... be triangular arrays of constants satisfying some conditions which

will be specified later. In this section we study the asymptotic behaviour of the processes

~ 1 n ) 1 n n T tTxin
Sn(t) =~ z;cn Rj(t) =~ Z;c,-nz;}l{ei — o > ey — 2O, (3.1)
1= 1= J]=
Tn(t) = gn(t) - Sn(O), 3.2
Tn(t) = Tn(t) —E Tn(t)a (3 3)
where t = (t1,...,t,)T and R;(t) stands for the rank of e; — tT—\;%" among ej — "TL\/%", N

thﬁ. We will index these processes by the set T = {t € R : |t|s < M}, where | - |2 stands

for the euclidean norm, and M is an arbitrarily large but fixed constant.

3.1 Assumptions, theorems

In this section we specify the conditions on the distribution of the errors F' and on the
constants X1y, ...,Xny and cip, ..., Cpy, and formulate the results. The proofs of this results

are to be found in the following sections.

3.1.1 Assumptions

W.1 F is absolutely continuous with a derivative f such that E [f(e1)]? < oo.

W.2 The function f(e; + s) is continuous in the quadratic mean at the point zero, that is

HmE (f(er +5) — flen)]* =0,
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+o00 —I—A )
ilg%ﬁ/ / fz4+y) — fly))dzdy = 0.

It follows from the proof of Lemma 2 of Antille (1976) that the condition W.2 is met if
W.1 holds and the density f is continuous except for a finite number of jump discontinuities.
Further, according to Antille (1976), the condition W.3 is satisfied in these two important

cases
(i). fissuch that |f(z +t) — f(z)| < [t|*h(z), with a > § and h(z) € La(—00, +00),
(7). f is absolutely continuous and f/(x) € Lo(—00,+00).

Note that the second condition is satisfied if there exists a finite Fisher information of the
density f.

Remark 10. Tt is easy to show that the condition W.3 is met for many of the standard
distributions with smooth densities like normal, lognormal, ¢-, x2- (with degrees of freedom
greater or equal 2), cauchy, and logistic distribution. But it is not satisfied for an exponential

distribution.

In addition to the conditions X.1-4 of the previous chapter (with ¢; replaced by ¢;,,), we

need:

X.5
n
Z Cin — 0.
i=1

To simplify the notation, in the following we will write ¢;, x; instead of ¢, Xin-

3.1.2 Theorems

Put v =E f(e1) ff2

Theorem 3.1. Under conditions X.1-5 and W.1-2 the process {T,(t),t € T} satisfies
uniformly int €T

sup To(t) + 32 D |eixit 3 )¢ | (Fleo) = )| = op(1). (3.4)

Specially, if we put

1 — 1 — 1 —
1= 1= 1=

and the matriz A2 is reqular for n large enough, then the process T',,(t) = T,,(A,'t) converges

in distribution to a centered gaussian pmcess {Y(t),t € T} with the covariance function given
by cov(Y (t),Y (s)) = 02tTs, where 0? = [ f3(z)dz —
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As the proof of this theorem is rather lengthy, we will postpone it and formulate the other

results of this chapter.

Lemma 3.2. Suppose that the density of the errors f satisfies the assumptions W.1-8 and
the conditions X.1-5 are satisfied as well. Then uniformly int €T

Combining Theorem 3.1 and Lemma 3.2 yields the following corollary.

Corollary 3.3. Under conditions X.1-5 and W.1-3 it holds uniformly int € T
S, (t) — +Vt chxl_ \/—Z Cixi+ = ZCJXJ — ) +o0p(1). (3.5)

3.2 Proof of Theorem 3.1

As a first step, we approximate the process {T;(t),t € T} by the ‘Hajek projection’ (see
Héjek (1968) or Serfling (1980))

n_ZE [Tl e;] — n—l)ETn_ZE [To] ] -
=1
In the following, we will show that the projection P, (leading term) has the asymptotic
representation (3.4) and the remainder term R, = T}, — P, is asymptotically negligible, that
is || R l7 = 0p(1).
3.2.1 The convergence of the process P,

Calculating the projection of the process Tj,, we find out that P,(t) = Vj,(t) — E V,(t), where

n

ZZ —cj[ —”L;‘j’)—zr(ei)] S Vi(b). (3.6)

’lljl =1

For i =1,...,n define

Zni(6) = Vait) — 553 (ci — ¢5) (xi — %) f(es)

and put Z, = > | Zn;.
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As the condition X.5 gives us

3

n

S S e )k ) [F(e0) — 2] = otk Yo (e =)

i=1 j=1 i=1 =

it suffices to prove
1 Zn|l7 = 0p(1). (3.7)

Similarly to the proof of Theorem 2.1, we verify that the assumptions of Corollary 7.13 are

satisfied.
For convenience of notation put yij(n) = X\fx’, € = MaxXi<i<n \}’;‘2, and r, =
SUp|s|<e, E[f(e1 — 5) — f(e1)]?. Notice that the condition W.2 implies 7, — 0. With the

help of Cauchy-Schwartz inequality we can bound

2
1< Ty,
E s (Zu®) ~ 2@ <E |23 -l sw [ g0~ flei - o)l ae
|t—S‘2<€ anl |t—s\2<€ STyZ.
e tTyy 2
<32l ol ZE|t83p<€ /ST (e — fei = v)] do
Jj=1 Jj=1 2 Yij

o . Ml
<Yl YE sup 65— 5Tyl [ st @) - Fle o) de
j=1 R

=1 [t—s|2<e /n

\/ﬁ \/ﬁ |v|<en
2M€
=3 Z’Cz—cg, Z ’X1‘2+‘XJ‘2) ™n

Jj=1 Jj=1

1 " " €|XZ’—X‘|22M(|X2‘|2—|—|X'|2)
<3 E i — ¢ E ! 222 sup E [f(e;) — fei —v)]° dv
Jj=1 Jj=1

n

SMer
< "Z (leil® + 1e51%) D (il + [x;13) -
Jj=1 j=1

Thus by the assumptions of the theorem we can find a sufficiently large constant C' such that
for all n € N

Z E sup |Zui(t) — Zui(s)]? < Cerp, =o0(1),

i=1 [t—s|a<e

which verifies the condition (7.5) of Corollary 7.13. The condition (7.6) trivially holds for
to=0.

3.2.2 Asymptotic negligibility of R,

In the following, we show that
[ Rnllr = sup [Rn(t)] = op(1). (3.8)
tel
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To prove (3.8), we adapt the theory of U-processes with the kernel of degree two introduced
in Nolan and Pollard (1987). For convenience we denote this reference as NP. Let us recall
that R,, = T,, — P,. With the help of (3.6) we can write R, (t) = U,(t) — E U,(t), where

) = 2323 [t 5 2 e~ )~ T 2 )]
i= i=

_ %ZZ {(Ci —¢j)(F(e; — tT(Xi%) — F(e,-))] =3 gijleies, ﬁ), (3.9)

=1 j=1 i=1 j=1
with

gij(u,v,w) = 4 [H{u — WT(x,- —-x;5) > v} —{u> fu}} — % [F(u — WT(x,- —x5)) — F(u)] .

We divide the proof into several steps, which are common in the theory of empirical processes.
But before we proceed, we spend a few words about measurability. As the first part of the
process U, is a sum of indicators (depending on t), we cannot hope that U,, viewed as a
mapping from € into £°°(7T"), is measurable. But let us denote S = {s: [s|a < M +1, s € Q,},

where Q is the set of rational numbers. Then obviously
sup |Up,(t) — E U, (t)| < sup|U,(s) — E Uy(s)],
teT seS
where the quantity on the right hand side is a supremum over a countable set and thus

measurable. In the following, let 7' stand for S. Then we do not need to worry about

measurability, which is particularly important in Lemma 3.5, where we use Fubini Theorem.

Symmetrization
The first step is the symmetrization of the process R,,(t). Let €], ..., e}, be independent copies
of e1,...,e,. Denote
n n
Un(t) = Zzgij(egyeja ﬁ)) Rn(t) = Un(t) —E Un(t)7

i=1 j=1
U, ) =3 gijlei e}, =), R'(t)=U, (t)—EU, (t),
i=1 j=1
U, (8) =3 gijlel. e, %), R (t)=U,(t)—EU, (t).
i=1 j=1
With the help of these processes we define the symmetrized process

U ! i

RiVM(t) = Ru(t) — R, (t) — R, (t) + R, ()

n n
= ZZ |:gij(eiuej7 %) - gij(e§7ej7 ﬁ) - gij(ehe;'a %) +gij(eéae;'7 %)]
=1 j=1

= Z ng]ym(ei, ej, €5, €5, ﬁ), (3.10)

i=1 j=1
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where

gf]y (6276]76176]7%) :gij(e’hejaﬁ) _gl‘](e;7ej7%) gl](ela 377)—’_92]( ) ;7%)

Let 04, ...,0, be Rademacher random variables, that is they are independent, identically dis-

tributed with Ploy = 1] = P[oy = —1] = l Suppose further that oq,..., 0, are independent

of (e1,...,€en,€},...,€l). Then the process R;’" has the same distribution as the process
t
Z Z 0 0; gm (ei,e, €5, ej, T)
=1 j=1

Let us introduce the process

n n
= ZZUNJ‘ 95 (€3, €5, ﬁ)-
i=1 j=1
It holds
E[Bnllr < B[R |l7 = E [|B7 |7 < 4E [|Ry 17, (3.11)

where the first inequality is a complete analogy of Lemma 1 in NP (the important thing is
that the process R, (t) is degenerated in the sense that its projection is a zero process) and
the second inequality follows simply by a triangular inequality. One more application of a

triangular inequality yields

E||R°\|T<Esup—Zzamjn[ﬂ{ez 2 e — LX)~ He 2 o))
i=1 j=1
ci—c tT(x;—x;)
FEp 323 ey 5 [Pl - ) - i)
Say

E [|[Ro1ll7 + E | Roallr

In the sequel, we show that E ||R;,|7 = op(1). The proof for the process R7, would be

completely analogous.

Exponential inequality

The second step is an exponential inequality. Denote E, the operator of the expected value

induced by the random variables o1, ..., 0, (we condition on the realizations of eq, ..., e,).

Lemma 3.4. For each real square matriz A = [a;;] with Y314 377 a?j < L5 it holds

n n 2 n n
E,exp Z Z 005 a;; | < exp 72 Z

i=1 j=1,j#i i=1 j=1,j#i
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Proof. This lemma follows easily by Lemma 3 of NP, where the lemma is proved for symmetric

matrices.

n

n n n aij+aji
Egexp Z Z 05 04 Qjj :Egexp Z Z O’Z’O'jT

i=1 j=1j#i i=1 j=1j#i

Lemma 3 of NP

a,]—i-aﬂ)2 - 2
< exp Z Z < exp EZ Z aj; |- (3.12)

i=1 j= 1,]752 i=1 j=1,j#1

Chaining and the maximal inequality

In the third, step we make use of the technique known as chaining. Let the index set T is
equipped with a pseudometric d. Then the covering number N (e, T, d) is the minimal number
of balls of radius € needed to cover the set T

Suppose that the random variables eq, eg, ... are defined on a common probability space {2

and for 1 <i,j <n put

_ ¢ tTXi tTXj
fij(t) = [ﬂ{ei —m et Haz el

In fact, the f;; are random functions depending on the realization of w € €). Let us define the

random pseudometric d, on T as

1/2

ZZ [fi5(6) = fis ()

=1 j=1

To make use of Lemma 7.11 of Appendix (which can be found e.g. in NP), we need to find
a uniform upper bound for the (random) covering numbers N (g,T,d,,). For this purpose, we
use the technique of pseudodimension introduced in Pollard (1990). For future convenience

we denote this reference EP. Put
hij(w,s) = Hei(w) — ¢j(w) 2 " (xi —x;)} — Hei(w) — ej(w) = 0}
Using Lemma 4.4 of EP, we can deduce that the subset of the euclidean space R™"~1)
Hnw = {(hij(w,s), 1 <i#j <n), s €R}
has for all w € Q uniformly bounded pseudodimension. Now set
o= (a1 <i#j<n)= (%,19;@'91)

and let o ® h stand for the pointwise product in R~ with the k" coordinate a;hy. Then

obviously
N(e,T,d,) < N(e,ax ©® Hpw, |+ |2)- (3.13)
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Because |h;j(w,s)| < 1, we can take the vector H = (1,1,...,1) as the envelope for H,.

Notice that uniformly in w and n
n on 2 1 n
2 Z Z ; Z 2
i=1 j#i i=1

For simplicity, but without lost of generality, we will suppose that %Zyzl ¢? < 1. Now the

)

Corollary 4.10 of EP guarantees the existence of universal constants A a W such that for

any w € Q, any £ (0 <e < 1) as well as any n € N

1 w
N(€7a®Hnw7||2)§A<g> :

Combining this inequality with the inequality (3.13) yields N(e, T,d,) < A(%)W. Thus we

can bound the covering integral for s < 1 uniformly in w and n by
Tools) = [ MoV (=T ) de < [ log(4) ~ W log) de
0 0

< slog(A) + W/O % de < slog(A) +2W/s. (3.14)
Now we are ready to formulate the analogy of Theorem 6 of NP.

Lemma 3.5. There exists a constant C' such that for all n € N
E|R,r<CE [en + \/94 ; (3.15)

where 0, = 3 supger dy,(t,0).

Proof. Set W(z) = 1 exp(£ — %) For a fixed w we verify that the process Ry (t) meets the
conditions of Lemma 7.11. The only unobvious condition is (7). With the help of Lemma 3.4
we can calculate

o (I

Ry (t) — Ry(s) —R;(t) + Ry(s)
<E, ) ™ It \B) E, n n
= Eoexp ( ordo(ts) ) P\ T ordL(ts)
Lemma 3.4 2 TL_ A fii(t) — fii(s 2
< 2exp W_Ez-lZg;ﬁz[f]( ) fJ( )] :2exp(%)
2 472 d,(t,s)?
This yields the desired exponential inequality E, ¥ (W) < 1. The choice fo =0

in Lemma 7.11 implies

on
Eo IRl <8 [ o' (N(e, T dw)) de
0

B (3.14)
- 8/ T+ 2mlog 2N (e, T, )] de < C1 [0+ Jos(0n)] S Cs [+ V0]
0

where C; and (5 are sufficiently large constants. Averaging out over the w € () gives us the
inequality (3.15). O
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Let us denote &, = 22+ mi/xﬁlgign Xil2 The condition X.2 implies &, = o(1). The simple

bound

2

PO < 5 T{les — )] < eu),

yields
"2 X.1-2, W.2
E2<Y ZET{|eg —eo] <g,t =250,
"_Zn {‘61 62’_6} n—00 0

i=1
But the last inequality implies that both E 6, and E 1/0,, converge to zero, which with the
help of Lemma 3.5 implies E || R} ||z — 0.
Finally using Markov’s inequality (Lemma 7.1) and the inequality (3.11) gives us

P{IBullr > <} < LE | Rullr < 2E | Bolr — 0. (3.16)

3.3 Proof of Lemma 3.2

Directly by the definition of T;, we see that

+oo
=150 [T - ) - Flar)
=1 j=1
Along the lines given in Antille (1976) we can calculate

+oo T n
S 32ad [T ) - ) + 3

=1 j=1
—%;)

n n +oo t-r(xli
=%;; [T —re=osw)+ rwraa
tT(x;— t(xi—x%;)

“+oo
:_; / / Uy — ) — f)Pdody. (3.17)

With the help of the conditions W.3 and X.1-4 we get that for arbitrary ¢ > 0 and for all

sufficiently large n

n n
68,
|<—Z|2272 x5 < 5 zm il + Zw% =£0(1)
i=1 7j=1

uniformly in 7', which proves the lemma.
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3.4 Wilcoxon signed rank statistics

With the help of the techniques presented in the previous sections we are able to prove
analogous results for a signed rank statistic. This will generalize the results of Antille (1976).

Recall that we are considering the linear regression model (1.1). Let R;f(b) stand for the
rank of |Y; — b'x;| among |Y; —b'x],...,|Y,, — b'x,|. Then the signed rank estimator BA:

(based on Wilcoxon scores) of 3 is usually defined as

-~

B: = arg min D (b), where D;(b)= Z Y; — b'x;| R (b). (3.18)
beR, =1

Alternatively, we may define the estimator B: as the solution of the following minimization
+ +
Z |S*.(b)| := min, where S ;(b) = n3/2 Z (2ij — Tnj) sign(Y; —b'x;) RF (b). (3.19)

To explore the asymptotic properties of this estimator, it turns out to be useful to study

the asymptotic behaviour of the processes

Z cisign(e — ) R(t), (3.20)

Ta(t) = 5;[( ) - 5¥(0), (3.21)
Tn(t) = Tn(t) —E Tn(t)7 (3'22)
where t = (t1,...,t,)", and R;(t) stands for the rank of the random variable |e; —
ler — t\T/’%l l,...,len — L’;ﬂ As usual, we will index these processes by the set ' = {s € R :

|s|]a < M}, where | - |3 stands for the euclidean norm, and M is an arbitrary large but fixed
constant.
In addition to the assumptions W.1-3, we need the symmetry of the distribution of the

errors.

W.4 The density of the distribution of the errors is symmetric, that is f(z) = f(—=z), for
any r € R.

Similarly to Antille (1976), we can show that T),(t) = Tp,1(t) + Th2(t), where

1 = = tTx, x
T (t) = EZ Y oo [ﬂ{lej -l <ei- £ Tt — Hlej| <ei}
i=1 j=1,j7#1
Tx. %
+H{Jej| < —ei} —I{je; — | < —ei + al )
and

2 n

Tho(t) = - ci []I{e,- £ x’} —e; > O}]
=1
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M|x; .
Put e, = maxj<i<p \‘;{'2 and estimate

2 n
EHjhﬂh‘é;EEQ\QHFTW‘—FT—&J\;:;jo'
1=
Thus Markov’s inequality (Lemma 7.1) gives us ||Th2|lr = op(1). That is why we can only
concentrate on the process T,,;. Along the lines of the second section of this chapter we
approximate T},; = Tj,,1 — E Tj,;1 by its projection P, = Z?:l E [Tn1|ei]. It is a matter of

simple but tedious algebraic manipulations to show that P, = V,, — E V,,, where

i=1 j=1,j#i
1 " T T T T
rady 3o [P (e S =) (e ] 5]
L g
Analogously to Section 3.2.1 we can prove that
n n
.
igg P,(t) + % ciX; + % ch x; | (f(es) =) = op(1). (3.23)

i=1 j=1

Further, by the same technique as in Section 3.2.2 we can show the asymptotic negligibility
of the remainder term R,, = T},; — P,. Finally, repeating the idea of the proof of Lemma 3.2

gives us that uniformly in t € T
n
ET,.(t) = —% Zci x; +o(1).
i=1
Combining the previous results, we get the second order asymptotic linearity of the Wilcoxon

signed-rank statistics.

Theorem 3.6. Under conditions X.1-5 and W.1-4 it holds uniformly int € T

n

_ T n n
S0 = 55(0) + 2253 ey = =203 Lo+ £ Yy | (F(er) =) + 0, (1).
i=1 j=1

=1
3.5 Further generalizations

Although R-estimators defined by (1.7) are robust against outlying Y-values, they remain sen-
sitive to observations with outlying x-values, or high leverage points. Sievers (1983) proposed

to define the R-estimator as the minimum of the weighted loss function

Dp(b) =D > wi [V; = Yy = b (x; — x;)], (3.24)

i=1 j=1
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where {w;;} are appropriate weights. As

n

n n
D Wi =Y = b (xi —x;)l = > _(Yi —b'x;)(Ri(b) — ),
i=1 j=1 i=1
we see that the new weighted estimator coincides with the R-estimator based on the Wilcoxon
scores for w;; = 1. Naranjo and Hettmansperger (1994) made some proposals how to choose
the weights w;; to achieve the robustness in the x-space. Comparing the gradient of the loss
function (3.24)

w 8Dn(b) oL : T
S¥(b) = —5p — " Z Zwij (x; —x5) sign(¥; —=Y; — b’ (x; — x5)) (3.25)
i=1 j=1
with the process from (3.1), we see that the only difference is in the absence or presence of the
weights w;;. Thus, provided we impose some mild regularity conditions on the weights w;;, we

can use the methods of previous sections to explore asymptotic properties of S¥(b) of (3.25).

Generally, we believe that the technique presented in this thesis may be also useful for

the processes in the form of weighted U-statistics of degree two, that is

n n
To(t) => > wiyg(¥;,Y;, X t), teT,
i=1 j=1
where w;; are weights and X may represent a design matrix.
Another estimator whose exploration leads us to processes of the above type is the gen-
eralized S-estimators (GS-estimators). This estimator, proposed by Croux et al. (1994), is
defined as

~

b = arg mgn sn(b),
with

1 n
sn(b) zsup{s>0, <Z> Zp(%) Zk}v
i=1

where p is a loss function and k a tuning constant.
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Chapter 4

Applications of SOAL

In the first part of this Section we derive a two-term von Mises expansions for M-estimators
based on a smooth % function and for an R-estimator based on Wilcoxon scores. For M-
estimators based on a step function 1, we find the second order distribution.

In the second part we propose an alternative procedure of constructing a confidence inter-
val (CI) for a single component of the vector parameter 3 in a linear model (1.1). We explore

the asymptotic properties of this CI and compare it with the standard Wald type CI.

4.1 SO asymptotic representations

In what follows, we heavily utilize the expansions of Chapter 2.

4.1.1 M-estimators — an absolutely continuous v
First order results

The work on the second order asymptotic representations of M-estimators was initiated by
Jureckova and Sen (1990). Their main interest was in comparison of an M-estimator defined

as the root of the equation
> (X —1) =0
i=1

and its one-step approximations (one step of a Newton-Raphson iterative procedure starting
from a consistent estimator). In the following, we will generalize their results to a regression

estimator, which is defined as a root of the system of equations
n n T
> xip(Y; —bTx;) =0 (or D oxpp(Bps) = 0) : (4.1)
i=1 =1

But before we proceed, we recall some first order asymptotic results. For each of the

following processes we assume that the corresponding conditions from the previous chapters
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hold. Of course, the first order results require weaker conditions, but as we are interested
primarily in the second order properties, it is sufficient to use these stronger requirements.
Moreover, we need some consistency conditions so that the parameter 3 is identifiable and

consistent.

GenFx.1 (GenSt.1) The function h(t) = E p(e; —t) (or h(t) = E p(£5%)) has a unique

minimum at ¢t = 0.

XX.2 There exists a limit (p X p) matrix V

= lim V,, = lim —le ,

n—oo n—oo N
which is positive definite.

We say that a (fixed scale) vector M-process

1 g bTXi
% Z;Xi¢(€i ~n )

satisfies the first order asymptotic linearity (FOAL) if for an arbitrarily large but fixed con-
stant M

sup || Mn(t) — Mn(0) +71Vat || = 0p(1), (4.2)
tl2<M
where || - || stands for the maximum norm. Once we have this FOAL result, we can use the

technique of the proof of Theorem 5.5.1 of Jureckova and Sen (1996) to show that there exists
a root 3,, of the system (4.1) such that

VB, — B) = Oy(1). (4.3)

Now inserting vn(83, — B) for t in the FOAL of M-process (4.2) gives us the first order
asymptotic representation (FOAR) for a M-estimator 3,,

\/_(B ﬁ sz ez + OP 1) (44)

Similarly we can handle studentized M-estimators. For simplicity of the following results,
but with only a minor loss of generality, we will assume that the model includes an intercept,
that is x;1 = 1 for ¢ = 1,...,n. Moreover, we need to assume that the scale estimator is
v/n-consistent, i.e.

V(S — 1) = 0,(1). (4.5)
Then the FOAL linearity result gives us

H\/_ZXZ ( 2_%)/Sn> _w(ez/s)} +’Ylvnt +Vlevl\/ﬁ(%_l)

|t||<M

= op(1), (4.6)
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where vy is the first column of the matrix V,, and -1, 71, are defined in (2.10) of Section 2.1.3.
Analogously to the case of a fixed scale M-estimator we can derive the first order asymp-
totic representation (FOAR)

n

VB, — B) = Y= S xip (%) — e Va(S — Dy + o0,(1), (47)

7
i=1

where u; = (1,0,...,0)T € R,. Notice that only the asymptotic distribution of the intercept
is influenced by the asymptotic distribution of the scale estimator.

Before we proceed, let us spend a few words about the choice of the scale estimator S,,.
It is natural to require that this estimator is regression invariant and scale equivariant, that
is

Sn(c(Y +Xb)) =¢S,(Y), for beR, and c¢>0.

Some possible choices of S,, are discussed in Welsh (1986) and Jureckovd and Sen (1996) (see
also Section 7.4 of Appendix).

Second order results

We are ready to derive the second order asymptotic expansion (a two-term von Mises expan-
sion) of a regression M-estimator for an absolutely continuous -function.

First, we restate Corollary 2.3, for the vector case by replacing the constants ¢; by x;. Put

n n T
Mp(t) = <Z; i1 (e — Lﬁ) — (e, Y wip [(e; — %) - ¢(€i)])

i=1

and let W,, stand for the (p? x p) matrix written in the block form as [W,q, ... ,Wnp]T,

where W,,; = % o xy Xix;r for | = 1,...,p. Further, by the symbol t"W,t we will mean

the vector (tTW,it, ... ,tTWnpt)T.

Corollary 4.1. Under conditions XX.1 and SmFx.1-3 it holds uniformly in t € T

M, (t) + v VrtTV, = _% > xix] [¥ () — ] + 2 tTWat +0,(1). (4.8)
i=1

Suppose that ,@n is a y/n-consistent estimator which satisfies the first order asymptotic
representation (4.8). Thus we can insert \/n(3, — 3) for t in (4.8). With the help of (4.4)
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and after some algebra we get

Vn(B, — vmf ZXZ Yled)
1 nl -

Z&W(@)}
. T B
+ o ’7” {X’\}ﬁ ;Xi¢(ei)} W, {X:’/ﬁ ;Xiﬂ)(ei)} +op(=). (4.9)

The last expansion simplifies if the symmetry condition Sym is satisfied. This condition

implies 9 = 0, which further gives us

\/ﬁ(ﬂn 71\/— Z X P ez

{Vlf le }{’Ylf ZX’ P(ei) }Siy%Andm (4.10)

where both quantities A,, (€ Rpx,) and d,, (€ R,) are asymptotically multivariate normal.

Moreover, as the symmetry condition Sym implies

E ¢(e1)['(e1) — m] = E ¢(e1)d'(e1) = 0,

the quantities A,, and d,, are asymptotically independent.

Similarly, if the scale estimator is y/n consistent (see (4.5)) and conditions SmSt.1-4
and XX.1-2 are satisfied, then we can find the second order distribution representation for
the studentized M-estimator by inserting v/n(8,, — 8) for t, \/ﬁlog(%”) for u and x; for ¢;
n (2.6). But as the resulting expression is rather awkward, we will assume the symmetry

condition Sym to hold. Under the above assumptions we get

vn(B, -

P(e;i/S)

:_T{“ﬂ\/_le el/s) }{71\/_ZXZ 62/5}
(S 62/5)]}

e (1 {waz (e:/S) }+op< o). (411)

From the expansion (4.11) we see that although the first order asymptotic distribution of the
studentized M-estimator of the slope does not depend on the asymptotic distribution of .S,,,

the second order distribution does even if the symmetry condition Sym holds.
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Numerical illustration

To get an idea of how does the second order approximation of an M-estimator work, we
performed a small numerical study. We worked with the simple linear regression model
Y, = (61 + Box; + ¢;. The design points z1,...,z, were generated from the uniform distribu-
tion U[—1, 1] and centered. The errors ey, ..., e, were taken to be normally distributed. As an
M-estimator we used the Huber estimator generated by the function 1) = max(min(z, k), —k)
with the tuning constant k& = 1.345.

In the following, we compare the first order remainder term

Remlzf(,@ -B)— ﬁmfzxz (e:)

with the second order remainder term

n
Rem; = Rem; + — { Zx, 71]} {Z'\L/% inl/}(ei)} .
i=1
Notice that we do not need to calculate the second term on the right hand side of the expan-
sion (4.9), as the symmetry condition Sym implies v, = 0. By the above discussion we know
that |Rem;| = o,(1) and ||/nRemy|| = 0,(1). Let us denote by R; and R» the second
components (corresponding to (33) of the quantities Rem; and Remsy.

Table 1 shows estimated 10%, 20%.. . . ,90%-quantiles for the sample sizes n = 20, 50, 100,
500, 1000, and 5000. The number of random samples was always 10000. Comparing the
columns with the quantities R; and Rs, we see that the two-term expansion really improves
on the first order approximation of the quantity \/n(3, — B8). On the other hand it is
worth noticing that the random variable y/n Ry converges to zero much more slowly than the
quantity R;. This is in an agreement with the results of Lachout and Paulauskas (2000), who
studied the speed of convergence in the second order asymptotic results for M-estimators in
the location case.

Some further experiments show that the convergence of y/n Ry is even slower if the errors
are asymmetric or if we increase the number of explanatory variables. This indicates that there

seems to be no point in deriving the third or even the fourth term in von Mises expansions.

Comparison with a one-step estimator

We can also use the asymptotic expansions from the previous chapters to find the two-term
von Mises expansions for one-step M-estimators. This estimator, which can be viewed as
an approximation to the M-estimator defined in (4.1), is constructed in the following way.
Suppose BELO) to be an initial estimator of 3. We assume that this estimator is y/n-consistent,
that is Vai(By — B) = Oy(L).

Let us denote r; = Y; — (,[:}S)))Txil (for i = 1,...,n) the residuals from this initial fit. Then

we define the one-step estimator Bn

~ (0
:ﬂiz) +H7_ngm
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n =20 n =50 n =100

q Ry Ry  VnRy | Ry Ry  VnRy| Ry Ry  nRp
0.1 |-0.320 -0.225 -1.006 | -0.210 -0.107 -0.760 | -0.149 -0.062 -0.619
0.2 | -0.195 -0.094 -0.422 | -0.121 -0.050 -0.357 | -0.087 -0.030 -0.297
0.3 | -0.114 -0.042 -0.187 | -0.068 -0.022 -0.159 | -0.049 -0.014 -0.141
0.4 | -0.060 -0.016 -0.072 | -0.030 -0.008 -0.056 | -0.022 -0.005 -0.049
0.5 | -0.001 -0.001 -0.003 | 0.000 0.000 -0.001 | 0.000 0.000 0.000
0.6 | 0.063 0.014 0.061 0.029  0.007 0.047 0.021 0.005 0.050
0.7 | 0.111 0.040 0.179 0.066  0.021 0.148 0.049 0.015 0.149
0.8 | 0.188 0.090 0.403 | 0.120 0.048 0.338 0.088 0.031 0.313
0.9 0315 0.217 0.969 0.204 0.101 0.711 0.154  0.064 0.641
n = 500 n = 1000 n = 5000

q Ry Ry Vn Ry Ry Ry Vn Ry Ry Ry Vn Ry
0.0 | -0.066 -0.018 -0.402 | -0.048 -0.011 -0.348 | -0.022 -0.003 -0.238
0.1 | -0.038 -0.009 -0.205 | -0.028 -0.005 -0.173 | -0.013 -0.002 -0.120
0.2 | -0.021 -0.005 -0.103 | -0.016 -0.003 -0.085 | -0.007 -0.001 -0.057
0.3 | -0.009 -0.002 -0.038 | -0.007 -0.001 -0.033 | -0.003 0.000 -0.020
0.4 | 0.001 0.000 0.000 0.000  0.000 -0.001 | 0.000  0.000 0.001
0.5 | 0.010 0.002 0.035 0.007  0.001 0.029 0.003 0.000 0.024
0.6 | 0.022 0.004 0.094 | 0.015 0.003 0.081 0.007 0.001 0.061
0.7 | 0.037 0.009 0.190 | 0.027 0.005 0.169 0.012  0.002 0.122
0.8 | 0.064 0.017 0.378 0.048 0.011 0.345 0.022  0.003 0.235

Table 1: Comparison of the first and the second order remainder term for a fixed-scale M-

estimator.
where
n
i=1
and

n
M= YTV () o M= g {%&’(s—;)}'
i=
The first choice of the matrix H,, corresponds to the Newton-Raphson method and the sec-
ond one to the scoring method. Welsh and Ronchetti (2002) discussed very carefully the
asymptotic expansions for one-step estimators. They even formally derive the third order von
Mises expansion in a more complex situation including different weights for observations Y;
and design points x;. In view of that, our results present a partial technical background for
the formal derivations of Welsh and Ronchetti. We note that the second order von Mises
expansions for the one-step estimators are rather complex in general, unless we assume the
symmetry condition Sym.
An interesting question, initiated by Jureckovd and Sen (1990), is the impact of the

initial estimator on the distribution of the one-step estimator. The authors studied the
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case of M-estimators of location with fixed scale. One of their results states that if the
symmetric condition Sym is satisfied and the initial estimator is y/n-consistent, then the
one-step estimator 91(11) is not only first order (FO) equivalent with the M-estimator éﬂ/] (that
is \/ﬁ(éﬁf) — M) = 0,(1)) but also second order (SO) equivalent, that is

n(A — M) = 0,(1). (4.12)

In what follows, we will suppose the scale estimator S, is \/n-consistent and the symmetry
condition Sym is satisfied. Writing down two-term expansions for an M-estimator and a
corresponding one-step M-estimator we can find out that the SO equivalence (4.12) holds for
the studentized estimators of location as well. This is in a good agreement with the empirical
findings of Andrews et al. (1972).

Some further straightforward but tedious algebra yields the generalization of the previous
results to the regression settings. Suppose that the initial regression estimator BELO) is /n-
consistent. Then the SO equivalence (4.12) is true for the (studentized) regression estimators
too, provided we use the Newton-Raphson method. But the preceding statement is not
generally true for the scoring method. For this method, even in a very simple case of fixed

scale and the regression line going through the origin (Y; = S z; + ¢;), we get

3(1) _ My _ _ -
n =
(B 8 =

n
Va0 - 32] | 2 30 = e = ot
where V,, = % S, 22. From the above expansion we see that n(ﬁg) — My = Op(1) unless the
initial estimator @(LO) and M -estimator Bﬁ/f are first order equivalent. This may happen, e.g.
if we use an R-estimator which is FO equivalent with the target M-estimator (see Jureckova
(1977)) as an initial estimator. As we have indicated by the simple example of a regression
line going through the origin, when using the scoring we need two steps so that the resulting

estimator is SO equivalent.
Remark 11. It should be stressed that the symmetry condition Sym is crucial for these results.
The problem of the linear model with asymmetric distributions is that different estimators of
the parameter 3 usually estimate different intercepts. If this happen to the initial estimator
and the (target) M-estimator, then the one-step estimator is not even first order equivalent
(see Simpson et al. (1992)).

4.1.2 M-estimators — a step function

In this section we suppose that the function 1) = p’ is a nondecreasing step-function, that is
Y(z) = oy for ¢j<z<gqiy1, 7=0,1,...,m, (4.13)

where ag < a1 < ... < agn, are real numbers, —co =¢qp < q1 < ... < @ < Gma1 = 00, and M

being a positive integer.
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Due to the discontinuity of the function 1, there may not exist an exact root of the
system of equations (4.1). That is why we define the M-estimator of 3 as a solution of the

minimization problem

n
p <Yl%7jxl> := min, where  p/ =1). (4.14)
i=1
As we suppose in this section that the i function is nondecreasing, the function p is convex,

which implies that there exists a solution to the minimization problem (4.14).

Remark 12. Without the assumption of convexity of the function p several complications
arise. First, it is rather complicated to prove y/n-consistency of the estimator ,@n Second, it

is nontrivial to show that

=1

where the first equation is needed for the first order results and the equation to the quantity
in the brackets is needed for the second order results. To the present knowledge of the
author, the problems with the asymptotic behaviour of the regression M-estimators based on
a discontinuous ¢ function which is not monotone have not been completely solved. But we
believe that the difficulties are only of technical character and they have not been solved yet,
because these estimators are not in the centre of attention. Nevertheless, once we have shown

the y/n-consistency of the estimator ,C:}n and the equation (4.15), our further results hold.

Similarly to the case of a smooth 1 function, we would like use the FOAL of the M-
process (4.6) to prove the FOAR for the M-estimator (4.7). But due to the discontinuity of
the function v, it is not sufficient to have the y/n-consistency of the estimates of regression
parameters (and the scale estimator), but we need the equation (4.15) to hold as well.

To show that, we adopt the technique of Jureckova and Sen (1996) (see pp. 167 for details).

Let us denote

" AT
Gi(t) = &2 > o (Vi = Buxi — taiy)/h)
i=1
and Gj the right derivative of this function. As the function 1 is nondecreasing, the function
" AT
Gr (1) = 2=y (V= Buxi —t2)/Sn)
i=1

is nondecreasing in ¢. Using further the fact that the function G has its minimum in 0, we
conclude that for every e > 0 |G;r 0)] < G;r(e) - G;r(—e). Letting € \, 0 implies

1<i<n

XX’.1
6501 = J (s ol s o) 2o (1),
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where the second inequality holds almost surely due to the continuity of the cdf of the errors F

(assumption Step.1). This gives us the desired result

n T
ﬁ in 0 <%> = 0(n1—1/4) almost surely. (4.16)

i=1

The next step is to show the y/n-consistency of the estimator Bn There are basically
two techniques to use. We can either exploit the monotonicity of ) or use some convexity
arguments (see Jureckovd and Sen (1996), pp. 167-169), or pp. 223-224). Once we have the
/n-consistency and (4.16), we can insert \/n(8, — 3) for t in (4.6) and get the FOAR (4.7).

Second order results

To simplify the following formulae, we will only consider the fixed-scale M-estimators. Let
us denote v; = z;nzl B f(g;j). Unlike the case of a smooth 1-function, for which we have
derived a two-term von Mises expansion, the best we can do here is to find the asymptotic

distribution of the random variable

1\/5 Y Vi'x 1/’(%’)) :
i=1

n1/4 <\/E(Bn - 6) -
!

Before we do that, we need some auxiliary results.

Lemma 4.2. Suppose that the conditions XX’.1, XX.2, and Step.1-2 are satisfied and

there exists a (matriz) function v : T x T — Ry, such that for every t, s € T

lim V! Z % min(|tTx;, [sTx; ) I{tTx;x[s > 0} V,; ! =r(t,s). (4.17)

n—00 ¢
=1

Then the vector process

1 S L
Zo= (Zns o 2T = i D V' V(e = )~ p(e)| — ', teT (418)
i=1

converges to a p-dimensional centered gaussian process Zi, with the covariance structure
cov{Z(t),Z(s)} = r(t,s).

Proof. For simplicity of notation suppose that p = 2 and let us denote X,, = Z! and Y,, = Z2.
From Corollary 2.9 we know that both X,, and Y,, converge weakly to tight gaussian processes
in the space ¢°°(T") of bounded functions. By 1.3.8 Lemma of van der Vaart and Wellner (1996)
(VW), both sequences {X,,n € N} and {Y,,,n € N} are asymptotically tight. Further by
1.4.3 Lemma and 1.4.4 Lemma of VW, the sequence {(X,,Y,,),n € N} is asymptotically tight

as well as asymptotically measurable. Now by Prohorov’s theorem (1.3.9 Theorem of VW)
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there exists a subsequence {(X,,,Yn;),j € N} that converges weakly to a tight Borel law,
say Z = (X,Y)T. It only remains to show that this limit is unique.
For this purpose, let us consider the collection F of all functions f : £°(T) x °(T) — R
of the form
h(x,y) = f(z(t1),....2(tk) 9(y(s1),- -, y(s1)),

where f and g are continuous and bounded real functions on R* and R! respectively, and
t,...,tx €T, s1,...,8 € T, k € Nand [ € N. The collection F forms a vector lattice
(vector space that is closed under taking positive parts), contains constant functions, and
separates points of the space ¢*°(T) x ¢>°(T"). By 1.3.12 Lemma of VW a Borel measure L
on (>°(T) x £>°(T) is uniquely determined by the expectations { [ fdL : f € F}. That is why
we can conclude that Z, = (X,,,Y,)T converges weakly to the process Z = (X,Y)T, if for all
k,leNand ty,...,tg, 81,...,5 €T

(Xn(tl), N ,Xn(tk), Yn(sl), N ,Yn(sl)) i (X(tl), . ,X(tk), Y(Sl), N ,Y(Sl)).
But this weak convergence follows follows easily by the assumptions of the lemma. O

Theorem 4.3. Suppose that the conditions of Lemma 4.2 are satisfied and the FOAR (4.4)
holds for ,@n Then the random vector

1\/5 > Vilxi ¢(€i)>
i=1

converges in distribution to the random variable Z(W'), where the random vector W has the
limiting distribution of \/ﬁ(,én — B) and Z is the limiting process of Lemma 4.2.

il

Proof. Let Z, be defined by (4.18) and put W,, = \/n(8,, — 3). Then following the proof of
Lemma 4.2, we can show that the pair (Z,, W,,) converges in distribution to (Z, W) in the
product space [[[7_; ¢°(T)] x R,,.

Recall that T'= {t € R, : |[t|o < M}, where M is an arbitrary large but fixed constant.
Put [W,]yr = W, I{|W, |2 < M}. We claim that, Z, ([W,]a) weakly converges to Z([W]as).
This statement will follow from the continuous mapping theorem (see 1.3.6 Theorem of van der
Vaart and Wellner (1996)), provided we show that the mapping ¢ : [[[t_, ¢°(T)] x T +
R, defined by ¢(z,$) = z(¢) is continuous on a subset Dy C [[[t_, ¢°°(T")] x T such that
P {(Z,W) € Dy} = 1.

Put Dy = CP(T) x R,, where CP(T') is a space of continuous (and therefore bounded)
vector functions on 7. As Z is a p-variate Gaussian process, then P {(Z,[W]y) € Do} = 1.
Further let (z,¢) € Dy and assume that z, converges to z (in [[t_, ¢°°(T)) and ¢, to ¢

(in T'). We can estimate

[on = ¢l = [2n(dn) — 2(P)]2 < [2n(dn) — 2(Pn)l2 + |2(dn) — 2(P)|2
< |lfen = 2l2llp + l2(¢n) — 2(d)l2 —— 0,

n—~0o0
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because z is a continuous function on 7". Thus ¢ is continuous on Dy.
Now, let € > 0 be given. As ,C:}n satisfies the expansion (4.4), we can find M > 0 and ng
such that for all n > ng

P {[W,]y # Wy} =P {|\/ﬁ(ﬁn — Bz > M} <&, and P {[W|> M) <e.

Further fix A € R, (JA|]2 = 1). Then for each z € R

lim sup P {)\TZn(Wn) < z} < limsupP {)\TZn([Wn]M) < z} +e¢

n—~o0 n—~o0

—p {)\TZ([W]M) < z} +e<P {ATZ(W) < z} 26 (4.19)

Similarly
lim inf P {ATZn(Wn) < z} > P {ATZ(W) < z} ~%e. (4.20)

As e > 0 was arbitrary, the equations (4.19) and (4.20) together imply
lim P {ATZn(Wn) < z} =P {ATZ(W) < z}.

n—oo

Finally, the Cramér-Wold device (Theorem 7.5 of Appendix) yields that Z,(W,,) converges
in distribution to Z(W). But this is just the statement of the theorem. O

4.1.3 R-estimators based on Wilcoxon scores

Let us remind that

n

3 N i b
B, = arg min Dy(b), where Dy (b) = (Y; —bTx)(Zb)l — 1), (4.21)
i=1

and R;(b) is the rank of Y; —b'x; among Y; —b'xy,...,Y, —b'x,.

Our aim is to use the asymptotic expansion of the previous chapter to derive the second
order asymptotic representation for the estimator Bn But before that, we need to recall some
first order results. If conditions W.1, X.2, and XX.2 are satisfied, then the estimator Bn
admits the following first order asymptotic representation (e.g. Ren (1994))

—1 s
VB, = B) = Yo=Y (i — %) [Flei) — 3] + 0p(1). (4.22)
i=1
For simplicity of notation we will suppose in the following that
Y xi=0. (4.23)
i=1

Otherwise we would work with x; — X.
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Second order results

As a preliminary step, it is convenient to restate Corollary 3.3 for a vector process

1
= - 5 X Ri(t)7 teT,
n
i=1

thl tTxn,

W, o e ,en - \/ﬁ .
Corollary 4.4. Under conditions XX.1, XX.2, and W.1-8 it holds uniformly int € T

where R;(t) stands for the rank of e; — t\T/’%i among e —

gn(t)—Sn(O)+7\/ﬁVnt———Z(xlx +V, )(f( ) — )t +op(1). (4.24)

Now we would like to insert t — /n(8,, — B) into the equation (4.24). But before we
do that, we need to verify that S,(v/n(8, — 8)) = V1 Sn(B,,) is sufficiently small (for the
definition of S, (b) see (1.7) or List of symbols on page 112).

It is well known (e.g. Hettmansperger (1984)) that we can rewrite the quantity D, (b) as

n

Dp(b) = (Vi = b'x,)(Ri(b) — 251) Z Z Y; —Y; — b (x; — x;)|. (4.25)
=1 1=1 j=1,j7#1¢
Put Z;; = Y; - Y; and d;; = x; — x; and replace the indices ¢, 7 with a single index [. We get

D,(b) =2 Zl(i)l |Z, — b'd;|. With the help of this representation of D, (b) we can proceed
analogously to Section 4.1.2 (for details see Jureckova and Sen (1996), pp. 167) and show
that forall j=1,...,p

s dpmaxi<i<n |Xil2 XX.1

— 3 a. 1
‘S ’I’L3/2 Z ‘7:1] ﬁ ) < n3/2 (ﬁ)

Thus /7 Sn(8,,) = of \F) almost surely.

Remark 13. By a very similar argument we could show that the signed rank statistics satisfies
VS (,C:}:;) = O(ﬁ) almost surely as well.

Now we are ready to insert \/n(3, — 3) for t in (4.24). After some reorganization we get

VB, - szT= Yo 1(XiXiTJrVn)(f(ei)—v)(ﬁn—ﬁ)+0p(ﬁ)
@)—ﬁ{y;; > (k% + V) (Flei) =2 }{ sz }+op<f>- (4.26)

Specially, suppose that the 1%

of the matrix X,,, that is Zn_l xy x;; = 0 for [ # j. This implies that the ["_column of the

matrix V,, is given by T el, where e; = (0,...,0,1,0,...,0)7 is a vector of zeros with the

-column of the matrix X,, is orthogonal to the other columns
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only one nonzero element in the [** coordinate and T’ 21 =1 ZZ 13321 Now, taking only the
l-th component of the vector equation (4.26) gives us the second order representation for the

[-th component of ,C:}n

V(b = Br) - Z o

1
- {wa}l\/ﬁ ; (x; i + e ng)T (f(es) — } {

sz (ei) — %]} + OP(%)?
Sa;

= NG AT'B, + op(). (4.27)
The random vectors A,,, B,, have asymptotically multivariate normal distributions and their

asymptotic covariance is

n
1
Tim cov{A, By} = lim Y& 3™ [ oy + xie0 T3] cov [ F(e). f(e0))
i=1
_ V' 1Zn:.T. {F(e;), fles)}
= im s xiX; Ti| cov{F(e;), f(ei)}
i=1

Thus A, B,, are asymptotically independent if £ S°7" | xTx; z;; — 0 or cov{F(e;), f(e;)} = 0.

The second condition is certainly satisfied if the distribution of the errors is symmetric.

Numerical illustration
To get an idea of how does the second order approximation of an R-estimator works we
performed a small numerical study. We worked with a linear regression model with two ex-
planatory variables Y; = By + f1xi1 + Bawio + €;. The design points x1 = (11, 212), ..., Xp =
(Tn1,Tn2) were generated from the uniform distribution U[—1, 1] and centered in each coor-
dinate. The errors eq,...,e, were taken to be normally distributed.

In the following, we focus on the coefficient 3;. Let Ry be the first component of the

vector

A~ -1 i
Remy = vn(B, — B) — Y22 > x; Fle;)
i=1
and R} be the first component of

3 v.! R;
Remi:\/ﬁ(,@n—ﬁ)—wﬁ X; L.
i=1
We compare these first order remainder terms with the second order remainder term Ro which

is the first component of the vector

Remz = v/n(8, — B8) — sz -

+ﬁ{%  (xixT + V) <f<ei>—v>} {X

S F(ei)} . (4.28)
i=1 i=1
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From the theory presented above we know that R; = o,(1), as well as Rf = o,(1), and
Vn Ry = op(1).

Table 2 shows estimated 10%, 20%,...,90%-quantiles of the quantities R}, Ry, Ro, and
\/n Ry for the sample sizes n = 20, 100, 500, and 2000. The number of random samples was
always 10 000.

n =20 n =100

q Ry Ry Ro V1 Ry Ry Ry Ro V/n Ry
0.1 | -0.638 -0.531 -0.514 -2.299 | -0.261 -0.247 -0.171 -1.709
0.2 | -0.401 -0.339 -0.330 -1.478 | -0.153 -0.156 -0.109 -1.086
0.3 | -0.242 -0.210 -0.198 -0.886 | -0.090 -0.095 -0.065 -0.647
0.4 | -0.117 -0.100 -0.094 -0.418 | -0.044 -0.044 -0.031 -0.306
0.5 | -0.005 0.000 -0.001 -0.006 | -0.003 0.001 0.001 0.007
0.6 | 0.113 0.099 0.096 0.431 | 0.040 0.047 0.033 0.327
0.7 | 0.240 0.205 0.199 0.892 | 0.090 0.097 0.068 0.679
0.8 0399 0.342 0.330 1.475 | 0.151 0.158 0.110 1.096
0.9 0643 0.538 0.521 2.329 | 0.251 0.248 0.174 1.736
n = 500 n = 2000

q Ry Ry Ro V1 Rs Ry Ry Ro V1 Rs
0.1 | -0.095 -0.103 -0.051 -1.140 | -0.044 -0.052 -0.020 -0.897
0.2 | -0.055 -0.064 -0.032 -0.706 | -0.026 -0.033 -0.013 -0.562
0.3 | -0.031 -0.040 -0.019 -0.436 | -0.015 -0.020 -0.008 -0.342
0.4 | -0.014 -0.020 -0.009 -0.208 | -0.006 -0.010 -0.004 -0.164
0.5 | 0.001 -0.001 0.000 0.008 | 0.000 0.000 0.000 -0.003
0.6 | 0.016 0.019 0.010 0.213 | 0.007 0.010 0.004 0.159
0.7 | 0.032 0.040 0.020 0.442 | 0.015 0.021 0.007 0.330
0.8 | 0.056 0.066 0.033 0.731 | 0.026 0.033 0.012 0.544
0.9 | 0.096 0.102 0.052 1.166 | 0.045 0.052 0.020 0.894

Table 2: Comparison of the first and second order remainder term for an R-estimator based

on Wilcoxon scores

Comparing the columns with the quantities R} and R;, we see that while the representa-

—1 ~
}Y/\% i1 x; F(e;) approximates /n(8,, — B8) better for small and moderate sample sizes,

—1
the approximation X(/Lﬁ S X %, works better for large sample sizes.

tion

Next, we see that a two-term expansion improves the first order approximation of the
quantity \/ﬁ(,én — ) in particular for large n. But notice that the random variable \/n Ry
converges to zero much more slowly than the quantity R; does. Comparing the quantities
v/n Ry in Table 1 and Table 2 we see that the convergence of the term /n Rs to zero is much
slower for the R-estimator than for the M-estimator. This may be explained by a higher
smoothness of the M-estimator (provided the function v and the underlying distribution of

the errors are sufficiently smooth).
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4.2 An alternative confidence interval

In this section we introduce an alternative way of constructing a confidence interval for a
single component of a regression parameter B in the model (1.1). We derive asymptotic

properties of this procedure and compare it with the standard Wald-type procedure.

4.2.1 Unstudentized M-estimators

Leaving out resampling procedures, the standard way for a construction of a confidence in-
terval is a Wald-type method. This method directly exploits FOAL of the M-estimator.
From (4.4) we immediately see that the random variable \/_ (,@n — B) is asymptotically nor-

mally distributed with zero mean and the Variance vV, 1 where ai = E ¢(e1)?. Let us

denote {wy; }J 1’ ’p the elements of the matrix V! and T? = 15" 22. Then the random
variable \/ﬁ( I — ﬂl) has asymptotically zero mean normal distribution with variance %
1
Thus we can construct the confidence interval for 3; as
o UU’ o UU’
ﬁl Zn 7 ﬁ + Zn ) (429)

where &, and 9 are estimates of the unknown quantities oy and 7, and z, = 11 - )
with ®~! being the inverse cdf of the standard normal distribution. We will call it a type I

AT
confidence interval. Putting r; = Y; — 3,,x; for the residuals, the most simple estimates

oy = [n . T ZW(T‘O] and 4 = %ZW(T‘O- (4.30)
=1 =1

Sometimes we may find the confidence interval (4.29) inconvenient particularly for two

of oy and 7, are

reasons. First, we need to estimate two unknown quantities (o, and v1). Second, we may
be doubtful whether the symmetry of the confidence interval (4.29) does not affect coverage
properties, especially in the presence of asymmetric distribution of errors or explanatory
variables in the model (1.1).

Boos (1980) proposed another method for the construction of confidence intervals from
M-estimates. He considered the case of location parameter and suggested the confidence

interval [0, 60;], where
07 = sup {t : % Z;¢(Xi —t) >0y za} (4.31)

0 = mf{ fzqzj i—1) < sza}. (4.32)

We will call it a type II confidence interval. It is apparent from the definition that this

method can only work for monotone ¢ in general. But we can easily modify the definition
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to include redescending -functions as well. Suppose that 0,, is the M-estimator. Then we
define the confidence interval [0, 0:] = [0,, + 6,7, 6, + 6;7], where

n’»'n

0, = Sup{t<02ﬁZ}TZJ(Xi—én—t)E@pZa},

5 = inf{t>0:%Z;w(Xi—én—t)g—&d,za}.

The advantage of this approach is that we do not need to estimate the functional v;. Boos
(1980) showed that this method is asymptotically correct and that the length of the confidence
interval multiplied by \/n converges in probability to the same constant as for the type I
confidence interval. He also demonstrated by the means of simulation that his proposed
method sometimes has a slightly better coverage properties then the type I method. Some
partial explanation of this phenomenon can be found in Lloyd (1994).

In the following, we will modify the type II method for a linear model (1.1). We will show
that the length of the type II CI for a single component (multiplied by y/n) has the same
probability limit as the CI of type I, but asymptotic distributions of properly standardized

lengths of CI's are in general different.

4.2.2 Construction of the confidence interval

For the simplicity of notation we will construct the confidence interval for the last component
of @ — parameter 3,. The general case would follow by relabeling of the indices. To simplify the
subsequent formulae we will make use of the following notations. Let z; stand for the vector x;
without the first component, that is z; = (z;1, ... ,a;ip_l)T. Similarly VZ = %Z?:l z;z] and
B.=(,... ,ﬁp_l)T. Further denote d,, = % > i Tipzi and Tr%p = %Z?:l x?p'

Finally put

= % Z Tip (r; — txip) (4.33)
i=1

and notice that

Mn(ﬁp - Bp) = % Z$ip T;Z)(Y; - ;B—zrzz - ﬁp 517@';0)'
=1

Then the confidence interval for the parameter 3, is DI = [bp , bp |= [Bp +4,, Bp +6,7], where
6, = sup{t <0:My(t)> T2 NN (4.34)
67 = inf{t>0:My(t) < —T7, \/wl 6y 20} (4.35)

Remark 14. There exist no solution to either of the equations (4.34) or (4.35) if
su )| = .
w Z |zip| < Tfp VWi Oy Za- (4.36)
i=1
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This may happen if 7" | |z;p| is ‘too small’ in comparison with > 7" | x?p, that is if the second
moment of the p-th column of the design matrix is ‘too large’. To prevent this possibility
at least partially, it is advisable to center the explanatory variables. If the linear model
includes an intercept, this transformation does not affect the estimate of the slope coefficients.
Moreover, as in practice we are usually interested mainly in the slope coefficients, this simple
transformation does not cause any interpretation problems as well.

The second simple idea is whether the scale transformation a:;p = x% (t =1,...,n) for

T2

an appropriate K would help. The answer is negative as we can easily see that (T,’Lp)2 = 3%

and (wy,)" = Kwy,. That is why both sides of (4.36) for transformed variables are multiplied
by the same factor % and the problem is left unchanged.

Good news is that numerical experiments show that unless the behaviour of the p-th
explanatory variable is ‘very wild’ and the sample size is very small (n < 15), the problematic
situation (4.36) occurs very rarely. Nevertheless, we strongly recommend to compute both
types of confidence intervals and compare the results. A huge difference is a good indication

to look at our data more carefully.

In the next, we will use the following simple estimator of ai:

52 = % S 03(ry). (4.37)
i=1

The next lemma justifies the usage of this estimator.

Lemma 4.5. Let the estimator Bn be \/n-root consistent, the function 1 of bounded variation,
and the condition X.2 satisfied. Then 65 = O’i + 0p(1), that is, the estimator &i s weakly

consistent.

Proof. Let M be an arbitrarily large but fixed constant and denote

1 « T
Sn(t):E;w2<ei—tﬁl), teT ={seR,:|s|]s <M}

In Lemma 5.6 we will prove that the quantity ||S,(t) — E ¥?(e1)||7 converges to zero almost
surely. Further, as the estimator Bn is y/n-root consistent, we can replace t with \/ﬁ(,én -B)

and get the statement of the lemma. O

Remark 15. Somebody may argue that some of the estimators

n

LS ) — 912,

=PI

1 n
~2 2 ~2
oy = r;), Or =
R — Z b2(ri), T3
i=1
where 1) = %Z?:l ¥ (r;), would be more appropriate. But it is easy to see that all of these
estimators are asymptotically equivalent in the sense: \/ﬁ(c}i - 53)) = 0p(1). To show this, it

suffices to verify that 1) is ‘small enough.” By the definition of the M-estimator ¢ = 0 if the
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linear model includes an intercept and the function ¢ is continuous. If this is not the case, we
can use y/n-consistency of Bn, FOAL result 4.2 and the condition GenFx.1, which together

give us
Op(h) = = D (e = 5 D) + 2 3 xT (B, — ) + 0y() = 0+ Oyl )

But this implies ¢ = O o ( which further yields

L),

1 N T 274'_77&[):
n_p;[wm) J] —n_p;wn .

We see, that we have even proved \/ﬁ(&i — &12/}) = Op(ﬁ)'

That is why the simplicity of notation is the main reason for working with the estima-
tor (4.37).

(7‘2’) + Op(%)

Before we state the theorem about basic asymptotic properties of the confidence interval

procedure, we need one more technical lemma for the case of a step function .

Lemma 4.6. Let ¢ be an increasing step function (4.13). Then there exists K < oo such
that almost surely it holds for all n € N

K maxi<i<p |zip)|

| M., (5 VWi ot zal| < Jﬁ* (4.38)

as well as
K maxi<i<p |Zip|

2 <i<
| M (6,7) + T3y /Wi, 6 2a] < n . (4.39)

Proof. The proof is very similar to the considerations made in Section 4.1.2 to arrive at (4.16).

We will only prove the first part of the lemma for §,, because the proof for 6,7 would be
completely analogous.
Let us denote ¢ = T2 Wiy Oy Za and

Gn(t) = M,(6, —t) —c= Z TipY(1ri — 6, Tip +txip) — C.

By the definition of §,; (4.34) and the monotonicity of the function ¢» we see that for every ¢ >

0 it holds G,,(¢) > 0 and G, (—¢) < 0. This gives us the inequality |G,,(0)| < Gy (g) — Gr(—¢).
Letting € \ 0, we easily find K > 0 such that for every n € N

Kmaxlgign ]a:,p\

NG

which proves the lemma. O

|G (0)] <

a.s.,
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Remark 16. If v is a step function, the monotonicity is an important technical assumption.
But as we have discussed in Remark 12, we believe that the difficulties for step functions are
only of technical character. Once there are solved, we justify the usage of type II confidence
intervals for these M-estimators as well. Some preliminary numerical experiments show that

the type II CI may be useful, for instance if we use the (skipped mean) 1-function given by

) ox Jz[ <k
Vi) _{ 0, |z|> k.

As to construct type I confidence interval, we need to estimate the functional =7, given by
m = F(k)—F(—k)—k(f(k)+ f(—k)). But this estimation may be rather difficult particularly
in not very large samples (< 100), when we do not have enough information to estimate the

density at the points k and —k.

The condition X’.2 implies that the quantities on the right-hand sides of (4.38) and (4.39)
in Lemma 4.6 are of order o(1) almost surely. This is sufficient for the first order results. For
the second order results we require the stronger condition XX’.1, which yields order o(n~/4)
almost surely.

Suppose the condition XX.2 to hold and denote V™! = [wij]ﬁ j—1- For the sake of sim-
plicity of notation put

O Za A/ Wi O Zo /W
ap = u, and ap = lim ap = h e (4.40)

il n—oo a!

Theorem 4.7. Suppose that the FOAL of the M-process (4.2) as well as the condition X .2
hold and (3, admits FOAR (4.4), then

(4).

P(DY33,) ——1-a

n—~0o0

(ii).

V(s —by) = 2a} + 0p(1)

Proof. Proof of (i)
Note that
P (D7ILI ?By) =P (55 > fBp) +P (l;;_ < Bp)

With the help of FOAL (4.2) and FOAR (4.4) we get
M (8, — By) = if}r- O(Yi — Blzi — Byyp)
n\p = Pp) = 2 ip W\Xi = P2 — Pp Tip

= % > wpiple) —nvn(B, — B.)Tdes +0p(1)  (4.41)
=1
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o(1) = M,(0) = % > wipiles) — vy — Bp) Toy — 1vn(B, — B,) Tdes + 0p(1). (4.42)
=1

Comparing (4.41) and (4.42) yields

M (Bp — Bp) = 71\/5(310 — Bp) Tgp + op(1).

To finish the proof of (i), it suffices to realize that by Lemma 4.5 6, — o, in probability,

from which it follows

P (b > B,) =P (6, > —B) =P (Mn<gp_5p) >T3p@%2a> =

n—oo

Analogously we can prove
- N
P (b, < Bp) — 5

Proof of (i7)
First, we need to check that

\/ﬁ(i);: — Bp) = 0p(1) and \/ﬁ(i);’)_ — Bp) = Op(1). (4.43)

Analogously to (4.41) we can calculate

P (Va(b, = By) > 1) =P (b, > B, + L) =P (6, >, — B+ =)
=P (fle,fp\/ﬁ(ﬁp — ﬁp) < Tﬁp VWB, Gy 2o — t1 1?2 » T op(l))

As the random variable \/ﬁ(i)p—ﬂp) is asymptotically normal, we can make the last probability
arbitrarily small for all sufficiently large n € N by taking ¢ large enough, which implies (4.43)
for l;; . Similarly we can prove (4.43) for l;; .

(4.43) enables us to insert b — /n <(,@Z, l;;)T — ﬁ) as well as b — /n ((Bz) Z’;)T - ﬂ)

in the asymptotic linearity result (4.2) with x; = x;, and get

) vz = 0p(1),
B) vz = 0p(1).

Mol = By) = < i i Ues) + I3/ = By) + v/

B. -
My (by = Bp) = o Soity wip er) +nTipy/n(by — By) +7v/n(B.

Subtracting these two equations and Lemma 4.5 (and Lemma 4.6 in the case of a step-1)

yield

’YlTr%p\/ﬁ(b; - b;;) = Mn(i); - gp) - ]\471(81;Ir - Bp) +o(1)
= M,(5;)) — Mp(65) +0(1) = 2T2 VWi, 0y Za + 0p(1

which yields the statement of the theorem. O
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In the following, we will assume that the function v is absolutely continuous. The case
of a step function is treated separately in Section 4.2.4.

Before we proceed with a finer analysis of the length of the confidence interval, we need
to find the asymptotic distribution of the random variable \/n (G, —oy). For this purpose, we

need to impose some further conditions on the function 1 and the distribution of the errors.

SmFx.4 There exists a § > 0 such that supy, s E YPlle; +1t) <

SmFx.5 The function A?)(t) = E 42 (e; +t) is continuously differentiable in a neighbourhood

of the point zero.

As the function 1 is continuous, the condition SmFx.4 together with Lemma 7.17 imply

the continuity of the function 1?(e; +t) in the quadratic mean at the point zero, that is
lim E [¢2(er +1) - W (er)]” =0. (4.44)

Let us denote g1 = % (E 2 (eq + t)) +—o- Usually we can interchange the derivative and
integral and get

Yo1 = 2 E ¢p(er) ¢’ (e1).

Lemma 4.8. Suppose that the conditions XX.1-2, SmFx.1-5 (or Step.1-2), and GenFx.1
are satisfied. Then

n

*(ei) —03) — biv(es op(1), .
2%\/5;[(“2) 3) —biv(e)] +op(1) (4.45)

Vn(Gy —oy) =

Ty —1
y01X; Vi Zn X5

where b; = o =17

Proof. Let us define the processes

\/— Z 7/)2 . xl ¢2(ez)] Zn(t) = Zn(t) — E Zy(t),

wheret € T'={s € R, : |[s|a < M} and M is an arbitrarily large but fixed constant.

Then with the help of conditions XX.1-2 and SmFx.4 we can easily verify the assump-
tions of Corollary 7.13, which gives us supjy,<a/ |Zn(t)] = 0p(1). Let us only note that (4.44)
would be utilized here.

As the next step we can use the assumption SmFx.5 to show that we can replace E Z,(t)

by — 701tT L > i1 x;. Combining this two results gives us

T
\/—Z¢2 ﬁ T;Z) ez +’701tTZXZ:OP

54



Because the estimate ,@n satisfies the first order representation (4.4), we can substitute
Vn(B, — B) for t in the last equation and get

T2 W) = Y wie) — N O xT VI M(e) Y T+ op(1),
i=1 i=1 i=1 j=1
which after some reorganization implies
\/_(O'w—ffw \/72 —012/;) —biﬂ)(ei)] + op(1).

The representation (4.45) now follows easily by a (Delta-) Theorem 7.3. O

Fortunately, the awkward representation (4.45) simplifies considerable in two important

cased. First, if the linear model (1.1) includes an intercept, that is z;; =1 fori =1,...,n,
then V! ZJ 2 ~% = uy, where u; = (1,0,... ,0)T € R,. This further implies
T
i PYOIXV Z#:%, z:l,,n

Second, if the distribution of the errors satisfies the symmetry condition Sym, then ~y; = 0,

which implies b; =0 for all i =1,...,n

Theorem 4.9. Suppose that the conditions XX.1-2, SmFx.1-5, and GenFx.1 are satisfied.

Put . .
L Vly/n(by —b,) —2ayp]
" 2aF '

(4.46)

Then the random variable Ly, is asymptotically normal with mean zero and the variance which

can be deduced from the following asymptotic representation

L = Y s e -]+ YT g, TS B 0,0 (44)

Lp a.
i—1 g L4 i—1

As we see from (4.47), the formula for the asymptotic variance of L,, (the standardized
length of CI) is rather complicated in general. But if the symmetry condition Sym is met,

then both of the functionals v9 and 79, are zero and using the representation (4.45) we get

Lg: \/—Z T2, 202\/—2 +Op(1)

Proof. Substitute \/n (B - I Ap — 3,) for tT in the second order asymptotic expansion of
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the M-process (2.8) (with ¢; = x4, for i = 1,...,n) and get

,/wppza o —l—’hn ﬁp) pt TN n(;é _ﬂz)Tdrz

= —ﬁ@; ~ B2 Zw?p [/ (e:) = ] = VB, — B.)" %= Za:,p 2 [¢/ (e5) — )
=1
.- {% 3y [Vt )"+ 2 3t VB, - i~ )
i=1

VB BITE Y T V(B - @)} +op(1). (4.48)
1=1

Similarly substituting \/ﬁ(ﬁz -85, b; — B,) for tT in (2.8) yields

z'Yp
VT2, \Jol 20 6 + (b, — By)T2, +71in(B, — B.) day
= _\/ﬁ(i); - ﬂp)% Zx?p[w/(@) - 71] - \/7_1 szp zz 'Yl]
=1
= {%in’p vy — )] + wa 2l \/n(B, — BIVIlb, - 5)
i=1

.~ 8.TE Sl B~ ) a0
=1

Subtracting (4.48) from (4.49) gives us
B = 5) T, — 218, Vi o, 2 0 =~V — ) Yok /(e —
{ Z Lip { [ ﬁp)} - [\/ﬁ(l;; - ﬁp)] 2}

to Z%z — B)Vn(b} —13;)}+o,,(1), (4.50)

which further implies

! = i Dy ) o]+ G
+ 2T2 { Z Zp\/_ b+ + b_ - Zﬁp Z:Ezp Z; IBz)} + Op(l)' (451)

To prove the statement of the theorem, it only remains to show that the third term on the
right-hand side of (4.51) is asymptotically equivalent (up to a term of order o,(1)) to the
third term in (4.47). But this is an immediate consequence of

Vb + b, —28,) = Valbt + by —28,) + 2B, — B,) = 0p(1) +2vn(B, — By),
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where the last equality follows by \/ﬁ(l;;; + Z); —23,) = 0,(1), whose proof is analogous to
the proof of the second part of Theorem 4.7. O

Remark 17. As by the condition XX.2 ap = at + o(1), we can replace the denominator of
LI in (4.47) by a%.

Comparison with the type I confidence interval

Recall that the confidence interval of type I for 3, is

D=0, ]= B, - 2 W by e

n p’ N vnooo"

If the estimators 4, and &y are (weakly) consistent estimators of v and oy, it is pretty
straightforward to show that P(D. > 3,) — 1 — «a and \/ﬁ[l;': — I;’;] =2ap + op(1).

Suppose that we use 4, = % > 4/ (r;) as the estimator of the functional ;. Then it is
not difficult to find the expansion for the standardized length of the confidence interval

= s )~ O R, - 0T % ) (4
=1

If we compare (4.52) with the expansion of L! (4.47) for type II confidence interval and realize
that (Tgp)2 < % Yoy azfp, we immediately see that the type I is more stable in the sense that
its standardized length has a smaller asymptotic variance. This is not so surprising if we

realize that the type II confidence interval ‘implicitly’ uses 4] = —2— oy a:lp W' (r;) as the

estimator of ; (this may be seen from the expansion of M, ( Bp) or M, ( ﬁp) around
the point zero derived in the proof Theorem 4.7). But this estimator is more variable then
the simple estimator 43 = 1 3", W (r;). On the other hand the results presented in Omelka

(2006) indicate that the estimator 4] often prevents the worst in the case of heteroscedasticity.

Let us suppose for this moment that we use 4, = ﬁnr Sy xfp '(r;) as the estimator
of 71 in the type I confidence procedure. Then, after some algebra, we can find that the
standardized length of the confidence interval satisfies (4.47). This implies that the lengths
of the confidence intervals of type I and type II are asymptotically equivalent, that is

n(b, —b,)=nb —b)+o,(1).
~+
p

But it is not generally true that n(l;'; - 13;) = 0p(1) or n(b', — B;) = 0p(1). To see this,

consider the expansion of the function M,,(¢) (defined in (4.33)) around the point 0 for ¢ of
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order O (

= %szpl/} Tz \/—quﬂ/} Tz PYQt szp—i_op(%)

i=1 =1

= —Vti T2 +”’2t Zx2p+op . (4.53)

As during the proof of Theorem 4.7 we have shown \/ﬁ(l;; — Bp) = O,(1), which further
implies (5; - B, = Op(%), we can substitute 0, = (l;; — f3,) for t in the expansion (4.53)

and get
o (4.34) _, (4.53) A A
“pp Oy Zo = M"((S") = —Vn(b, _ﬁp)71T3p+Op(ﬁ)-
. . ~ ~ Wi, Gy Za ] ~ .
This further yields b, = £, — ;’{’7 + Op(ﬁ). Now we can insert b, for ¢ in the equa-

tion (4.53) once more and after some algebra get

n
~ ~ Jwi, Gy Za Y2 wpp 02 22 xf 1
b, = Bp — ‘Zp\/ﬁ + p;%pw Z =t op(5)- (4.54)
=1

Comparing (4.54) with the lower bound of the type I confidence interval

I;__B _ \/@pp Gy Zax
p P nvn

~l ~e 23
we see that n(b', —b,) = Op(1), but not n(b’, —b,) = 0p(1) unless v =0 or > 7" | ;L” =
As an analogy of (4.54) holds for 13;' as well, we conclude that the confidence interval D!

is asymptotically shifted ‘a little* to the right or left depending on the sign of the quan-
tity 2 Y0, @

4.2.3 Studentized M-estimators

As in practice we usually do not know the scale, we prefer to use studentized M-estimators.
The difficulty with the inference for these estimators is that the asymptotic distribution of
the estimator of the location parameter depends on the asymptotic distribution of the scale
estimator (unless the underlying distribution is symmetric). That is why the confidence

interval constructed by Boos (1980) for the parameter of location [0} ,0;] given by

ni»'n

0 = sup{ \/—Zzb Sn ) > 0y 2 } (4.55)

o = 1nf{ fzw (Xt < —&1/;%}7 (4.56)




where 53) is an estimate of E zbz(XlT_e), is not generally asymptotically correct, that is
lim, oo P(0 € [0;,0;]) # 1 — a. Let us note that the type I confidence interval is facing the
same problem.

Fortunately, if an intercept is included in the linear regression model (1.1), it turns out
that the asymptotic distribution of the slope parameters does not depend on the asymptotic
distribution of the scale estimate (see the FOAR of B3, in (4.7)). This enables us to construct
an asymptotically correct confidence interval for a single component of the ‘slope’ part of the
vector parameter 3.

In this section we will suppose the linear model model (1.1) includes an intercept, that is

xi1 =1, for i =1,...,n. Further, let S,, be an estimator of scale.

Put .
i—t T
LY e (i),
=1

Then the (type II) confidence interval for the parameter (3, is given by D;’LI = [bp 75;] -
[Bp +0,, Bp + &), where

6, = sup{t<O0:My(t)>Tr, /&l 6y 2} (4.57)
5F = inf{t>0:My(t) < -T2, /&l 6y 2a } (4.58)

with aw =15, Q,DQ(g—jL).

The following theorem only restates the results of Theorem 4.7 and Theorem 4.9. We
note that we will use the symbols 7; and 72 in a way defined in (2.10) (Section 2.1.3) and
the quantity ap is defined by (4.40).

Theorem 4.10. If the conditions XX.1-2, SmSt.1-3, GenSt.1, and \/7_1(%” — 1) =0,(1)
hold, then the confidence interval D! defined by (4.57) and (4.58) satisfies:

7).
v P(D{faﬁp)ml—a.
(ii).
V(b —by) = 2ap + 0,(1).
(i1). Further suppose that \/n(Gy — oy) = Op(1) and put
Vi [valb) —b;) - 2a3]

I
" 2ap

Then the random variable L, admits the first order asymptotic representation

n

o i (5
Ll = =507 2o rk W (/) = m] + 252 Vi (g - 1)
1=1

+\/ﬁ(5¢— v) ’Yz\/_ Z pa Z+Op (1). (4.59)
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For this moment we postpone the discussion of the assumption /n(6y — oy) = Op(1) to
Section 5.2.2 of the next chapter. In that section we derive that the first order representation
of the quantity /n(6y, — oy) is given by (5.24). To prove that expansion, we will need

conditions SmSt.4-5, which are analogous to the conditions SmFix.4-5.

Proof. The proof of the theorem is completely analogous (only a little more complicated) to
the proofs of Theorem 4.7 and Theorem 4.9. The only difference is that instead of FOAL of
M-process with fixed scale, we use FOAL of studentized M-process to prove statements ()

and (i7). To prove the last statement we use Corollary 2.6 instead of Corollary 2.3. O

Remark 18. As the statements (i) and (ii) of Theorem 4.10 are ‘only’ first order results, they

could be proved under weaker assumptions.

Numerical evidence

Some partial comparison of the finite sample performance of the confidence intervals of type I
and type II are to be found in Omelka (2006). We can summarize the results as follows.
Confidence intervals (CI’s) of type II are generally larger and more variable than the
type I CI's. Moreover, in comparison with CI of type I, CI's of type II are conservative, that
is their coverage is usually larger than the nominal value. On the other hand this higher
coverage property is worth considering in models in which errors or explanatory variables
are asymmetric. In such models the two-sided CI’s of type I often have a slightly lower
coverage than theirs nominal values and the one-sided CI's may be completely misleading.
Moreover, the type Il confidence intervals does not usually fail completely in the case of

heteroscedasticity.

4.2.4 M-estimators based on discontinuous v function

Suppose that the function v is a step function given by (2.14) or equivalently by (2.15). A
type II confidence intervals is an interesting alternative because a construction of a type I
confidence interval usually requires density estimation.

Theorem 4.7 (or the first two statements of Theorem 4.10 for the studentized case) covers
the first order results about asymptotic coverage and asymptotic length of the confidence
interval.

But it is a more delicate task to find the limiting distribution of the properly standardized
length of the confidence interval DI

For every b € B = {s: [s|a < M,s € R,} we define the processes

b _ 1 - bTXi tZip bTxi
My(t) = g ;xip [Wei — o T o) T Ylei - W)] :

Mp(t) = Mp(t)—E M(t),
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indexed by the set T = {¢t, [t| < M}.
It is a rather standard use of Theorem 7.12 to show that for every fixed b € B the
process MP(t) converges weakly to a centered gaussian process {W(t), [t| < M} with a

covariance function
T3 you |s| Altl, ts>0

4.60
0, ts <0, ( )

cov(W(s), W (t)) {

where T3} = limy o0 5 2oiy |2ip[* and qo1 = G (E ¥ (e1 +1))i=0 = 272, oF [£(g5) — f(aj-1)].
In the following, we would like to show that this convergence is uniform in b € B.

By a partition of T" we will mean a decomposition of T" into finitely many disjoint subsets

T1,..., TN such that T = U;VZI T;. Choose from each partitioning set 7} a fixed element and
denote it by t;. Finally, define the map 7 : T — {t1,...,tn} as w(t) =t¢; if t € T}.

Lemma 4.11. Let the conditions X’.1-8 and Step.1-2 be satisfied. Then for every e > 0
there exists a finite partition T = U;V:1 Tj and a map 7 : T — {t1,...,tN} such that for all
sufficiently large n € N
sup E*|[Mp(t) = Mp(n(t))llr <. (4.61)
[bla<M
Proof. Similarly to the proof of Theorem 2.7 let us define the metric p on T as p(t,s) =
C'\/[t — 5|2, where C is a (large) constant. Notice that for this metric

N(€7T7p) < <%ﬁ) /\17

which implies condition (7.4). The other obvious but important fact is that the metric p does
not depend on b. Denote B(e) (C T') a p-ball of radius €. Then it is easy to show that by
taking C' large enough for all sufficiently large n € N it holds

n 2
sup E* sup [M,E’Z(t) - M,?Z(S)] < €2 (4.62)
‘leSM i=1 t,SeB(E)

) T i tz; T i
where M,E’Z-(t) = ;1}’4 [w(ei _bx ) —ah(e; — bT’;)}
By the assumptions of the lemma and by the previous inequality (4.62) we can for every

q € N construct a partition T = Uj\f:‘ll T;-] such that

Z 279y/log N4 < 00
q=1

and
n

2 1
sup E* sup [M,E’Z(t) - M,E’Z(s)} <—, forj=1,...,Ny.
bla<M = tseT? 24
We can argue similarly to the proof of Theorem 2.5.6 of van der Vaart and Wellner (1996) to
show that without loss of generality we can choose the sequence of partitions (for ¢ = 1,2,...)

as successive refinements.
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Now we can follow step by step the proof of Theorem 7.12 (2.11.11 Theorem of van der
Vaart and Wellner (1996)) and show that there exists a sufficiently large g, such that for all
q > q¢o and for all n large enough

E* (M (1) — My (I, (1))llr < e

As the construction of the partitions does not depend on b, we can take gg sufficiently large
so that the last inequality holds uniformly in b (|b|s < M), which proves the statement of

the lemma. O

In the following, we will make use of the bounded Lipschitz metric (see e.g. van der Vaart
and Wellner (1996)). This metric is an important tool as it metrizes the weak convergence to

a separable Borel limit.

Definition 4.12. Let Q1, Q2 be two probability measures on ¢*°(T") and BL; be the set of
all real functions f on T with || f||ec < 1 and |f(z) — f(y)| < d(z,y), for every z,y € T. Then
the bounded Lipschitz metric of the measures ()1 and (> is defined as

/fdQ1 /fsz

Lemma 4.13. The process {MP(t), t € T} converges weakly to a gaussian process {W (t), t €
T} (with the covariance function specified in (4.60)) uniformly in b € B, that is

dpr(Q1,Q2) = sup
feBLy

sup dpr(MP(-),W(-)) =0, as n— oc.
[bl2<M
Proof. We will very closely follow the second part of the proof of Theorem 2.8.2 of van der
Vaart and Wellner (1996).
Fix € > 0. With the help of Lemma 4.11 and by the fact that the limiting process W(-) is
gaussian, we can find a finite set Ty = {t1,...,tn} (To C T) and a mapping 7 : T'— T such
that for all sufficiently large n

sup E* HM;’(t) — M}?(T('(t))”T < g2 (4.63)
|blo<M

as well as
E [W(t) - W(x(t)|r <. (4.64)

Now we claim that

zb _ (Mb(t P T w T .
n=(M)(t1),..., M (tny)) —— (W(t1),...,W(ty)) uniformly in b e B. (4.65)

n—oo

This may be justified as follows. Denote by u, the distribution of the random vector ZP and
put

_ _ T
Xi = (X1, Xn)T = o4 (BB (1), .. IS (EN))
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where

ME(E) = aip [h(e; — 2 — U2) —wple; — 2] and MB(E) = ME() — E ME().

Then g, coincides with the distribution of the vector ﬁ oy X;. We immediately see
that E [X;]3 < oo and p3 = 1377 | E |X;[3 = O(n'/*) uniformly in B. By Theorem 7.19
the Prohorov distance between measure u, and the Gaussian measure v, with mean zero
and with the same covariance matrix as i, is of order smaller then o(n~'/32) uniformly in B.
Finally, as the covariance matrix of v, converges to the covariance matrix of the random vector
{W(t), t € To} uniformly in B, we can use Theorem 7.20 (with the subsequent discussion) to
conclude the proof of (4.65).

The uniform convergence in (4.65) further implies that

sup sup
beB heBlL4

E*A(ME (x()) — E h(W (x()))| = 0. (4.66)

Next, since every h € BLj satisfies the inequality |h(x) — h(y)| < 2 A |x — y|, we get that

uniformly in B for every € > 0

sup |E*A(VEP()) — E h(ME(n())| <2 AE*
heBLy

ME()) — ME(m()|
< e+ 2P {|IMR () - MR (r(t)llr > <}
\ b

* _ MP (4.63)

T

As the limit process W is gaussian, we can obtain an analogous result for the process W.
Combining the previous results (4.64), (4.66) and (4.67) we get that for sufficiently large n

uniformly in B

sup |E*A(ME() ~ E A(W()
heBL;
< sup [E*A(VIE() ~ E A (x())] + sup [E h(VE(x() — E (W (x()))
heBL; heBL,
+ sup |[EA(W(x(-))) — ER(W())|
heBL1
< sup [E AU (x())) — E h(W (n(-))] + 32 +3c — 6-,
heBL; o0
which concludes the proof of the lemma. O

Before we find the asymptotic distribution of the length of the confidence interval, notice
that uniformly in ¢ € T'and b € B

E MP(t) +tyin'/* T2, = o(1). (4.68)
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Theorem 4.14. Put 14 . .
bt —b7) —2a%
Ln _ n [\/ﬁ( n n) aF]’ (4.69)
2ap

then the random wvariable L, is asymptotically normally distributed with mean zero and the
variance .
1
3 3
where Ty, = - 2; |zip|”. (4.70)
1=

b2 0 T3,
" 2 ’Y% (Tgp)2 a’F7

Proof. First, notice that Lemma 4.8 implies 6, — oy = op(n1—1/4). That is why, we can replace
the estimate &, in the definition of the confidence interval with the true value oy.

Further, with the help of Lemma 4.13, equation (4.68), and the y/n-consistency of ,C:}n we
get that the process

1 3, i ta; 1 3, i
Wn(t):Wz$ipw(ei_@%_%)_szip¢(ei_ﬁnT:)_‘_’ler%pnl/thv teT,

weakly converges to the process W (t). As the random variables \/ﬁ(l}; —f3,) and \/ﬁ(l;; —5,)
are in probability equivalent to a% and —a’% respectively, we can substitute them for ¢ in the
process W,. This substitution and subtraction of the two resulting equations yield

n1/471T3p \/ﬁ(l}; - l;g) - Za}?] ~ AN(0, 2701 Ts’p ap).

But as the random variable L, equals the quantity on the left-hand side divided by 2 ’leﬁpa%,
the theorem is proved.
O

The situation is very similar for the studentized estimators. In this case we need to

study the process

IR0 = e 3o o (s 5~ 5008) o (- )]
=1
|t] < M},

where |bla < M and |u| < M.

We can proceed along the lines of Lemma 4.11 and Lemma 4.13 and show that the pro-
cess {MP"(t), |t| < M} converges uniformly in b € B and u(Ju| < M) to the gaussian
process {W (%), [t| < M}. Thus if \/ﬁ(%” — 1) = Oy(1) and the model (1.1) includes an
intercept, no new complications arise. We have to only incorporate the scale functional S

into our formulae.

Numerical illustration
Just to get an idea, how does the confidence interval of type Il work in practice, we performed

a small Monte-Carlo experiment. We considered a simple linear model with one explanatory
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n =20 n =50 n =100 n = 200
I II I II I 11 I 11
Coverage 0.989 0.955 | 0.982 0.946 | 0.974 0.944 | 0.968 0.947
v/n mean(length) | 8.413 6.900 | 6.933 5.663 | 6.314 5.413 | 5.950 5.318
/n median(length) | 8.122 6.583 | 6.859 5.530 | 6.281 5.325 | 5.935 5.254
n3/4 sd(length) 4913 5.418 | 3.129 4.260 | 2.503 4.110 | 2.105 4.084
n3/4 IQR(length) | 4.612 5.124 | 3.071 4.197 | 2.500 4.082 | 2.101 4.070

Table 3: Comparison of type I and type II CI; the nominal coverage is 0.95.

variable (plus intercept) Y; = By + (1 x; + e; and the median regression estimator with the
1 function given by (z) = I{x > 0} — % To construct the type I confidence interval, we need
to estimate the functional v; = f(F~1(0)) (density of the errors evaluated at the median of
the distribution). In our study we used the estimate originally suggested by Siddiqui (1960)
(see p. 139 of Koenker (2005)).

We generated the errors from t¢-distribution with 3 degrees of freedom and the design
points from the uniform distribution on the interval (—1,1). We set the nominal coverage
to 0.95. We took the sample sizes 20, 50,100, and 200 respectively. The number of random
samples was 100 000.

Table 3 shows some of the results, which seem to be typical. We see that while the type I
confidence interval is rather conservative, the actual coverage of the type II confidence interval
is slightly less then the prescribed value. The fact that speaks for the type II CI is its average
shorter length. On the other hand we may be rather nervous that the length of the CI of
type II is much more variable than the length of the CI of type I.

We can also compare the quantities /7 mean(length) and n®/*sd(length) from the Table 3
with its asymptotic counterparts 2ap = 5.33 and o], = 0, ap = 4.33, where the quantities ap
and o, are given by the equations (4.40) and (4.70). We see that for n > 100 the approxima-
tion of the mean length CI (multiplied by y/n) of the confidence interval by 2 ap works very
satisfactorily. On the other hand the asymptotic variance of the length of CI overestimates
the true variance and it gives only a rough idea unless the sample size is very large. Some
further simulations show that the approximation of variance needs the sample size to be in
thousands to be trustworthy. Finally, we should note that the comparisons made in this para-
graph are only exploratory and not mathematically correct. The problem is that Theorem 4.7
and Theorem 4.14 only speak about the convergence in probability and distribution, none of
which implies the convergence of moments. The justification of comparisons of finite sample
mean (or variance) with the mean (or variance) of the asymptotic distribution would require
to show the uniform integrability of the sequence in question. But this is beyond the scope
of this thesis.

Some further numerical experiments show that a type II CI is not very convenient for

more than one explanatory variables, as its actual coverage is considerably smaller than
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the prescribed value unless the sample size is very large. Moreover, even if there is only
one explanatory variable the undercoverage of the type II CI is considerable higher if the
prescribed nominal value is less than 0.95.

We conclude that a type II CI is a good alternative to a type I CI for the models with
one explanatory variable (and an intercept) in particular for small and moderate sample
sizes. Finally, unless the sample size is extremely large, type II CI’s usually work better for

asymmetric errors too.

4.2.5 R-estimators based on Wilcoxon scores

The situation is analogous to the case of an absolutely continuous . For the simplicity of
notation, we will construct the confidence interval for the last coordinate of the vector 3. Let
,@n be the R-estimator and rq,...,7, the residuals, that is r; = Y; —,@I x; fori=1,...,n. We
define Spy(t) = # o wip Ri(t), where R;(t) is the rank of the random variable r; — t 2,
among 1y —txip,. ..,y — t Tpp.

Then the (type II) confidence interval for the parameter (3, can be constructed as DI =

b, 0] = [B, + 0y, By + 6;7], where

2 2
Tnp Zo Tnp Za wr

5gzsup{t<0:5np(t)2T%}, 5::inf{t>0:5np(t)§#},
(4.71)
and z, = ®71(1 — $), with ®~! being the inverse cdf of the standard normal distribution.
Notice that we do not need to estimate any unknown parameters.
The following theorem is an analogy to Theorems 4.7 and 4.9. In fact, it only restates the
results of Section 5 of Jureckova (1973).

For the simplicity of notations we put

%o /7y
Y12

where v = E f(e1) = [ f*(z)dz.

Theorem 4.15. If the conditions XX.1-2, X.5, W.1-3, and the representation (4.22) hold,
then the confidence interval DL defined by (4.71) satisfies:

(4).

n XX.2 Za+/Wpp

and ap = lim ap "=
n

—00 yV12 '

ap =

P(DI'5 ) ——l-a

().
V(b —by) = ap + op(1).

(iii). Put o
1 VAVl ) —2ag] W)




then the random variable L,, is asymptotically normal and admits the first order asymp-

totic representation

L,=— T2 Z ad, + Z i — 7] 4 0,(1). (4.73)

np =1

Proof. Completely analogous to the proof of Theorem 4.7 and Theorem 4.9. The first two
statements are ‘first’ order results, which can be deduced from (4.22). In the proof of the last

statement we utilize the asymptotic expansion derived in Corollary 3.3. U

Remark 19. The confidence interval of type I for the parameter 3, would be

Di = [b,;7 ] ﬁp \/—ﬁ/\u/)p—gy ﬁp \/—://\u/)_zi] (4.74)

where 4 is an estimate of v = E f(e1), with f being the density of the distribution of errors.
As the density f is unknown, it is not so straightforward to estimate the functional 7. Some

estimators of v can be found in Hettmansperger (1984).

Numerical illustration
We performed some simulations to illustrate the results of Theorem 4.15. We considered a
linear model Y; = By + f1xs1 + Poxio + €;. We used the Meyer matrix of order 27 x 2 (see
Stigler (1986), pp. 16-25) as the design matrix. Further, we normalized this matrix such that
SP o m;=0and 230, x?j =1 for j = 1,2. We were interested in type I (R I) and type II
(R II) 95% confidence intervals for the parameter (3.

The type I CI requires the estimation of the functional . In our simulation we used the

estimate constructed as follows.

1. Denote )
Hy(t) = 7 > Hri —rj| <t}
(2) i<j
the distribution function of the pairwise differences of the residuals r; = Y; — BZ X;.
9 Put 7 — H;'(0.8)
. ut 7, = T

3. Finally estimate v by

o V3H(m) \/m

Once we have estimated 7, we can define the type I CI by (4.74).

First, we were interested in small sample coverages and mean lengths of the type I and
type II CI's. Some of the results, for the errors generated from standard normal distribu-
tion (N (0, 1)), logistic distribution with the density f(z) = (1+ew
distribution with f(z) = e *I{x > 0} (exp) are to be found in Table 4. The number of

random samples was 100000. The first row of this table gives us the estimated two-sided

E (logistic), and exponential

coverage probability, the second (the third) row estimates the one-sided coverage probability
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n =27 N(0,1) logistic exp
RI RII RI R1II R1 R1II

Coverage 0.955 0.961 | 0.956 0.961 | 0.954 0.958
Coverage L 0.977 0.980 | 0.978 0.981 | 0.968 0.977
Coverage U 0.978 0.981 | 0.977 0.980 | 0.986 0.981
mean(length) 0.870 0.866 | 1.487 1.496 | 0.604 0.661

v/n mean(length) 4.520 4.498 | 7.725 7.776 | 3.136 3.436
/n median(length) | 4.481 4.466 | 7.625 7.675 | 3.071 3.348
n sd(length) 4.463 4.057 | 8.256 7.836 | 3.884 4.527
n IQR(length) 4.441 4.041 | 8.145 7.711 | 3.791 4.374

Table 4: Actual coverage probabilities of the true value of the parameter J5 for the sample

size n = 27.
n =27 n=>54 n =108 n =216
RI R II RI R II RI RII RI RII
Coverage 0.959 0.958 | 0.956 0.953 | 0.952 0.957 0.947 0.951
Coverage L 0.970 0.976 | 0.971 0.974 | 0.970 0.976 0.969 0.976
Coverage U 0.989 0.983 | 0.986 0.979 | 0.983 0.981 | 0.978 .976
mean(length) 0.832 0.932 | 0.508 0.541 | 0.317 0.344 0.218 0.230

v/n mean(length) 4.323 4.840 | 3.737 3.973 | 3.297 3.572 3.204 3.382
/n median(length) | 4.174 4.601 | 3.677 3.877 | 3.272 3.534 3.190 3.361

2afp 3.297 3.297 | 3.217 3.217 | 3.180 3.180 3.162 3.162
n sd(length) 6.209 8.088 | 5.060 6.242 | 4.755 5.324 4.628 4.994
n IQR(length) 5.896 7.340 | 4.956 5.910 | 4.690 5.221 4.528 4.843
n asd(length) * 4.298 * 4.194 * 4.145 * 4.121

Table 5: Results on confidence intervals for 35 for lognormal errors and different sample sizes.

P (lA)Ij < f(B2) (P (5; > [32)). The next two rows measures the mean and median length of
the confidence intervals and the final two rows the variability of the length of the confidence
intervals. By sd we mean standard deviation and by IQR interquantile range divided by
2 CID_I(%) (so that IQR is consistent to o if the underlying distribution is normal).

We see that for symmetric errors both methods are almost equivalent. We were surprised
that type II method seems to work better for normal errors. Some further experiments
show that the picture is usually following. The type II method is usually a little bit more
conservative in terms of coverage probability and resulting CI’s are on average larger and
more variable than the type I CI’s. Let us notice more thoroughly what happens if the errors
are asymmetric. The last two columns of Table 4 as well as Table 5 indicate that although the
two-sided type I CI’s keep the nominal value very closely, the one-sided confidence intervals
may be slightly misleading.

Second, we wanted to assess the statements (ii) and (iii) of Theorem 4.15. We chose the

sample sizes n = 27, 54, 108 and 216 (we used appropriate multiples of Meyer matrix) and
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estimated the mean length of CI's (multiplied by y/n) and standard deviation of this length
(multiplied by n). We compared these empirical results with their theoretical counterparts —
2 ap and asymptotical standard deviation of L,, (asd(L,)) based on the asymptotic expansion
(4.73). The number of samples was in each case at least 10000. Notice that we are able to
calculate asd(L,) only for type IT method. The calculation of this quantity for type I method
would require a detailed study of the estimate 4.

Table 5 contains the results for errors following lognormal distribution (with density given

by the formula f(z) = x\}ﬂ exp{—bg%}]l{:n > 0}). Comparing the finite sample results
with their asymptotic values (the seventh and the last column of the table), we see that to
approximate the mean and in particular the variance of length of CI’s with their asymptotic
values is too optimistic, even in the situations with more than one hundred observations
and only two explanatory variables. But to be fair, we chose one of the worst cases — with
heavily asymmetric errors (lognormal). For symmetric (e.g. normal) errors, the asymptotic
approximations work for n > 100 satisfactory, provided that the distribution of the columns

of the explanatory variable is not heavily skewed.
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Chapter 5

A bounded length confidence

interval

In this chapter we explore some asymptotic properties of a bounded length confidence interval
for a single parameter, which is based on a (studentized) M-estimator or an R-estimator
generated with the Wilcoxon scores. The results for M-estimators generalize the work of
Jureckova and Sen (1981a) and Jureckova and Sen (1981b).

5.1 Preliminaries

It is natural that sometimes we would like to estimate the parameter of interest with a
prescribed precision. But as the sampling distribution of the estimate usually depends on
some unknown (nuisance) parameters, which we mostly do not know in practice, we need to
incorporate a sequential procedure.

One of such procedures is a bounded length confidence interval. We can generally describe
it as follows. Suppose we are estimating a scalar parameter 6 and for every fixed sample size n
we are able to construct an asymptotically correct confidence interval D,,. Denote L, the
length of this interval. Now we prescribe the quantity d (the ‘precision’ of interval) and we
sample unless the length of the interval is shorter than 2d. More precisely, we denote the

stopping variable
Ny =inf{n > ngy: L, < 2d}, (5.1)

where ny may be interpreted as an initial (or the smallest reasonable) sample size. For the
resulting confidence interval Dy, holds Ly, < 2d.

This procedure gives rise to some natural questions.
(7). What is the actual coverage probability?

(7). Can we describe or at least approximate the behaviour of the stopping variable Ny ?
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Concerning the first question, we would like to show that limg_.o, P (Dy, > ) = 1 —«, which
would justify our approach at least asymptotically. As some numerical experiments show that
actual coverage for a fixed length d may be substantially smaller than nominal coverage, some

authors propose to define the stopping variable as
Ng=inf{n >ng: L, +r, < 2d},

where r,, is a penalty term (e.g. 7, = %) This penalty should prevent very early stopping,
which results in taking too few observations. For simplicity, we will not consider the penalty
in what follows. By the definition of the stopping variable Ny we will mean (5.1).

Let us turn to the question (ii). As we will see later, we are usually able to find a

nonrandom quantity ng (depending on d) such that ]X—j % 1. Sometimes we can even show
—04

that the random variable ]X—j, properly standardized, is asymptotically normally distributed.

5.2 Definitions and Theorem

Suppose that the model (1.1) includes an intercept, that is z;; = 1 for i = 1,...,n. For
simplicity of notation we will be interested in (3, (the last component of a regression param-
eter 3).

In the following, we would like to explore the asymptotic properties of a bounded length
confidence interval DJI\{i , where D!! is defined with the help of (4.57) and (4.58). The stopping
variable Ny is given by

Ny =inf{n >ng: b, —b,, < 2d}, (5.2)

where the symbol n in the subscript indicates the number of observations used to construct
the estimate. Provided condition XX.2 holds, put V! = Wik} j—1 and \A— wijlf j=1-
Define

n
Za Oy £/ Wpp
1

2 2 2
zZ, 0 W a
ey PP CF where ap = lim ———— (5.3)

ng = = —=,
d ’Y% d2 d2 n—oo 0%

Now we are ready to formulate the basic properties of this sequential procedure.

Theorem 5.1. Under the assumptions XX.1-2, SmSt.1-3 (or Step.1-2), and GenSt.1 it
holds:

(7). Ngq is nonincreasing in d (d > 0);
(73). P(Ng < o0) =1 for any d > 0;
(ii7). limg_o, Ng = 00 a.s.;
(). Na L

Nd 404

71



Proof. The proof of the statements is analogous to the proof of Theorem 3.1.1 of Jureckova

(1978). We show it only for the sake of completeness.
Proof of (i). The monotonicity of Ny follows directly from the definition of Ny.

Proof of (ii). For any fixed d > 0 we can write

n—oo

P(Nd:oo):P{ﬁ[Nd>n]}§ lim P (L, > 2d) =0,

n=1
where the last equality holds in view of Theorem 4.10.
Proof of (iii). limg_o, Ng = oo if and only if

P{U N U[Nd,gK]}zo. (5.4)
K=1d>0d'<d
Due to the monotonicity of Ny, the left-hand side of (5.4) equals to
co oo K
p{0 Ay <mf-r{U A U< 21} -2 {0 Y=o} -0
1m=1 1m=1n=1 1n=1

as P (L, >0) =1 for any n € N.
Proof of (iv). Fix £ > 0 and put ng. = [ng(1l + ¢)]. Then for sufficiently small d

P> 14e} =P {Ly>2dVno <n < g} <P {iaz L. > d iz}

(5:3) 1+5) 0y 2a
P {,/—nd,aLnd’E > (Fp)7es V“’””} ——.0,
—04

where the convergence follows by the statement (ii) of Theorem 4.10.

Similarly we can show that P {]X—: <1-— 6} 0 0.
—04

5.2.1 Asymptotic coverage of the sequential confidence interval

In this section we prove that the sequential confidence interval D]I\,Id has an asymptotically

correct coverage, that is
lim P (DY, 38,)=1-o (5.5)
d—04

The idea behind the following steps is very simple. From the first statement of Theorem 4.10

we know that the confidence interval D!/ = [b_ bt | is asymptotically correct. Now we would

pns Upn
like to replace the index n with a random stopping variable Ny. As we know that ]X—j d—PO——> 1,
—04

then by the results of Anscombe (1952) all we need is to show that the sequences of random
variables \/ﬁ(i);n — (p) and \/ﬁ(i);n — (p) are both uniformly continuous in probability.
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Definition 5.2. We say that a sequence of random variables {Z,,} is uniformly continuous
in probability (ucp) if given any small positive € and 7, there exist n, € N and § such that

for any n > n,
P{lZ,—Zn| <e, YmeN:|n—m|<dn}>1-n.

In the following, the symbol oy,.(1) will stand for a random variable R,, which is of
order 0,(1) and which is uniformly continuous in probability. Further in this chapter we will
use Bn instead of Bn (or ,C:}n) to emphasize that the estimator depends on the sample size.

As a first step, we would like to prove that the remainder term in FOAR of the random
variable v/n(8,, — B) (4.7) is not only 0,(1), but oyp.(1). For this purpose, we need several
technical lemmas. Similarly to Section 2.1.3 put T'= {(t,u) : [t|o < M, |u| < M} (C RPH1),

Lemma 5.3. Let the assumptions X.1-2 and SmSt.1-3 (or Step.1-2) be satisfied and define

/2 Ty
My (t,u) \/_ZCZ [ ( “(e,- - tﬁ)/S) —1/1(62'/5)} , (t,u) eT.
Then for every € > 0 and n > 0 there exists no such that for all n > ne
Lk k
pr {kgaxn Mot + 2803 ey 2y s s } o
i=1 i=1 |lp

Proof. For the simplicity of notation put M, = M,,—E M,. From the proof of Theorem 2.1
(or Theorem 2.7 for the case of step ¢) we know that "1 | E*||Z,;]|3 = o(1), where

—n—1/2y Tx;
Zni = ci |16 (e (e = £5)/8) = wle:/S)] -
Corollary 7.14 yields
P* {kH}aX HMnk”T > E} — 0. (5.6)

Next, we claim that

k

P

EMnktu

max
k=1,...n

k
#25)
which follows easily by the continuity of the first derivatives of the function A(s,v) = E ¥(%=)
(condition SmSt.3 or Step.2) and by the assumptions X.1-2.

The lemma follows from (5.6) and (5.7). O

Remark 20. Lemma 5.3 implies

1 Zci [w (e—nﬂ/w(ei _ L\/%i)/s> — Q/J(Qi/s)} +ut’ ‘ exi 4 gu ‘ o
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Now we would like to substitute /n(3,, — 3) for t and \/ﬁ(% —1) for win (5.8). To keep
the remaining term of order oy,(1), we need a stronger condition than the \/n-consistency
of 3, and S,,.

We will say that the sequence of random variables {Z,} satisfies the condition SUB
(‘sequential uniform boundedness’) if for every n > 0 there exist C' (C' < o0), 6 (§ > 0) and
no € N such that for all n > n,

P { max  |Zg| > C’} <n, (5.9)

=N_g§,...,N§
where n_s = [n(1 —0)] and ng = [n(1 +9)].

Lemma 5.4. Let the conditions SmSt.1-3 and X X.1-2 be satisfied. If the sequence \/ﬁ(%"—
1) meets the condition SUB, then there ezists a sequence {Bn} of the solutions of the system
of equations (4.1) such that the sequence \/n(3, — B) satisfies the condition SUB.

Proof. Our proof will be only a slight adaptation of the proof of Theorem 5.5.1. of Jureckova
and Sen (1996). Let us denote Vi = %Zle x;x] and vi(k) = %Zle x;. As our model

includes intercept, the vector vy (k) is just the first column of the matrix V. Further put
K T
Euk(t, $0) = = S xi v (e = £5)/5)
i=1

Because the sequence \/ﬁ(s—g — 1) meets the condition SUB, Lemma 5.3 implies that for an
arbitrarily large but fixed constant M in the definition of T’

|En(t, Sn) — En(0,5) + 1 Vat +y1evi(n)vn (3 — 1) 5 = ouep(1). (5.10)

With the help of this equation we will show that for every 1 > 0 there exist § > 0, C' > 0 and
no € N such that for all n > n,

p { max  sup t' Eg(t,S;) > 0} <. (5.11)

k=n_s,....ns ||| =C

Provided (5.11) holds, we can use Theorem 6.3.4 of Ortega and Rheinboldt (1970) (see Theo-
rem 7.15) to conclude that for all k = n_s, ..., ns with probability exceeding 1 —n the system

of equations
k
i=1

has a root T} such that ||T%|| < C. Defining B L= B+ % gives us the sequence of the solutions
of the system of equations (4.1) with the desired property (SUB).
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Let us return to the proof of (5.11). With the help of (5.10) for every € > 0 and n > 0
we can find no, & > 0, and M’ > 0 such that for all n > n,, § < ¢, and M > M’

P max sup tTEk(t,Sk) >0
F=n—pras ||t]|=M

IN
NS

P max sup [tTEk(O, S) — it TVt — Vlevl(k‘)\/%(% - 1)} > —¢
k=n_g,....,ng ltl|=M

IN

+
P { max ’M‘ ‘Ek(O,S)‘Q—l-”YleHVl(k)‘Q‘\/E(%—l)‘ Z’yle)\l(k)—E}"i‘g,
5

k=n_s,...,n

(5.12)

where i (k) is the smallest eigenvalue of the matrix V. We see that we can make the last
probability in (5.12) arbitrarily small by taking ¢ sufficiently small and n, and M sufficiently
large. This completes the proof of the lemma. O

As the proof of Lemma 5.4 rests on the continuity of the function v, it has to be modified

for a step function .

Lemma 5.5. Suppose that the function 1 is monotone. Then the conclusion of Lemma 5.4
holds if we replace the conditions SmSt.1-3 and XX.1 by Step.1-2 and X X.1’ respectively.

Proof. As the proof is only a minor modification of the proof of Theorem 4.7.1 of Jureckova
and Sen (1996), we only indicate the main steps.
Similarly to the proof of Lemma 5.4 put

k
Boi(t, Sn) = &= > xiw (e — £2)/8, )
i=1

With the help of (4.16), it is sufficient to prove that given any £ > 0, there exist M > 0,
n >0, 0 > 0 and a positive integer ng such that for all n > ng

P* min inf ||Enk(t, Sn)] < <e.
{k:n(g,...,n5||t||>MH i (6 S0 77}

First, exploiting the uniform asymptotic linearity result (5.10), we can show analogously to
the proof of Lemma 5.4 that there exists M > 0, d > 0, and i > 0 such that for all sufficiently
large n it holds

P* min inf ||Enx(t, Sp)|l <
{k=n5,...,n5||t||:MH nk (6 i)l 77}

<P max  sup tTEnk(t,Sk)] >—Mnp <e. (5.13)
k=n_g,....,ng ltl|=M
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Second, we utilize that the function

— % Zz:;sTxil/J ((ei — TL\/;—{;)/S”>

is nonincreasing for 7 > 1. This further gives us

P* f ||E <
{k nm;jﬂvnémngl nk (€, Sn) || 77}

R=n—gpms 8] > M

< P*{ max sup [”TM” tTEnk(t,Sk)} > —Mn}

<P* max sup sup [s E,k(Ts, Sk)] > —Mn
k=n_ EERERXAZ) ||S|| MT>1

=P max sup [STEnk(S, Sk)} >—Mn ;.
k=n—g,.ms ||s||=M

But we can make the last probability arbitrarily small by the first part of the proof. O

With the help of Lemma 5.4 (or Lemma 5.5) we are ready to substitute /n(3, — 8) for
t into the equation (5.10) and get the following refinement of the FOAR (4.7):

\/E(Bn ’Yl\f sz gl %e \/E(S_; - 1) u; + Oucp(l)' (5'14)

The representation (5.14) together with the conditions XX.1-2 immediately imply that for
1 > 2 the sequence \/ﬁ(ﬁln — () is uniformly continuous in probability (ucp). Moreover, if
the sequence \/ﬁ(% — 1) is ucp, then the sequence \/ﬁ(ﬁln — 1) is ucp as well.

As the definition of the confidence interval (4.57) and (4.58) includes the estimate of oy,
we need to show that 6y, — 0y = 0yep(1). In the following lemma we assume that the function

Y2 is of bounded variation. From the simple inequality
[9?(z) —¥*(y)| < 2sup @) l(x) = P(y)]

we immediately see, that if the function ¢ is of bounded variation, then the function ? is of
bounded variation as well. Notice that all the most famous -functions given in Remark 2

are of bounded variation.

Lemma 5.6. Suppose that the function v is monotone or 12 is of bounded variation and the
condition XX.1 is met. Further let the function N (t,u) = E P2 (L=E) be continuous in a
neighbourhood of the point (0,0) and denote

= %zn:dﬂ (e_n*1/2u(ei o t\-r/%z)/5> 7 (t,U) cT.
i=1

Then || M, (t,u) — E ¢?(e1/S) |7 —=— 0.
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In fact, Lemma 5.6 gives us more than we need. For our purposes it would suffice to show
that || M, (t,u) — E ¥%(e1/9)|lr = 0uep(1). This would follow trivially by a finer analysis of

the process M, given in Lemma 5.10, but this lemma requires slightly stronger assumptions.
Proof. As 1) is monotone or 9% of bounded variation, we can write 1?(z) = ®1(z) + ®o(z),
where ®1(z) is nonincreasing and ®s(x) is nondecreasing. Thus

n

My(t) = 13 (@ (e — ) /5) — y(e1/9)

i=1

+%§I%(f"”%m—%%mﬂ—@mwarﬁmamm+wﬁww.
=1

It will suffice to deal only with the process M, because the proof for the process M? would
be completely analogous.

Let € > 0 be given. By the assumptions of the lemma we can find § > 0 such that

max{itl|11|)u\}<5‘ E [®1(e“(e1 —1)/S) — P(e1/5)] | < 5. (5.15)

Let us bound

1M (6, ) — E @1(e1/S)]| . <

%Z [(1)1(61/5) —E q)l(el/s)]

i=1

T

S
+ = A, + B,.

As the term B,, converges to zero almost surely by the strong law of large numbers, it suffices

to deal with A,,. As usual, denote €, = maxi<;<p, M\';%‘z and further put

n

o) =D 0 ()l o) = E B (4).

Exploiting the monotonicity of the function ®; once more, we get that for all sufficiently
large n (such that e, < 0)

An S @bn(_em _%) - ¢n(070)‘ + qbn(En, %) - ¢n(0,0)
< ’¢n(_6a _5) - ¢n(070)’ + ’¢n(57 5) - ¢n(070)‘
< ’¢n(_57 _6) - ¢(_57 _5)‘ + ’(]5(—(5, _5) - ¢(070)’ + ’(bn(é? 5) - ¢(57 5)’

+16(8,8) = 6(0,0)] + 2164 (0,0) — $(0,0)] —*= § + 5 ==<.

where the convergence of the first, the third and the fifth term follows by the strong law of
large numbers and the second and the fourth term are bounded by (5.15). Because we can

take € arbitrary small, the proof is completed. O
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As the almost sure convergence is a stronger condition than ucp, then with the help of
the just proved Lemma 5.6 and the fact that both sequences v/n(3, — 8) and \/ﬁ(% - 1)
satisfy the SUB condition, we immediately get

X 1« 3Tk,
O'i — O'i = Z?ﬁ(%i”xl) — O'i = Oyep(1), (5.16)
i=1

which further implies 6 — 0y = Oucp(1).

Lemma 5.7. If the conditions of the previous lemmas are satisfied, then both sequences
Vvn( Ap_n — Bp) and \/n( A;% — Bp) satisfy the SUB condition.

Proof. First, we notice that with the help of (5.8) (with ¢; replaced by x;,) we get that for

t=0(%)

1 - Ti—1X4
EE Lap B(HSE2 ) = 7 T2/t + Ouep(1). (5.17)
=1

With the help of this equation we can calculate

P{ max \/E(E;k—ﬁpk)>0}:P{ max 5,;>%}

k=n_s,...,ns k=n_s,...,ns

k
_ 1 ri=(C/VE) i 2 [
=F {k:;n?xna VE ;xi”w ( Sk p) > Tipy wpp(k) Gy () 2a
<P { max —ylc’Tlfp + Oycep(1) > Tkzp@ [wpp(k) 6 (k) Za} 7

k=n_s,...,ns

which can be made arbitrarily small by taking C' large enough. Thus, the random sequence
\/ﬁ(i);n — Byn) is SUB. By Lemma 5.4 (or Lemma 5.5) the sequence /n(Bpn — ) is SUB

as well. Now the simple equality
\/E(B;;n - ﬁp) = \/ﬁ(g;;n - Bpk) + \/E(B;zm - ﬁp)
yields that /7 (8, — 3,) satisfies the SUB condition too.

Similarly we can show that the sequence /n( Al‘fn — () satisfies SUB as well. O

With the help of the just proved lemma we can justify the replacement of ¢ in (5.17)
by b

o> Which, after a slight rearrangement, gives us

\/E(B;;n —Bp) = \/E(Bpn — Bp) — %\/ Wpp Oy 2o+ Oucp(1)
= \/ﬁ(ﬁpn - ﬁp) - %\/wpp Oy Za T Oucp(l)v (5.18)
where the last equation follows by (5.16) and the conditions XX.2. Finally as the sequence
V(Bpn — By) is ucp, we see from (5.18) that the sequence \/H(I;;n — Bp) is ucp as well.
Analogously we can prove that the sequence \/ﬁ(l;;n — () is ucp.

Now we are ready to summarize the partial results of this section.
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Theorem 5.8. Let the conditions SmSt.1-3 and XX.1-2 (or Step.1-2, XX’.1, and XX.2)
be satisfied. Further suppose that the sequence \/_(— — 1) is SUB. Then the sequential
confidence interval D]I\,Id has the asymptotic coverage 1 — v as d — 04, that is (5.5) holds.

5.2.2 Asymptotic distribution of the stopping variable N,
Absolutely continuous y-function

For the simplicity of notation put £, = 5;," - l;;n Notice that by (5.3) \/nq = %, which gives

mn

From the following inequalities
() < () (555

and by the previously proved fact that Nd ﬁ 1, we see that the problem of finding
—U4

asymptotic distribution of the random variable % <@ / g—j — 1) is the same as the problem
(M _ 1)
ap

us

of finding the asymptotic distribution of /N,

rewritten as

N,
,/Nd(rezvd —1) Ny iy =ep? | VNiap —ar) _ Ly, + YNaetoen) 50y

2CLF 2CLF afp afp

. But the last quantity can be

To take care about the second term in the last equation we will assume:

XX.3 There exists a A € R such that

A = lim i(\ /&, — /D).

77/—>OO

Remark 21. Notice that the assumption XX.3 is tied down to the situation of a fixed design.
If we consider a correlation model with random covariates, this assumption is untenable. In
this case we would need to find the asymptotic distribution of \/n( /w7, — /@pp) and to show

that this sequence is ucp.

Let us turn our attention to Ly, — the first term on the right-hand side of equation (5.21).
The asymptotic behaviour of the random variable L,, was studied in Subsection 4.2.3. Theo-
rem 4.10 states that L, is asymptotically normal with zero mean and variance which follows
by the asymptotic expansion (4.59). Thus it only remains to show that the sequence L, is
ucp. Using the above mentioned expansion (4.59), we immediately see that all we need is to
show that

(7). the term op(1) in (4.59) is ucp,
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(it). the sequence v/n(Gy — oy) is ucp,
(7i1). the sequence \/ﬁ(s—g —1) is ucp.

In the following, we will be dealing with the items (7) and (i7). The item (éi7) depends heavily
on the choice of a scale estimator. The verification of this item for two simple scale estimators
can be found in Appendix.

The following lemma strengthen the results of Corollary 2.6. Recall that T = {(t,u), [t|2 <
M, |u| < M}.

Lemma 5.9. Let the assumptions of Corollary 2.6 be satisfied. Then the remainder term o,(1)

in the expansion (2.13) is ucp.

Proof. First, let us define

Mo (t, ) icz[ v (e e = 2)/8) —plei/ )]

i=1
- Z cixi [g¥'(ei/S) —m] — £ algv(e/S) —me], (tuw)eT
i=1 =1

As from the proof of Theorem 2.1 we know that E ||M,||7 = 0,(1), we can use Corollary 7.14
to show that for every € > 0 and 7 > 0 there exists n, such that for all n > n,

P {kmax ”Mnk —E MnkHT > E} <n.

=1,..,

Second, by virtue of Lemma 2.5 we get that uniformly in k =1,...,n and (t,u) € T

k k
E Mi(t,u) Z “’1—\/‘377“ Z ci
+ '72 tTW t+ ('72e+'71 Ut ch X; + (72ee+“/1e ch 4 O 1 5 22)
=1
Combining these facts yields the statement of the lemma. O

To find the asymptotic distribution of the sequence v/n(6y —oy), we need to impose some

further conditions on the function 1 and the distribution of the errors.

SmSt.4 There exists 6 > 0 such that supjy<s <5 E (L) < .

SmSt.5 The function A®(t,u) = E ¢?(42L) is continuously differentiable in a neighbour-
hood of the point (0,0).
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As the function % is continuous, the condition SmSt.4 together with Lemma 7.17 imply the
continuity of the function A (¢, u) = ¥?(4E) in the quadratic mean at the point (0,0), that

is

lim [1/)2 (%=

(t,u)—(0,0)

1 — X)) =0. (5.23)

The condition SmSt.5 is certainly satisfied if the functions

e(tvu) = ET/}(

4 V(%),
fltu) = Eerd'(5

£
) Y(%E)

are bounded and continuous in a neighbourhood of the point (0,0).

Remark 22. The conditions Step.1-2 trivially imply the conditions SmSt.4-5.

Lemma 5.10. Suppose that the conditions SmSt.4-5 and XX.1 are satisfied. Define
k . )
My (t,10) = 2_: 02 (e e = /S ) =0/ 9)] s Mk = My — E My

Then maxp—1 . p | M|l = 0p(1).

Proof. The proof of this lemma is rather standard. For ¢ = 1,...,n define the processes

Zni(,u) = o [07 (7 M = £2)/8) — 0¥ e/9)] (b eT.

Now we can proceed along the lines of the proof of Theorem 2.1 and show that this process
meets the conditions of Corollary 7.14 (the continuity in the quadratic mean (5.23) of the
function ¢?($EE) is utilized here). O

Remark 23. Provided the condition SmSt.4 is satisfied, it does not matter whether 1 is

continuous or not.

Let us denote

Y01 = )‘122)(070) (: % E TIZ) (%) ¢/ (%)) ) Yole = _)‘(u2)(070) (: E %¢ (%) ¢/ (%)) :

The assumption SmSt.5 implies that all these quantities are finite. If the condition Sym
holds, then 91 = 0, but g1 > 0.
With the help of the assumption SmSt.5 we can easily find out that uniformly in k =

1,...,n and uniformly in T’

k
E Mpui(t,u) = —% in — 2701e u + o(1).
i=1
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Combining the last equation with Lemma 5.10 and inserting /n(8, — 8) for t and
\/ﬁlog(s—s") for u give us

Vieh=03) = g 3 [ (es/S) — of] = PRSP S i 2301 V(S 1) F 0 (1)
i=1

i=1

= ; [W?(ei/S) — op] — Zw ei/S) = 27901 V(5 = 1) + 0ugp(1).  (5.24)

We have utilized that ) 1" | % is the first column of the matrix V,, and that vn(B, — B8)
admits expansion (5.14).
The asymptotic representation of \/n(éy — oy) now follows by the ‘delta-type’ approxi-

mation
\/_(Uw - Uw) f (Uw - Ud;) + Oucp(l) (525)
Expansion (5.24) implies that the sequence \/n(6y — oy) is ucp if the sequence \/ﬁ(s—g -1)

is ucp.

Theorem 5.11. Let the conditions SmSt.1-5 and XX.1-3 be satisfied. Further suppose
that the sequence \/ﬁ(%" — 1) is ucp. Then the stopping variable Ng admits the following

expansion as d — 04

nd

. 22 . Sn
(VA1) = o 3 e (/) ol 2 v (1)

Vnd(aw —9y) '72 TN % A
+ O i \/_( ) 2_; nd%ndp T VWpp +Op(1)' (526)

Proof. The theorem follows by (4.59), (5.19), (5.22), (5.24), and (5.25). O

Numerical illustration

To illustrate the theoretical results, we performed a small numerical experiment. We con-
sidered a simple linear model with one explanatory variable Y; = Gy + (12; + €;. We took
the errors independent identically distributed following the contaminated normal distribution
given by the cdf F(z) = 0.9®(x) + 0.1 ®(z — 2), where ®(x) is a cdf of a standard normal
random variable. We generated the explanatory variable as the random sample from the
uniform distribution on the interval (—1,1).

We were interested in the behaviour of the bounded-width confidence interval for the slope
(parameter (31). We studied the actual coverage of the 95%-confidence intervals of type I and
type II for (the half-length of a CI) d decreasing from 0.6 to 0.3, which corresponds to the
increasing of the 'theoretical’ sample size ng from 43 to 173. The initial sample size was 20
and the number of repetitions of our experiments 20 000.

Figure 5.1 presents the results for type I CI and type II CI. The first picture shows the

actual coverage of confidence intervals for different values of d and the second picture presents
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Actual coverage

43 51 62 77 97 127 173

0.940 0.945 0.950

0.935

0.930

0.6 0.55 0.5 0.45 0.4 0.35 0.3

Quantiles of Nd/nd

43 51 62 77 97 127 173

14

1.2

1.0

0.8
|

0.6

0.6 0.55 0.5 0.45 0.4 0.35 0.3

Figure 5.1: Actual coverage of CI's and the quantiles of the random variables Ny/ng4 for CI
of type I (solid line) and CI of type II (dashed).

the 10%, 30%, 50%, 70%, 90%-quantiles of the quantity Ngz/ng. From the first picture we see

that both coverage probabilities converge to the prescribed nominal value 0.95 and that the

actual coverage of type II CI is slightly closer to the target value. On the other hand, the
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second pictures indicates that we usually need more observations to stop sequential procedure
for a type II CI. Moreover (in agreement with our theoretical results), the quantity Ny/ng for

type II CI is more variable than for the type I methods.

Unsmooth y-function

By the same trick as in (5.20) we can find out that the problem of deriving asymptotic distri-
bution of the random variable /%- ( Ne _ 1) is the same as the problem of the asymptotic

ng
distribution of the random variable

_ arl/a (VNaly 1/4 VNaln
/]Vd_Nd (22Fd_1> N 2a;i: :

In the following, we will for simplicity assume that the condition XX.3 holds, which implies

nl/ﬁ‘(\/w—;,‘p — /@pp = 0(1)). Thus

_ogNd
Ly, = NYA YR 20" oy o yo(1),  asd— 04

d 2aF

The asymptotic behaviour of the random variable L, was studied in Section 4.2.4. Theo-
rem 4.14 states that L, is asymptotically normal with a zero mean and a variance given

by (4.70). That is why we only need to prove that L, is ucp. As Lemma 5.10 implies
!4 (Ey — 0y) = ouep(1), (5.27)

it suffices to strengthen the result of Lemma 4.13. Before we do that, it is convenient to

introduce some notation. Let us denote

k n
Be =) lepl’,  Bu=)_l|wpl*=nT,
i=1 i=1
and
n[s] = max{k : By < sBy}, s € 0,1]. (5.28)

For simplicity we will suppose that there exists a finite and positive limit of the quantity % B,.

In the next, we will be dealing with a partial sum process (b € B)

nls]
Txi Zq Txi
MP(s,t) = n1/42:c2p[ ~—bw—t7f)—z/;(ei—b7)], [t <M, 0<s<I1.

Put MP = MP — E MP.

Lemma 5.12. If the conditions X’.1-8 and Step.1-2 holds, then the process MP(s,t) con-
verges weakly to a zero mean gaussian process W (s,t) uniformly in b € B. The limiting

process has the covariance structure
COV{W(Sl, tl), W(Sg, tg)}, = (81 VAN 82) g(tl,tQ),
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where
g(t1, 1) Tg’p’yol [t1| A [ta|, t1-t2 >0,
’ 0, t1 - te <O.

Proof. Our proof will imitate the proof of Theorem 2.12.1 of van der Vaart and Wellner
(1996).

We can look at the partial-sum process MP(s,t) as a process indexed by the index set
[0,1] x T, which we equip with the metric p((s1,t1), (s2,t2)) = |s1 — s2| + [t1 — ta].

As it is easy to verify that the process MP(s,t) converges marginally, it suffices to show
the asymptotic equicontinuity of the sequence M,,. Thus, for every ¢ > 0, n > 0 there should
exist > 0 and ny such that for all n > nq

p* { sup |MP(s1,t1) — MP(s9,t2)| > 6} <. (5.29)

[s1—s2|+|t1—t2|<d

Let us denote Ty = {(t1,t2) : |[t1 — to| < 0, t1,t2 € T'}. A triangular inequality yields

sup |MP(s1,t1) — MP(s9,t5)]
81—82|+‘t1—t2‘<5
< sup [[MR(s1,t) = My (so,t)|lm + sup [|MP (s, t1) — My (s, ta)l|z;- (5.30)
|s1—s2|<0 0<s<1
In the second term on the right-hand side the parameter s may be restricted to the points

k/n with k ranging over 1,2,...,n. Further by Ottaviani’s inequality (Lemma 7.6) we get

P { sup [ N2 (s,t1) — M2(s. 1) 7, > } _pe {max INTB () — B2 (t2) |z, > }
0<s<1 k<n

3 P {|[MP(t1) = MP(ta)llz; > €}

< 1) | . (531
e P (D) — @)l =) Y

By Lemma 4.13 the process ]\_4,5’ (t) converges in distribution, which implies that it is asymp-
totically equicontinuous (see (7.1) of Appendix). Thus we can make the probability in the
numerator arbitrarily small by taking § small and n large enough.

To show that the denominator is bounded away from zero for all sufficiently large n, we
can use a similar trick as in the proof of Corollary 7.14.

To prove the same for the first term on the right-hand side of (5.30), we estimate

p* { sup  ||MP(s1,t) — MP(s9,t)|l7 > 36}

|s1—s2|<d

<3P*{ max sup MTIL’ st —M}L’ j 0,1 > e
{Ogj5§1j6<s<(j+l)6\\ (5,8) = M2 6,0l

[1/9]
<3 Z p* sup  ||MP(s,t) — MP(j6,)|r >ep. (5.32)
= J6<s<(j+1)o
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With the help of Ottaviani’s inequality we can bound each term in the last sum by

p { w0 - NG5 D) > }
j8<s<(j+1) 8

Pr{IMR((7 +1)6,t) — Mp(j6,4)|r > e}

< .
1= maxygs<henn) 8 P Y { IR 415 (0 — MR I7 > <

(5.33)

Lemma 4.13 and the construction of n(s) in (5.28) yields that the process
W) = Mp((j + 1) 0,1) — My (5 6,1)

converges in distribution to the process vd W, where W is a zero mean gaussian process
with the covariance function given by (4.60). By the portmanteau theorem (Theorem 7.8),
the limsup of the probability in the numerator of (5.33) is bounded by P {HWHT > E/\/g}
Since the norm ||[W{|7 has moments of all orders (Proposition A.2.3 of van der Vaart and
Wellner (1996)), the latter probability converges to zero faster than any power of § as 4 \ 0.
We conclude that we are able to make the numerator of (5.30) smaller as 42 by choosing &
sufficiently small and n large enough. By an argument similar to the argument used in the
investigation of the denominator in (5.31), but now also using the fact that P (||W || > ¢) < 1,
we can show that for every ¢ > 0, the denominator in (5.33) remains bounded away from
zZero.

Thus we can make the probability in (5.32) (for sufficiently large n and small §) arbitrarily
small, which concludes the proof of the lemma for any fixed b € B.

A closer inspection of the proof shows that all the arguments hold uniformly in b € B,
that is (5.29) holds uniformly in B. This enables us for every ¢ > 0 and 1 > 0 to find a finite
subset Sy of [0,1] x T" and a mapping = : [0, 1] x T+ Sy such that

supP* { sup  |MP(s,t) — MP(n(s,t))| > 5} <. (5.34)
beB (s,t)€[0,1]xT

Now we can use the bounded Lipschitz metric (Definition 4.12) and finish the proof along the
lines of Lemma 4.13. O
Remark 24. For the case of studentized M-estimator we need to study the process

nls]

U e~ u/Vn Tx; Ti —u/vn Tx;
(2(0.0) = 3 [9e™ VTl = 23— )/8) — e /)]

0<s<1, |t| <M},

where |bls < M and |u| < M. We could proceed completely analogously to show that

Lemma 5.12 holds for this ‘studentized’ process uniformly in u and b as well.
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Theorem 5.13. Let the conditions XX’.1, XX.2-3, and Step.1-2 be satisfied. Further
suppose that the sequence \/ﬁ(% —1) satisfies the SUB condition. Then for d — 04 the ran-
dom wvariable /%% (\/]::j — 1) 18 asymptotically normal with the zero mean and the variance
given by

3
01 K ) T,
o’ = i where Kk = lim b

_ , . 5.35
3far 5 T3 (539

Proof. The uniform continuity in probability of L,, follows from (5.27), Lemma 5.12 (and its
generalization to the studentized processes as indicated in Remark 24), and the assumption
that \/ﬁ(%" — 1) satisfies the SUB condition.

Once we have proved that L,, is ucp, Theorem 4.14 gives us the asymptotic distribution
of Ly,. O

5.3 Bounded length confidence interval for R-estimators based

on Wilcoxon scores

In this section we discuss the asymptotic properties of a bounded length confidence interval
based on an R-estimator generated with Wilcoxon scores. As the treatment of this situation
will be very similar to the case of a smooth -function, we will not go into great details.

Recall that the confidence interval (of type II) D! is defined by (4.71). The theoretical
counterpart of the random stopping time Ny defined in (5.2) is

2 2
“a Wpp ar Fo /“pp
ng = = —, where ap=—"—. 5.36
11222 T & LN (5.36)

With the help of Theorem 4.15 we can follow the proof of Theorem 5.1 to show that under
the conditions W.1 and XX.2 the statements of Theorem 5.1 hold for Ny as well.

5.3.1 Asymptotic coverage

Similarly to Section 5.2.1, we need to strengthen some first order results to prove that the
confidence interval D]I\,Id is asymptotically correct for d — 0.

Put S,(t) = 1377  x;Ri(t), where Ri(t) is the rank of the random variable e; — %

among e — t\T/’%l B t:/’%”. We would like to show that

| 80(0) ~ 8,00 + 7V,

’T = 0uep(1). (5.37)

To prevent some minor measurability difficulties, we can argue similarly as in Subsection 3.2.2,
that instead of T' = {t € R, : [t|]o < M} we can take T' = {t € Q,, : [t|» < M+1}, which makes
the supremum on the left-hand side of the equation (5.37) a measurable random variable.
With the help of the linearity result (5.37) we will be able to proceed similarly as in
Lemma 5.5 to show that /n(b, — 3) satisfies the SUB condition. This will enable us to
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substitute \/n(b, — B) for t in (5.37) and get that the remainder term o,(1) in (4.22) of
the asymptotic expansion for \/n(b,, — 3) is Oucp(1) in fact. Combining this result with the
uniform asymptotic linearity (5.37) immediately yields that the random variables \/ﬁ(i):{p —0Bp)
and \/H(B;p — () are both ucp, which would imply the asymptotic correctness of DJIVId )

As it is sufficient to show that the statement (5.37) holds for every single component,
it is enough to deal with one-dimensional processes. In the following, we will make use of
the notations introduced in Chapter 3 (we please the reader to recall the definitions of the
processes Sy, T, and T}, of (3.1)-(3.3)).

To show that the statement (5.37) holds, it is useful to decompose the process T}, into its
projection and a remainder term, that is 7}, = P, + R,,.

First, we will be dealing with the remainder term R,,. From Section 3.2.2 we know that
R, = U, — E U, with the process U, defined by (3.9). Let us define R, = Upr — E Up,

where
1 b T tT
Uni(t) = ;Zciz [H{e,. el

k
- %Z > [(Ci —¢;)(F(e;i — ““‘%) - F(ei))] . (5.38)

Lemma 5.14. Under the conditions X.1-5 and W.1-3
max || Bnill7 = op(1).

Proof. From the definition of the process R, we see that forallt=1,...,n and all t € T it
holds E [Ryx(t)|e;] = 0. Let By be the o-field generated by {e;,7 < k} and By be the trivial
o-field. Then, for every n > 1,

{Ru(t), t €T, By, k<n}

is a martingale (process), which implies that {||R,x||7, B, & < m} is a nonnegative sub-

martingale. Therefore, by Kolmogorov’s inequality for submartingales (see Lemma 7.2), for

every € > 0
1
P {maxRonllr > e} < LE IR,
But from (3.16) (Section 3.2.2) we know E ||R, |7 = o(1), which proves the lemma. O

Let us turn our attention to the leading term P,. Recall that P, = V,, — E V,,, where V,
is defined in (3.6) (cf. Section 3.2.1). Similarly to the case of U, put

Vi (t) = (i = e5) [Ples = E2220) — pey)].
1= =1

=17

In the following we will need this technical lemma.
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Lemma 5.15. Let the conditions X.1-5 and W.1-83 be satisfied. Then for every e > 0 and
n > 0 there exist § > 0 and ng such that for every n > ng

1o 1
P {n?%ak)éng vn Vnk vn'n T > E} <,
where n_s = |n(1 —9)] and ng = [n(1+9)].
Proof. Obviously it is sufficient to prove
P{n?31§<<n TV ~ T>E}<77

For the simplicity of notation define
Ci —Cj
n3/2

Note that V,,, — Ve = Apk + Bk, where

n n k n
A= > ) Wy, and  Bu=>_ Y Wi

i=k+1 j=1 i=1 j=k+1

Wij(t) =

We can exploit the martingale structure of the process A, and with the help of Kolmogorov’s

inequality (Lemma 7.2) get

n n

- 1 - 1 _
P <= == 1 )
{max Al > ef < 2 € | S5 | =2 E Ik Tl
=1 j=1 T
But it is easy to verify the assumptions of Corollary 7.13 with Z,,; = Z;LZI W, which yields
LE [Vallr — 0.
Now turn our attention to the process By,. Fori=1,...,nand j=1,...,n put

[ — mf{M} i = sup { W Zi=x)y
Y wer ’ Voower VY

Then we can bound each term Wj;; by

lcil + e Say

n3/2 Wi

59

[Wijllr < [F(ei + uiz) — Fle + i) =

which further gives us
Say
B <
o e [|Buellr < >y
=1 j=n_s
Notice that for sufficiently large n with the help of our assumptions
EW, < /2 Z Z (leil + |ej)) E [Fei + uig) — Fei + Uij)]

=1 j=n_;
n

20M -
<

(el + lejl) (Ixal2 + [x5]2) < €76,

i=1 j=n_g
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where C' and C’ are sufficiently large constants independent of n. Thus by taking J small

enough, we can make E W, arbitrarily small. Now the statement of the lemma follows by the

inequalities
P Ly Lol >
ma — - —
n,(ggliign \/ﬁ nk \/ﬁ " T c
< A 3 B £
- P {n?ﬁaﬁﬁn HAnk”T = 2} +P {nlg?lfgn ”Bnk”T = 2}
2 1 4 o
=<_E I Vallr + -E Wl
O
Now, by a standard computation it is possible to show that uniformly in k =n_g,...,ng
. k
E o Vi = 20BN (i — ) xi + o(1). (5.39)
i=1

Combining the last equation (5.39) together with the Lemma 5.14 and Lemma 5.15 gives us

the strengthened uniform linearity result (5.37).

Theorem 5.16. Let the conditions W.1-2 and XX.1-2 be satisfied. Then the sequential
confidence interval D]I\,Id has the asymptotic coverage 1 — o as d — 04, that is (5.5) holds.

5.3.2 Asymptotic distribution of the stopping variable N,

We can use the same trick as in (5.20) to show that = ( Na 1) is asymptotically equivalent

nq
(as d — 04) with the random variable

N,
o = VNa(Soet — 1) = Ly, + Y2 =er),

2CLF ap

As Theorem 4.15 gives us the asymptotic expansion for the random variable L,, (4.73), all we
need is to prove that the term o,(1) in that expansion is 0,,(1) in fact.

Unfortunately, we have not succeeded to proceed without the following assumption:

W.5 There exist § > 0 and C' < oo such that for all |t| < ¢
E |f(e1 — 1) — fler)] < Ct.

Remark 25. The condition W.5 is certainly satisfied if f has a bounded derivative.

If we recall the previous sections of this chapter, we see that it suffices to show that
HZ?ZI ZNZHT = Oucp(1)7 where

1 - T X;—X5 T X;—X;5
Zu() = =Y (e = ¢;) [F(ei - Sy (e + 2D f(ey)]
j=1



Similarly to the previous section define

k k
Vi (t) = %ZZ(Q — ) [Fler — T2y p(er) 4 Ty

i=1 j=1
Lemma 5.17. Let the conditions X.1-5, W.1-83 and W.5 be satisfied. Then for every e > 0
there exist 6 > 0 and ng such that for every n > ng

p{ i HVnk—VnHT>z—:}<17,

n_s<k<ns
where n_s = |n(1 —9)] and ng = [n(1+9)].

Proof. The proof is completely analogous to the proof of Lemma 5.15. First, we define

Ci—Cj

Wi;(t) =

T(x—x; T(xi—x%;
L |Ple = S0 — P(e) + =52 (e

and note that V,,,, — V.. = A, + Bpi, where
n n k n
= YW, wd Bl-Y YW,
i=k+1j=1 i=1 j=k-+1

As from the proof of Theorem 3.1 we know that E ||V, |[r —— 0, we can use Kolmogorov’s
n—oo

inequality for submartingales (Lemma 7.2) and get

_ 1 L 1 _
P {%%HAMHT > s} <_E Z;Z;W] = EVallr =20
1=1 7=

Now turn our attention to the process B,;. For sufficiently large n we can bound

(M+1)(|xi|2+]x;]2)

cil + |c; vn
e W < Al [ ot € 19060 = (el

Jeil + 1o (i3 + x;13)
: :

25 C(M +1)? (

n
Thus there exists C’ > 0 such that
n n
E B < E [|Wijllr < C'6.
L max [ Ballr < ;j§5 IWijllr <
Now we can finish the proof by the same argument as the proof of Lemma 5.15. O

We are ready to formulate the theorem about the asymptotic behaviour of Ny as d — 0.

Theorem 5.18. Let the conditions W.1-3, W.5, and XX.1-83 be satisfied. Then the stop-

ping variable Ng admits the following expansion as d — 04

1 ng ng xz
ap [ fNa ) = ____ - E 2 E Zip ) — A 1).
d < i ) ’Y\/n_dTr%dp i=1 ip - j=1 nd [f(el) ’Y] ™ Wpp T Op( )
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Numerical illustration

To illustrate the theoretical results we performed a small numerical experiment. We consid-
ered a linear model with two explanatory variables, that is Y; = By + (1241 + Boxio + ;. We
took the errors to be independent identically distributed following the logistic distribution
given by the cdf F(x) = % The coordinates of the explanatory variable were independent
and followed uniform distribution on the interval (—1,1).

We were interested in the behaviour of the bounded-width confidence interval for the slope
parameter 31, which is based on an R-estimator generated by Wilcoxon scores. We studied
the actual coverage of the 95%-confidence intervals of type I and type II for (the half-length
of a CI) d decreasing from 0.45 to 0.225, which corresponds to the ’theoretical’ sample size ng
increasing from 43 to 171. We estimated the functional 7, needed to construct type I CI, by
the same procedure as was used in Numerical illustration of Section 4.1.3. The number of
repetitions of our experiments was 20 000.

The results of our small study are to be found in Figure 5.2. The first picture shows the
actual coverage of confidence interval for different values of d and the second picture presents
the 10%, 30%, 50%, 70%, 90%, quantiles of the quantity Ny/ng. From the first picture we see
that while the coverage probability of type I CI converges to the prescribed nominal value 0.95
from below (starting at 0.938), the actual coverage of type II CI oscillates around the target
value. On the other hand the second pictures clearly indicates that we usually need more
observations to stop the sequential procedure based on the type II CI.

We conclude that the actual coverage of type II CI is closer to its nominal value at the
cost of a larger number of observations needed. Some further numerical simulations show

that the above results are quite typical.
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Actual coverage

43 54 71

96 138

171

Cl type Il

0.930 0.935 0.940 0.945 0.950 0.955 0.960

Cl type |

0.45 0.4 0.35

0.3 0.25

Quantiles of Nd/nd

43 54 71

96 138

0.225

171

1.6

14

12

1.0

0.45 0.4 0.35

Figure 5.2: Actual coverage of CI's and the quantiles of the random variables N;/ng for CI

of type I (solid line) and CI of type II (dashed).
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Chapter 6

Conclusion

This chapter contains a short discussion of the results obtained in the thesis as well as some

possible suggestions for future work.

M-estimators

M-estimators generated by an absolutely continuous v

We derived the two-term von Mises expansion for regression M-estimators. This enables us,
e.g. to make a finer (second order) comparison of M-estimator with its one-step approxima-
tion. The possible further development would be to show that the remainder term R, in the
von Mises expansion is not only of order op(%), but E /iR, = o(1) or even E [/aR,]* =
o(1). This would justify the heuristic results of Huber (1973) about the approximation of
finite-sample bias and variance of the regression M-estimators.

If ¢’ and the distribution of the errors are sufficiently smooth, then with the machinery
introduced in this thesis (together with some algebraic manipulation software) we can derive
von Mises-expansion of the third or even higher order. But our numerical illustrations indicate
that even the second order asymptotics needs a very large number of observations to kick in.

That is why we do not see any practical importance for this higher order analysis.

M-estimators generated by a step function

We derived the asymptotic distribution of the remainder term in the first order expansion.
Unfortunately, as to the best of our knowledge the /n-consistency of these estimators have
been generally treated only for a monotone v, our results are limited only to this special type

of v functions.
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R-estimators

We studied ‘rank’-processes for a special case of Wilcoxon scores. This enabled us to derive a
two-term von Mises expansion for R-estimators based on Wilcoxon scores. It would be inter-
esting to show analogous results for the scores generated by a different (possibly unbounded)
score function. But this would require to use some other techniques, as our approach applies
only to a generalized U-statistics with a kernel of degree two. Nevertheless, we believe that
our technique would be useful to prove some auxiliary results.

Our numerical illustrations indicates that the second order asymptotics ‘works even slower’
than in the case of M-estimators. This is probably explained by the fact, that R-estimators

are based on ranks, so that we cannot hope them to be very smooth functionals.

Alternative confidence intervals

We proposed an alternative to a traditional Wald-type procedure to construct a confidence
interval for a single regression parameter. We used the technical tools derived earlier in the
thesis to explore asymptotic properties of the alternative method and compare it with the
standard approach. We derived that these two methods are asymptotically equivalent in the
sense of the asymptotic coverage and the length of the confidence interval (multiplied by \/n).
A finer analysis showed that Wald-type confidence intervals are more stable in the sense, that
their lengths (properly standardized) have smaller variances. The degree of the difference
in the variances of lengths depends on the ratio of the fourth to the second moment of the
corresponding explanatory variable. This was confirmed with several numerical experiments,
some of which are to be found in this thesis and some in Omelka (2006).

Our experiments show that in the case of M-estimators with a smooth ), our proposed
confidence intervals have actual coverage larger than nominal coverage and they are on average
longer than its standard competitors. On the other hand, the proposed confidence intervals
usually work better in the presence of strong asymmetry, heteroscedasticity or if we are
interested only in one-sided confidence intervals.

It is interesting that for M-estimators which are generated by a step function v the
proposed confidence intervals are undersized, which is in opposite to the case of a smooth .
Our experience is that this lack of coverage is reasonably small if there is only one explanatory
variable (plus an intercept).

Finally, if ¢ is a sum of a smooth and a step function, our experiments indicate that unless
the sample size is very large, the proposed procedure may be of interest, as it does not require
density estimation. Unfortunately, as it has been said before, we miss \/n-consistency results
for such M-estimators.

The results for the R-estimator based on the Wilcoxon scores are similar to the results for

the M-estimators based on a smooth . The coverage of the proposed procedure is slightly
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oversized and the confidence intervals are on average longer than their standard competitors.

On the other hand, if we are dealing with a bounded length confidence interval problem,
then unless the prescribed length of the confidence interval is very small, the coverage of our
proposed procedure is usually closer to the nominal value. But this is at the cost of a larger
number of observations, which the procedure usually requires.

Although it is not very common to criticize own proposed procedures, it is fair to end this
short discussion with a few cautionary notes. Our experience showed that the performance
of our suggested confidence interval depends heavily on a reasonable behaviour of the corre-
sponding explanatory variable. That is why applying our confidence limits cannot be done
automatically and the amount of care should be higher than for the Wald-type procedure.
One of the strategies may be as follows. Compute both type of confidence intervals and if
the results are comparable, we can choose our proposal. If there is a huge difference, then
something wrong is happening and man should look carefully into data. But to justify this

strategy, a larger simulation study is required.
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Chapter 7

Appendix

7.1 Probability Inequalities

Lemma 7.1. (Markov’s inequality) For a > 0

E|X
P(|X]|>a) < | ’
a
Lemma 7.2. (Kolmogorov’s inequality) Let {Sk, k = 1,...,n} be a nonnegative submartin-

gale. Then for every e > 0
1

7.2 Limit Theorems

We say that a sequence of random variables {X,,} is asymptotically normal with ‘mean’ .,

Xn Mn

and ‘variance’ o2 if o, > 0 for all n sufficiently large and converges in distribution

to N(0,1). We write ‘X,, is AN (upn,02).’

The following theorem is sometimes called Delta-Theorem.

Theorem 7.3. Suppose that X, is AN (u,02), with o, — 0. Let g be a real-valued function
differentiable at x = p, with g'(u) # 0. Then g(Xy,) is AN (g(p), [¢'(1)]*c2).

Theorem 7.4. Consider a triangular array (of row-wise independent r.v.’s) Xpj, j < ky,

n > 1, where k, — oo as n — 0o. Let
E X,: =0, var{ X, } = 02, k=1,...,ky, n>1.

Then Z, = z;?il Xyj is AN(0,1) provided the Feller-Lindeberg condition holds, that is for
any € >0

| &

_22 X2 | X >50n}m’0,

nk:

where 02 = g’;l o2,
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Theorem 7.5. (Cramér-Wold device) Let Ty, = (Tp1,...,Typ)T be a sequence of random
vectors. Then Ty 2oy if and only if for every fized A = (A1,...,\,)T €R,, AT, DoATT.

7.3 Outer probability, outer expectation, and star weak con-

vergence

By the word random element we will mean an arbitrary map from the probability space to a
metric space D. To be able to introduce the concept of weak convergence of random elements,
we need to give some terminology (for more details see, e.g. the first part of the book van der
Vaart and Wellner (1996)).

Let (92, A4,P) be an arbitrary probability space and T : Q — R* = [—o0,+00] be an
arbitrary map from this space to the extended real line. The outer integral of T" with respect
to P is defined as

E*T =inf{E U :U > T,U is measurable and E U exists} .
The outer probability of an arbitrary subset B of ( is
P*(B)=inf{P(A): BC A, A € A}.
Similarly the inner probability is defined as
P.(B) =sup{P(A4): AC B,A € A}.

It turns out that these definitions are very natural. E.g. it can be easily shown that the
inequalities of Section 7.1 hold even for random elements if we replace P and E with its
‘outer versions’ P* and E*. Before we define the (star) weak convergence, we give one very

useful inequality.

Lemma 7.6. (Ottaviani’s inequality) Let X1, ..., X, be independent stochastic processes in-
dexed by an arbitrary set and Sy, = X1 + ... 4+ X the partial sum of these processes. Then
for every A\, >0

P {[1Su] > A}
P A < .
{f?ﬁf”sk” > “‘} = T maxz, P* {]|S, — Sill > 1}

Definition 7.7. Let {X,,,n € N} be arbitrary maps from the probability space (€2, A, P) into
a metric space D and X : (@2, A, P) — D be Borel measurable. We say that the sequence X,

converges weakly to X if

E* f(X,) —— E f(X), for every bounded and continuous function f on D.

n—oo
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Notice that if X,, are measurable, then Definition 7.7 coincides with the standard definition
of weak convergence.

The concept of the weak convergence in the sense of Definition 7.7 proved to be very
fruitful. We can reformulate many of the ‘classic theorems’ by using outer expectations and
outer probabilities.

In the proof of Lemma 5.12 we make use of the following version of Portmanteau theorem.

Theorem 7.8. Let X1, Xo,... be a sequence of random elements and X be a random variable.

Then the following statements are equivalent:

(7). Xy converges weakly to X ;

(7). liminf,,_, o P«(X,, € G) > P (X € G) for every open G;
(#i7). limsup,,_,.. P*(X, € F) <P (X € F) for every closed F.

The role of tightness in the ‘classic theory’ of weak convergence is played by asymptotic

tightness, which is defined as follows.

Definition 7.9. We say that the sequence of random elements {X,,,n € N} on a metric space
(D,d) is asymptotically tight if for every e > 0 there exists a compact set K such that

liminf P, (X, € K‘s) >1-—c¢, for every § > 0,

where K% = {y € D : d(y,K) < §}.

It can be shown that for measurable random variables on separable and complete metric

spaces the concept of asymptotic tightness and tightness coincide.

Theorem 7.10. Let {X,,n € N} be random elements on £>°(T"). Then X,, converges weakly
to a tight limit X if and only if the sequence {X,} is asymptotically tight and the marginals
(Xn(t1),..., Xn(tx)) converge weakly to the marginals (X (t1),...,X(tx)) of X.

The weak convergence implies the paths of the sequence of processes to be asympotically
uniformly p-continuous in probability. More precisely, let p be a semimetric such that the
space (T, p) is totally bounded and X,, converges weakly to X in £°°(T") (the space of bounded
functions). Then for every ,n > 0, there exists a § > 0 such that

limsupP* ( sup | Xn(s) — X, (t)] > E) <. (7.1)

n—00 p(s,t)<6
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7.4 Clippings from empirical process theory

The following Lemma can be found in Nolan and Pollard (1987). We only change the notation
so that it is consistent with the notation used in van der Vaart and Wellner (1996).

Let (F,p) be an index class equipped with the pseudometric p. Then the covering num-
ber N(e, F,p) is the minimal number of balls of radius ¢ needed to cover the set F.

Lemma 7.11. Let ¥ be a convez, strictly increasing function on [0,00) with 0 < ¥(0) < 1.
Suppose that the stochastic process Z indexed by the class (F,p) satisfies:

(i). if p(f,g) =0, then Z(f) = Z(g) almost surely;

(ii). if p(f,g) >0, then E ¥ <%) <1;

(iii). there ewists a point fo € S for which sup ez p(f, fo) < 00;

(iv). the sample paths of Z are continuous on (F,p).

Then ;
E sup | Z(f) — Z(fo)] <8 / V(N (e, F. p))de,
feF 0

where 6 equals one quarter of the supremum in (iii).

The following theorem is a minor modification of 2.11.11 Theorem of van der Vaart and
Wellner (1996).

Theorem 7.12. For each n, let Zn, ..., Znm, be independent stochastic processes indexed
by an arbitrary index set F. Let

mn

> E N Znill F L zulpom — 0, for every n >0, (7.2)
=1

and suppose there exists a semimetric p such that for every p-ball B(e) C F

E* sup [Z.(f)— Zm(g)]2 < e? for every e > 0, (7.3)
i=1 1,.9€B(e)

and

/OO Vieg N(g, F,p) de < . (7.4)
0

Then the sequence > " (Zni — E Zy;) is asymptotically tight in (>°(F). It converges in dis-

tribution provided it converges marginally.

In comparison with 2.11.11 Theorem of van der Vaart and Wellner (1996), the only dif-

ference is that we replaced the original conditions

Z(an(f)_znz(g)) sz(fag)v for every f7g€f7
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and

supthP* ( sup | Zni(f) — Zni(g)| > t> < g?

f9€B(e)
with a slightly stronger, but in our situation easily verifiable, condition (7.3).

For our purposes, it is convenient to formulate this simple corollary of Theorem 7.12.

Corollary 7.13. For each n, let Zn1, ..., Znm, be independent stochastic processes indexed
by T — a bounded subset of the Buclidean space RP. Put Z, = > "% (Zni — E Zy;). Suppose

there exists a quantity r, of order o(1) as n — 00, a constant C > 0, and ty € T such that

Z E* sup [Zni(s)— Zm'(t)]2 < Cery, for every e >0, n € N, (7.5)

i=1 [s—t|2<e

and

Z E*|Zpni(to)]? — 0, as n — oo. (7.6)

Then E* || Zy||r —— 0.

Proof. 1t is easy to verify the conditions of Theorem 7.12, with the semimetric p(s,t) =

\/ ‘t — S‘g.
Let € > 0 be given. By the assumptions of Theorem 7.12 we can for every ¢ € N construct
a partition T = UNq T; ? (which does not depend on n) such that

22_‘1\/10qu < 00

q=1
and

1
E* sup [Zni(t) — Zni(s))* < — for every n € N.
q 24
i=1 t,SeTj

We can argue similarly to the proof of 2.5.6 Theorem of van der Vaart and Wellner (1996)
to show that without loss of generality we can choose the sequence (for ¢ = 1,2,...) of
partitions as successive refinements.

Further choose an element t,; from each partitioning set 7;; and define a mapping
g T — Fy = {tq1,..., ten,} (7.7)

such that 7,(t) = ty; if t € Tj.
Now we can follow step by step the proof of Theorem 7.12 and show that for every ¢ > 0

there exist sufficiently large ¢, and ng such that for all n > ne

E*[[Zn(t) = Zn(mg, (6)) 7 <e. (7.8)
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As the set F, in (7.7) is finite, it follows by the assumption (7.5) that

7 2 _ - 7 . — * 112
maxE |Z,(6)]" = Iggf;var{Zm(t)} < Z; E* |1 ZuiliF — 0, (7.9)
which implies that max¢ep, E [ Z,(t)| — 0.
Combining (7.8) and (7.9) gives the statement of the corollary. O

Corollary 7.14. Let the conditions of Corollary 7.13 be satisfied and for k=1,...,m, put
ZF =S8 | Zpi. Then

pP* { max ||ZF —E ZF||; > s} —— 0.
1<k<mn n—oo
Proof. By Ottaviani’s inequality for every € > 0
P* {HZnHT > E}
1 — maxg—1, m, P* {||ZZL”” — ZF||r > 6}'

(7.10)

=1,....mn

P {k_rinax 4 2&?} <

By Markov’s inequality we can bound the numerator in (7.10) by 1 E* || Z™ |7, which con-
verges to zero by Corollary 7.13. Now, if the processes Z,,; were measurable, we could exploit

the fact that Y}, = || Z7* — ZF||7 is an inverse submartingale and estimate
_ _ 1 _ _
P {1z - Zlr > e} < E 127 — Zfllr < LE |27 |lr — 0.

Unfortunately to the presence knowledge of the author, the case of the unmeasurable Z,;
cannot be handle in such a simple way. As we need this type of considerations in the proof
of Lemma 5.12, we will argue more generally than we would need only for the purpose of this
lemma.

Let us for contradiction suppose that there exists € > 0 such that

limsup max P~ {HZ,TL”” — ZMr > E} = 1. (7.11)

n—oo k_17“-7 n

Thus for every j € N we can find n; > j and k; such that
p* {HZZ”J' _ ZifijT > a} >1- 7

Let us now consider the triangular array an kj+15 an k2 an > where j = 1,2,.... As
this array is chosen from the original array Z,1,..., Z,m,,, it surely satisfies the assumptions
of Corollary 7.13, which further implies
— M, — k.
E*Zn;” — Zn)[lr —— 0.
j—oo
This convergence together with Markov’s inequality contradict the assumption (7.11). Thus
we conclude that the denominator in (7.10) stays away bounded from zero, which finishes the

proof of this lemma. O
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Miscellaneous

The following theorem showed to be useful when proving the existence of a consistent root
of the defining equations (4.1) for M-estimators. It can be found in Ortega and Rheinboldt
(1970) as Theorem 6.3.4.

Theorem 7.15. Let C be an open, bounded set in R, and assume that the mapping H : CC
R, — R, is continuous and satisfies (x —xo)H (x) > 0 for some xg € C and all x € OC. Then

the system of equations H(x) =0 has a solution in C'.

Applying Theorem 7.15 to the function H'(z) = —H(x), we see that the condition (z —
xo)H(z) > 0 (for some xg € C and all z € 9C) may be equivalently rewritten as (x —
zo)H(z) <O0.

Definition 7.16. A sequence of random variables {Y,,} is uniformly integrable if

lim SupE Yol Iy, [sep = 0.

C— 00 ne

Some conditions for the sequence of random variables to be uniformly integrable can be
found, e.g. in Serfling (1980).

Lemma 7.17. Suppose that the function g(x) is continuous and let X be a random variable
such that there exists a do > 0 for which

sup E g (X+t) < 00, where U = [—06,00] X [1 — do, 1+ o]

(t,s)eU

Then the (random) function g (X:t
that is

) is continuous in the quadratic mean at the point (0,1),

i Xtty _ _
(t,s)lglgo71)E [g( s ) g(X)] 0.

Proof. Let & > 0 be given. First find K > 0 such that E ¢?(X)I{|X| > K} < . Without loss
of generality we can assume J, < 3. Then |X| > 2K + 1 implies |[£| > K for all (t,s) € U.
This yields

sup E ¢* (£) I{|X| > 2K + 1} <.

(t,s)eU
As the function (z,t,s) — %t is continuous on A = [-K,K] x [—%,4] x [3,3] and the
function g is continuous, the composition of these functions h(z,t,s) = g(“’t) is continuous
on A. Because the set A is compact, the function h(x,t,s) is even uniformly continuous
on A. That is, there exists § (0 < & < do) such that |t| < ¢ together with |s — 1| < § imply

|h(z,t,s) — h(z,0,1)| <e. This further gives us for all (¢,s) € [-9,d] x [1 — 9,1 + J]

Xty — g(x)]”
:E[g( 4) _ g(X)) T{|X| > 2K + 1} +E [g (X

t) — g(X))° I{|X| < 2K + 1}
§4€+€2.
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Some scale estimators in linear models

In this section we give some estimators of scale for studentization of regression M-estimators.
The aim of the section is not to give comprehensive list of possible scale estimators, but to
show that there exist simple estimators which are not only /n-consistent, but moreover, the
sequence /n(S, — S) meets the SUB condition and it is usually ucp as well. In fact, we only
generalize slightly the results of Welsh (1986), who found the first order representation for
the interquantile range (IQR) and the median absolute deviation (MAD) computed from the
residuals of a preliminary regression fit.

More precisely, suppose that the ,[:}(O) is an initial estimator of the parameter 3. Put
r; =Y; — (B(O))Txi for the residuals from this preliminary fit and denote @,, the interquantile
range and .S, the median absolute deviation of these residuals. We immediately see that if the
initial estimator B(O) is regression equivariant and scale invariant, then both scale estimators
Q@ and S, are regression invariant and scale equivariant.

In the following, we will suppose that the linear model (1.1) includes an intercept, the

initial estimator is y/n-consistent, that is

~(0)
Vi(B" = B) = 0,(1), (7.12)
and the condition XX.2 is satisfied. Further, let us denote &, = F~!(q) and éqn = Fn_l(q),

where E), is the empirical distribution function of the residuals.

Interquantile range @,

Welsh (1986) showed that provided the distribution function F of the errors has a positive and
continuous derivative at the points &4 = F~1(1/4) and 3,4 = F~1(3/4), then the estimator

Q. admits the expansion
V(Qn — Q(F)) =

m Z [% —I{e; < 53/4}} - m Z [% —I{e; < 51/4}} +0,(1), (7.13)
; —

=1 1=
where Q(F) = £3/4 — §14. Our aim is to strengthen this result and show that the remainder
term in the expansion (7.13) is o0y¢p(1) in fact.

For this purpose we define the process

M, (t.5) = \FZ[q_H{ez<§q+ Py < M sl < M,

where M is an arbitrarily large but fixed constant.
It is rather standard (see Section 5.2.1) to show that if F' has a continuous derivative at
the point §,, then

sup 'Mn(t,s) — M,(0,0) + s f(&) + L Zx, = Oyep(1 (7.14)

‘t‘QSM7|S‘SM
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Now we would like to show that the sequence \/ﬁ(éqn —§,) meets the SUB condition. But to
show that we need that the sequence \/E(B(O) — ) meets the SUB condition as well. Thus
it may seem that we are moving in a circle. But fortunately, there exist regression estimators
which are scale invariant but which do not require to estimate the scale. Probably the most
popular ones are the least squares estimator and least absolute deviation (LAD) estimator.
To keep our procedure robust we will choose the LAD method. This method also fits into our
frame, because the LAD-estimator can be viewed as an M-estimator with the psi-function

¥ (x) = sign(z). Thus we can use the results of Section 5.2.1 to conclude that

\/H(IBLAD - \/—f 51/2 le 2 H{ez < 51/2}] + Oucp(l) (7'15)

provided f exists and is continuous and positive at the point & /5. It is easy to verify that
(7.15) is even a stronger result than the SUB condition for \/n(3,,, — 3). With the help
of the linearity result (7.14) and the fact that \/H(B(O) — 3) meets the SUB condition for
sufficiently large n it holds

P{ max \/E(éqk—gq)>c}

n_s<k<ns

er{ w23 fesa s i -9 L8]0}

=1

(0)

k
<P {Hg;y; NG 2_; ¢ —Hei <&} — FEIVEBE —B)D) %> F(&) S+ oucp(l)} .

=1

(7.16)

From (7.16) we see that if f(&,) > 0 we can make P {maxniégkgné \/E(qu — &) > C} arbi-
trarily small for all sufficiently large n by taking C' large enough and § small enough. Similarly
we can estimate P {maxniéngW \/E(éqk — &) < —C’}

Now we are ready to substitute /n(£,, — &,) for s and \/_( B) for t in (7.14) and

after some rearrangements we get
(0)
\/_(éqn f Z H{el < gq ] Z X + Oucp (717)

Combining (7.17) for ¢ = 2 and for ¢ = 1 we arrive at (7.13) with the remainder term o0y (1).

Median absolute deviation 5,

By the median absolute deviation we mean

S, =med{|r; —Eosnl, i =1,...,n}. (7.18)
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But as the scale estimator we usually use S/, = S,,/®~1(0.75), so as the estimator is consistent
for the normal errors. For simplicity of notation we will be dealing with S,, defined by (7.18).
Welsh (1986) showed that provided F' has a continuous derivative at the points £o5— 5, 0.5,
and £o5 + 5, and f(£05) > 0, f(Eos5 —S) + f(Eos +S) > 0, then S, admits the first order

expansion
Vi, = ) = 5z 3 [5 ~ Heos = 5 < s <o + 5]

— TS 2[5 Hei < €os}] +op(1) (7.19)
=1

where g1 = (f(§05 +5) + f(€o5 —5)) and g2 = (f(§05 +5) — f(§0.5 —5)). Our aim is to
prove that the remainder term in (7.19) is 0y¢p(1). For this purpose it is useful to study the

process

M, (t,s,r)

tTXi

1 & |
:\/ﬁZ[%—H{ﬁo.s—ﬁ—S_ﬁ+ NG <€i<fo.5_ﬁ+5+ﬁ+tj/% ],
i=1

where [t|o < M, |s| < M,|r| < M.
With the techniques of Section 5.2.1 it is easy to show

n
M, (t,5,7) = M,(0,0,0) — g1 s — gor+ g tT > %
i=1

sup
max{[t[2,|s,|r[}<C

= Oucp(1) (7.20)

From the discussion of interquantile range @, we know that if the sequence \/E(BS ' 03)
meets SUB, then /n(€o5n — £0.5) satisfies SUB too. Then analogously to (7.16) we can
show that /n(S, — S) satisfies SUB as well. Now we are ready to substitute \/ﬁ(Bf g 3)
for t, \/n(S, — S) for s and \/n(Eg5n — £0.5) for r in (7.20). With the help of (7.17) we get

%; [% —H{éObn — Sy <ri < é(].5n +Sn}] + %; [% —]1{505 —S<e<éps —l—S}]

— gl\/ﬁ(Sn - S) + _m z_; [% - H{ez < 50.5}] - Oucp(l)-

It is not difficult to show that the first term on the left-hand side is of order o(1). Then after
some algebra we get exactly (7.19) with the remainder term oycp(1).

Notice that, similarly to the interquantile range @,,, we need the sequence \/ﬁ(,@f ' B3) to
meet SUB but we do not need it to be ucp. Further, the asymptotic distributions of @,, and
S, do not depend on the asymptotic distribution of the preliminary regression estimator ,[:}2) ).
Welsh (1986) also pointed out, that if the distribution of the errors is symmetric, then go = 0,
S = &3/4 and the expansions (7.13) and (7.19) for the estimators (), and S, coincide (up to

a multiplication by a factor 2).

106



7.5 Prohorov metric for probability measures

Definition 7.18. Let p and v be Borel measures on a metric space (5, d). Then the Prohorov

distance between measures p and v is defined as
dp(p,v) =inf{e > 0: u(B) < v(B°) + ¢ for all Borel sets B},
where B = {z : inf cpd(z,y) < e}.

Prohorov metric is very important because it metrizes the weak convergence. The follow-

ing two useful theorems are to be found in Dehling (1983).

Theorem 7.19. Let Xq,...,X,, be independent Ry-valued random wvariables with E X; = 0
and E |X;|3 < oo. Denote the distribution of ﬁ S X by py and let vy, be the Gaussian

measure with mean zero and same covariance as fi,. Then:
1/4 _ —1/2 -
dp(fin, vn) < cd"pg '3 (1 + [log(psn ™/ 2d™1)[1/?)
where p3 =n"t 3" E |X;|3 and c is an absolute constant.

Theorem 7.20. Let u and v be two Gaussian measures on Ry with mean zero and covariance

functions T and S. Then the following estimation for their Prohorov distance holds:
dp(p,v) < C|T =S|l d"/*(1+ [log(|T — S| &)|'/?)

where C' is an absolute constant and ||A|; = Z?:l |Ail, with A\; being the eigenvalues of the

(symmetric) d x d matriz A.
If we denote A4 the largest eigenvalue of the matrix A then

1/2

d d
Al < dAmae < d | DD Jagl?, (7.21)
i=1 j=1

where the first inequality is obvious and the second one is the well known relation of the
largest eigenvalue and the Frobenius norm (see e.g. Theorem 3.1.3 of Dennis and Schnabel
(1996)). For our purposes it is suffices that inequality (7.21) implies that ||A||; converges to

zero, provided all its elements converges to zero.
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List

alb
aVb

B,
B,
B,
8.
8.
da

DII

n

Dy(b)

>(T)
n_s

ng
N(u,0?)
N (1, %)

of Symbols

a A b =min(a,b)

a Vb = max(a,b)

M-estimator of the parameter 3

R-estimator of the parameter 3 based on Wilcoxon scores
signed R-estimator of the parameter 38 based on Wilcoxon scores
B.= (ﬁlv cee aﬁp—l)T

B.=Br.....0-1)T

Aoz = 5 i1 Tip 2i

type I confidence interval

type II confidence interval

Dy(b) = S0 (Y; — bTx;) (Ri(b) — "5

density of the errors in the model (1.1)

cumulative distribution function of the errors in the model (1.1)
cumulative distribution function of N(0,1)

set of all uniformly bounded real functions on T'
n_s=[n(l—19)]

ng = [n(1+9)]

normal (Gaussian) distribution on R

normal (Gaussian) distribution on Ry,

rational numbers

real numbers

extended real line — [—o0, +o0]

p-dimensional euclidean space

Sn(b) = # >im1(Xi — Xp) Ri(b)

Si(b) = i 201y (xi — %) sign(Y; — bTx;) Rf (b)

the vector with the [-th component 1 and the other components 0
Tr%p = % > e ‘T?p

TSp = %Z?:l ‘xip’?)

the first column of the matrix V,,

the matrix = >°7 | x;x]

n
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vz the matrix 1 3" | z;z]

wrk the i-th diagonal element of the matrix Q, = V1

Q the limit of V;l, that is Q = lim,, ., V,,

Wii the i-th diagonal element of the matrix

X; the i-th row of the design matrix X

X the design matrix, X = (x”)i;lg

Y the vector of observations, Y = (Y1,...,Y,)T

2 2o = ®71(1 — %), with @' being the inverse cdf of N(0,1)
Zi zi = (T, -, Tip-1)|

List of symbols depending on the type of estimator

The partial derivatives are denoted by lower subscripts.

M-estimator with fixed scale

Let us denote \(t) = E ¢¥(e; +t) and A®)(¢) = E ¢?(e; +t). Then
N=X0),  w=N0), 0 =r0)

For v absolutely continuous (plus some integrability conditions)

11 =E ¢/(e1), and Y01 =2 E ¢(e1) ¢/ (e1).

For 1 a step function (2.14) or equivalently (2.15),
"M = Zﬂj flq;) and 01 = ZO‘? [f(a;) — f(gj-1)].
j=1 j=1

Finally

n
ani aF:
v

n
Za Oy \/Whp
M
1

Zoy Oy 1/
%, where ai =E ¢?(ey).

Studentized M-estimator

Let us denote A(t,u) = E ¢(%E) and §(t,u) = E & ¢/(2E). Then
1= /\t(070)7 Ve = _/\u(070)7 Y2 = )\tt(0,0), Y2e = 515(070)7 Y2ee = _5u(0,0)
Let us denote A (¢,u) = E Y?(4EL). Then

Yo1 = /\122) (07 0)7 Yole = _/\q(Lz) (07 0)
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For 1) absolutely continuous (plus some integrability conditions)
1 =E$¢(2), me=EZ9¢(2), 1 =2E¢(L)¢(2L), e =2E ()¢ (2).

For 1 a step function

N=Y_B8ifSq), me=—Y_54GBfSq), o= aflg) - flg-)
=1 i=1

=1

Finally
20 O wn Zo O w.
ah=2T¥ VT TNV here 02 = E 02(%).
il 4!
R-estimator with Wilcoxon scores

Za \/Wrp Fa /Wpp

=E f(ey), a —_— ap = .

3

List of abbreviations

a.s. almost surely
cdf cumulative distribution function
CI confidence interval

FOAL first order asymptotic linearity
FOAR first order asymptotic representation
SOAL second order asymptotic linearity

SOAR second order asymptotic representation
SUB ‘sequential uniformly bounded’ (see (5.9))
ucp uniformly continuous in probability (see Definition 5.2)

List of conditions

Conditions on the design points

X.1

1< 9 maxi<i<n |Cin|
- 2 — 0(1), lim ——=wsnimnl g
" ;:1 ¢in = 0(1) Jim 7

1 < . MaXi<i<n [Xinl2
B
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lim max w =0
n—col<i<n /N '
X.4 .
1
==Y e, [xinl3 = O(1).
n <
=1
X.5
n
Zcm =0.
i=1
XX.1

1« ‘ '
- E [xinla = O(1), lim —oXl<isn [Xinl2 =0.
n-

n—oo \/ﬁ

XX.2 There exists a limit (p X p) matrix V

1 n
V=1lmYV,=lim — g Xin X
n—oo n —

n—oo

which is positive definite.

XX.3 There exists a A € R such that

A = lim vn (y/w — /Wpp)-

TL—>OO

X1 "
1 9 . Inaxj<i<n |Cin|
- Zcm =0(1), 7}1—{1;0 — i =0.
i=1
X’.2
lim maxi<i<n |Xin|2 —0
X’.3

1 n
= " feinl?[xinl2 = O(1).
ni4

X’.4 There exists a § > %

Z |Cin| |Xm|l+6 0(1).

XX’.1

1 i 3 . maxi<;< ‘X' ’%
- Z xinl3 = O(1), nh_)H;O ;;f/g T2 = 0.
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Conditions on the ¢ function and cdf F' used in M-estimation
A.1 ¢ is a continuous piecewise linear function with the derivative
Y (z) =), forrj<z<rj, j=1,...,k,

where ag, a1, ..., q are real numbers, (usually ag = o = 0) and —oco = 19 < 1] <

e < T < Thg1 = Q.
A.2 The cumulative distribution function F' is continuous at the points rq,..., 7.

A.3 The cumulative distribution function F' is absolutely continuous with a derivative which

is continuous at the points 71, ..., 7.

GenFx.1 (GenSt.1) The function h(t) = E p(e; — t) (or h(t) = E p(95%)) has a unique

minimum at ¢ = 0.
SmFx.1 1 is absolutely continuous with a derivative 1’ such that E ¢/(e1)? < oo.
SmFx.2 The function v¢’(e; + t) is continuous in the quadratic mean at the point 0, that is
lim E [(e1 + 1) — ¥ (en)]? = 0.

SmFx.3 The second derivative of the function \(s) = E 1(eg +t) is finite and continuous at
the point 0.

SmFx.4 There exists a § > 0 such that supy, s E Yller +1t) <

SmFx.5 The function A\(?) (t) is continuously differentiable in a neighbourhood of the point

Z€ero.

SmSt.1 1 is absolutely continuous with a derivative 1’ such that E ¢/ (%)2 < 00.

SmSt.2 There exists § > 0 such that

lim sup E ¢/ (4E) — ¢/ (%)]2 =0
t_>0\u|<6

and
: e e1\12
li E (W () — o (%) =0,
SmSt.3 The function A(t,u) = E ¢(%Et) is twice differentiable and the partial derivatives

are continuous and bounded in a neighbourhood of the point (0, 0).

SmSt.4 There exists 0 > 0 such that supy s, <s E 1/)4(651—:J) < 00.

SmSt.5 The function A?(t,u) = E ¢2(%E!) is continuously differentiable in a neighbour-
hood of the point (0,0).
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Step.1 F has a continuous derivative in a neighbourhood of the points ¢, ..., g¢n.

Step.2 For every j € {1,...,m} there exists a d; > 0, v; > % and a C; < oo such that for
every |t| < d;
|f(gj + 1) = fla;)] < Cj [t

Sym The distribution of the errors is symmetric and the t-function is antisymmetric, that
is F(z) =1— F(—z) and ¢(z) = —¢(—x) for all z € R.

Conditions on the distribution function and density used in R-estimation

W.1 F is absolutely continuous with a derivative f such that E [f(e1)]? < oo.

W.2 The function f(ej + s) is continuous in the quadratic mean at the point zero, that is

gi_)néE[f(el +5)— fler)]> =0.

400 +A
lim —; / / (z+y) — f(y))?dzdy = 0.

W.4 The density of the distribution of the errors is symmetric, that is f(z) = f(—=z), for
any r € R.

W.5 There exist § > 0 and C' < oo such that for all |t| < §

E[f(er—1t) — fle)| < Ct.
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