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Last update: February 20, 2021

1 Clippings from the asymptotic theory

1.1 The convergence of random vectors

Let X be a k-dimensional random vector (with the cumulative distribution function FX) and

{Xn}∞n=1 be a sequence of k-dimensional random vectors (with the cumulative distribution

functions FXn).

Definition. We say that Xn
d−−−→

n→∞
X (i.e. Xn converges in distribution to X), if

lim
n→∞

FXn(x) = FX(x)

for each point x of the continuity of FX .

Let d be a metric in Rk, e.g. the Euclidean metric d(x,y) =
√∑k

j=1(xj − yj)2 .

Definition. We say that

• Xn
P−−−→

n→∞
X (i.e. Xn converges in probability to X), if

∀ε > 0 lim
n→∞

P
[
ω : d

(
Xn(ω),X(ω)

)
> ε
]

= 0;

• Xn
a.s.−−−→
n→∞

X (i.e. Xn converges almost surely to X), if

P
[
ω : lim

n→∞
d(Xn(ω),X(ω)) = 0

]
= 1.

Remark 1. For random vectors the convergence in probability and almost surely can be defined

also component-wise. That is let Xn = (Xn1, . . . , Xnk)
T and X = (X1, . . . , Xk)

T. Then

Xn
P−−−→

n→∞
X (Xn

a.s.−−−→
n→∞

X) if Xnj
P−−−→

n→∞
Xj (Xnj

a.s.−−−→
n→∞

Xj), ∀j = 1, . . . , k.

But this is not true for the convergence in distribution for which we have the Cramér-Wold

theorem that states

Xn
d−−−→

n→∞
X ⇐⇒ λTXn

d−−−→
n→∞

λTX, ∀λ ∈ Rk.

Theorem 1. (Continuous Mapping Theorem, CMT) Let g : Rk → Rm be continuous

in each point of an open set C ⊂ Rk such that P(X ∈ C) = 1. Then

(i) Xn
a.s.−−−→
n→∞

X ⇒ g(Xn)
a.s.−−−→
n→∞

g(X);
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(ii) Xn
P−−−→

n→∞
X ⇒ g(Xn)

P−−−→
n→∞

g(X);

(iii) Xn
d−−−→

n→∞
X ⇒ g(Xn)

d−−−→
n→∞

g(X).

Proof. (i) Almost sure convergence.

P
[
ω : lim

n→∞
d
(
g(Xn(ω)),g(X(ω))

)
= 0
]

≥ P
[
ω : lim

n→∞
d
(
g(Xn(ω)),g(X(ω))

)
= 0,X(ω) ∈ C

]
≥ P

[
ω : lim

n→∞
d
(
Xn(ω),X(ω)

)
= 0,X(ω) ∈ C

]
= 1,

as C is an open set and P(X ∈ C) = 1.

(ii) Convergence in probability. Let ε > 0. Then for each δ > 0

P
[
ω : d

(
g(Xn(ω)),g(X(ω))

)
> ε
]

≤ P
[
d
(
g(Xn),g(X)

)
> ε, d(Xn,X) ≤ δ

]
+ P

[
d(Xn,X) > δ

]
≤ P

[
X ∈ Bδ

]
+ P

[
d(Xn,X) > δ

]
︸ ︷︷ ︸

→0,∀δ>0

,

where Bδ =
{
x ∈ Rk; ∃y ∈ Rk : d(x,y) ≤ δ, d

(
g(x),g(y)

)
> ε
}

. Further

P
[
X ∈ Bδ

]
= P

[
X ∈ Bδ,X ∈ C

]
+ P

[
X ∈ Bδ,X /∈ C

]
= P

[
X ∈ Bδ ∩ C

]
+ 0

and P
[
X ∈ Bδ ∩ C

]
can be made arbitrarily small as Bδ ∩ C → ∅ for δ ↘ 0.

(iii) See for instance the proof of Theorem 13.6 in Lachout (2004).

Theorem 2. (Cramér-Slutsky, CS) Let Xn
d−−−→

n→∞
X, Yn

P−−−→
n→∞

c, then

(i) Xn + Yn
d−−−→

n→∞
X + c;

(ii) YnXn
d−−−→

n→∞
cX,

where Yn can be a sequence of random variables or vectors or matrices of appropriate dimen-

sions (R or Rk or Rm×k) and analogously c can be either a number or a vector or a matrix

of an appropriate dimension.
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Proof. Note that it is sufficient to prove

(Xn,Yn)
d−−−→

n→∞
(X, c). (1)

Then the statement of the theorem follows from Continuous Mapping Theorem (Theorem 1).

To prove (1) note that

d
(
(Xn,Yn), (Xn, c)

)
= d
(
Yn, c

) P−−−→
n→∞

0.

Thus by Theorem 13.7 in Lachout (2004) or Theorem 2.7 (iv) of van der Vaart (2000) it is

sufficient to show that (Xn, c)
d−−−→

n→∞
(X, c). But this follows immediately with the help of

the Cramér-Wold theorem.

Definition 1. Let
{
Xn

}∞
n=1

be a sequence of random vectors and
{
rn
}∞
n=1

a sequence of

positive constants. We write that

(i) Xn = oP
(

1
rn

)
, if rnXn

P−−−→
n→∞

0k, where 0k = (0, . . . , 0)T is a zero point in Rk;

(ii) Xn = OP
(

1
rn

)
, if

∀ε > 0 ∃K <∞ sup
n∈N

P
(
rn ‖Xn‖ > K

)
< ε,

where ‖ · ‖ stands for instance for the Euclidean norm.

When Xn = OP (1) then some authors say that Xn is bounded in probability∗. When

Xn = oP (1) then it is often said that Xn is negligible in probability.

Remark 2. Note that

(i) Xn
d−−−→

n→∞
X implies Xn = OP (1) (Prohorov’s theorem);

(ii) Xn
P−−−→

n→∞
0 implies Xn = oP (1);

(iii) (rnXn)
P−−−→

n→∞
X or (rnXn)

d−−−→
n→∞

X implies Xn = OP
(

1
rn

)
.

(iv) If rn →∞ and Xn = OP
(

1
rn

)
, then Xn = oP (1).

Proof of (iv). Note that it is sufficient to prove that for each ε > 0 and each η > 0 for all

sufficiently large n it holds that P
(
‖Xn‖ > ε

)
< η.

Note that Xn = OP
(

1
rn

)
implies there exists a finite constant K such that

sup
n∈N

P
(
rn ‖Xn‖ > K

)
< ε.

∗ omezená v pravděpodobnosti
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The statement now follows from the fact that

P
(
‖Xn‖ > ε

)
= P

(
rn ‖Xn‖ > ε rn

)
< η

for all n such that ε rn > K.

Suppose that X1,X2, . . . are independent and identically distributed random vectors with

a finite variance matrix. Then the law of large numbers implies

Xn = E X1 + oP (1).

With the help of the central limit theorem one can be even more specific about the remainder

term and show that

Xn = E X1 +OP
(

1√
n

)
.

Remark 3. Further note that the calculus with the random quantities oP (1) and OP (1) is

analogous to the calculus with the (deterministic) quantities o(1) and O(1) in mathematical

analysis. Thus, among others it holds that

(i) oP (1) + oP (1) = oP (1);

(ii) oP (1)OP (1) = oP (1);

(iii) oP (1) +OP (1) = OP (1);

(iv) oP (1) + o(1) = oP (1);

(v) OP (1) +O(1) = OP (1).

Proof of (ii). Let {Xn} , {Yn} be such thatXn = OP (1),Yn = oP (1) and YnXn makes sense.

Let ε > 0 be given and consider for instance the Euclidean norm (for other norms the proof

would go through also up to a multiplicative constant in some of the arguments). Then one

can find K <∞ such that supn∈N P
(
‖Xn‖ > K

)
< ε

2 . Thus for all sufficiently large n ∈ N

P
(
‖YnXn‖ > ε

)
≤ P

(
‖YnXn‖ > ε, ‖Xn‖ ≤ K

)
+ P

(
‖Xn‖ > K

)
≤ P

(
‖Yn‖ > ε

K

)
+ ε

2 ≤ ε,

as Yn = oP (1).

We recommend the reader to prove the remaining statements as an exercise.

For more details about the calculus with oP (1) and OP (1) see for instance Chapter 3.4 of

Jiang (2010).
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1.2 ∆-theorem

Let Tn = (Tn1, . . . , Tnp)
T be a p-dimensional random vector that converges to the con-

stant µ = (µ1, . . . , µp)
T and g = (g1, . . . , gm)T be a function from (a subset of) Rp to Rm.

Denote the Jacobi matrix of the function g at the point x as Dg(x), i.e.

Dg(x) =


∇g1(x)

...

∇gm(x)

 =


∂g1(x)
∂x1

. . . ∂g1(x)
∂xp

...
. . .

...
∂gm(x)
∂x1

. . . ∂gm(x)
∂xp

 .

Theorem 3. (∆-theorem) Let
√
n (Tn −µ) = OP (1). Further g : A→ Rm, where A ⊂ Rp,

µ is an interior point of A and the first-order partial derivatives of g are continuous in a

neighbourhood of µ. Then

(i)
√
n
(
g(Tn)− g(µ)

)
− Dg(µ)

√
n (Tn − µ) = oP (1);

(ii) moreover if
√
n (Tn − µ)

d−−−→
n→∞

Np
(
0p,�

)
, then

√
n
(
g(Tn)− g(µ)

) d−−−→
n→∞

Nm
(
0m,Dg(µ)�D

T

g(µ)
)
. (2)

Proof. Statement (i): For j = 1, . . . ,m consider gj : A → R (the j-th coordinate of the

function g). From the assumptions of the theorem there exists a neighbourhood Uδ(µ) of the

point µ such that the function gj has continuous partial derivatives in this neighbourhood.

Further
√
n (Tn − µ) = OP (1) implies Tn

P−−−→
n→∞

µ (see for instance Remark 2(iv)), which

yields that P
(
Tn ∈ Uδ(µ)

)
−−−→
n→∞

1. Thus without loss of generality one can assume that

Tn ∈ Uδ(µ). Using this together with the mean value theorem there exists µj∗n which lies

between Tn and µ such that

√
n
(
gj(Tn)− gj(µ)

)
= ∇gj(µj∗n )

√
n (Tn − µ)

= ∇gj(µ)
√
n (Tn − µ) +

[
∇gj(µj∗n )−∇gj(µ)

]√
n (Tn − µ). (3)

Further Tn
P−−−→

n→∞
µ implies that µj∗n

P−−−→
n→∞

µ. Now the continuity of the partial derivatives

of gj in Uδ(µ) and CMT (Theorem 1) imply that

∇gj(µj∗n )−∇gj(µ) = oP (1),

which together with
√
n (Tn − µ) = OP (1) gives[
∇gj(µj∗n )−∇gj(µ)

]√
n (Tn − µ) = oP (1). (4)

Now combining (3) and (4) yields that for each j = 1, . . . ,m

√
n
(
gj(Tn)− gj(µ)

)
= ∇gj(µ)

√
n (Tn − µ) + oP (1),
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which implies the first statement of the theorem.

Statement (ii): By the first statement of the theorem one gets

√
n
(
g(Tn)− g(µ)

)
= Dg(µ)

√
n (Tn − µ) + oP (1).

Now for the term Dg(µ)
√
n (Tn − µ) one can use the second statement of CS (Theorem 2)

with Yn = Dg(µ) and Xn =
√
n (Tn−µ). Further, using now the first statement of CS with

c = 0m one can see that adding the term oP (1) does not alter the asymptotic distribution of

Dg(µ)
√
n (Tn − µ).

In the most common applications of ∆-theorem one often takes Tn = 1
n

∑n
i=1Xi, where

X1, . . . ,Xn are independent and identically distributed. Then µ = E X1 and the standard

central limit theorem gives the asymptotic normality of

√
n
(
Tn − µ

)
=
√
n
(
Xn − E X1

)
.

Remark 4. Instead of the continuity of the partial derivatives in a neighbourhood of µ, it

would be sufficient to assume the existence of the total differential of the function g at the

point µ. But the proof would be more complicated.
The end of

lecture 1

(17. 2. 2020)Sometimes instead of (2) we write shortly g(Tn)
as
≈ Nm

(
g(µ), 1

nDg(µ)�D
T

g(µ)
)
. The quan-

tity 1
nDg(µ)�D

T

g(µ) is then called the asymptotic variance matrix of g(Tn) and it is

denoted as avar
(
g(Tn)

)
. Note that the asymptotic variance has to be understood as the

variance of the asymptotic distribution, but not as some kind of limiting variance.

As the following three examples show for a sequence of random variables {Yn} the asymp-

totic variance avar(Yn) may exist even if var(Yn) does not exist for any n ∈ N. Further even

if var(Yn) exists, then it does not hold that var(Yn)/ avar(Yn)→ 1 as n→∞.

Example 1. Let X ∼ N(0, 1) and {εn} be a sequence of random variables independent with

X such that

P(εn = −
√
n) = 1

2n , P(εn = 0) = 1− 1
n , P(εn =

√
n) = 1

2n .

Define Yn = X + εn and show that Yn
d−−−→

n→∞
N(0, 1). Thus avar(Yn) = 1. On the other hand

var(Yn) = 2 for each n ∈ N.

Example 2. A random sample X1, . . . , Xn from a zero-mean distribution with finite and

positive variance. Find the asymptotic distribution of Yn = Xn exp{−X3
n}. Further compare

var(Yn) and avar(Yn) when X1 is distributed as N(0, 1).

Example 3. Suppose you have a random sample X1, . . . , Xn from a Bernoulli distribution

with parameter pX and you are interested in estimating the logarithm of the odd, i.e. θX =

log
( pX

1−pX

)
. Compare the variance and the asymptotic variance of θ̂X = log

(
Xn

1−Xn

)
.
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Example 4. Suppose you have two independent random samples from Bernoulli distribution.

Derive the asymptotic distribution of the logarithm of odds-ratio.

Example 5. Suppose we observe independent identically distributed random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
and denote ρ = cov(X1,Y1)√

var(X1) var(Y1)
the (Pearson’s) correlation coefficient. Consider the sample

correlation coefficient given by

ρ̂n =

∑n
i=1(Xi −Xn)(Yi − Y n)√∑n

i=1(Xi −Xn)2
∑n

i=1(Yi − Y n)2
.

With the help of Theorem 3(i) derive (the asymptotic representation)

√
n
(
ρ̂n − ρ

)
=

1√
n

n∑
i=1

[
X̃iỸi − ρ

2 X̃
2
i −

ρ
2 Ỹ

2
i

]
+ oP (1),

where X̃i = Xi−E X1√
var(X1)

and Ỹi = Yi−E Y1√
var(Y1)

are standardized versions of Xi and Yi. Conclude

that
√
n
(
ρ̂n − ρ

) d−−−→
n→∞

N
(
0, var(Zi)

)
,

where Zi = X̃iỸi − ρ
2 X̃

2
i −

ρ
2 Ỹ

2
i . Derive the asymptotic distribution under the independence

of Xi and Yi and suggest a test of independence.

Further show that if (Xi, Yi)
T follows the bivariate normal distribution then

√
n
(
ρ̂n − ρ

) d−−−→
n→∞

N
(
0, (1− ρ2)2

)
.

Find the (asymptotic) variance stabilising transformation for ρ̂n (see Chapter 1.4) and derive

the confidence interval for ρ.

Example 6. Consider a random sample from the Bernoulli distribution with the parame-

ter pX . Derive the asymptotic distribution of the estimator of θX = pX(1− pX) (variance of

the Bernoulli distribution) given by θ̂n = n
n−1Xn(1−Xn).

Example 7. Suppose that we observe X1, . . . , Xn of a moving average sequence of order 1

given by

Xt = Yt + θ Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise sequence such that E Yt = 0 and var(Yt) = σ2.

Using the fact that the autocorrelation function at lag 1 satisfies

r(1) =
θ

1 + θ2

9



derive the estimator of θ and find its asymptotic distribution.

Hint. Note that by Bartlett’s formula

√
n
(
r̂n(1)− r(1)

) d−−−→
n→∞

N
(
0, σ2(θ)

)
,

where

σ2(θ) = 1− 3
(

θ
1+θ2

)2
+ 4
(

θ
1+θ2

)4
.

1.3 Moment estimators

Suppose that the random vector X has a density f(x;θ) with respect to a σ-finite measure µ

and that the density is known up to unknown p-dimensional parameter θ = (θ1, . . . , θp)
T ∈ Θ.

Let θX be the true value∗ of this unknown parameter. Let X1, . . . ,Xn be a random sample

from this distribution and t1, . . . , tp be given real functions. For instance if the observations

are one-dimensional one can take tj(x) = xj , j = 1, . . . , p. For j = 1, . . . , p define the function

τj : Θ→ R as

τj(θ) = Eθ tj(X1) =

∫
tj(x)f(x;θ) dµ(x), j = 1, . . . , p.

Then the moment estimator† θ̂n of the parameter θ is a solution to the estimating equations

1

n

n∑
i=1

t1(Xi) = τ1

(
θ̂n
)
, . . . ,

1

n

n∑
i=1

tp(Xi) = τp
(
θ̂n
)
.

Example 8. Moment estimation in Beta distribution.

Put

Tn =
( 1

n

n∑
i=1

t1(Xi), . . . ,
1

n

n∑
i=1

tp(Xi)
)T

(5)

and define the mapping τ : Θ 7→ Rp as τ (θ) =
(
τ1(θ), . . . , τp(θ)

)T
. Note that provided there

exists an inverse mapping τ−1 one can write

√
n
(
θ̂n − θX

)
=
√
n
(
τ−1(Tn)− τ−1

(
τ (θX)

))
. (6)

Thus the asymptotic normality of the moment estimator θ̂n would follow by the ∆-theorem

(Theorem 3) with g = τ−1. This is formalized in the following theorem.

Theorem 4. Let θX be an interior point of Θ and maxj=1,...,p varθ(tj(X1)) < ∞. Fur-

ther let the function τ be one-to-one and have continuous first-order partial derivatives in a

neighbourhood of θX . Finally let the Jacobi matrix Dτ (θX) be regular. Then

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,D

−1
τ (θX)�(θX) [D−1

τ (θX)]T
)
,

where �(θX) = varθX
(
t1(X1), . . . , tp(X1)

)
.

∗ skutečná hodnota † Momentový odhad
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Proof. By the assumptions of the theorem and the inverse function theorem (Theorem A1)

there exists an open neighbourhood U containing θX and an open neighbourhood V con-

taining τ (θX) such that τ : U → V is a differentiable bijection with a differentiable inverse

τ−1 : V → U . Further note that Tn defined in (5) satisfies P
(
Tn ∈ V

)
−−−→
n→∞

1. Thus one

can use (6) and apply the ∆-theorem (Theorem 3) with g = τ−1, µ = τ (θX) and A = V to

get
√
n
(
θ̂n − θX

)
d−−−→

n→∞
Np
(
0,Dτ−1

(
τ (θX)

)
�(θX)

[
Dτ−1

(
τ (θX)

)]T)
.

The statement of the theorem now follows from the identity

Dτ−1

(
τ (θX)

)
= D−1

τ (θX).

The asymptotic variance of θ̂n is usually estimated as

1
n D
−1
τ

(
θ̂n
)
�̂n [D−1

τ

(
θ̂n
)
]T,

where as �̂n one can take either �(θ̂n) or the empirical variance matrix

�̂n =
1

n− 1

n∑
i=1

(
Zi − Zn

)(
Zi − Zn

)T
,

with Zi =
(
t1(Xi), . . . , tp(Xi)

)T
.

Confidence intervals for θXj

Let θXj stand for the j-th component of the true value of the parameter θX = (θX1, . . . , θXp)
T.

Put θ̂n =
(
θ̂n1, . . . , θ̂np

)T
and θX = (θX1, . . . , θXp)

T. By Theorem 4 we know that

√
n
(
θ̂nj − θXj

) d−−−→
n→∞

N
(
0, vjj(θX)

)
, j = 1, . . . , p,

where vjj(θX) is the j-th diagonal element of the asymptotic variance matrix

V = D−1
τ (θX)�(θX) [D−1

τ (θX)]T. (7)

Thus the (asymptotic two-sided) confidence interval for θXj is given by(
θ̂nj − u1−α

2

√
v̂jj
n , θ̂nj + u1−α

2

√
v̂jj
n

)
,

where v̂jj is the j-th diagonal element of the estimated variance matrix

V̂n = D−1
τ

(
θ̂n
)
�̂n [D−1

τ

(
θ̂n
)
]T.

11



Applications of moment estimators

As maximum likelihood estimators are preferred over moment estimators, the use of moment

estimators is limited. Nevertheless the moment estimators can be of interest in the following

situations:

• the calculation of the maximum likelihood estimate is computationally too prohibitive

due to a very complex model or a huge amount of data;

• moment estimates can be used as the starting values for the numerical algorithms that

search for maximum likelihood estimates.

The choice of the functions t1, . . . , tp

The most common choice tj(x) = xj , where j ∈ {1, . . . , p} for the univariate observations is

not necessary the most appropriate one. The idea is to choose the functions t1, . . . , tp so that

the asymptotic variance matrix (7) is in some sense ‘minimized’. But this is usually a too

difficult problem. Nevertheless one should at least check that the vector function τ : Θ→ Rp

is one-to-one, otherwise the parameter θX might not be identifiable with the given t1, . . . , tp.

Now the continuity of τ guarantees the consistency of the estimator θ̂n. To guarantee also

the asymptotic normality one needs that the Jacobi matrix Dτ (θ) is regular for each θ ∈ Θ.

To be more specific, consider the one-dimensional parameter θ and for a given function t

introduce

τ(θ) = Eθ t(X1).

Then we need that τ : Θ→ R is a one-to-one function. Otherwise it might happen that with

probability going to one the estimating function

τ(θ̂n) =
1

n

n∑
i=1

t(Xi).

has more roots (whose values are in the parameter space Θ) and we do not know which of

the root is the appropriate (consistent) one.

Example 9. Let X1, . . . , Xn be independent identically distributed random variables from

the discrete distribution given as

P(X1 = −1) = p, P(X1 = 0) = 1− p− p2, P(X1 = 2) = p2,

where p ∈ Θ = (0, −1+
√

5
2 ).

Now the standard choice t(x) = x yields that τ(p) = EpX1 = 2p2 − p. Note that the

estimating equation given by

2p̂2
n − p̂n = Xn

12



has two roots

p̂(1,2)
n = 1

4 ±
√

Xn
2 + 1

16 .

Show that if the true value of the parameter pX ∈ (0, 1
2), then

p̂(1)
n

P−−−→
n→∞

1
4 − |pX −

1
4 |, p̂(2)

n
P−−−→

n→∞
1
4 + |pX − 1

4 |.

Thus except for the pX = 1
4 the roots p̂

(1)
n and p̂

(2)
n converge in distribution to different limits

and only one of these limits is the true value of the parameter pX . Note also pX = 1
4 , then

both the roots are consistent, but as τ(1
4) = 0 neither of the roots is asymptotically normal.

Show that taking t(x) = x2 or simply t(x) = I{x = −1} does not introduce such problematic

issues.

1.4 Confidence intervals and asymptotic variance-stabilising transformation

In this section∗ we are interested in constructing a confidence interval for (one-dimensional)

parameter θX . Suppose we have an estimator θ̂n of parameter θX such that

√
n
(
θ̂n − θX

) d−−−→
n→∞

N
(
0, σ2(θX)

)
, (8)

where σ2(·) is a function continuous in the true value of the parameter (θX).

Standard asymptotic confidence interval of ‘Wald’ type

This interval is based on the fact that

√
n
(
θ̂n − θX

)
σ(θ̂n)

d−−−→
n→∞

N
(
0, 1
)

and thus (
θ̂n −

u1−α/2 σ(θ̂n)√
n

, θ̂n +
u1−α/2 σ(θ̂n)√

n

)
(9)

is a confidence interval for parameter θX with the asymptotic coverage 1− α.

The advantage of the confidence interval (9) is that it is easy to calculate. On the other

hand the simulations show that for small sample size and/or if |σ′(θ)| is large then the actual

coverage of this confidence interval can be much smaller than 1− α.

∗ Not presented at the lecture. It is assumed that this is known from the bachelor degree.
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Implicit (asymptotic) confidence interval of ‘Wilson’ type

This interval is based directly on (8) and it is given implicitly by{
θ :

∣∣∣∣√n
(
θ̂n − θ

)
σ(θ)

∣∣∣∣ < u1−α/2

}
. (10)

Note that (10) can be viewed as the set of θ for which we do not reject the null hypothesis

H0 : θX = θ against the alternative H1 : θX 6= θ

with the critical region ∣∣∣∣√n
(
θ̂n − θ

)
σ(θ)

∣∣∣∣ ≥ u1−α/2.

In fact the set given by (10) does not have to be necessarily an interval. But usually the

function θ 7→
√
n (θ̂n−θ)
σ(θ) is not increasing which guarantees that the set (10) is indeed an

interval.

It was observed that usually the actual coverage of this implicit confidence interval is closer

to 1 − α than for the standard asymptotic confidence interval (9). In particular if one is

interested in two-sided intervals then the implicit confidence interval (10) works surprisingly

well even for very small samples. Its disadvantage is that in general one does not have an

explicit formula for this interval and often it has to be found with the help of methods of

numerical mathematics.

Confidence interval based on the transformation stabilizing the asymptotic variance

Put g(θ) =
∫

1
σ(θ) dθ. Then with the help of (8) and ∆-theorem it holds

√
n
(
g(θ̂n)− g(θX)

) d−−−→
n→∞

N
(
0, 1
)
.

Thus the set
(
g
(
θ̂n
)
− u1−α/2√

n
, g
(
θ̂n
)

+
u1−α/2√

n

)
is a confidence set for g(θX). Now as g is an

increasing function (note that g′(θ) > 0) one can conclude that(
g−1
(
g
(
θ̂n
)
− u1−α/2√

n

)
, g−1

(
g
(
θ̂n
)

+
u1−α/2√

n

))
(11)

is a confidence interval for the parameter θX with the asymptotic coverage 1− α.

The actual coverage of this confidence interval is also usually closer to 1 − α than for the

standard confidence interval (9). On the other hand when one is interested in two-sided

confidence interval then the implicit confidence interval (10) usually works better. But the

advantage of (11) is that one usually has an explicit formula for the confidence interval

(provided that g and g−1 can be explicitly calculated). The confidence interval (11) is also

usually a better choice than the the implicit confidence interval when one is interested in

one-sided confidence intervals.
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Example 10. A random sample from Poisson distribution. Find the transformation that sta-

bilises the asymptotic variance of Xn and based on this transformation derive the asymptotic

confidence intervals for λ.

Example 11. Fisher’s Z-transformation and various confidence intervals for the correlation

coefficient.

Example 12. Consider a random sample from Bernoulli distribution. Find the asymptotic

variance-stabilizing transformation for Xn and construct the confidence interval based on this

transformation.

Literature: van der Vaart (2000) – Chapters 2.1, 2.2, 3.1, 3.2 and 4.1. In particular Theo-

rems 2.3, 2.4, 2.8 and 3.1.
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2 Maximum likelihood methods

Suppose we have a random sample of random vectors X1, . . . ,Xn being distributed as

the generic vector X = (X1, . . . , Xk)
T that has a density f(x;θ) with respect to a σ-

finite measure µ and that the density is known up to an unknown p-dimensional parameter

θ = (θ1, . . . , θp)
T ∈ Θ. Let θX = (θX1, . . . , θXp)

T be the true value of the parameter.

Define the likelihood function as

Ln(θ) =

n∏
i=1

f(Xi;θ)

and the log-likelihood function as

`n(θ) = logLn(θ) =

n∑
i=1

log f(Xi;θ).

The maximum likelihood estimator of parameter θX is defined as

θ̂n = arg max
θ∈Θ

Ln(θ) or alternatively as θ̂n = arg max
θ∈Θ

`n(θ). (12)

The (exact) distribution of θ̂n is usually too difficult or even impossible to calculate. Thus

to make the inference about θX we need to derive the asymptotic distribution of θ̂n.

2.1 Asymptotic normality of maximum likelihood estimator
The end of

lecture 2

(18. 2. 2020)Regularity assumptions

Let I(θ) = E θ

[
∂ log f(X;θ)

∂θ
∂ log f(X;θ)

∂θT

]
be the Fisher information matrix.

[R0] For any θ1, θ2 ∈ Θ it holds that f(x;θ1) = f(x;θ2) µ-almost everywhere if and only if

θ1 = θ2. (Identifiability)

[R1] The number of parameters p in the model is constant.

[R2] The support set S =
{
x ∈ Rk : f(x;θ) > 0

}
does not depend on the value of the

parameter θ.

[R3] (The true value of the parameter) θX is an interior point of the parameter space Θ.

[R4] The density f(x;θ) is three-times differentiable with respect to θ on an open neigh-

bourhood U of θX (for µ-almost all x ). Further for each j, k, l ∈ {1, . . . , p} there exists

a function Mjkl(x) such that

sup
θ∈U

∣∣∣∣∂3 log f(x;θ)

∂θj ∂θk ∂θl

∣∣∣∣ ≤Mjkl(x),

16



for µ-almost all x and

E θX Mjkl(X) <∞.

[R5] The Fisher information matrix I(θX) is finite and positive definite.

[R6] The order of differentiation and integration can be interchanged in expressions such as

∂

∂θj

∫
h(x;θ) dµ(x) =

∫
∂

∂θj
h(x;θ) dµ(x),

where h(x;θ) is either f(x;θ) or ∂f(x;θ)/∂θk and j, k ∈ {1, . . . , p}.

Note that thanks to assumption [R6] one can calculate the Fisher information matrix as

I(θ) = −E θ

[
∂2 log f(X;θ)

∂θ ∂θT

]
,

see for instance Lemma 5.3 of Lehmann and Casella (1998) or Theorem 7.27 of Anděl (2007).

Example 13. Let X1, . . . , Xn be a random sample from the normal distribution N(µ1 +

µ2, 1). Then the identifiability assumption [R0] is not satisfied for the vector parameter

θ = (µ1, µ2)T.

Example 14. Let X1, . . . , Xn be a random sample from the uniform distribution U(0, θ).

Note that assumption [R2] is not satisfied.

Show that the maximum likelihood estimator of θ is θ̂n = max1,...,nXi. Derive the asymp-

totic distribution of n (θ̂n − θ).

Remark 5. Note that in particular assumption [R4] is rather strict. There are ways how

to derive the asymptotic normality of the maximum likelihood estimator under less strict

assumptions but that would require concepts that are out of the scope of this course.

The score function of the i-th observation Xi for the parameter θ is defined as

U(Xi;θ) =
∂ log f(Xi;θ)

∂θ
.

The random vector

Un(θ) =
n∑
i=1

U(Xi;θ) =
n∑
i=1

∂ log f(Xi;θ)

∂θ

is called the score statistic.

We search for the maximum likelihood estimator θ̂n as a solution of the system of the

likelihood equations

Un

(
θ̂n
) !

= 0p. (13)
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Further define the observed information matrix as

In(θ) = − 1

n

∂Un(θ)

∂θT
=

1

n

n∑
i=1

I(Xi;θ),

where

I(Xi;θ) = −∂U(Xi;θ)

∂θT
= −∂

2 log f(Xi;θ)

∂θ ∂θT

is the contribution of the i-th observation to the information matrix.

In what follows it will be useful to prove that In
(
θ̂n
) P−−−→
n→∞

I(θX) = E I(X1;θ) (provided

that θ̂n
P−−−→

n→∞
θX). The following technical lemma is a generalization of this result that will

be convenient in the proofs of the several theorems that will follow.

Lemma 1. Suppose that assumptions [R0]-[R6] hold. Let εn be a sequence of positive num-

bers going to zero. Then

max
j,k∈{1,...,p}

sup
θ∈Uεn

∣∣∣(In(θ)− I(θX)
)
jk

∣∣∣ = oP (1),

where

Uεn =
{
θ ∈ Θ : ‖θ − θX‖ ≤ εn

}
and

(
In(θ)− I(θX)

)
jk

stands for the (j, k)-element of the difference of the matrices In(θ)−
I(θX).

Proof. Using assumption [R4] and the law of large numbers one can bound

sup
θ∈Uεn

∣∣∣(In(θ)− I(θX)
)
jk

∣∣∣ ≤ sup
θ∈Uεn

∣∣∣(In(θ)− In(θX)
)
jk

∣∣∣+
∣∣∣(In(θX)− I(θX)

)
jk

∣∣∣
≤ 1

n

n∑
i=1

p∑
l=1

Mjkl(Xi) εn + oP (1) = OP (1) o(1) + oP (1) = oP (1),

which implies the statement of the lemma.

Corollary 1. Let the assumptions of Lemma 1 be satisfied. Further let t̂n
P−−−→

n→∞
θX . Then

for each j, k ∈ {1, . . . , p} ∣∣∣(In(t̂n)− I(θX)
)
jk

∣∣∣ = oP (1).

Proof. t̂n
P−−−→

n→∞
θX implies that there exists a sequence of positive constants εn going to zero

such that

P
(
t̂n ∈ Uεn

)
−−−→
n→∞

1.

The corollary now follows from Lemma 1.

Theorem 5. Suppose that assumptions [R0]-[R6] hold.
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(i) Then with probability tending to one as n→∞ there exists a consistent solution θ̂n of

the likelihood equations (13).

(ii) Any consistent solution θ̂n of the likelihood equations (13) satisfies,

√
n
(
θ̂n − θX

)
=
[
I(θX)

]−1 1√
n

n∑
i=1

U(Xi;θX) + oP (1), (14)

which further implies that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p, I

−1(θX)
)
. (15)

Proof of (i). First, we need to prove the existence of the consistent root θ̂n of the likelihood

equations. This can be deduced from a more general Theorem 9. An alternative approach

can be found in the proof of Theorem 5.1 of Lehmann and Casella (1998, Chapter 6).

Proof of (ii). Suppose that θ̂n is a consistent solution of the likelihood equations. Then by

the mean value theorem (applied to each component of Un(θ)) one gets that

0p = Un

(
θ̂n
)

= Un(θX)− n I∗n
(
θ̂n − θX

)
,

where I∗n is a matrix with the elements

i∗n,jk =
1

n

n∑
i=1

−∂2 log f(Xi;θ)

∂θj ∂θk

∣∣∣
θ=t̂

(j)
n

, j, k ∈ {1, . . . , p},

with t̂
(j)
n being between θ̂n and θX . Thus the consistency of θ̂n implies that t̂

(j)
n

P−−−→
n→∞

θX

and one can use Corollary 1 to show that

I∗n
P−−−→

n→∞
I(θX). (16)

Thus with probability going to one there exists [I∗n]−1 and one can write

n
(
θ̂n − θX

)
= [I∗n]−1 Un(θX).

Now the central limit theorem for independent identically distributed random vectors implies

that
1√
n

n∑
i=1

U(Xi;θX)
d−−−→

n→∞
Np
(
0p, I(θX)

)
. (17)
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Note that (17) yields that 1√
n

∑n
i=1 U(Xi;θX) = OP (1). Thus using (16) and CMT (Theo-

rem 1) implies that

√
n
(
θ̂n − θX

)
= [I∗n]−1 1√

n

n∑
i=1

U(Xi;θX)

=
[
I−1(θX) + oP (1)

] 1√
n

n∑
i=1

U(Xi;θX)

= I−1(θX)
1√
n

n∑
i=1

U(Xi;θX) + oP (1).

Now (15) follows by CS (Theorem 2) and (17).

Remark 6. While the proof of consistency is for p = 1 relatively simple, for p > 1 it is much

more involved. The reason is that while the border of the neighbourbood in R is a two-point

set, in Rp (p > 1) it is an uncountable set.
The end of

lecture 3

(24. 2. 2020)Remark 7. Note that strictly speaking Theorem 5 does not guarantee the asymptotic normal-

ity of the maximum likelihood estimator but of an appropriately chosen root of the likelihood

equations (13). As illustrated in Example 17 it can happen that the maximum likelihood esti-

mator defined by (12) is not a consistent estimator of θX even if all the regularity assumptions

[R0]-[R6] are satisfied. It can also happen that the maximum likelihood estimator does not

exist (see the example on page 22). That is why some authors define the maximum likelihood

estimator in regular families as a (an appropriately chosen) root of the likelihood equations.

Fortunately for many models commonly used in applications the log-likelihood function

`n(θ) is (almost surely) convex. Then the maximum likelihood estimator is the only solution

to the likelihood equations and Theorem 5 guarantees that this estimator is asymptotically

normal. If `n(θ) is not convex, there might be more roots to the likelihood equations and

the choice of an appropriate (consistent) root of the estimating equations is more delicate

both from the theoretical as well as the numerical point of view. Other available consistent

estimators (e.g. moment estimators) can be very useful as for instance the starting points of

the numerical algorithms that search for the root of the likelihood equations.

2.2 Asymptotic efficiency of maximum likelihood estimators

Recall the Rao-Cramér inequality. Let X1, . . . ,Xn be a random sample from the regular

family of densities F =
{
f(x;θ);θ ∈ Θ

}
, and Tn be an unbiased estimator of θX (based on

X1, . . . ,Xn). Then

var
(
Tn

)
− 1

n
I−1(θX) ≥ 0.

20



By Theorem 5 we have that (under appropriate regularity assumptions)

avar
(
θ̂n
)

=
1

n
I−1(θX).

Thus the asymptotic variance of θ̂n attains the lower bound in Rao-Cramér inequality.

Remark 8. Note that strictly speaking comparing with the Rao-Cramér bound is not fair.

Generally, the maximum likelihood estimator θ̂n is not unbiased. Further, Rao-Cramér in-

equality speaks about the bound on the variance, but we compare the asymptotic variance

of θ̂n with this bound. Nevertheless it can be shown that in regular models there exists a

lower bound for the asymptotic variances of the estimators that are asymptotically normal

with zero mean and in some (natural) sense regular (see Example below). And this bound is

indeed given by 1
n I
−1(θX). See also Serfling (1980, Chapter 4.1.3) and the references therein.

Example. Let X1, . . . , Xn be a random sample from N(θ, 1), where θ ∈ R. Define the

estimator of θ as

θ̂(S)
n =

{
0, if |Xn| ≤ n−1/4,

Xn, if |Xn| > n−1/4.

This estimator is called also Hodges or shrinkage estimator. Show that if θX 6= 0 then
√
n (θ̂

(S)
n − θX)

d−−−→
n→∞

N(0, 1) and if θX = 0 then even nr(θ̂
(S)
n − θX)

P−−−→
n→∞

0 for each r ∈ N.

Thus from the point-wise asymptotic point of view, the estimator θ̂
(S)
n is better than the

standard maximum likelihood estimator that is given by the sample mean Xn.

But on the other hand consider the following sequence of the true values of the parameter

θ
(n)
X = n−1/4. Then show that for an arbitrarily large value of K

lim inf
n→∞

P
(√

n
(
θ̂(S)
n − θ(n)

X

)
≥ K

)
≥ 1

2
.

Thus the sequence
√
n
(
θ̂

(S)
n − θ(n)

X

)
is not tight and so it does not converge in distribution.

Such a non-uniform behaviour of the estimator θ̂
(S)
n is usually considered as undesirable. Thus

the aim of the regularity assumptions on the estimators is to avoid such estimators that from

the point-wise view can be considered as superior (superefficient) to the maximum likelihood

estimators.∗

2.3 Estimation of the asymptotic variance matrix

To do the inference about the parameter θX we need to have a consistent estimator of I(θX).

Usually, we use one of the following estimators

I
(
θ̂n
)

or In
(
θ̂n
)

or
1

n

n∑
i=1

U
(
Xi; θ̂n

)
UT(Xi; θ̂n).

∗ Note that the issue of superefficiency is behind the claimed ‘oracle’-properties of some regularized estimators

(e.g. adaptive LASSO), see Leeb and Pötscher (2008) and the references therein.
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The consistency of I
(
θ̂n
)

follows by CMT (Theorem 1), provided (the matrix function)

I(θ) is continuous in θX , which follows by assumption [R4].

The consistency of In
(
θ̂n
) P−−−→
n→∞

I(θX) follows from Corollary 1 and Theorem 5.

On the other hand the consistency of 1
n

∑n
i=1 U

(
Xi; θ̂n

)
UT(Xi; θ̂n) does not automatically

follow from assumptions [R0]-[R6]. It can be proved analogously as Corollary 1 provided

the following assumption holds.

[R7] There exists an open neighbourhood U of θX such that for each j, k in {1, . . . , p} there

exists a function Mjkl(x) such that

sup
θ∈U

∣∣∣∣∂2 log f(x;θ)

∂θj ∂θk

∣∣∣∣ ≤Mjk(x)

for µ-almost all x and

E θX M
2
jk(X) <∞.

Example 15. Let X1, . . . , Xn be a random sample from the Pareto distribution with the

density

f(x) =
β αβ

xβ+1
I{x ≥ α}, β > 0, α > 0,

where both parameters are unknown.

(i) Find the maximum likelihood estimator of θ̂n =
(
α̂n, β̂n

)T
of the parameter θ = (α, β)T.

(ii) Derive the asymptotic distribution of n
(
α̂n − α

)
.

(iii) Derive the asymptotic distribution of
√
n
(
β̂n − β).

Example 16. Let X1, . . . , Xn be a random sample from N(µ, 1) where the parameter space

for the parameter µ is restricted to [0,∞). Find the maximum likelihood estimator of µ and

derive its asymptotic distribution.

Example 17. Let X1, . . . , Xn be a random sample from the mixture of distributions N(0, 1)

and N
(
θ, exp{−2/θ2}

)
with equal weights and the parameter space given by Θ = (0,∞).

Define the estimator of the parameter θ as θ̂
(ML)
n = arg maxθ∈Θ `n(θ). Then it can be shown

that θ̂
(ML)
n

P−−−→
n→∞

0, thus θ̂
(ML)
n is not consistent estimator.

Nevertheless note that the assumptions [R0]-[R6] are met. Thus by Theorem 5 there exists

a different root (θ̂n) of the likelihood equation such that this estimator satisfies (14) and (15).

Example 18. Let X1, . . . , Xn be a random sample from the mixture of distributions N(0, 1)

and N(µ, σ2) with equal weights and the parameter space for the parameter θ = (µ, σ)T is

given by Θ = R× (0,∞). Show that

sup
(µ,σ2)T∈Θ

`n(µ, σ2) =∞
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and that the maximum likelihood estimator does not exist. But similarly as in Example 17

Theorem 5 still holds.

Literature: Anděl (2007) Chapter 7.6.5, Lehmann and Casella (1998) Chapter 6.5, Kulich

(2014).

2.4 Asymptotic tests (without nuisance parameters)

Suppose we are interested in testing the null hypothesis

H0 : θX = θ0 against the alternative H1 : θX 6= θ0.

Let În be an estimate of the Fisher information matrix I(θX) or I(θ0). Basically there are

three tests that can be considered.

Likelihood ratio test is based on the test statistic

LRn = 2
(
`n
(
θ̂n
)
− `n(θ0)

)
.

Wald test is based on the test statistic

Wn = n
(
θ̂n − θ0

)T
În
(
θ̂n − θ0

)
.

Rao score test is based on the test statistic

Rn =
1

n
UT
n(θ0) Î−1

n Un(θ0). (18)

Note that the advantage of the likelihood ratio test (LRn) is that one does not need to

estimate the Fisher information matrix. On the other hand the advantage of Rao score test

(Rn) is that you do not need to calculate the maximal likelihood estimator θ̂n. That is why

in Rao score statistic (Rn) one uses usually either I(θ0) or In(θ0) as În. On the other hand

usually (for historical reasons) I(θ̂n) or In(θ̂n) is used for Wald statistic (Wn).

The next theorem says that all the test statistics have the same asymptotic distribution

under the null hypothesis.

Theorem 6. Suppose that the null hypothesis holds, assumptions [R0]-[R6] are satisfied,

În
P−−−→

n→∞
I(θ0) and θ̂n is a consistent solution of the likelihood equations. Then each of the

test statistics LRn, Wn and Rn converges in distribution to χ2-distribution with p degrees of

freedom.

Proof. Rn: Note that Rn can be rewritten as

Rn =
([
În
]− 1

2 1√
n

Un(θ0)
)T([

În
]− 1

2 1√
n

Un(θ0)
)
.
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Now by the asymptotic normality of the score statistic (17), consistency of Îfn and CS (The-

orem 2) one gets that [
În
]− 1

2 1√
n

Un(θ0)
d−−−→

n→∞
Np(0p, Ip),

where Ip is an identity matrix of dimension p × p. Now the statement follows by using

CMT (Theorem 1) with g(x1, . . . , xp) =
∑p

j=1 x
2
j .

Wn: One can rewrite Wn as

Wn =
([
În
] 1
2
√
n
(
θ̂n − θ0

))T ([
În
] 1
2
√
n
(
θ̂n − θ0

))
Now the statement follows by analogous reasoning as for Rn, as by Theorem 5 and CS (The-

orem 2) one gets [
În
] 1
2
√
n
(
θ̂n − θ0

) d−−−→
n→∞

Np(0p, Ip).

LRn: With the help of the second order Taylor expansion around θ̂n one gets:

`n(θ0) = `n
(
θ̂n
)

+ UT
n

(
θ̂n
)︸ ︷︷ ︸

=0T
p

(
θ0 − θ̂n

)
− n

2

(
θ0 − θ̂n

)T
In(θ∗n)

(
θ0 − θ̂n

)
,

where θ∗n lies between θ0 and θ̂n. Applying Corollary 1 yields In(θ∗n)
P−−−→

n→∞
I(θ0). Thus

analogously as above one gets

LRn = 2
(
`n
(
θ̂n
)
− `n(θ0)

)
=
√
n
(
θ̂n − θ0

)T
In(θ∗n)

√
n
(
θ̂n − θ0

) d−−−→
n→∞

χ2
p.

Remark 9. Note that using the asymptotic representation (14) of the maximum likelihood

estimator θ̂n and the derivations done in the proof of Theorem 6 one can show that the

difference of each of the two test statistics (LRn, Wn and Rn) converges under the null

hypothesis to zero in probability.

Nevertheless, in simulations it is observed that the actual level (the probability of type one

error) of the test for the Wald test (Wn) can be substantially different from the prescribed

level α. Unfortunately, usually the test is anti-conservative, i.e. the actual level is higher

than the prescribed level α. This happens in particular for small samples and/or when the

curvature of the log-likelihood `n(θ) is relatively high (as measured for instance by I(θ)).

The latter happens often if θ0 is close to the border of the parameter space Θ. That is why

some authors recommend either the score test Rn or likelihood ratio test LRn whose actual

levels are usually very close to the prescribed level α even in small samples.
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Example 19. Let X1, . . . ,Xn be a random sample of K-variate random vectors from the

multinomial distribution MultK(1,p), where Xi = (Xi1, . . . , XiK)T and p = (p1, . . . , pK)T.

Suppose we are interested in testing the null hypothesis

H0 : pX = p0, H1 : pX 6= p0,

where p0 = (p0
1, . . . , p

0
K)T is a given value of the parameter p. For j = 1, . . . ,K put Nj =∑n

i=1Xij . Derive that

LRn = 2
K∑
k=1

Nk log
(
Nk
np0k

)
.

Further if one uses I(θ̂n) in the Wald test and I(θ0) in the Rao score test, then

Wn =
K∑
k=1

(Nk − np0
k)

2

Nk
, Rn =

K∑
k=1

(Nk − np0
k)

2

np0
k

.

Show that each of the test statistics converges to χ2-distribution with K − 1 degrees of

freedom.

Note that Rao score test (Rn) corresponds to the standard χ2-test of goodness-of-fit in

multinomial distribution.

Hint. One has to be careful as it is not possible to take θ = (p1, . . . , pK)T, as pK = 1−
∑K−1

k=1 pk

(which violates assumption [R3], as the corresponding parameter space would not have any

interior points). To avoid this problem one has to take for instance θ = (p1, . . . , pK−1)T.

2.5 Asymptotic confidence sets

Sometimes we are interested in the confidence set for the whole vector parameter θX . Then

we usually use the following confidence set{
θ ∈ Θ : n (θ̂n − θ)TÎn(θ̂n − θ) ≤ χ2

p(1− α)
}
,

where În is a consistent estimator of I(θX). Usually In
(
θ̂n
)

or I
(
θ̂n
)

are used as În. Then

the resulting confidence set is an ellipsoid.

Confidence intervals for θXj

In most of the applications we are interested in confidence intervals for components θXj of

the parameter θX = (θX1, . . . , θXp)
T.

Put θ̂n =
(
θ̂n1, . . . , θ̂np

)T
and θX = (θX1, . . . , θXp)

T. By Theorem 5 we know that

√
n
(
θ̂nj − θXj

) d−−−→
n→∞

N
(
0, ijj(θX)

)
, j = 1, . . . , p,
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where ijj(θX) is the j-th diagonal element of I−1(θX). Thus the asymptotic variance of θ̂jn

is given by avar
(
θ̂nj
)

= ijj(θX)
n , which can be estimated by

̂
avar

(
θ̂nj
)

= ijjn
n , where ijjn is the

j-th diagonal element of Î−1
n . Thus the two-sided (asymptotic) confidence interval for θXj is

given by (
θ̂nj − u1−α

2

√
ijjn
n , θ̂nj + u1−α

2

√
ijjn
n

)
. (19)

Remark 10. The approaches presented in this section are based on the Wald test statistic.

The approaches based on the other test statistics are also possible. For instance one can

construct the confidence set for θX as{
θ ∈ Θ : 2

(
`n
(
θ̂n
)
− `n(θ)

)
≤ χ2

p(1− α)
}
.

But such a confidence set is for p > 1 very difficult to calculate. Nevertheless, as we will see

later there exists an approach to calculate the confidence interval for θXj with the help of the

profile likelihood.

2.6 Asymptotic tests with nuisance parameters

Denote τ the first q (1 ≤ q < p) components of the vector θ and ψ the remaining p − q
components, i.e.

θ = (τT,ψT)T = (θ1, . . . , θq, θq+1, . . . , θp)
T.

We want to test the null hypothesis that

H0 : τX = τ 0, H1 : τX 6= τ 0

and the remaining parameters ψ are considered as nuisance∗. In regression problems this

corresponds to situation when one wants to test that a given regressor (interaction) has an

effect on the response. Then one tests that all the parameters corresponding to this regressor

(interaction) are zero.

In what follows all the vectors and matrices appearing in the notation of maximum like-

lihood estimation theory are decomposed into the first q (part 1) and the remaining p − q
components (part 2), i.e.

θ̂n =

(
τ̂n

ψ̂n

)
, Un(θ) =

(
U1n(θ)

U2n(θ)

)
,

and

I(θ) =

(
I11(θ) I12(θ)

I21(θ) I22(θ)

)
, In(θ) =

(
I11n(θ) I12n(θ)

I21n(θ) I22n(θ)

)
. (20)

∗ rušivé
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Lemma 2. Let J be a symmetric non-singular matrix of order p × p that can be written in

the block form as

J =

(
J11 J12

J21 J22

)
.

Denote

J11·2 = J11 − J12J
−1
22 J21, J22·1 = J22 − J21J

−1
11 J12.

Then

J−1 =

(
J11 J12

J21 J22

)
,

where

J11 = J−1
11·2, J22 = J−1

22·1, J12 = −J−1
11·2 J12 J

−1
22 , J21 = −J−1

22·1 J21 J
−1
11 .

Proof. Calculate J−1 J.

Suppose that the parametric space can be written as Θ = Θτ × Θψ, where Θτ ⊂ Rq and

Θψ ⊂ Rp−q.

Denote θ̃n the estimator of θ under the null hypothesis, i.e.

θ̃n =

(
τ 0

ψ̃n

)
, where ψ̃n solves U2n(τ 0, ψ̃n)

!
= 0p−q.

The end of

lecture 4

(25. 2. 2020)
Let Î11

n be an estimate of the corresponding block I11(θX) in the inverse of Fisher infor-

mation matrix I−1(θX).

The three asymptotic tests of the null hypothesis H0 : τX = τ 0 are as follows.

Likelihood ratio test is based on the test statistic

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))
. (21)

Wald test is based on the test statistic

W ∗n = n
(
τ̂n − τ 0

)T [
Î11
n

]−1 (
τ̂n − τ 0

)
.

Rao score test is based on the test statistic

R∗n =
1

n
UT

1n

(
θ̃n
)
Î11
n U1n

(
θ̃n
)
. (22)

Remark 11. As U2n

(
θ̃n
)

= 0p−q, the test statistic of the Rao score test can be also written

in a form

R∗n =
1

n
UT
n

(
θ̃n
)
Î−1
n Un

(
θ̃n
)
,

which is a straightforward analogy of the test statistic (18) of the Rao score test in case of

no nuisance parameters.
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Similarly as in the previous section the advantage of the likelihood ratio test (LR∗n) is that

one does not need to estimate I−1(θX). On the other hand the advantage of Rao score test

(R∗n) is that it is sufficient to calculate the maximal likelihood estimator only under the null

hypothesis.

The next theorem is an analogy to Theorem 6. It says that all the test statistics have the

same asymptotic distribution under the null hypothesis.

Theorem 7. Suppose that the null hypothesis holds, assumptions [R0]-[R6] are satisfied and

Î11
n

P−−−→
n→∞

I11(θX). Further assume that both θ̂n and θ̃n are consistent estimator of θX . Then

each of the test statistics LR∗n, W ∗n and R∗n converges in distribution to χ2-distribution with

q degrees of freedom.

Proof. First note if the null hypothesis holds then θX =
(
τT

0 ,ψ
T
X

)T
, where ψX stands for the

true value of ψ.

W ∗n : Note that by Theorem 5
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p, I

−1(θX)
)
, which yields

√
n
(
τ̂n − τ 0

) d−−−→
n→∞

Nq
(
0q, I

11(θX)
)
.

Thus analogously as in the proof of Theorem 6 one can show that

√
n
[
Î11
n

]− 1
2 (
τ̂n − τ 0

) d−−−→
n→∞

Nq(0q, Iq),

which further with the CMT (Theorem 1) implies

W ∗n =

{√
n
[
Î11
n

]− 1
2 (
τ̂n − τ 0

)}T{√
n
[
Î11
n

]− 1
2 (
τ̂n − τ 0

)} d−−−→
n→∞

χ2
q .

R∗n: By the mean value theorem (applied to each component of U1n(θ)) one gets

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I∗12n

√
n
(
ψ̃n −ψX

)
, (23)

where I∗12n is the (1, 2)-block of the observed Fisher matrix whose j-th row (j ∈ {1, . . . , q}) is

evaluated at some θj∗n that is between θ̃n and θX . As θj∗n
P−−−→

n→∞
θX , Corollary 1 implies that

I∗12n
P−−−→

n→∞
I12(θX). (24)

Further note that ψ̃n is a maximum likelihood estimator in the model

F0 =
{
f(x; τ 0,ψ);ψ ∈ Θψ

}
.

As the null hypothesis holds, using Theorem 5 one gets

√
n
(
ψ̃n −ψX

)
= I−1

22 (θX)
1√
n

U2n(θX) + oP (1). (25)
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Combining (23), (24) and (25) yields

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I12(θX)I−1
22 (θX)

1√
n

U2n(θX) + oP (1). (26)

Now using (26) and the central limit theorem (for i.i.d. vectors), which implies that (written

in a block form)

1√
n

Un(θX) =

 1√
n

U1n(θX)

1√
n

U2n(θX)

 d−−−→
n→∞

Np

(
0p,

(
I11(θX) I12(θX)

I21(θX) I22(θX)

))
,

one gets

1√
n

U1n

(
θ̃n
)

=
1√
n

U1n(θX)− I12(θX)I−1
22 (θX)

1√
n

U2n(θX) + oP (1)

=
(
Iq,−I12(θX) I−1

22 (θX)
)  1√

n
U1n(θX)

1√
n

U2n(θX)

+ oP (1)
d−−−→

n→∞
Nq
(
0,K(θX)

)
,

where

K(θX) =
(
Iq,−I12(θX) I−1

22 (θX)
) ( I11(θX) I12(θX)

I21(θX) I22(θX)

)(
Iq

−I−1
22 (θX) I21(θX)

)
= I11(θX)− 2I12(θX)I−1

22 (θX)I21(θX) + I12(θX)I−1
22 (θX)I22(θX)I−1

22 (θX)I21(θX)

= I11(θX)− I12(θX) I−1
22 (θX) I21(θX) = I11·2(θX)

Lemma 2
=

[
I11(θX)

]−1
.

Thus 1√
n

U1n

(
θ̃n
) d−−−→

n→∞
Nq
(
0q,
[
I11(θX)

]−1
)

, which further with the help of CS (Theo-

rem 2) and CMT (Theorem 1) implies the statement of the theorem for R∗n.

LR∗n: By the second-order Taylor expansion around the point θ̂n one gets

`n
(
θ̃n
)

= `n
(
θ̂n
)

+ UT
n

(
θ̂n
)︸ ︷︷ ︸

=0T
p

(
θ̃n − θ̂n

)
− n

2

(
θ̃n − θ̂n

)T
In(θ∗n)

(
θ̃n − θ̂n

)
, (27)

where θ∗n is between θ̃n and θ̂n. Thus θ∗n
P−−−→

n→∞
θX and Corollary 1 implies In(θ∗n)

P−−−→
n→∞

I(θX).

Further by Theorem 5

√
n
(
θ̂n − θX

)
= I−1(θX)

1√
n

Un(θX) + oP (1),

which together with (25) implies

√
n
(
θ̂n − θ̃n

)
=
√
n
(
θ̂n − θX

)
+
√
n (θX − θ̃n)

= I−1(θX)
1√
n

Un(θX)−

(
0q

I−1
22 (θX) 1√

n
U2n(θX)

)
+ oP (1)

= A(θX)
1√
n

Un(θX) + oP (1),
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where

A(θX) = I−1(θX)−

(
0q×q 0q×(p−q)

0(p−q)×q I−1
22 (θX)

)
.

By the central limit theorem (for i.i.d. vectors) and the symmetry of matrix A(θX)

√
n
(
θ̂n − θ̃n

) d−−−→
n→∞

Np
(
0,A(θX) I(θX)A(θX)

)
. (28)

Now we will use the following lemma (Anděl, 2007, Theorem 4.16).

Lemma 3. Let Z ∼ Np(0p,V), where V is p× p matrix. Let BV be an idempotent (nonzero)

matrix. Then ZTBZ ∼ χ2
tr(BV).

Put

B = I(θX) and V = A(θX) I(θX)A(θX).

Now BV = I(θX)A(θX) I(θX)A(θX), where

I(θX)A(θX) =

(
I11(θX) I12(θX)

I21(θX) I22(θX)

)(
I−1(θX)−

(
0q×q 0q×(p−q)

0(p−q)×q I−1
22 (θX)

))

= Ip −

(
0q×q I12(θX)I−1

22 (θX)

0(p−q)×q Ip−q

)
︸ ︷︷ ︸

=:D

.

Note that matrix D is idempotent, thus also Ip−D and BV = (Ip−D)(Ip−D) are idempotent.

Now using (27), (28), CS (Theorem 2), Lemma 3 and CMT (Theorem 1) one gets

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))

=
√
n
(
θ̃n − θ̂n

)T
I(θX)

√
n
(
θ̃n − θ̂n

)
+ oP (1)

d−−−→
n→∞

χ2
tr(BV),

where tr(BV) = tr(Ip)− tr(D) = p− (p− q) = q.
The end of

lecture 5

(2. 3. 2020)
Suppose that both θ̂n = arg maxθ∈Θ `n(θ) and θ̃n = arg maxθ∈Θ0

`n(θ) (where Θ0 stands

for the parameter space under the null hypothesis) are consistent estimator under the null

hypothesis. Then the likelihood ratio test can be rewritten as

LR∗n = 2
(
`n
(
θ̂n
)
− `n

(
θ̃n
))

= 2
(

sup
θ∈Θ

`n(θ)− sup
θ∈Θ0

`n(θ)
)
. (29)

So with the likelihood ratio test one does not need to bother with the parametrization of

the parametric spaces Θ and Θ0 so that it fits into the framework of testing H0 : τX = τ 0.

The degrees of freedom of the asymptotic distribution are determined as the difference of the

dimensions of the parametric spaces Θ and Θ0.
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Nr. of boys 0 1 2 3 4 5 6 7 8 9 10 11 12

Nr. of families 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Example 20. The following data gives the number of male children among the first 12

children of family size 13 in 6115 families taken from hospital records in the 19th century

Saxony. The 13th child is ignored to assuage the effect of families non-randomly stopping

when a desired gender is reached. Test the null hypothesis that the gender of the babies can

be viewed as realisations of independent random variables having the same probability of a

baby boy for each family.

Hint. Let Xi stand for the number of boys in the i-th family (i = 1, . . . , n, where n stands

for the sample size). Then the counts in the table can be represented by

Nk =
n∑
i=1

I{Xi = k}, k = 0, 1, . . . , 12

and the table can be viewed as a realisation of a random vector (N0, N1, . . . , N12)T that follows

multinomial distribution Mult13(n,π).

Note that under the null hypothesis Xi follows the binomial distribution, thus

πk = P(Xi = k) =

(
12

k

)
pk(1− p)12−k, k = 0, 1, . . . , 12,

where p ∈ (0, 1) is the probability of baby boy.

Thus to parametrize the problem (so that it fits into the framework of this section) put

ψ = p and get

π0 = (1− ψ)12, πk =

(
n

k

)
ψk(1− ψ)12−k + τk, k = 1, . . . , 11,

and π12 = 1−
∑11

k=0 πk. The hypotheses can now be written as

H0 : (τ1, . . . , τ11)T = 011, H1 : (τ1, . . . , τ11)T 6= 011.

Nevertheless it would take some time to derive either the Wald statistic (W ∗n) or Rao score

statistic (R∗n) as one needs to calculate the score statistic and (empirical) Fisher information

matrix.

On the other hand using (29) it is straightforward to calculate the likelihood ratio test LR∗n

as

sup
θ∈Θ

`n(θ) =

12∑
k=0

Nk log
(
Nk
n

)
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and

sup
θ∈Θ0

`n(θ) =
12∑
k=0

Nk log π̃k, where π̃k =

(
12

k

)(
ψ̃n
)k(

1− ψ̃n
)12−k

, with ψ̃n =
12∑
k=1

kNk
12n .

By Theorem 7 the test statistic LR∗n converges under the null hypothesis to χ2 distribution

with 11 degrees of freedom.

Another approach to test the hypothesis of interest would be (to forget about the test

statistics LR∗n, W ∗n , R∗n and) to use the standard χ2-test of goodness-of-fit in multinomial

distribution with estimated parameters. The test statistics would be

X2 =

12∑
k=0

(Nk − n π̃k)2

n π̃k
(30)

and under the null hypothesis it has also asymptotically χ2 distribution with 11 degrees of

freedom. In fact it can be proved∗ that the test statistic X2 given by (30) corresponds with

the test statistic of the Rao score test (R∗n) with I11(θ̃n) taken as Î 11
n .

Example 21. Breusch-Pagan test of heteroscedasticity.

Example 22. Suppose that you observe independent identically distributed random vectors

(XT
1 , Y1)T, . . . , (XT

n , Yn)T such that

P(Y1 = 1 |X1) =
exp{α+ βTX1}

1 + exp{α+XTβ1}
, P(Y1 = 0 |X1) =

1

1 + exp{α+ βTX1}
,

where the distribution of X1 = (X11, . . . , X1d)
T does not depend on the unknown parameters

α a β.

(i) Derive a test for the null hypothesis H0 : β = 0d against the alternative that H1 : β 6=
0d.

(ii) Find the confidence set for the parameter β.

Literature: Anděl (2007) Chapter 8.6, Kulich (2014), Zvára (2008) pp. 122–128.

2.7 Profile likelihood†

Let θ be divided into τ containing the first q components (1 ≤ q < p) and ψ containing the

remaining p− q components, i.e.

θ = (τT,ψT)T = (θ1, . . . , θq, θq+1, . . . , θp)
T.

∗ More precisely, it is said so in the textbooks but I have not managed to find the derivation. † Profilová

věrohodnost.
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Write the likelihood of the parameter θ as Ln(θ) = Ln(τ ,ψ) and analogously for log-

likelihood, score function, Fisher information matrix, . . .

In this subsection we will assume that there exists θ̂n which is a unique max-

imiser of `n(θ) and also a consistent estimator of θX .

The profile likelihood and the profile log-likelihood for the parameter τ are defined subse-

quently as

L(p)
n (τ ) = max

ψ∈Θψ
Ln(τ ,ψ), `(p)n (τ ) = logL(p)

n (τ ) = max
ψ∈Θψ

`n(τ ,ψ).

In the following we will show that one can work with the profile likelihood as with the

‘standard’ likelihood.

First of all put

τ̂ (p)
n = arg max

τ∈Θτ

`(p)n (τ ).

Note that

`(p)n

(
τ̂ (p)
n

)
= max
τ∈Θτ

`(p)n (τ ) = max
τ∈Θτ

max
ψ∈Θψ

`n(τ ,ψ) = max
θ∈Θ

`n(θ) = `n(θ̂n).

As we assume that θ̂n is a unique maximizer of `n(θ), this implies that

τ̂ (p)
n = τ̂n,

where τ̂n stands for the first q-coordinates of the maximum likelihood estimator θ̂n.

Further denote

ψ̃n(τ ) = arg max
ψ∈Θψ

`n(τ ,ψ), θ̃n(τ ) =
(
τT, ψ̃

T

n(τ )
)T
,

and define the profile score statistic and profile (empirical) information matrix as

U(p)
n (τ ) =

∂`
(p)
n (τ )

∂τ
, I(p)

n (τ ) = − 1

n

∂U
(p)
n (τ )

∂τT
.

The following lemma shows how the quantities U
(p)
n (τ ) and I

(p)
n (τ ) are related with Un(θ)

and In(θ).

Lemma 4. Suppose that assumptions [R0]-[R6] are satisfied. Then (with probability tending

to one) on a neighbourbood of τX

U(p)
n (τ ) = U1n

(
θ̃n(τ )

)
, I(p)

n (τ ) = I11n

(
θ̃n(τ )

)
− I12n

(
θ̃n(τ )

)
I−1

22n

(
θ̃n(τ )

)
I21n

(
θ̃n(τ )

)
,

where Ijkn(θ) (for j, k ∈ {1, 2}) were introduced in (20).
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Proof. U
(p)
n (τ ): Let us calculate

[
U(p)
n (τ )

]T
=
∂`

(p)
n (τ )

∂τT
=
∂`n
(
τ , ψ̃n(τ )

)
∂τT

= UT
1n

(
τ , ψ̃n(τ )

)
+ UT

2n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
= UT

1n

(
τ , ψ̃n(τ )

)
, (31)

where the last equality follows from the fact that ψ̃n(τ ) = arg maxψ∈Θψ
`
(p)
n (τ ,ψ), which

implies that U2n

(
τ , ψ̃n(τ )

)
= 0p−q.

I
(p)
n (τ ): Note that with the help of (31)

I(p)
n (τ ) = − 1

n

∂U
(p)
n (τ )

∂τT
= − 1

n

∂U1n

(
τ , ψ̃n(τ )

)
∂τT

= I11,n

(
τ , ψ̃n(τ )

)
+ I12,n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
. (32)

Further by differentiating both sides of the identity

U2n

(
τ , ψ̃n(τ )

)
= 0p−q

with respect to τT one gets

I21,n

(
τ , ψ̃n(τ )

)
+ I22,n

(
τ , ψ̃n(τ )

) ∂ψ̃n(τ )

∂τT
= 0(p−q)×q,

which implies that

∂ψ̃n(τ )

∂τT
= −I−1

22,n

(
τ , ψ̃n(τ )

)
I21,n

(
τ , ψ̃n(τ )

)
. (33)

Now combining (32) and (33) implies the statement of the theorem for I
(p)
n (τ ).

Tests based on profile likelihood

Define the (profile) test statistics of the null hypothesis H0 : τX = τ 0 as

LR(p)
n = 2

(
`(p)n

(
τ̂n
)
− `(p)n (τ 0)

)
,

W (p)
n = n

(
τ̂n − τ 0

)T
Î(p)
n

(
τ̂n − τ 0

)
,

R(p)
n =

1

n

[
U(p)
n (τ 0)

]T [
Î(p)
n

]−1
U(p)
n (τ 0),

where one can use for instance I
(p)
n (τ 0) or I

(p)
n (τ̂n) as Î

(p)
n .

Theorem 8. Suppose that the null hypothesis holds and assumptions [R0]-[R6] are sat-

isfied. Then each of the test statistics LR
(p)
n , W

(p)
n and R

(p)
n converges in distribution to

χ2-distribution with q degrees of freedom.
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Proof. LR
(p)
n : Note that

`(p)n (τ̂n) = `n(τ̂n, ψ̂n) = `n
(
θ̂n
)

and further

`(p)n (τ 0) = max
ψ∈Θψ

`n(τ 0,ψ) = `n(τ 0, ψ̃n) = `n(θ̃n).

Thus LR
(p)
n = LR∗n, where LR∗n is the test statistic of the likelihood ratio test in the presence of

nuisance parameters given by (21). Thus the statement of the theorem follows by Theorem 7.

W
(p)
n : Follows from Theorem 7 and the fact that by Lemmas 1, 2 and 4

Î(p)
n

P−−−→
n→∞

I11(θX)− I12(θX) I−1
22 (θX) I21(θX) =

[
I11(θX)

]−1
. (34)

R
(p)
n : By Lemma 4 one has U

(p)
n (τ ) = U1n

(
θ̃n(τ )

)
. Thus R

(p)
n = R∗n with Î11

n =
[
Î

(p)
n

]−1
,

where R∗n is Rao score test statistic in the presence of nuisance parameters defined in (22).

The statement of the theorem now follows by (34) and Theorem 7.

Confidence interval for θXj

One of the applications of the profile likelihood is to construct a confidence interval for θXj .

Let τ = θj and ψ contains the remaining coordinates of the parameter θ. Then the set{
θj : 2

(
`(p)n (θ̂nj)− `(p)n (θj)

)
≤ χ2

1(1− α)
}

is the asymptotic confidence interval for θXj . Although this confidence interval is more

difficult to calculate than the Wald-type confidence interval given by (19), the simulations

show that it has better finite sample properties. In R-software these intervals for GLM models

are calculated by the function confint.

Example 23. Let X1, . . . , Xn be a random sample from a gamma distribution with density

f(x) =
1

Γ(β)
λβ xβ−1 exp{−λx} I{x > 0}.

Suppose we are interested in parameter β and parameter λ is nuisance. Derive the profile

likelihood for parameter β and the Rao score test of the null hypothesis H0 : βX = β0 against

H1 : βX 6= β0 that is based on the profile likelihood.

Solution: The likelihood and log-likelihood are given by

Ln(β, λ) =

n∏
i=1

1

Γ(β)
λβXβ−1

i e−λXi ,

`n(β, λ) = −n log Γ(β) + nβ log λ+ (β − 1)

n∑
i=1

logXi − λ
n∑
i=1

Xi.
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For a given β we can find λ̃n(β) by

∂`n(β, λ)

∂λ
=
nβ

λ
−

n∑
i=1

Xi
!

= 0

λ̃n(β) =
β

Xn

.

Thus the profile log-likelihood is

`(p)n (β) = −n log Γ(β) + nβ log
( β

Xn

)
+ (β − 1)

n∑
i=1

logXi − nβ

and its corresponding score function

U (p)
n (β) = −nΓ′(β)

Γ(β)
+ n log

( β

Xn

)
+ n+

n∑
i=1

logXi − n.

Statistic of Rao score test of the null hypothesis H0 : βX = β0 against H1 : βX 6= β0 is now

given by

R(p)
n =

[
U

(p)
n (β0)

]2
n I

(p)
n (β0)

,

where

I(p)
n (β) = − 1

n

∂U
(p)
n (β)

∂β
=

[
Γ′′(β)

Γ(β)
−
(

Γ′(β)

Γ(β)

)2

− 1

β

]
.

Example 24. Box-Cox transformation. See Zvára (2008) pp. 149–151.

Remark 12. Although we have shown that one can work with the profile likelihood as with

the standard likelihood not all the properties are shared. For instance for standard score

statistic one has E Un(θX) = 0p. But this is not guaranteed for profile score statistic as by

Lemma 4

E U(p)
n (τX) = E U1n(τX , ψ̃n(τX))

and the expectation on the right-hand side of the previous equation is typically not zero

due to the random argument ψ̃n(τX) (for illustration think of E U
(p)
n (βX) in Example 23).

From the proof of Theorem 7 we only know that 1√
n
U

(p)
n (τX) converges in distribution to a

zero-mean Gaussian distribution.

Note also that we have avoided defining the profile Fisher information matrix. The thing is

that the only definition that makes sense would be I(p)(τX) =
[
I11(τX ,ψX)

]−1
. But this is

not nice as it depends on the nuisance parameter ψX . Further, it does not hold that I(p)(τX)

is the expectation of I
(p)
n (τX). It only holds that

I(p)
n (τX)

P−−−→
n→∞

I(p)(τX).
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2.8 Some notes on maximum likelihood in case of not i.i.d. random vectors

Let observations X = (X1, . . . ,Xn) have a joint density fn(x1, . . . ,xn;θ) that is known up

to the unknown parameter θ from the parametric space Θ. Analogously as in ‘i.i.d case’ one

can define the likelihood function as

Ln(θ) = fn(X1, . . . ,Xn;θ),

the log-likelihood function as

`n(θ) = logLn(θ),

the maximum likelihood estimator (of parameter θX) as

θ̂n = arg max
θ∈Θ

Ln(θ),

the score function as

Un(θ) =
∂`n(θ)

∂θ
,

and the empirical Fisher information matrix as

In(θ) = − 1

n

∂2`n(θ)

∂θ ∂θT
.

The role of the theoretical Fisher information matrix I(θ) in ‘i.i.d’ settings is now taken by

the limit ‘average’ Fisher information matrix

Ī(θ) = lim
n→∞

1

n
E

[
−∂2`n(θ)

∂θ ∂θT

]
.

In ‘nice (regular) models’ it holds that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0, Ī−1(θX)

)
.

The most straightforward estimator of Ī(θX) is In
(
θ̂n
)

and thus the estimator of the asymp-

totic variance matrix of θ̂n is

̂
avar

(
θ̂n
)

=
1

n
I−1
n

(
θ̂n
)

=

[
−∂2`n(θ)

∂θ ∂θT

∣∣∣
θ=θ̂n

]−1

.

That is why some authors prefer to define the empirical Fisher information without 1
n simply

as

Ĩn(θ) =
−∂2`n(θ)

∂θ ∂θT

and they speak about it as the Fisher information of all observations.
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Example 25. Suppose we have K independent samples, that is for each i = 1, . . . ,K the

random variables Xij , j = 1, . . . , ni are independent and identically distributed with density

fi(x;θ) (with respect to a σ-finite measure µ). Further let all the random variables be

independent and let limn→∞
ni
n = wi, where n = n1 + . . .+ nK . Then

Ln(θ) =

K∏
i=1

ni∏
j=1

fi(Xij ;θ),

`n(θ) =
K∑
i=1

ni∑
j=1

log fi(Xij ;θ),

Un(θ) =
∂`n(θ)

∂θ
=

K∑
i=1

ni∑
j=1

∂ log fi(Xij ;θ)

∂θ
,

In(θ) = − 1

n

∂Un(θ)

∂θT
= − 1

n

K∑
i=1

ni∑
j=1

∂2 log fi(Xij ;θ)

∂θ ∂θT
,

I(θ) = lim
n→∞

E In(θ) = lim
n→∞

K∑
i=1

ni
n︸︷︷︸
→wi

I(i)(θ) =

K∑
i=1

wi I
(i)(θ),

where I(i)(θ) is Fisher information matrix of Xi1 (i.e. for the density fi(x;θ)).

In standard applications θ =
(
θT1 , . . . ,θ

T
K

)T
, and the density fi(x;θ) depends only on θi,

i.e. fi(x;θ) = f(x;θi). And we are usually interested in testing the null hypothesis that all

the distributions are the same, that is

H0 : θ1 = θ2 = . . . = θK H1 : ∃i,j∈{1,...,K}θi 6= θj .

See also Example 29.

Random vs. fixed design

Sometimes in regression it is useful do distinguish random design and fixed design.

In random design we assume that the values of the covariates are realisations of random

variables. Thus (in the most simple situation) we assume that we observe independent and

identically distributed random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
, (35)

where the conditional distribution of Yi|Xi is known up to the unknown parameter θ and

the distribution of Xi does not depend on θ. Put f(yi|xi;θ) for the conditional density of
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Yi|Xi = xi and fX(x) for the density of Xi. Then the likelihood and the log-likelihood (for

the parameter θ) are given by

Ln(θ) =
n∏
i=1

fY,X(Yi,Xi;θ) =
n∏
i=1

f(Yi|Xi;θ)fX(Xi)

`n(θ) =
n∑
i=1

log f(Yi|Xi;θ) +
n∑
i=1

log fX(Xi). (36)

In fixed design it is assumed that the values of the covariates x1, . . . ,xn are fixed when

planning the experiment (before measuring the response). Now we observe Y1, . . . , Yn inde-

pendent (but not identically distributed) random variables with the densities f(y1|x1;θ), . . . ,

f(yn|xn;θ). Then the log-likelihood is given by

`n(θ) =

n∑
i=1

log f(Yi|xi;θ). (37)

Comparing the log-likelihoods in (36) and (37) one can see that (once the data are observed)

they differ only by
∑n

i=1 log fX(Xi) which does not depend on θ. Thus in terms of (likelihood

based) inference for a given dataset both approaches are equivalent. The only difference is

that the theory for the fixed design is more difficult.

Example 26. Poisson regression.

Random design approach: We assume that we observe independent identically distributed

random vectors (35) and that Yi|Xi ∼ Po
(
λ(Xi)

)
, where λ(Xi) = exp{XT

i β} and Xi =

(Xi1, . . . , Xip)
T. Then (provided assumptions [R0]-[R6] are satisfied)

√
n
(
β̂n − βX

) d−−−→
n→∞

Np
(
0p, I

−1(βX)
)
, where I(βX) = E

[
X1X

T
1 exp

{
βT
XX1

}]
.

Fixed design approach: We assume that we observe independent random variables Y1, . . . , Yn

and we have the known constants x1, . . . ,xn such that Yi ∼ Po
(
λ(xi)

)
, where λ(xi) =

exp{βTxi}. Then it can be shown (that under mild assumptions on x1, . . . ,xn)

√
n
(
β̂n − βX

) d−−−→
n→∞

Np
(
0p, Ī

−1(βX)
)
, where Ī(βX) = lim

n→∞

1

n

n∑
i=1

xi x
T
i exp

{
βT
Xxi

}
.

Note that in practice both I(βX) and Ī(βX) would be estimated by

În =
1

n

n∑
i=1

XiX
T
i exp

{
β̂
T

nXi

}
or ̂̄In =

1

n

n∑
i=1

xi x
T
i exp

{
β̂
T

nxi
}
.

Thus for observed data the estimators coincide. The only difference is in notation in which

you distinguish whether you think of the observed values of the covariates as the realizations

of the random vectors or as fixed constants.
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Example 27. Note that alternatively one can view the K-sample problem described in Ex-

ample 25 also within i.i.d framework. Consider the data as a realization of the random sample

(ZT
1 , J1)T, . . . , (ZT

n , Jn)T, where Ji takes values in {1, . . . ,K} and the conditional distribution

of Zi given Ji = j is given by the density fj(x;θ).

Example 28. Maximum likelihood estimation in AR(1) process.

Example 29. Suppose that Xij , i = 1, . . . ,K, j = 1, . . . , ni be independent random variables

such that Xij follows Bernoulli distribution with parameter pi. We are interested in testing

the hypothesis

H0 : p1 = p2 = . . . = pK H1 : ∃i,j∈{1,...,K} pi 6= pj .

Note that one can easily construct a likelihood ratio test.

Alternatively one can view the data as K × 2 contingency table and use the χ2-test of

independence. It can be proved that this test is in fact the Rao-score test for this problem.

Literature: Hoadley (1971). The end of

lecture 6

(3. 3. 2020)

2.9 Conditional and marginal likelihood∗

In some models the number of parameters is increasing as the sample size increases. Formally

let θ(n) = (θ1, . . . , θpn)T, where pn is a non-decreasing function of n. Let θ(n) be divided

into τ containing the first q (where q is fixed) and ψ(n) containing the remaining pn − q

components.

Example 30. Strongly stratified sample. Let Yij , i = 1, . . . , N , j = 1, 2 be independent

random variables such that Yij ∼ N(µi, σ
2). Derive the maximum likelihood estimator of σ2.

Is this estimator consistent?

Note that in the previous example each observation carries information on σ2, but the

maximum likelihood estimator of σ2 is not even consistent. The problem is that the di-

mension of nuisance parameters ψ(N) = (µ1, . . . , µN )T is increasing to infinity (too quickly).

Marginal and conditional likelihoods are two attempts to modify the likelihood so that it

yields consistent (and hopefully also asymptotically normal) estimators of the parameters of

interest τ .

Suppose that the data X can be transformed (or simply decomposed) to V and W.

Let the distribution of V depends only on parameter τ (and not on ψ(n)). Then the

marginal (log-)likelihood of parameter τ is defined as

L(M)
n (τ ) = p(V; τ ), `(M)

n (τ ) = log
(
L(M)
n (τ )

)
,

∗ Podmı́něná a marginálńı věrohodnost.
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where p(v; τ ) is the density of V with respect to a σ-finite measure µ.

Let the conditional distribution of V given W depend only on parameter τ (and not

on ψ(n)). Then the conditional (log-)likelihood of parameter τ is defined as

L(C)
n (τ ) = p(V |W; τ ), `(C)

n (τ ) = log
(
L(C)
n (τ )

)
,

where p(v|w; τ ) is the conditional density of V given W = w with respect to a σ-finite

measure µ.

Remark 13. (i) If V is independent of W, then p(V|W; τ ) = p(V; τ ) and thus L
(M)
n (τ ) =

L
(C)
n (τ ).

(ii) ‘Automatic calculation of `
(C)
n (τ )’:

`(C)
n (τ ) = log

(
p(V,W; τ ,ψ(n))

p(W; τ ,ψ(n))

)
= `n(τ ,ψ(n))− `n,W(τ ,ψ(n)),

where `n(τ ,ψ(n)) is the log-likelihod of (V,W) and `n,W(τ ,ψ(n)) is the log-likelihod

of W. Note that using this approach we do not need to derive the conditional distribu-

tion of V given W.

(iii) It can be shown that (under certain regularity assumptions) one can work with L
(M)
n (τ )

and L
(C)
n (τ ) as with ‘standard’ likelihoods.

The question of interest is how to find V and W so that we do not loose too many

information about τ . To the best of my knowledge for marginal likelihood there are only

ad-hoc approaches.

For conditional likelihood one can use the theory of sufficient statistics. Suppose that

that for each fixed value of τ the statistic Sn(X) is sufficient for ψ(n). Thus the conditional

distribution of X given Sn(X) does not depend on ψ(n). This implies that when constructing

the conditional likelihood L
(C)
n (τ ) one can take Sn(X) as W and X as V.

Exponential family

Let the dataset X have the density (with respect to a σ-finite measure µ) of the form

p(x; τ ,ψ(n)) = exp


q∑
j=1

Qj(τ )Tj(x) +

pn−q∑
j=1

R(τ ,ψ(n))Sj(x)

 a
(
τ ,ψ(n)

)
h(x),

where τ = (τ1, . . . , τq)
T and ψ(n) =

(
ψ

(n)
1 , . . . , ψ

(n)
pn−q

)T
. Put Sn(X) =

(
S1(X), . . . , Spn−q(X)

)T
and note that for a fixed value of τ the statistic Sn(X) is sufficient for ψ(n). Thus one can

take Sn(X) as W and X as V.
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Example 31. Strongly stratified sample (cont.). Using marginal and conditional likelihood.

Example 32. Let Yij , i = 1, . . . , N , j = 1, 2 be independent random variables such that

Yi1 ∼ Exp(ψi) and Yi2 ∼ Exp(τ ψi) where τ > 0 and ψi are unknown parameters. Show that

the distribution of Vi = Yi2
Yi1

depends only on the parameter τ (and not on ψi). Derive the

marginal likelihood of τ that is based on V = (V1, . . . , VN )T.

Example 33. Let Yij , i = 1, . . . , I, j = 0, 1 be independent, Yij ∼ Bi(nij , pij), where

log
( pij

1−pij

)
= ψi + τ I{j = 1}.

Suppose we are interested in testing the null hypothesis H0 : τ = 0 against the alternative

H1 : τ 6= 0.

Note that the standard tests based on the maximum likelihood as described in Chapter 2.6

require that I is fixed and all the sample sizes nij tend to infinity. This implies that using

conditional likelihood is reasonable in situations when (some) nij are small.

The Rao score test based on the conditional likelihood in this situation coincides with

Cochran-Mantel-Haenszel test and its test statistic is given by

R(C)
n =

(∑I
i=1 Yi1 − EH0 [Yi1 |Yi+]

)2

∑I
i=1 varH0 [Yi1 |Yi+]

=

(∑I
i=1 Yi1 − Yi+

ni1
ni+

)2

∑I
i=1 Yi+

ni1ni0
n2
i+

ni+−Yi+
ni+−1

, (38)

where Yi+ = Yi0 + Yi1 and ni+ = ni0 + ni1. Under the null hypothesis R
(C)
n

d−−−→
n→∞

χ2
1, where

n =
∑I

i=1

∑1
j=0 nij .

Example 34. Consider in Example 33 the special case I = 1. Thus the model simplifies to

comparing two binomial distributions. Let Y0 ∼ Bi(n0, p0) and Y1 ∼ Bi(n1, p1). Note that

the standard approaches of testing the null hypothesis H0 : p0 = p1 against the alternative

H1 : p0 6= p1 are asymptotic.

Conditional approach offers an exact inference. Analogously as in Example 33 introduce

the parametrization

log
( pj

1−pj

)
= ψ + τ I{j = 1}, j = 0, 1.

Note that in this parametrization τ is the logarithm of odds-ratio.

Put Y+ = Y0 + Y1 and y+ = y0 + y1. Then

Pτ
(
Y1 = k |Y+ = y+

)
=

(
n1

k

)(
n0

y+−k
)
eτ k∑

l∈K
(
n1

l

)(
n0

y+−l
)
eτ l

, k ∈ K, (39)

where K =
{

max{0, y+ − n0}, . . . ,min{y+, n1}
}

.
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Thus the p-value of the ‘exact’ test of the null hypothesis H0 : τ = τ0 against H1 : τ 6= τ0

would be

p(τ0) = 2 min
{
Pτ0(Y1 ≤ y1 |Y+ = y+),Pτ0(Y1 ≥ y1 |Y+ = y+)

}
, (40)

where y0 and y1 are the observed values of Y0 and Y1 respectively.

By the inversion of the test one can define the ‘exact’ confidence interval for τ as the set

of those values for which we do not reject the null hypothesis, i.e.

CI = (τ̂L, τ̂U ) = {τ ∈ R : p(τ) > α}.

The confidence interval for odds-ratio calculated by the function fisher.test() is now given

by
(
eτ̂L , eτ̂U

)
.

The special case presents testing the null hypothesis H0 : τ = 0 against H1 : τ 6= 0. Then

(39) simplifies to

P0(Y1 = k|Y+ = y+) =

(
n1

k

)(
n0

y+−k
)∑

l∈K
(
n1

l

)(
n0

y+−l
) =

(
n1

k

)(
n0

y+−k
)(

n1+n0

y+

) , k ∈ K.

This corresponds to Fisher’s exact test sometimes known also as Fisher’s factorial test. Be

careful that the p-value of the test as implemented in fisher.test is not calculated by (40)

but as

p̃ =
∑
k∈K−

P0(Y1 = k |Y+ = y+),

where

K− =
{
k ∈ K : P0(Y1 = k |Y+ = y+) ≤ P0(Y1 = y1 |Y+ = y+)

}
,

which sometimes slightly differs from p(0) as defined in (40).

Note that Fisher’s exact test presents an alternative to the χ2-square test of independence

in the 2× 2 contingency table

y0 y1

n0 − y0 n1 − y1

,

which is an asymptotic test.

Example 35. Consider in Example 33 the special case ni0 = ni1 = 1 for each i = 1, . . . , I.

Introduce

Njk =

I∑
i=1

I{Yi0 = j, Yi1 = k}, j = 0, 1; k = 0, 1.

Then the test statistic (38) simplifies to

R(C)
n =

(N01 −N10)2

N01 +N10
,

which is known as McNemar’s test.
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Example 36. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from the

Poisson distributions. Let λX be the true value of the parameter for the first sample and λY

for the second sample. Note that S = (S1, S2)T =
(∑n1

i=1Xi,
∑n2

i=1 Yi
)T

is a sufficient statistic

for the parameter θ = (λX , λY )T. Derive the conditional distribution of S1 given S1 + S2.

Use this result to find an exact test of

H0 : λX = λY , H1 : λX 6= λY .

Further derive an ‘exact’ confidence interval for the ratio λX
λY

.

Literature: Pawitan (2001) Chapters 10.1–10.5. The end of

lecture 7

(9. 3. 2020)

3 M- and Z-estimators

M-estimator

Let X1, . . . ,Xn be a random sample from a distribution F and one is interested in estimating

some quantity (p-dimensional parameter) of this distribution, say θX = θ(F ). Let ρ be a

function defined on SX ×Θ, where SX is the support of F and Θ is a set of possible values

of θ(F ) for different distributions F (parameter space). The M-estimator∗ is defined as

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

ρ(Xi;θ).

Note that the maximum likelihood (ML) estimator can be viewed as an M -estimator with

ρ(x;θ) = − log f(x;θ).

For regression problems when one observes Z1 = (XT
1 , Y1)T, . . . ,Zn = (XT

n , Yn)T, one can

view the least squares (LS) estimator of regression parameters as an M -estimator with

ρ(z;β) = ρ(x, y;β) =
(
y − xTβ

)2
.

Also the least absolute deviation (LAD) estimator can be viewed as an M -estimator with

ρ(z;β) = ρ(x, y;β) =
∣∣y − xTβ

∣∣.
Z-estimator

Often the maximizing value in the definition of M -estimator is sought by setting a derivative

(or the set of partial derivatives if θ is multidimensional) equal to zero. Thus we search for θ̂n

as the point that solves the set of estimating equations

1

n

n∑
i=1

ψ
(
Xi; θ̂n

)
= 0p, where ψ(x;θ) =

∂ρ(x;θ)

∂θ
. (41)

∗ M-odhad
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Note that

ψ(x;θ) =
(
ψ1(x;θ), . . . , ψp(x;θ)

)T
=
(∂ρ(x;θ)

∂θ1
, . . . ,

∂ρ(x;θ)

∂θp

)T
.

Generally let ψ be a p-dimensional vector function (not necessarily a derivative of some

function ρ) defined on SX×Θ. Then we define the Z-estimator∗ as the solution of the system

of equations (41).

Note that the maximum likelihood (ML) and the least squares (LS) estimators can be also

viewed as Z-estimators with

ψML(x;θ) =
∂ log f(x;θ)

∂θ
, ψLS(x, y;β) =

(
y − βTx

)
x.

Literature: van der Vaart (2000) – Chapter 5.1.

3.1 Identifiability of parameters† via M- and/or Z-estimators

When using M - or Z-estimators one should check the potential of these estimators to identify

the parameters of interest. Note that by the law of large numbers

1

n

n∑
i=1

ρ(Xi;θ) = E ρ(X1;θ) + oP (1),
1

n

n∑
i=1

ψ(Xi;θ) = E ψ(X1;θ) + oP (1).

Thus the M -estimator θ̂n identifies (at the population level) the quantity

θX = arg min
θ∈Θ

E ρ(X1;θ)

and analogously Z-estimator identifies θX such that

E ψ(X1;θX) = 0p.

Example 37. Let X1, . . . ,Xn be i.i.d. observations from a distribution with a density f(x)

(with respect to a σ-finite measure µ). By assuming that f belongs to a parametric family of

densities F =
{
f(x;θ), θ ∈ Θ

}
we are estimating (identifying) θX such that

θX = arg max
θ∈Θ

E log f(X1;θ)

Provided that the true density f(x) has the support SX that is the same as the support of

f(x;θ) for each θ ∈ Θ, this can be further rewritten as

θX = arg max
θ∈Θ

E log
[f(X1;θ)
f(X1)

]
.

∗ Z-odhad † Identifikovatelnost parametr̊u.
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Now by Jensen’s inequality

E log
[f(X1;θ)
f(X1)

]
≤ log

{
E
[f(X1;θ)
f(X1)

]}
= log

{∫
SX

f(x;θ)
f(x) f(x) dµ(x)

}
= log{1} = 0.

Suppose that our (parametric) assumption is right and there exists θ0 ∈ Θ such that

f(x) = f(x;θ0). Then E log
[ f(X1;θ)
f(X1;θ0)

]
is maximised for θ = θ0 and thus θX = θ0 (i.e.

maximum likelihood method identifies the true value of the parameter).

Suppose that our (parametric) assumption is not right and that f 6∈ F . Then

θX = arg max
θ∈Θ

E log
[
f(X1;θ)
f(X1)

]
= arg max

θ∈Θ

∫
SX

log
[f(x;θ)
f(x)

]
f(x) dµ(x)

= arg min
θ∈Θ

∫
SX

log
[ f(x)
f(x;θ)

]
f(x) dµ(x).

The integral
∫
SX

log
[ f(x)
f(x;θ)

]
f(x) dµ(x) is called the Kullback–Leibler divergence from f(x;θ)

to f(x) (it measures how f(x;θ) diverges from f(x)). Thus θX is the point of parameter

space Θ for which the Kullback–Leibler divergence from F to f is minimised.

3.2 Asymptotic distribution of Z-estimators

Analogously as for the maximum likelihood estimator the basic asymptotic results will be

formulated for Z-estimators. In order to do that put Z(θ) = E ψ(X1;θ) and Dψ(x;θ) =
∂ψ(x;θ)

∂θT
(the Jacobi matrix of ψ(x;θ) with respect to θ).

To state the theorem about asymptotic normality we will need the following regularity

assumptions. These assumptions are analogous to assumptions [R0]-[R6] for the maximum

likelihood estimators.

[Z0] Identifiability. θX satisfies Z(θX) = 0p.

[Z1] The number of parameters p in the model is constant.

[Z2] (The true value of the parameter) θX is an interior point of the parameter space Θ.

[Z3] Each component of the function ψ(x;θ) is differentiable with respect to θ for µ-almost

all x.

[Z4] There exists α > 0 and an open neighbourhood U of θX so that for each j, k ∈ {1, . . . , p}
there exists a function Mjk(x) such that for each θ ∈ U∣∣∣∣∂ψj(x;θ)

∂θk
− ∂ψj(x;θX)

∂θk

∣∣∣∣ ≤Mjk(x) ‖θ − θX‖α

for µ-almost all x and E Mjk(X1) <∞.
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[Z5] The matrix

�(θ) = E Dψ(X1;θ) (42)

is finite and regular in a neighbourhood of θX .

[Z6] The variance matrix

�(θX) = var
(
ψ(X1;θX)

)
= E

[
ψ(X1;θX)ψT(X1;θX)

]
(43)

is finite.

Introduce

�n(θ) =
1

n

n∑
i=1

Dψ(Xi;θ).

The following technical lemma says that if θ is ‘close’ to θX , then �n(θ) is close to �(θX). This

result will be useful for the proof of the consistency and asymptotic normality of Z-estimators.

Note that it is an analogy of Lemma 1.

Lemma 5. Suppose that assumptions [Z1]-[Z5] are satisfied. Let εn be a sequence of positive

numbers going to zero. Then

max
j,k∈{1,...,p}

sup
θ∈Uεn

∣∣∣(�n(θ)− �(θX)
)
jk

∣∣∣ = oP (1),

where

Uεn =
{
θ ∈ Θ : ‖θ − θX‖ ≤ εn

}
and

(
�n(θ)−�(θX)

)
jk

stands for the (j, k)-element of the difference of the matrices �n(θ)−
�(θX).

Proof. Using assumption [Z4] and the law of large numbers one can bound

sup
θ∈Uεn

∣∣∣(�n(θ)− �(θX)
)
jk

∣∣∣ ≤ sup
θ∈Uεn

∣∣∣(�n(θ)− �n(θX)
)
jk

∣∣∣+
∣∣∣(�n(θX)− �(θX)

)
jk

∣∣∣
≤ 1

n

n∑
i=1

Mjk(Xi) ε
α
n + oP (1) = OP (1) o(1) + oP (1) = oP (1),

which implies the statement of the lemma.

Theorem 9. Suppose that assumptions [Z0]-[Z6] are satisfied.

(i) Then with probability going to one there exists a consistent solution θ̂n to the estimating

equations (41).
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(ii) Further, if θ̂n is a consistent root of the estimating equations (41), then

√
n
(
θ̂n − θX

)
= −�−1(θX)

1√
n

n∑
i=1

ψ(Xi;θX) + oP (1), (44)

which further implies that

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,�

−1(θX)�(θX)
[
�−1(θX)

]T)
, (45)

where the matrices �(θX) and �(θX) are defined in (42) and (43) respectively.

Proof. Consistency: Introduce the vector function

hn(θ) = θ −
[
�(θX)

]−1
Zn(θ),

where

Zn(θ) =
1

n

n∑
i=1

ψ(Xi;θ).

In what follows we will show that with probability going to one (as n→∞) the mapping hn is

a contraction on Uεn =
{
θ ∈ Θ : ‖θ−θX‖ ≤ εn

}
, where εn is a sequence of positive numbers

going to zero such that εn
√
n −−−→

n→∞
∞. Having proved that then by the Banach fixed point

theorem (Theorem A2) there exists a unique fixed point θ̂n ∈ Uεn such that hn(θ̂n) = θ̂n

and thus also Zn(θ̂n) = 0p. This implies the existence of a consistent root of the estimating

equations (41).

Showing that hn is a contraction on Uεn . Let θ1,θ2 ∈ Uεn then∥∥hn(θ1)− hn(θ2)
∥∥ =

∥∥(θ1 − θ2

)
−
[
�(θX)

]−1(
Zn(θ1)− Zn(θ2)

)∥∥
=
∥∥(Ip − [�(θX)

]−1
�∗n
)(
θ1 − θ2

)∥∥, (46)

where �∗n is (p× p)-matrix whose j-th row is the j-th row of the matrix

�n(θ) =
1

n

n∑
i=1

Dψ(Xi;θ)

evaluated at some θj∗n that is between θ1 a θ2. Note that θj∗n ∈ Uεn . Now by Lemma 5 and

assumption [Z5]

an = max
j,k∈{1,...,p}

sup
θ∈Uεn

∣∣∣(Ip − [�(θX)
]−1

�n(θ)
)
jk

∣∣∣ = oP (1). (47)

So with the help of (46) and (47) it holds that∥∥hn(θ1)− hn(θ2)
∥∥ ≤ p2 an

∥∥θ1 − θ2

∥∥, (48)
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which implies that there exists q ∈ (0, 1) such that

P
(∥∥hn(θ1)− hn(θ2)

∥∥ ≤ q∥∥θ1 − θ2

∥∥) −−−→
n→∞

1.

Thus to show that hn is a contraction on Uεn it remains to prove that (with probability

going to one) hn : Uεn → Uεn . Note that for each θ ∈ Uεn the inequality (48) implies

hn(θ)− hn(θX) = oP (1) εn, (49)

where the oP (1) term does not depend on θ. Further

hn(θX) = θX −
[
�(θX)

]−1
Zn(θX) = θX +OP

(
1√
n

)
, (50)

where we have used that by the central limit theorem Zn(θX) = OP
(

1√
n

)
. Now combining

(49) and (50) yields that

hn(θ) = oP (1) εn + θX +OP
(

1√
n

)
.

Now using the assumption εn
√
n −−−→

n→∞
∞ implies that P

(
∀θ ∈ Uεn : hn(θ) ∈ Uεn

)
−−−→
n→∞

1,

which was to be proved.

Asymptotic normality: This is proved analogously as in Theorem 5. Let θ̂n be a consistent

root of the estimating equations. Then by the mean value theorem applied to each component

of Zn
(
θ̂n
)

one gets

0p = Zn
(
θ̂n
)

= Zn(θX) + �∗n
(
θ̂n − θX

)
,

where similarly as in the proof of consistency �∗n is (p× p)-matrix whose j-th row is the j-th

row of the matrix �n(θ) evaluated at some θj∗n that is between θ̂n a θX . Thus θj∗n
P−−−→

n→∞
θX as

θ̂n is a consistent estimator of θX . So one can use Lemma 5 to conclude that �∗n
P−−−→

n→∞
�(θX).

Now with the help of CS (Theorem 2) one can write

√
n
(
θ̂n − θX

)
= −[�∗n]−1√nZn(θX) = −�−1(θX)

1√
n

n∑
i=1

ψ(Xi;θX) + oP (1),

which with the help of the central limit theorem (for i.i.d. random vectors) and CS (Theo-

rem 2) implies the second statement of the theorem.

Remark 14. If there exists a real function ρ(x;θ) such that ψ(x;θ) = ∂ρ(x;θ)
∂θ , then the matrix

�(θX) is symmetric and one can simply write �(θX)−1 instead of [�(θX)−1]T in (45).
The end of

lecture 8

(10. 3. 2020)
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Asymptotic variance estimations

Note that by Theorem 9 one has

θ̂n
as
≈ Np

(
θX ,

1
n�
−1(θX)�(θX)

[
�−1(θX)

]T)
.

Thus the most straightforward estimate of the asymptotic variance of θ̂n is the ‘sandwich

estimator’ given by
̂

avar
(
θ̂n
)

=
1

n
�̂−1
n �̂n

[
�̂−1
n

]T
, (51)

where

�̂n =
1

n

n∑
i=1

Dψ
(
Xi; θ̂n

)
and �̂n =

1

n

n∑
i=1

ψ
(
Xi; θ̂n

)
ψT
(
Xi; θ̂n

)
.

Note that Lemma 5 together with the consistency of θ̂n implies that

�̂n
P−−−→

n→∞
�(θX).

It is more tedious to give some general assumptions so that it also holds

�̂n
P−−−→

n→∞
�(θX).

To derive such assumptions rewrite

�̂n =
1

n

n∑
i=1

[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

] [
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]T
+

1

n

n∑
i=1

ψ(Xi;θX)
[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]T
+

1

n

n∑
i=1

[
ψ
(
Xi; θ̂n

)
−ψ(Xi;θX)

]
ψT(Xi;θX)

+
1

n

n∑
i=1

ψ(Xi;θX)ψT(Xi;θX). (52)

Now by the law of large numbers the last summand in (52) converges in probability to �(θX),

thus it is sufficient to show that the remaining terms are of order oP (1). With the help of

assumption [Z4] this can be done for instance by assuming that for each j, k ∈ {1, . . . , p}

E M2
jk(X1) <∞ and E

∣∣∣∂ψj(X1;θX)
∂θk

∣∣∣2 <∞.
Confidence sets and confidence intervals

Suppose that V̂n is a consistent estimator of V = �−1(θX)�(θX) [�−1(θX)]T.
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Then by the Cramér-Slutsky theorem the confidence set (ellipsoid) for the parameter θX

is given by {
θ ∈ Θ : n

(
θ̂n − θ

)T
V̂−1
n

(
θ̂n − θ

)
≤ χ2

p(1− α)
}
.

The ‘Wald-type’ (asymptotic) confidence interval for θXj (the j-th coordinate of θX) is

given by [
θ̂nj −

u1−α/2
√
v̂n,jj√

n
, θ̂nj +

u1−α/2
√
v̂n,jj√

n

]
,

where θ̂nj is the j-th coordinate of θ̂n and v̂n,jj is the j-th diagonal element of the matrix V̂n.

Literature: Sen et al. (2010) Chapter 8.2.

3.3 Likelihood under model misspecification

Let X1, . . . ,Xn be a random sample with a density f (with respect to a σ-finite measure µ).

Then the maximum likelihood estimator can be viewed as the M -estimator with ρ(x;θ) =

− log f(x;θ) or Z-estimator with ψ(x;θ) = −∂ log f(x;θ)
∂θ . From Example 37 we know that

when assuming f ∈ F = {f(x;θ);θ ∈ Θ}, the method of the maximum likelihood identifies

the parameter

θX = arg min
θ∈Θ

∫
SX

log
[ f(x)
f(x;θ)

]
f(x) dµ(x).

Further by Theorem 9 we also know that (with probability going to one there exists a con-

sistent solution θ̂n of (41) which satisfies)

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,�

−1(θX)�(θX)�−1(θX)
)
.

Suppose that our parametric assumption is right and f ∈ F , i.e. there exists θ0 ∈ Θ such

that f(x) = f(x;θ). Then the identified parameter is equal to θ0, i.e. θX = θ0. Further it

is easy to see that �(θX) = I(θX) = �(θX), where I(θX) is the Fisher information matrix.

Thus

�−1(θX)�(θX)�−1(θX) = I−1(θX).

So one can view Theorem 5 as a special case of Theorem 9. Further, when doing the inference

about θX it is sufficient to estimate the Fisher information matrix.

Often in practice we are not completely sure that f ∈ F . If we are not sure about the

parametric assumption then it is safer to view the estimator θ̂n as an Z-estimator with

ψ(x;θ) = −∂ log f(x;θ)
∂θ . The asymptotic variance of θ̂n can now be estimated with the help of

‘sandwich estimator’ (51) where

�̂n =
1

n

n∑
i=1

U(Xi; θ̂n) UT(Xi; θ̂n), where U(x;θ) = −∂ log f(x;θ)

∂θ
,

�̂n =
1

n

n∑
i=1

I(Xi; θ̂n), where I(x;θ) = −∂
2 log f(x;θ)

∂θ∂θT
.
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This type of variance estimator is calculated for GLM models by the function sandwich (from

the package with the same name).

Example 38. Misspecified normal linear model. Let
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
be independent and

identically distributed random vectors, where Xi = (Xi1, . . . , Xip)
T. Note that if one assumes

that L
(
Yi|Xi

)
∼ N(XT

i β, σ
2) for some β ∈ Rp, then the maximum likelihood estimation of β

corresponds to the method of least squares given by ρ(x, y;β).

Show that without the assumption L
(
Yi|Xi

)
∼ N(XT

i β, σ
2) the method of the least squares

identifies the parameter

βX =
[
E X1X

T
1

]−1
E Y1X1

and it holds that

√
n
(
β̂n−βX

) d−−−→
n→∞

Np(0,V), where V =
[
E X1X

T
1

]−1 [
E σ2(X1)X1X

T
1

] [
E X1X

T
1

]−1
,

with σ2(X1) = var(Y1|X1).

Note that provided E
[
Y1|X1

]
= XT

1β0 for some β0 ∈ Rp, then βX = β0.

Example 39. Misspecified Poisson regression. Let
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
be independent and iden-

tically distributed random vectors, where Xi = (Xi1, . . . , Xip)
T. Assume that the conditional

distribution of Yi given Xi is Poisson, i.e. L
(
Yi|Xi

)
∼ Po

(
λ(Xi)

)
, where λ(x) = ex

Tβ and

β = (β1, . . . , βp)
T. The score function for the maximum likelihood estimation is given by

Un(β) =

n∑
i=1

Xi

(
Yi − eX

T
i β
)
.

Thus one can view the maximum likelihood estimator β̂n as the Z-estimator with

ψ(x, y;β) = x
(
y − ex

Tβ
)

(53)

and βX solves the system of equations

E X1

(
Y1 − eX

T
1βX

)
= 0p.

Suppose now that L
(
Yi|Xi

)
6∼ Po

(
λ(Xi)

)
, but one can still assume that there exists β0 such

that E [Y1|X1] = eX
T
1β0 . Then

E X1

(
Y1 − eX

T
1β0
)

= E
{
E
[
X1

(
Y1 − eX

T
1β0
)∣∣X1

]}
= E

[
X1

(
eX

T
1β0 − eβ

T
0X1

)]
= 0p.

Thus βX identifies β0 which describes the effect of the covariates on the expected mean value.

The above calculation implies that when we are not sure that the conditional distribution

L
(
Yi|Xi

)
is Po

(
λ(Xi)

)
, but we are willing to assume that E [Yi|Xi] = eX

T
i β0 for some β0 ∈ Rp,
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then we can still use the score function (53) which identifies the parameter β0. By Theorem 9

we know that the estimator β̂n is asymptotically normal with the matrices �(βX) and �(βX)

given by

�(βX) = E X1X
T
1

(
Y1 − eX

T
1βX

)2
and �(βX) = E X1X

T
1 eX

T
1βX .

Thus the asymptotic variance of the estimator β̂n can be estimated by

̂
avar

(
β̂n
)

=
1

n
�̂−1
n �̂n �̂

−1
n ,

where

�̂n =
1

n

n∑
i=1

XiX
T
i

(
Yi − eX

T
i β̂n
)2

and �̂n =
1

n

n∑
i=1

XiX
T
i eX

T
i β̂n .

Literature: White (1980), White (1982).

3.4 Asymptotic normality of M-estimators defined by convex minimization

Let X1, . . . ,Xn be a random sample from a distribution F and one is interested in estimating

some quantity θX (p-dimensional parameter) of this distribution such that this parameter can

be identified as

θX = arg min
θ∈Θ

E ρ(X1;θ),

where for each fixed x the function ρ(x;θ) is convex in θ.

A natural estimate of the parameter θX is given by

θ̂n = arg min
θ∈Θ

1

n

n∑
i=1

ρ(Xi;θ).

The function ρ(x;θ) does not have to be smooth in θ, but the convexity guarantees that

it is differentiable almost everywhere. Thus for each θ let ψ(x;θ) = ∂ρ(x;θ)
∂θ for almost all x.

Further suppose that

E ψ(X1;θX) = 0p.

For formulating the main result it is useful to introduce the ‘reminder function’

R(x; t) = ρ(x;θX + t)− ρ(x;θX)− tTψ(x;θX) (54)

and the asymptotic objective function

M(θ) = E ρ(X1;θ).

Theorem 10. Suppose that (54) holds and that
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(i) there exists a positive definitive matrix �(θX) such that

M(θX + t) = M(θX) + 1
2 tT�(θX) t + o(‖t‖2), as t→ 0p;

(ii) var
(
R(X1; t)

)
= o(‖t‖2) as t→ 0p;

(iii) there exists a finite variance matrix �(θX) = var
(
ψ(X1;θX)

)
.

Then the asymptotic representation (44) holds for θ̂n, which further gives the asymptotic

normality result (45).

Proof. See the proof of Theorem 2.1 of Hjort and Pollard (2011).

Note that if assumptions [Z3] and [Z4] hold then also assumptions (i) and (ii) of Theorem 10

are satisfied. On the other hand it is worth noting that Theorem 10 allows for ρ(x;θ) that

does not meet assumptions [Z3] and [Z4]. Note that the matrix �(θX) does not have to

be computed as �(θX) = E Dψ(X1;θX) (as in Theorem 9) but one can compute it as the

Hessian matrix of the function M(θ) = E ρ(X1;θ) at the point θX . Thus the assumption

about the smoothness of ψ (i.e. [Z3] and [Z4]) can be replaced with the assumptions on the

distribution of X1 so that the function M(θ) is sufficiently smooth.

Another important difference in comparison to Theorem 9 is that Theorem 10 guarantees

the asymptotic normality for the minimizer of 1
n

∑n
i=1 ρ(Xi;θ) and not only for a consistent

root of the estimating equations which might be difficult to find in case that there are more

roots to the estimating equations.

3.4.1 Sample median

Let X1, . . . , Xn be independent identically distributed random variables with density f(y)

that is positive and continuous in a neighbourhood of median F−1(0.5).

It is well known (see Lemma 6 and Remark 16) that the sample median m̃n can be written

as

m̃n = arg min
θ∈R

1

n

n∑
i=1

|Xi − θ|.

Thus one can view m̃n as an M -estimator with ρ(x; θ) = |x− θ|. For theoretical reasons it is

advantageous to consider

ρ(x; θ) = |x− θ| − |x|,

which does not require that E |X1| <∞ in order to define M(θ) = E ρ(X; θ). Note that then

F−1(0.5) = arg min
θ∈R

E ρ(X; θ).
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Now one uses Theorem 10 to derive the asymptotic distribution of m̃n. Note that it is

natural to take

ψ(x; θ) = − sign(x− θ).

Then (the matrix) �(θX) reduces to

σ2
ψ = var

(
ψ(X1;F−1(0.5))

)
= 1.

Further

∂M(θ)

∂θ
= −E

[
sign(X1 − θ)

]
= −P(X1 > θ) + P(X1 < θ) = 2F (θ)− 1,

which implies that (the matrix) �(θX) reduces to

γ =
∂2M(θ)

∂θ2

∣∣∣
θ=F−1(0.5)

= 2 f
(
F−1(0.5)

)
.

One can show that in our situation the assumptions of Theorem 10 are satisfied, so one gets

√
n
(
m̃n − F−1(0.5)

) d−−−→
n→∞

N
(

0, 1

4 f2
(
F−1(0.5)

)).
Literature: Hjort and Pollard (2011) Section 2A. The end of the

self study for

the week

(16.-20. 3. 2020)

4 M-estimators and Z-estimators in robust statistics∗

In statistics the word ‘robust’ has basically two meanings.

(i) We say that a procedure is robust, if it stays (approximately/asymptotically) valid even

when some of the assumptions (under which the procedure is derived) are not satisfied.

For instance the standard ANOVA F -statistic is robust against the violation of the

normality of the observations provided that the variances of all the observations are the

same (and finite).

(ii) People interested in robust statistics say that a procedure is robust, if it is not ‘too

much’ influenced by the outlying observations. In what follows we will concentrate on

this meaning of the robustness.

One of the standard measures of robustness is the breakdown point. Vaguely speaking

the breakdown point of an estimator is the smallest percentage of observations that one has

to change so that the estimator produces a nonsense value (e.g. ±∞ for location or regression

estimator; 0 or +∞ when estimating the scale).

∗ Robustńı statistika
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Let θ̂n be an M - or Z-estimator of a parameter θX . Note that thanks to Theorems 9 or 10

(under appropriate assumptions) one has the following representation

θ̂n − θX =
1

n

n∑
i=1

IF (Xi) + oP
(

1√
n

)
,

where IF (x) = −�−1(θX)ψ(x;θX) is called the influence function. Thus if one can ignore

the remainder term oP
(

1√
n

)
, then changing Xi to Xi + ∆ results that the estimates θ̂n

changes (approximately) by
1

n

[
IF (Xi + ∆)− IF (Xi)

]
.

Thus provided that IF (x) is bounded then also this change is bounded (and of order O( 1
n)).

Note that the above reasoning was not completely correct as the term oP
(

1√
n

)
was ignored.

Nevertheless it can be proved that (under some mild assumptions excluding ‘singular’ cases) if

the function ψ(x;θ) is bounded then the breakdown point of the associated M(Z)-estimator

is 1
2 .

4.1 Robust estimation of location∗

Suppose that we observe a random sample X1, . . . , Xn from a distribution F and we are

interested in characterising the location.

Note that for the sample mean Xn = 1
n

∑n
i=1Xi it is sufficient to change only one observa-

tion to get an arbitrary value of Xn.

On the other hand when considering the sample median m̃n = F̂−1
n (0.5) then one needs to

change at least half of the observations so that one can for instance change the estimator to

±∞.

When deciding between a sample mean and a sample median one has to take into considera-

tion that if the distribution F is not symmetric then Xn and m̃n estimate different quantities.

But when one can hope that the distribution F is symmetric, then both Xn and m̃n estimate

the centre of the symmetry and one can be interested which of the estimators is more appro-

priate. By the maximum likelihood theory we know that Xn is efficient if F is normal while

m̃n is efficient if F is doubly exponential (i.e. it has a density f(x) = 1
2σ exp{− |x−θ|σ }).

In robust statistics it is usually assumed that most of our observations follow normal dis-

tributions but there are some outlying values. This can be formalised by assuming that the

distribution function F of each of the observations satisfies

F (x) = (1− η) Φ
(x−µ

σ

)
+ η G(x), (55)

where η is usually interpreted as probability of having an outlying observation and G is a

distribution (hopefully symmetric around µ) of outlying observations. It was found that if η

∗ Robustńı odhad polohy
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is ‘small’ then using sample median is too pessimistic (and inefficient). We will mention here

several alternative options.

Before we proceed note that both the sample mean Xn and the sample median m̃n can be

viewed as M -estimators as

Xn = arg min
θ∈R

n∑
i=1

(Xi − θ)2 and m̃n = arg min
θ∈R

n∑
i=1

|Xi − θ|. (56)

Huber estimator

This estimator is defined as

θ̂(H)
n = arg min

θ∈R

1

n

n∑
i=1

ρH(Xi − θ),

where

ρH(x) =

{
x2

2 , |x| ≤ k,
k ·
(
|x| − k

2

)
, |x| > k.

(57)

and k is a given constant. Note that the ‘score function’ ψH(x) = ρ′H(x) of the estimator is

ψH(x) = ρ′H(x) =

{
x, |x| ≤ k,
k · sgn(x), |x| > k.

(58)

Thus one can see that for x ∈ (−k, k) the function ψH corresponds to a score function of a

sample mean (which is ψ(x) = x) while for x ∈ (−∞, k) ∪ (k,∞) it corresponds to a score

function of a sample median (which is ψ(x) = sgn(x)). Thus Huber estimator presents a

compromise between a sample mean and a sample median. So it is not surprising that θ̂
(H)
n

is usually a value between the sample median and the sample mean.

When using Huber estimator one has to keep in mind that the identified parameter is

θH = arg min
θ∈R

E ρH(X1 − θ).

Thus if the distribution F is not symmetric then E X1 generally does not coincide with

F−1(0.5) and θH lies between E X1 and F−1(0.5).

On the other hand if the distribution F is symmetric, then θH coincides with the centre of

symmetry, i.e. with F−1(0.5) (the median of F ) and also with E X1, if the expectation exists.

It was observed that for the contamination model (55) with G symmetric, Huber estimator

usually performs better than the sample mean as well as the sample median. This can be

proved analytically by showing that for η > 0 and G heavy tailed, then usually

avar
(
θ̂(H)
n

)
< min

{
var(Xn), avar(m̃n)

}
,
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where the asymptotic variance avar
(
θ̂

(H)
n

)
is derived in Example 40.

The nice thing about Huber estimator is that its loss function ρ(x; θ) = ρH(x−θ) is convex

(in θ) thus θ̂
(H)
n is not too difficult to calculate and with the help of Theorem 10 one can

derive its asymptotic distribution (see also Example 40).

The choice of the constant k is usually done as follows. Suppose that X1, . . . , Xn follows

N(0, 1). Then one takes the smallest k such that

avar
(
θ̂

(H)
n

)
var
(
Xn

) ≤ 1 + δ,

where δ stands for the efficiency loss of Huber estimator under normal distributions. For

instance the common choices are δ = 0.05 or δ = 0.1 which corresponds approximately to

k = 1.37 or k = 1.03.

Example 40. With the help of Theorem 10 one can show that (under appropriate regularity

assumptions)
√
n
(
θ̂(H)
n − θH

) d−−−→
n→∞

N
(
0,

σ2
ψ

γ2

)
,

where

γ =
∂2 E ρH(X1 − θ)

∂θ2

∣∣∣
θ=θH

= F (θH + k)− F (θH − k)

and

σ2
ψ = var

(
ψH(X1 − θH)

)
=

∫ θH+k

θH−k
(x− θH)2 dF (x) + k2

(
1− F (θH + k) + F (θH − k)

)
.

Thus avar(θ̂
(H)
n ) =

σ2
ψ

nγ2
.

Other robust M/Z-estimators of location

The other most common M/Z-estimators are the following.

(i) Cauchy-pseudolikelihood: ρ(x; θ) = log(1 + (x − θ)2). The problem is that this

function is not convex in θ and the estimating equation

1

n

n∑
i=1

2 (Xi − θ̂n)

1 + (Xi − θ̂n)2︸ ︷︷ ︸
ψ(Xi;θ̂n)

!
= 0

has usually more roots.

(ii) Tukey’s biweight:

ψ(x) =

 x
(

1− x2

k2

)2
, |x| ≤ k,

0, |x| > k.

But also here the corresponding loss function ρ (ψ = ρ′) is not convex.
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4.2 Studentized M/Z-estimators

The problem is that the M/Z-estimators presented above (except for the sample mean and

the sample median) are not scale equivariant (i.e. θ̂n(cX) 6= c θ̂n(X) for each c ∈ R). That

is why in practice M/Z-estimators are usually defined as

θ̂n = arg min
θ∈R

1

n

n∑
i=1

ρ
(
Xi−θ
Sn

)
, or as

n∑
i=1

ψ
(
Xi−θ̂n
Sn

) !
= 0,

where Sn is an appropriate estimator of scale∗, which satisfies Sn(cX) = |c|Sn(X) for each

c ∈ R. The most common estimators of scale are as follows.

Sample standard deviation

Sn =

√√√√ 1

n− 1

n∑
i=1

(Xi −Xn)2.

Note that in robust statistics Sn is rather rarely used as it is not robust (i.e. it is sensitive to

outlying observations).

Interquartile range†

Sn = IQR = F̂−1
n (0.75)− F̂−1

n (0.25),

where F̂n is the empirical distribution function
(
i.e. F̂n(x) = 1

n

∑n
i=1 I{Xi ≤ x}

)
. Some

people prefer to use

S̃n =
F̂−1
n (0.75)− F̂−1

n (0.25)

Φ−1(0.75)− Φ−1(0.25)
,

as it is desired that S̃n estimates σ, when X1, . . . , Xn is a random sample from N(µ, σ2).

Note that the breakdown point of interquartile range is 0.25.

Median absolute deviation‡

This measure is given as the median absolute deviation from the median, i.e.

MAD = med1≤i≤n|Xi − F̂−1
n (0.5)|,

or its modification

M̃AD =
MAD

Φ−1(0.75)
,

∗ odhad měř́ıtka † mezikvartilové rozpět́ı ‡ mediánová absolutńı odchylka
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so that it estimates σ for random samples from N(µ, σ2).

Note that the breakdown point of this estimator is 0.50.

Remark 15. Note that due to the studentization the functions ρ(x; θ) = ρ
(
x−θ
Sn

)
and ψ(x; θ) =

ψ
(
x−θ
Sn

)
(when viewed as functions of x and θ) are random. Thus one can use neither Theo-

rem 9 nor Theorem 10 to derive the asymptotic distribution of studentized M/Z-estimators.

Nevertheless, if Sn
P−−−→

n→∞
S(F ) and the distribution F is symmetric, then (under some

regularity assumptions) it can be shown that the asymptotic distribution of studentized

Z/M -estimators is the same as the the asymptotic distribution of M/Z-estimators with

ρ(x; θ) = ρ
(
x−θ
S(F )

)
and ψ(x; θ) = ψ

(
x−θ
S(F )

)
for which one can (usually) use either Theorem 9 or

Theorem 10.

4.3 Robust estimation in linear models

Suppose we observe independent random vectors
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
each of them having the

same distribution as the generic random vector
(
X
Y

)
.

4.3.1 The least squares method

This method results in the estimator

β̂
(LS)

n = arg min
b∈Rp

n∑
i=1

(
Yi −XT

i b
)2

=

(
1

n

n∑
i=1

XiX
T
i

)−1( 1

n

n∑
i=1

XiYi

)
.

Note that if Xik 6= 0 then by changing Yk one can arrive at any arbitrary value of β̂nk.

From Example 38 we know that the method of the least squares identifies the parameter

β
(LS)
X =

[
E XXT

]−1
E XY

and it holds that

√
n
(
β̂

(LS)

n − β(LS)
X

) d−−−→
n→∞

Np(0,V), where V =
[
E XXT

]−1 [
E σ2(X)XXT

] [
E XXT

]−1
,

with σ2(X) = var(Y |X). Further provided E
[
Y |X

]
= XTβ0, then β

(LS)
X = β0.

Suppose now that that the first component of Xi is 1 (i.e. the model includes an intercept)

and denote by X̃i the remaining components ofXi. That isXi =
(
1, X̃

T

i

)T
. Further suppose

that the following model holds

Y = β0 + X̃
T
β + ε, where ε⊥X̃. (59)

Then E [Y |X] = β0 +βTX̃+E ε and the method of the least squares identifies the parameter

β
(LS)
X =

(
β0 + E ε

β

)
. (60)
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Further the asymptotic variance matrix V simplifies to

V = σ2
(
E XXT

)−1
, where σ2 = var(ε). (61)

4.3.2 Method of the least absolute deviation∗

This method is usually considered as a robust alternative to the least squares methods. The

estimate of the regression parameter is given by

β̂
(LAD)

n = arg min
b∈Rp

1

n

n∑
i=1

|Yi −XT
i b|,

As we will see later (see Chapter 5) the LAD method models med[Y |X] = F−1
Y |X(0.5) as

XTβ. So if indeed med[Y |X] = XTβ0, then β
(LAD)
X = β0.

The asymptotic distribution of β̂
(LAD)

n can be heuristically derived by Theorem 10 as follows.

The score function is given by

ψ(x, y; b) = − sign(y − xTb) x.

Now put M(b) = E
[
|Y −XTb|−|Y |

]
, where the random vector

(
X
Y

)
has the same distribution

as
(
Xi
Yi

)
. Then

∂M(b)

∂b
= E

[
sign(Y −XTb) (−X)

]
= −E X

[
I{Y >XTb} − I{Y <XTb}

]
= −E X

[
1− 2FY |X

(
XTb

)]
.

Thus
∂2M(b)

∂b ∂bT
= 2 E XfY |X

(
XTb

)
XT,

which finally implies that

�(β
(LAD)
X ) =

∂2M(b)

∂b ∂bT

∣∣∣
b=β

(LAD)
X

= 2 E
[
XXTfY |X

(
[β

(LAD)
X ]TX

)]
= 2 E

[
XXTfY |X

(
F−1
Y |X(0.5)

)]
.

Further as

�(β
(LAD)
X ) = var

(
ψ(X, Y ;β

(LAD)
X )

)
= E XXT,

one gets that under appropriate regularity assumptions

√
n
(
β̂

(LAD)

n − β(LAD)
X

) d−−−→
n→∞

Np(0p,V),

where

V =
(
E
[
XXTfY |X

(
F−1
Y |X(0.5)

)])−1
E XXT

(
E
[
XXTfY |X

(
F−1
Y |X(0.5)

)])−1
.
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Note that if model (59) holds, then med(Y1 |X1) = β0 + X̃
T

1β + F−1
ε (0.5), where F−1

ε is

the quantile function of ε1 and thus

β
(LAD)
X =

(
β0 + F−1

ε (0.5)

β

)
.

Thus when compared with the method of the least squares (60) one can see, that if model (59)

holds then both methods identify the same slope parameter β. The only difference is in

intercept.

Further if model (59) holds then

fY |X
(
F−1
Y |X(0.5)

)
= fε

(
F−1
ε (0.5)

)
,

which implies that

�(β
(LAD)
X ) = 2 fε

(
F−1
ε (0.5)

)
E XXT

and

V =
1

4
[
fε
(
F−1
ε (0.5)

)]2 (E XXT
)−1

. (62)

Now when one compares (61) with (62), one can see that the least absolute deviation method

is favourable if
1[

4fε
(
F−1
ε (0.5)

)]2 < var(ε).

Regarding the robustness of the least absolute deviation estimator note that in this special

situation (i.e. if model (59) holds) Yi − XT
i β

(LAD)
X = εi − F−1

ε (0.5) and the asymptotic

representation (44) of β̂n implies

β̂
(LAD)

n − β(LAD)
X =

1

n

n∑
i=1

(
E X1X

T
1

)−1
Xi

sign
(
εi − F−1

ε (0.5))

2fε(F
−1
ε (0.5)

) + oP
(

1√
n

)
.

Thus one can expect that the change of Yi (or equivalently the change of εi) has only a

bounded effect on β̂
(LAD)

n . On the other hand note that the change of Xi has an unbounded

effect on β̂
(LAD)

n . Thus LAD method is robust with respect to the response but not with

respect to the covariates.

4.3.3 Huber estimator of regression

Analogously as Huber estimator of location is a compromise between a sample mean and a

sample median, Huber estimator of regression is a compromise between LS and LAD. Put

β̂
(H)

n = arg min
b∈Rp

1

n

n∑
i=1

ρH
(
Yi −XT

i b
)
,
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where ρH is defined in (57). Generally, it is difficult to interpret what is being modelled with

Huber estimator of regression (it is something between E (Y |X) and med(Y |X)). Note that

it identifies

β
(H)
X = arg min

b∈Rp
E ρH(Y −XTb).

Equivalently β
(H)
X solves

E
[
ψH
(
Y −XTβ

(H)
X

)
X
] !

= 0p,

where ψH is defined in (58).

Analogously as in Example 40 one can derive that under appropriate assumptions

√
n
(
β̂

(H)

n − β(H)
X

) d−−−→
n→∞

Np(0p,V), with V = �−1(β
(H)
X )�(β

(H)
X )�−1(β

(H)
X ),

where

�
(
β

(H)
X

)
= EX

[
FY |X(XTβ

(H)
X + k)− FY |X(XTβ

(H)
X − k)

]
and

�
(
β

(H)
X

)
= EX

[
XXT var

(
ψ(Y −XTβ

(H)
X )|X)

]
.

If model (59) holds then β
(H)
X =

(β(H)
X0

β̃
(H)
X

)
solves

E
[
ψH
(
β0 + X̃

T
β + ε− β(H)

X0 − X̃
T
β̃

(H)

X

)
X
] !

= 0p, .

Thus βX identifies the following parameter

β
(H)
X =

(
β0 + θH

β

)
,

where θH solves E ψH(ε − θH)
!

= 0. So if model (59) holds then the interpretation of the

regression slope coefficient (β) is the same for each of the methods described above (LS,

LAD, Huber regression).

Further the asymptotic variance matrix simplifies to

V =
σ2
ψ

γ2

(
E XXT

)−1
, (63)

with

γ = Fε(θH + k)− Fε(θH − k)

and

σ2
ψ =

∫ θH+k

θH−k
(x− θH)2 dFε(x) + k2

(
1− Fε(θH + k) + Fε(θH − k)

)
.
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Using (61), (62) and (63) one sees that to compare the efficiency of the estimators β̂
(LS)

n ,

β̂
(LAD)

n and β̂
(H)

n it is sufficient to compare var(ε), 1
4f2ε (F−1

ε (0.5))
and

σ2
ψ

γ2
.

Regarding the robustness properties the influence function is given by

IF (x, y) =
(
E XXT

)−1 1
γ ψH(y − xTβ

(H)
X ) x,

thus the estimator is robust in response but not in the covariate.

4.3.4 Studentized Huber estimator of regression

Analogously as in Chapter 4.2 in practice the studentized Huber estimator is usually used.

This estimator is defined as

β̂n = arg min
b∈Rp

1

n

n∑
i=1

ρH

(
Yi−XT

i b
Sn

)
,

where Sn is an estimator of scale of εi. For instance one can take MAD or IQR calculated

from the residuals from LAD regression ε̂i = Yi −XT
i β̂

(LAD)

n .

Inference:

• With the help of Theorem 10 one can show the asymptotic normality of β̂n of the

(non-Studentized) Huber estimator.

• If model (59) holds, then it can be shown, that the estimate of the scale influences only

the asymptotic distribution of the estimate of the intercept and not of the slope.

Literature: Maronna et al. (2006) Chapters 2.1-2.2 and Chapters 4.1-4.4. The end of the

self study for

the week

(23.-27. 3. 2020)

5 Quantile regression∗

Generally speaking, while the least squares method aims at estimating (modelling) a condi-

tional expectation, quantile regression aims at estimating (modelling) a conditional quantile.

This is of interest if the covariate may have different effect on different quantiles of the re-

sponse.

Applications of the quantile regression can be found in medicine (e.g. constructing reference

charts), finance (e.g. estimating value at risk), economics (e.g. wage and income studies,

modelling household electricity demand) and environment modelling (e.g. modelling flood

height).

∗ Kvantilová regrese.
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5.1 Introduction

For a given τ ∈ (0, 1) consider the following loss function

ρτ (x) = τ x I{x > 0}+ (1− τ) (−x) I{x ≤ 0}.

Note that for x 6= 0 one gets

ψτ (x) = ρ′τ (x) = τ I{x > 0} − (1− τ) I{x < 0}.

For x = 0 put ψτ (0) = 0.

Lemma 6. Let the random variable X have a cumulative distribution function F . Then

F−1(τ) = arg min
θ∈R

E
[
ρτ (X − θ)− ρτ (X)

]
. (64)

Proof. Put M(θ) = E
[
ρτ (X − θ)− ρτ (X)

]
. One can calculate

M(θ) = −E

∫ θ

0
ψτ (X − t) dt = −

∫ θ

0
E ψτ (X − t) dt

= −
∫ θ

0
τ P(X > t)− (1− τ)P(X < t) dt.

= −
∫ θ

0
τ − τ F (t)− (1− τ)F (t) dt.

= −τ θ +

∫ θ

0
F (t) dt.

Now for each θ < F−1(τ)

M ′(θ−) = −τ + F (θ−) ≤ −τ + F (θ) < 0 and M ′(θ+) = −τ + F (θ+) = −τ + F (θ) < 0.

As the function M(θ) is continuous, this implies that M(θ) is decreasing on
(
−∞, F−1(τ)

)
.

Analogously for θ > F−1(τ)

M ′(θ−) = −τ + F (θ−) ≥ −τ + F
(
F−1(τ)

)
= 0 and M ′(θ+) ≥ 0,

thus the function M(θ) is non-decreasing on
(
F−1(τ),+∞

)
. This further implies that F−1(τ)

is the point of the global minimum of the function M(θ).

Remark 16. Suppose we observe a random sample X1, . . . , Xn. Let F̂n be the corresponding

empirical distribution function. Then by

1

n

n∑
i=1

ρτ (Xi − θ) = E
F̂n
ρτ (X − θ),
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where the random variable X has the distribution given by the the empirical distribution

function F̂n and E
F̂n

stands for the expectation with respect to this distribution.

Thus by Lemma 6

F̂−1
n (τ) = arg min

θ∈R

1

n

n∑
i=1

ρτ (Xi − θ).

Note that for τ = 0.5 one gets the characterization of the sample median as in (56).

Further note that from the proof of Lemma 6 it follows that the arg minθ∈R
1
n

∑n
i=1 ρτ (Xi−θ)

is not unique if there exists a root of the function −τ + F̂n(θ). This happens if n τ = i0 ∈ N

and X(i0) < X(i0+1). Then M(θ) is minimised by any value from the interval
[
X(i0), X(i0+1)

]
.

In this situation F̂−1
n (τ) = X(i0) is the left point of this interval.

5.2 Regression quantiles∗

Suppose that one observes independent and identically distributed random vectors(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
being distributed as the generic vector

(
X
Y

)
.

The τ -th regression quantile is defined as

β̂n(τ) = arg min
b∈Rp

1

n

n∑
i=1

ρτ (Yi −XT
i b).

At the population level the regression quantile identifies the parameter

βX(τ) = arg min
b∈Rp

E ρτ (Y −XTb).

Note that thanks to (64)

E ρτ (Y −XTb) = E
{
E
[
ρτ (Y −XTb) |X

]}
≥ E

{
E
[
ρτ
(
Y − F−1

Y |X(τ)
)
|X
]}

= E ρτ
(
Y − F−1

Y |X(τ)
)
,

where F−1
Y |X(τ) is the τ -th conditional quantile of Y given X. Thus if the model for F−1

Y |X(τ)

is correctly specified, that is F−1
Y |X(τ) = XTβ0, then βX(τ) = β0.

Often in applications we assume that Xi =
(
1, X̃

T

i

)T
and that

Y = β0 + X̃
T
β + ε, where ε⊥X̃. (65)

Then F−1
Y |X(τ) = β0 + X̃

T
β + F−1

ε (τ), where F−1
ε (τ) is the τ -th quantile of the random

error ε. Thus provided model (65) holds

βX(τ) =

(
β0 + F−1

ε (τ)

β

)
.

∗ Regresńı kvantily
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Thus if model (59) holds, then for τ1 6= τ2 the regression quantiles βX(τ1) and βX(τ2) differ

only in the intercepts. That is the effect of the covariate is the same for all quantiles of

the response. But this is not true in general. In fact the regression quantiles are interesting

in situations where the effect of the covariate can be different for different quantiles of the

response.

As also illustrated by the following simple examples, the regression quantiles gives us a

more detailed idea about the effect of the covariate on the response. This can be interest on

its own or as a check that we do not simplify the situation too much by considering only the

effect of the covariate on the conditional expectation.

Example 41. To illustrate consider one-dimensional covariate Xi which is generated from

the uniform distribution on the interval (0, 1) and the error term εi which has an exponential

distribution with mean 1 and which is independent of Xi. Further consider the following two

models

• The homoscedastic model given by

Yi = 1 + 2Xi + εi, i = 1, . . . , n.

• The heteroscedastic model given by

Yi = 1 + 2Xi + 2Xi εi, i = 1, . . . , n.

On Figure 41 one can find a random sample of size 1 000 from these models. The solid lines

represent the fitted regression quantiles for τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} assuming that the

conditional quantile is in the simple linear form

F−1
Y |X(τ) = β1(τ) + β2(τ)X.

The standard least square estimator is included for the reason of comparison.

Note that in the homoscedastic model all the fitted lines are approximately parallel. This

is in agreement with the above finding that in the ‘strict linear model’ (59) the slope of the

(theoretical) regression quantiles is the same (up to the random variations that decreases as

the sample size increases).

On the other hand in the heteroscedastic model the slopes differ and in this simple example

we see that the effect of the covariate is stronger on larger conditional quantiles.

Homework exercise. In the homoscedastic as well as heteroscedastic model find the theoret-

ical conditional quantile F−1
Y |X(τ) for different values of τ and compare it with the conditional

expectation E [Y |X]. Compare the results with the fitted lines on Figure 41.
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Figure 1: Fitted regression quantiles for τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} (solid lines with different

colours) for homoscedastic model (the upper figure) and heteroscedastic model (the

lower figure). The least squares fit is included for the reason of comparison (dashed

line).
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Example 42. Let Y1, . . . , Yn1 be a random sample with the distribution function F and

Yn1+1, . . . , Yn1+n2 be a random sample from the distribution function G .

Often it is assumed that G(x) = F (x + µ) for each x ∈ R. Thus alternatively we can

formulate the two-sample problem as a linear regression problem with

Yi = β0 + β1xi + εi, (66)

where

xi =

{
0, i = 1, . . . , n1

1, i = n1 + 1, . . . , n1 + n2

and εi has a cumulative distribution function F . Usually we are interested in estimating β1.

By the LS method one gets

β̂1 =
1

n2

n1+n2∑
i=n1+1

Yi −
1

n1

n1∑
i=1

Yi
P−→

n1,n2→∞
µG − µF︸ ︷︷ ︸

=:µ

=: βLS1 ,

where µF and µG stand for the expectation of an observation from the first and second sample

respectively.

On the other hand let n = n1 + n2. Then the quantile regression yields

β̂(τ) = arg min
b0,b1

1

n

n∑
i=1

ρτ (Yi − b0 − b1xi)

= arg min
b0,b1

1

n

(
n1∑
i=1

ρτ (Yi − b0) +

n1+n2∑
i=n1+1

ρτ (Yi − b0 − b1)

)
.

The first sum is minimised by

β̂0(τ) = F−1
n1

(τ)

and the second sum by

̂β0(τ) + β1(τ) = G−1
n2

(τ)

Thus we get

β̂1(τ) = G−1
n2

(τ)− F−1
n1

(τ)
P−→

n1,n2→∞
G−1(τ)− F−1(τ) := β1(τ).

Further if model (66) really holds, then G−1(τ) = F−1(τ) + µ and one gets β1(τ) = µ = βLS1

for each τ ∈ (0, 1).

Computing regression quantiles∗

The optimisation task

min
b∈Rp

n∑
i=1

ρτ (Yi −XT
i b)

∗ Not done at the lecture.
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can be rewritten with the help of linear programming as minimisation of the objective function

τ

n∑
i=1

r+
i + (1− τ)

n∑
i=1

r−i ,

subject to the following constrains

p∑
j=1

Xij bj + r+
i − r

−
i = Yi, i = 1, . . . , n,

r+
i ≥ 0, r−i ≥ 0, i = 1, . . . , n,

bj ∈ R, j = 1, . . . , p.

Note that one can think of r+
i and r−i as the positive or negative part of the i-th residual, i.e.

r+
i =

(
Yi −XT

i b
)

+
, r−i =

(
Yi −XT

i b
)
− .

This can be solved for instance with the help of the simplex algorithm.

5.3 Interpretation of the regression quantiles

Provided F−1
Y |X(τ) = XTβ and the model is correctly specified then one can interpret β̂nk(τ)(

the k-th element of β̂n(τ)
)

as the estimated change of the conditional quantile of the response

when the k-th element of the explanation variable increases by 1.

Intersection of the fitted regression quantiles

Note that it might happen that for a given value of the covariate x and given quantiles

0 < τ1 < τ2 < 1

F̂−1
Y |X=x(τ1) = xTβ̂n(τ1) > xTβ̂n(τ2) = F̂−1

Y |X=x(τ2). (67)

which is rather strange as we know that the theoretical quantiles for τ1 < τ2 must satisfy

F−1
Y |X=x(τ1) ≤ F−1

Y |X=x(τ2).

Thus if one gets the inequality (67) (we also say that the regression quantiles cross) for x

from the support of the covariate, it might indicate the the assumed linear model for the

conditional quantile is not correct.

Transformed response

It is worth noting that if one models the conditional quantile of the transformed response,

that is one assumes that F−1
h(Y )|X(τ) = XTβ for a given increasing transformation h, then

τ = P
(
h(Y ) ≤ βTX |X

)
= P

(
Y ≤ h−1(XTβ) |X

)
,
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which implies that F−1
Y |X(τ) = h−1(XTβ). Analogously F−1

Y |X(1 − τ) = h−1(XTβ) for h de-

creasing. That is unlike for modelling of conditional expectation (through the least squares

method), here we still have a link between β and and the quantile of the original (not trans-

formed) response F−1
Y |X(τ).

Thus from the practical point of view even if β̂n(τ) is estimated from the response-

transformed data
(
X1

h(Y1)

)
, . . . ,

(
Xn

h(Yn)

)
, one can still estimate the conditional quantile of the

original (not transformed) data F̂−1
Y |X(τ) = h−1

(
XTβ̂n(τ)

)
(for h increasing). On the other

hand if we estimate the conditional expectation of E [h(Y )|X] as XTβ̂n, there is no general

way how to use β̂n to get an estimate of E [Y |X].

A very common and popular transformation is log-transformation, i.e. h(y) = log y. This

results in F−1
Y |X(τ) = eX

Tβ(τ) and eβk(τ) measures how many times the conditional quantile

F−1
Y |X(τ) changes when the k-th coordinate of the covariate is increased by adding one.

5.4 Inference for regression quantiles

Analogously as in Chapter 4.3.2 one can heuristically derive that under appropriate regularity

assumption for fixed τ ∈ (0, 1)

√
n
(
β̂n(τ)− βX(τ)

) d−−−→
n→∞

Np(0p,V),

where

V =
(
E
[
XXTfY |X

(
F−1
Y |X(τ)

)])−1
τ(1− τ)E XXT

(
E
[
XXTfY |X

(
F−1
Y |X(τ)

)])−1
. (68)

Note that if model (59) holds, then FY |X = β0 + X̃
T
β+F−1

ε (τ), where F−1
ε is the quantile

function of ε1 and thus

βX(τ) =

(
β0 + F−1

ε (τ)

β

)
.

Further if model (59) holds then

fY |X
(
F−1
Y |X(τ)

)
= fε

(
F−1
ε (τ)

)
,

which implies that

E
[
XXTfY |X

(
F−1
Y |X(τ)

)]
= fε

(
F−1
ε (τ)

)
E XXT

and

V =
τ(1− τ)[

fε
(
F−1
ε (τ)

)]2 (E XXT
)−1

. (69)
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Estimation of asymptotic variance of β̂n(τ)

Note that in general the asymptotic variance matrix (68) of β̂n(τ) is rather complicated and

it is not clear how to estimate it. That is why nonparametric bootstrap is of interest.

If model (59) holds, then the asymptotic variance matrix of β̂n(τ) simplifies considerably

and one gets

avar
(
β̂n(τ)

)
= 1

n

(
E XXT

)−1 τ(1−τ)

f2ε (F−1
ε (τ))

.

The matrix E XXT can be estimated as 1
n

∑n
i=1XiX

T
i . The difficulty is in estimating the

sparsity function s(τ) = 1
fε(F−1

ε (τ))
. In Chapter 4.10.1 of Koenker (2005) it is suggested that

one can use the following estimate

ŝn(τ) =
F̂−1
nε (τ + hn)− F̂−1

nε (τ − hn)

2hn
,

where F̂nε(y) = 1
n

∑n
i=1 I{Yi −X

T
i β̂n(τ) ≤ y} is the empirical distribution function of the

residuals and (the bandwidth) hn is a sequence going to zero as n → ∞. A possible choice

of hn (derived when assuming normal errors ε1, . . . , εn) is given by

hn = n−1/3 u
2/3
1−α/2

[
1.5ϕ2(uτ )

2u2τ+1

]1/3
,

where ϕ is the density of N(0, 1). For details and other possible choices of hn see Chapter 4.10.1

in Koenker (2005) and the references therein.

As estimating 1
fε(F−1

ε (τ))
is rather delicate, also in this situation the nonparametric boot-

strap (see Chapter 8.2 below) is of interest.

5.5 Asymptotic normality of sample quantiles∗

Suppose that we have a random sample X1, . . . , Xn, where X1 has a cumulative distribution

function F . Note that for a given τ ∈ (0, 1) thanks to Remark 16 one can view the sample

quantile F̂−1
n (τ) as the argument of minimum of a convex function. Thus analogously as in

Chapter 3.4.1 one can derive that if f(x) (the density of X1) is positive and continuous in a

neighbourhood of F−1(τ), then

√
n
(
F̂−1
n (τ)− F−1(τ)

) d−−−→
n→∞

N
(
0, τ(1−τ)

f2(F−1(τ))

)
.

Literature: Koenker (2005), Sections 2.1, 2.4, 4.2. 4.10. The end of the

self study for

the week (30. 3. -

3. 4. 2020)

∗ Not done at the lecture. It is assumed that it is known from the bachelor degree.
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6 EM-algorithm

It is an iterative algorithm to find the maximum likelihood estimator θ̂n in situations with

missing data. It is also often used in situations when the model can be specified with the help

of some unobserved variables and finding θ̂n would be (relatively) simple with the knowledge

of those unobserved variables.

Example 43. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x;π) =

G∑
j=1

πj fj(x),

where f1, . . . , fG are known densities and π = (π1, . . . , πG)T is a vector of unknown non-

negative mixing proportions such that
∑G

j=1 πj = 1. Find the maximum likelihood estimator

of the parameter π, i.e.

π̂n = arg max
π∈Θ

(
n∏
i=1

f(Xi;π)

)
,

where Θ =
{

(π1, . . . , πG)T : πj ∈ [0, 1],
∑G

j=1 πj = 1
}

.

Solution. A straightforward approach would be to maximize the log-likelihood

`n(π) =
n∑
i=1

log f(Xi;π) =
n∑
i=1

log

 G∑
j=1

πjfj(Xi)

 .

Using for instance the parametrization πG = 1 −
∑G−1

j=1 πj , the system of score equations is

given by

Ujn(π) =
∂`n(π)

∂πj
=

n∑
i=1

[
fj(Xi)∑G

l=1 πlfl(Xi)
− fG(Xi)∑G

l=1 πl fl(Xi)

]
!

= 0, j = 1, . . . , G− 1,

which requires some numerical routines.

Alternatively one can use the EM-algorithm, which runs as follows. Introduce Zi =

(Zi1, . . . , ZiG)T ∼ MultG(1;π), where

Zij =

{
1, Xi is generated from fj(x),

0, otherwise.

Note that one can think of our data as the realizations of the independent and identically

distributed random vectors
(
X1

Z1

)T
, . . . ,

(
Xn
Zn

)T
, where Z1, . . . ,Zn are missing.

Put X = (X1, . . . , Xn)T. The joint density of a random vector
(
Xi
Zi

)
is given by

fX,Z(x, z;π) = fX|Z(x|z;π) fZ(z;π) =

 G∑
j=1

zjfj(x)

 ·
 G∏
j=1

π
zj
j

 .
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In the context of EM algorithm the random sample
(
X1

Z1

)T
, . . . ,

(
Xn
Zn

)T
is called complete data.

The corresponding log-likehood is called complete log-likehood and it is given by

`Cn (π) = log


n∏
i=1

 G∑
j=1

Zijfj(Xi)

 G∏
j=1

π
Zij
j


=

n∑
i=1

log

 G∑
j=1

Zijfj(Xi)

+

n∑
i=1

 G∑
j=1

Zij log πj

 .
If we knew Z1, . . . ,Zn, then we would estimate simply π̂j = 1

n

∑n
i=1 Zij , j = 1, . . . , G. The

EM algorithm runs in the following two steps:

(i) E-step (Expectation step): Let π̂(k) be the current estimate of π. In this step we

calculate

Q
(
π, π̂(k)) = E

π̂(k) [`Cn (π) |X],

where the expectation is taken with respect to the unobserved random vectors Z1, . . . ,Zn.

More precisely one has to take the expectation with respect to the conditional distri-

bution of Z1, . . . ,Zn given X1, . . . , Xn. As this distribution depends on the unknown

parameter π, this parameter is replaced with the current version of the estimate π̂(k).

This is indicated by E
π̂(k) . Note that in this step one gets rid of the unobserved random

vectors Z1, . . . ,Zn.

(ii) M-step (Maximization step): The updated value of the estimate of π is calculated as

π̂(k+1) = arg max
π∈Θ

Q
(
π, π̂(k)).

E-step in a detail:

Q
(
π, π̂(k)) = E

π̂(k)

 n∑
i=1

log

 G∑
j=1

Zijfj(Xi)

∣∣∣∣∣∣ X
+ E

π̂(k)

 n∑
i=1

G∑
j=1

Zij log πj

∣∣∣∣∣∣ X
 . (70)

Note that the first term on the right-hand side of the above equation does not depend on π.

Thus we do not need to calculate this term for M-step. To calculate the second term it is

sufficient to calculate E
π̂(k)

[
Zij |X

]
. To do that denote ej = (0, . . . , 0, 1, 0, . . . , 0)T for the

j-th canonical vector. Now with the help of Bayes theorem for densities (Theorem A4) one

can calculate

E
π̂(k)

[
Zij |X

]
= E

π̂(k)

[
Zij |Xi

]
= P

π̂(k)(Zij = 1 |Xi) = fZ|X(ej |Xi; π̂
(k))

=
fX|Z(Xi|ej ; π̂(k))fZ(ej ; π̂

(k))

fX(Xi; π̂
(k))

=
fj(Xi) π̂

(k)
j∑G

l=1 fl(Xi) π̂
(k)
l

=: z
(k)
ij .
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M-step in a detail: Note that with the help of the previous step and (70)

Q
(
π, π̂(k)) = const+

n∑
i=1

G∑
j=1

z
(k)
ij log πj .

Analogously as when calculating the maximum likelihood estimator in a multinomial distri-

bution one can show that the updated value of the estimate of π is given by

π̂(k+1) = arg max
π∈Θ

Q
(
π, π̂(k)) =

1

n

n∑
i=1

z
(k)
i ,

where z
(k)
i =

(
z

(k)
i1 , . . . , z

(k)
iG

)T
and so π̂

(k+1)
j = 1

n

∑n
i=1 z

(k)
ij for j ∈ {1, . . . , G}.

6.1 General description of the EM-algorithm

Denote the observed random variables as Yobs and the unobserved (missing) random variables

Ymis. Let f(y;θ) be the joint density (with respect to a σ-finite measure µ) of Y = (Yobs,Ymis)

and denote `Cn (θ) the complete log-likelihood of Y. Our task is to maximize the observed log-

likelihood `obs(θ) = log f(Yobs;θ), where f(yobs;θ) is the density of Yobs. Note that

`Cn (θ) = log f(Yobs,Ymis;θ) = log
(
f(Ymis|Yobs;θ) f(Yobs;θ)

)
= log f(Ymis|Yobs;θ) + log f(Yobs;θ) = log f(Ymis|Yobs;θ) + `obs(θ),

where f(ymis|yobs;θ) stands for the conditional density of Ymis given Yobs = yobs. Thus one

can express observed log-likelihood with the help of complete log-likelihood as

`obs(θ) = `Cn (θ)− log f(Ymis|Yobs;θ). (71)

Finally denote

Q(θ, θ̃) = E
θ̃

[
`Cn (θ) |Yobs

]
. (72)

EM-algorithm runs as follows:

Let θ̂
(k)

be the result of the k-th iteration of the EM-algorithm. The next iteration θ̂
(k+1)

is computed in two steps:

E-step: Calculate Q
(
θ, θ̂

(k))
.

M-step: Find θ̂
(k+1)

= arg maxθ∈ΘQ
(
θ, θ̂

(k))
.

Note that at this moment it is not at all clear, if the EM-algorithm is a good idea. Remember

that our task is to maximize the observed likelihood. The following theorem is the first answer

in this aspect.
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Theorem 11. Let `obs(θ) be the observed likelihood and θ̂
(k)

be a result of the k-th iteration

of the EM-algorithm. Then

`obs

(
θ̂

(k+1)
)
≥ `obs

(
θ̂

(k)
)
.

Proof. Note that the left-hand side of (71) does not depend on Ymis. Thus applying E
θ̂
(k) [ · |Yobs]

on both sides of (71) yields that

`obs(θ) = E
θ̂
(k) [`Cn (θ) |Yobs]− E

θ̂
(k)

[
log f(Ymis|Yobs;θ)

∣∣Yobs]
=: Q

(
θ, θ̂

(k)
)
−H

(
θ, θ̂

(k)
)
. (73)

Now note that

`obs

(
θ̂

(k+1)
)

= Q
(
θ̂

(k+1)
, θ̂

(k)
)
−H

(
θ̂

(k+1)
, θ̂

(k)
)
,

`obs

(
θ̂

(k)
)

= Q
(
θ̂

(k)
, θ̂

(k)
)
−H

(
θ̂

(k)
, θ̂

(k)
)
.

Thus to verify `obs

(
θ̂

(k+1)
)
≥ `obs

(
θ̂

(k)
)

it is sufficient to show that

Q
(
θ̂

(k+1)
, θ̂

(k)
)
≥ Q

(
θ̂

(k)
, θ̂

(k)
)

and also H
(
θ̂

(k+1)
, θ̂

(k)
)
≤ H

(
θ̂

(k)
, θ̂

(k)
)
. (74)

Showing the first inequality in (74) is easy as from the M-step

θ̂
(k+1)

= arg max
θ∈Θ

Q
(
θ, θ̂

(k)
)
,

which implies that Q
(
θ̂

(k+1)
, θ̂

(k)
)
≥ Q

(
θ, θ̂

(k)
)

for each θ ∈ Θ.

To show the second inequality in (74) one gets with the help of Jensen’s inequality that for

each θ ∈ Θ:

H
(
θ, θ̂

(k)
)

= E
θ̂
(k)

[
log f(Ymis|Yobs;θ)

∣∣Yobs]
= E

θ̂
(k)

 log

 f(Ymis|Yobs;θ)

f
(
Ymis|Yobs; θ̂

(k))
∣∣∣∣∣∣Yobs

+ E
θ̂
(k)

[
log f

(
Ymis|Yobs; θ̂

(k))
|Yobs

]
Jensen
≤ log

E
θ̂
(k)

 f(Ymis|Yobs;θ)

f
(
Ymis|Yobs; θ̂

(k))
∣∣∣∣∣∣Yobs

+H
(
θ̂

(k)
, θ̂

(k)
)

= log

∫ f(ymis|Yobs;θ)

f
(
ymis|Yobs; θ̂

(k)) · f(ymis|Yobs; θ̂(k))
dµ(ymis)

+H
(
θ̂

(k)
, θ̂

(k)
)

= log(1) +H
(
θ̂

(k)
, θ̂

(k)
)

= H
(
θ̂

(k)
, θ̂

(k)
)
. (75)

76



6.2 Convergence of the EM-algorithm

Although from Theorem 11 we know that EM algorithm increases (more precisely does not

decrease) the observed log-likelihood, it is still not clear whether the sequence {θ̂
(k)
}∞k=1

converges. And if it converges what is the limit.

To answer this question we need to introduce the following regularity assumptions.

• The parameter space Θ is a subset of Rp.

• The set Θ0 =
{
θ ∈ Θ : `obs(θ) ≥ `obs(θ0)

}
is compact for any θ0 ∈ Θ such that

`obs(θ0) > −∞.

• `obs(θ) is continuous in Θ and differentiable in the interior of Θ.

Theorem 12. Let the function Q(θ, θ̃) defined in (72) be continuous both in θ and θ̃. Then

all the limit points of any instance
{
θ̂

(k)}
are stationary points of `obs(θ). Further

{
`obs
(
θ̂

(k))}
converges monotonically to some value `∗ = `obs(θ

∗), where θ∗ is a stationary point of `obs(θ).

Proof. See Wu (1983).

Note that if θ∗ is a stationary point of `obs(θ), then

∂`obs(θ)

∂θ

∣∣∣∣
θ=θ∗

= 0p.

Thus by Theorem 12 the EM-algorithm finds a solution of the system of log-likelihood equa-

tions but in generally there is no guarantee that this is a global maximum of `obs(θ).

Corollary 2. Let the assumptions of Theorem 12 be satisfied. Further suppose that the

function `obs(θ) has a unique maximum θ̂n that is the only stationary point. Then θ̂
(k)
→ θ̂n

as k →∞.

6.3 Rate of convergence of EM-algorithm

Note that in the M-step of the algorithm there might not be a unique value that maximizes

Q
(
θ, θ̂

(k)
)

. Thus denote the set of maximizing points as M
(
θ̂

(k)
)

, i.e.

M
(
θ̂

(k)
)

=
{
θ̃ : Q

(
θ̃, θ̂

(k)
)

= max
θ∈Θ

Q
(
θ, θ̂

(k)
)}

.

Then one needs to choose θ̂
(k+1)

as an element of the set M
(
θ̂

(k)
)

. Thus let M : Θ→ Θ be

a mapping such that

θ̂
(k+1)

= M
(
θ̂

(k)
)
.
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Let θ̂
(k)
→ θ∗ as k → ∞. Note that then θ∗ = M(θ∗). Assuming that M is sufficiently

smooth one gets by the one term Taylor expansion around the point θ∗ the following approx-

imation

θ̂
(k+1)

= M
(
θ̂

(k)
)

= M(θ∗)︸ ︷︷ ︸
=θ∗

+
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

(
θ̂

(k)
− θ∗

)
+ o

(∥∥∥θ̂(k)
− θ∗

∥∥∥) .
Thus

θ̂
(k+1)

− θ∗ =
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

(
θ̂

(k)
− θ∗

)
+ o

(∥∥∥θ̂(k)
− θ∗

∥∥∥) (76)

and the Jacobi matrix ∂M(θ)

∂θT

∣∣∣
θ=θ∗

measures approximately the rate of convergence. It can

be shown that
∂M(θ)

∂θT

∣∣∣∣
θ=θ∗

= [ICn (θ∗)]−1Imisn (θ∗), (77)

where

ICn (θ) = −E θ

[∂2`Cn (θ)

∂θ ∂θT

∣∣∣Yobs]
can be considered as the empirical Fisher information matrix from the complete data and

Imisn (θ) = −E θ

[∂2 log f(Ymis|Yobs;θ)

∂θ ∂θT

∣∣∣Yobs],
can be considered as the empirical Fisher information matrix of the contribution of the missing

data (that is not explained by the observed data).

Note that by (76) and (77) in the presence of missing data the convergence is only linear.

Further the bigger proportion of missing data the ‘bigger’ Imisn (θ) and the slower is the

convergence.

6.4 The EM algorithm in exponential families

Let the complete data Y have a density with respect to a σ-finite measure µ given by

f(y;θ) = exp

{ p∑
j=1

aj(θ)Tj(y)

}
b(θ) c(y) (78)

and the standard choice of the parametric space is

Θ =

{
θ :

∫
exp

{ p∑
j=1

aj(θ)Tj(y)

}
c(y) dµ(y) <∞

}
.

Note that T(Y) =
(
T1(Y), . . . , Tp(Y)

)T
is a sufficient statistic for θ.

The log-likelihood of the complete data is now given by

`Cn (θ) =

p∑
j=1

aj(θ)Tj(Y) + log b(θ) + const.,
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which yields that the function Q from the EM-algorithm is given by

Q
(
θ, θ̂

(k)
)

= E
θ̂
(k)

[
`Cn (θ)|Yobs

]
=

p∑
j=1

aj(θ) E
θ̂
(k)

[
Tj(Y)

∣∣Yobs]+ log b(θ) + const.

=

p∑
j=1

aj(θ) T̂
(k)
j + log b(θ) + const.,

where we put T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣Yobs].
The nice thing about exponential families is that in the E-step of the algorithm we do not

need to calculate Q
(
θ, θ̂

(k)
)

for each θ separately but it is sufficient to calculate

T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣Yobs], j = 1, . . . , p,

and in the M-step we maximize

θ̂
(k+1)

= arg max
θ∈Θ

{ p∑
j=1

aj(θ) T̂
(k)
j + log b(θ)

}
. (79)

Interval censoring

Let −∞ = d0 < d1 < . . . < dM =∞ be a division of R. Further let Y1, . . . , Yn be independent

and identically distributed random variables whose exact values are not observed. Instead

of each Yi we only know that Yi ∈ (dqi−1, dqi ], for some qi ∈ {1, . . . ,M}. Thus we observed

independent and identically distributed random variables X1, . . . , Xn such that Xi = qi if

Yi ∈ (dqi−1, dqi ].

Suppose now that Yi has a density f(y;θ) of the form

f(y;θ) = exp

{ p∑
j=1

aj(θ) tj(y)

}
b1(θ) c1(y).

Thus the joint density of the random sample Y1, . . . , Yn is of the form (78) where

Tj(Y) =
n∑
i=1

tj(Yi), j = 1, . . . , p.

Thus in the E-step of the EM-algorithm it is sufficient to calculate

T̂
(k)
j = E

θ̂
(k)

[
Tj(Y)

∣∣X1, . . . , Xn

]
=

n∑
i=1

E
θ̂
(k)

[
tj(Yi) |Xi

]
, j = 1, . . . , p,

and the M-step is given by (79) where b(θ) = bn1 (θ).
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Example 44. Suppose that Yi ∼ Exp(λ), i.e. f(y;λ) = λ e−λy I{y > 0}. Thus p = 1,

t1(y) = y, a1(λ) = −λ and b1(λ) = λ.

In the E-step one needs to calculate E λ̂(k) [Yi |Xi]. Note that the conditional distribution

of Yi given that Yi ∈ (a, b] has a density λe−λy

e−λa−e−λb
I{y ∈ (a, b]}. Thus with the help of the

integration by parts

Ŷ
(k)
i := E λ̂(k) [Yi |Xi = qi] =

1

e−λ̂
(k)dqi−1 − e−λ̂

(k)dqi

∫ dqi

dqi−1

x λ̂(k)e−λ̂
(k)x dx

=
dqi−1 e−λ̂

(k)dqi−1 − dqie−λ̂
(k)dqi

e−λ̂
(k)dqi−1 − e−λ̂

(k)dqi

+
1

λ̂(k)

and with the help of (79) one gets that

λ̂(k+1) = arg max
λ>0

{
Q
(
λ, λ̂(k)

)}
= arg max

λ>0

{
− λ

n∑
i=1

Ŷ
(k)
i + n log λ

}
=

1
1
n

∑
Ŷ

(k)
i

.

6.5 Some further examples of the usage of the EM algorithm

Example 45. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x) = w 1
σ1
ϕ
(x−µ1

σ1

)
+ (1− w) 1

σ2
ϕ
(x−µ2

σ2

)
,

where w ∈ [0, 1], µ1, µ2 ∈ R, σ2
1, σ

2
2 ∈ (0,∞) are unknown parameters and

ϕ(x) = 1√
2π

exp{−x2/2}

is the density of the standard normal distribution. Describe the EM algorithm to find the

maximum likelihood estimates of the unknown parameters.

Literature: McLachlan and Krishnan (2008) Chapters 1.4.3, 1.5.1, 1.5.3, 2.4, 2.7, 3.2, 3.4.4,

3.5.3, 3.9 and 5.9. The end of the

self study for the

week (6.4.-10.4.)

7 Missing data∗

For i = 1, . . . , I let Y i = (Yi1, . . . , Yini)
T represent the data of the i-th subject that could be

ideally observed. Let Ri = (Ri1, . . . , Rini)
T, where

Rij =

{
1, if Yij is observed ,

0, otherwise.

Let Yobs represent Yij such that Rij = 1 and Ymis represent Yij such that Rij = 0. Thus the

available data are given by

(Yobs,R1, . . . ,RI) = (Yobs,R),

∗ Chyběj́ıćı data
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where R = (R1, . . . ,RI). Note that the complete data can be represented as

(Y 1, . . . ,Y I ,R) = (Yobs,YmisR) =: (Y,R).

Suppose that the distribution of Y depends on a parameter θ (which we are interested in)

and the conditional distribution of R given Y depends on ψ. Then the joint density of the

complete data can be written as

f(y, r;θ,ψ) = f(r|y;ψ) f(y;θ).

Now integrating the above density with respect to ymis yields the density of the available

data

f(yobs, r;θ,ψ) =

∫
f(yobs,ymis;θ) f(r|yobs,ymis;ψ) dµ(ymis). (80)

In what follows we will say that the parameters θ and ψ are separable if θ ∈ Ωθ, ψ ∈ Ωψ

and (θ,ψ)T ∈ Ωθ × Ωψ.

7.1 Basic concepts for the mechanism of missing

Depending on what can be assumed about the conditional distribution of R given Y we

distinguish three situations.

Missing completely at random (MCAR). Suppose that R is independent of Y, thus one can

write f(r|y;ψ) = f(r;ψ) and with the help of (80) one gets

f(yobs, r;θ,ψ) = f(yobs;θ)f(r;ψ),

which further implies that the observed log-likelihood is of the form

`obs(θ,ψ) = log f(Yobs;θ) + log f(R;ψ).

Note that if the parameters θ and ψ are separable then the second term on the right-hand

side of the above equation does not depend on θ and can be ignored when one is interested

only in θ.

Example 46. Let Y1, . . . , Yn be a random sample from the exponential distribution Exp(λ).

Let R1, . . . , Rn be a random sample independent with Y1, . . . , Yn and Ri follows a Bernoulli

distribution with a parameter pi (e.g. pi = 1
1+i).

Missing at random (MAR). Suppose that the conditional distribution ofR given Y is the same

as the conditional distribution of R given Yobs. Thus one can write f(r|y;ψ) = f(r|yobs;ψ)

and with the help of (80)

f(yobs, r;θ,ψ) = f(yobs;θ)f(r|yobs;ψ),
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which further implies that the observed log-likelihood is of the form

`obs(θ,ψ) = log f(Yobs;θ) + log f(R|Yobs;ψ).

Note that although MAR is not so strict in assumptions as MCAR, also here the second term

on the right-hand side of the above equation does not depend on θ provided that θ and ψ

are separable.

Example 47. Let (XT
1 , Y1, R1)T, . . . , (XT

n , Yn, Rn)T be independent and identically distri-

buted random vectors, where the covariates X1, . . . ,Xn are always completely observed. Let

Ri stand for the indicator of missing of Yi and

P(Ri = 1 |Xi, Yi) = r(Xi),

where r(x) is a given (but possibly unknown) function.

Missing not at random (MNAR). In this concept neither the distribution of R is independent

of Y nor the conditional distribution of R given Yobs is independent of Ymis. Thus the

density of the observed data is generally given by (80). To proceed one has to make some

other assumptions about the conditional distribution of R given Y (i.e. about the density

f(r|yobs,ymis;ψ)).

Example 48. Maximum likelihood estimator for the right-censored data from an exponential

distribution. Suppose that Y1, . . . , Yn is a random sample from the exponential distribution

with the density f(x;λ) = λe−λxI{x > 0}. Nevertheless we observe Yi only if Yi ≤ C, where

C is a known constant (e.g. duration of the study). If Yi > C then we do not know observe

the value of Yi (we only now that Yi is greater than C).

Note that

f(yobs,ymis;λ) =
n∏
i=1

λe−λyi

and

f(r|yobs,ymis) =
n∏
i=1

[
I{yi ≤ C}

]ri[I{yi > C}
]1−ri .

Although this conditionally density depends on ymis (thus the we are in a situation of MNAR),

we can proceed because this conditionally density is completely known.

Let n0 be the number of fully observed Yi (i.e. n0 =
∑n

i=1 I{Yi ≤ C}). For simplicity of

notation assume that Y1, . . . , Yn are ordered in such a way that Y1, . . . , Yn0 are fully observed

and Yn0+1, . . . , Yn are censored (i.e. Yi > C for i ∈ {n0 + 1, . . . , n}). Thus the corresponding

components of R are given by Ri = 1 for i ∈ {1, . . . , n0} and zero otherwise.
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Now with the help of (80) one can calculate

f(Y obs,R;λ) =

n0∏
i=1

λe−λYi
∫ ∞
C
· · ·
∫ ∞
C

n∏
i=n0+1

λ e−λyidyn0+1, . . . ,dyn

= λn0e−λ
∑n0
i=1 Yi

[
e−λC

]n−n0 .

The corresponding log-likelihood of the observed data is

`obs(λ) = n0 log λ− λ
n0∑
i=1

Yi − (n− n0)Cλ,

which is maximised at

λ̂n =
1

1
n0

∑n0
i=1 Yi + (n−n0)C

n0

.

Note that the above example is in fact rather exceptional as the missing mechanism is given

by the design of the study and thus known.

The general problem of all the concepts is that if missing is not a part of the

design of the study then no assumptions about the relationship of Ymis and R can

be verified as we do not observe Ymis.

7.2 Methods for dealing with missing data

Complete case analysis (CCA)

In the analysis we use only the subjects with the full record, i.e. only subjects for which no

information is missing.

Advantages and disadvantages:

+ simplicity;

− the inference about θ is ‘biased’ (i.e. the parameter θ is generally not identified), if

MCAR does not hold;

− even if MCAR holds, then this method may not provide an effective use of data.

Example 49. Suppose that we have five observations on each subject. Each observation is

missing with probability 0.1 and the observations are missing independently on each other.

Thus on average only 59 % (0.95 .
= 0.59) of the records will be complete.
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Available case analysis (ACA)

In each of the analyses one uses all the data that are available for this particular analysis.

Example 50. Let X1, . . . ,Xn be a random sample from N((µ1, µ2, µ3)T,�3×3). Then the

covariance σij = cov(X1i, X1j) is estimated from all the vectors X1, . . . ,Xn for which both

the i-th and the j-th coordinate is observed.

Advantages and disadvantages:

+ simplicity;

+ more data can be used than with CCA;

− the inference about θ is biased, if MCAR does not hold;

− it can result in estimates with strange features (e.g. there is no guarantee that the

estimate of the variance matrix �̂ in Example 50 is positive semidefinite).

Direct (ignorable) observed likelihood

The inference is based on log f(Yobs;θ), that is the distribution of R is ‘ignored’.

Advantages and disadvantages:

+ If the parameters θ and ψ are separable then this method is not biased and does not

lose any information provided MAR holds;

− The observed log-likelihood `obs(θ) might be difficult to calculate. Nevertheless, some-

times the EM algorithm can be helpful.

Imputation

In this method the missing observations are estimated (‘imputed’) and then one works with

the data as if there were no missing values.

Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimates of

the unknown parameters;

+ One can use the completed dataset also for other analyses;

− The standard estimates of the (asymptotic) variances of the estimates of the parameters

computed from the completed dataset are too optimistic (too low). The reason is that an

appropriate estimate of variance should reflect that part of the data has been imputed.
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Example 51. Suppose that X1, . . . , Xn is a random sample. Further suppose that we observe

only X1, . . . , Xn0 for some n0 < n and the remaining observations Xn0+1, . . . , Xn are missing.

For i = n0 + 1, . . . , n let the missing observations be estimated as X̂i = 1
n0

∑n0
j=1Xj . Then

the standard estimate of µ = E X1 is given by

µ̂n =
1

n

(
n0∑
i=1

Xi +
n∑

i=n0+1

X̂i

)
=

1

n0

n0∑
j=1

Xj

and seems to be reasonable.

But the standard estimate of the variance of µ̂n computed from the completed dataset

̂var(µ̂n) =
S2
n

n
, where S2

n =
1

n− 1

( n0∑
i=1

(Xi − µ̂n)2 +

n∑
i=n0+1

(Xi − µ̂n)2

)
is too small. The first reason is that S2

n as the estimate of var(X1) is

S2
n =

1

n− 1

n0∑
i=1

(Xi − µ̂n)2 =
n0 − 1

n− 1
S2
n0
< S2

n0
.

The second reason is that the factor 1
n assumes that there are n independent observations,

but in fact there are only n0 independent observations.

Multiple imputation

In this method the missing observations are imputed several times. Formally, for j = 1, . . . ,M

let Ŷ(j)
mis be the imputed values in the j-th round. Further let θ̂j be the estimate of the

parameter θ from the completed data
(
Yobs, Ŷ

(j)
mis

)
. Then the final estimate of the parameter θ

is given by

θ̂MI =
1

M

M∑
j=1

θ̂j .

The advantage of this method is that one can also estimate the (asymptotic) variance of this

estimator by
̂

var(θ̂MI) = VM +
(
1 + 1

M

)
BM , (81)

where

VM =
1

M

M∑
j=1

V̂j and BM =
1

M − 1

M∑
j=1

(
θ̂j − θ̂MI

) (
θ̂j − θ̂MI

)T
,

with V̂j being a standard estimate of the asymptotic variance calculated from the completed

data Ŷ(j) = (Yobs, Ŷ
(j)
mis).

The rationale of the formula (81) is as follows. Note that

var
(
θ̂MI

)
= E

(
var(θ̂MI | Ŷ(j))

)
+ var

(
E (θ̂MI | Ŷ(j))

)
.
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Now the first term on right-hand side of the above equation is estimated by VM and the

second term is estimated by BM .

Example 52. In Example 51 one can for instance impute the values Xn0+1, . . . , Xn by a

random sample from N(µ̂, σ̂2), where µ̂ = Xn0 and σ̂2 = S2
n0

are the sample mean and

variance calculated from the observed data. Put V̂j = S
2(j)
n
n , where S

2(j)
n is the sample variance

calculated from the j-th completed sample. Then one can show that

lim
M→∞

VM =
S2
n0

n
a.s.. (82)

Further let θ̂j = Y
(j)
n be the sample mean calculated from the j-th completed sample. Then

it can be shown that

lim
M→∞

BM =
S2
n0

(n− n0)

n2
a.s.. (83)

Now combining (82) and (83) yields that

lim
M→∞

VM +BM = S2
n0

(
2
n −

n0
n2

)
a.s.

Further it is straightforward to prove that for n0 < n

S2
n0

(
2
n −

n0
n2

)
<
S2
n0

n0
,

where the right-hand side of the above inequality represents the standard estimate of the

variance of Xn0 (that assumes MCAR). This indicates that when doing multiple imputation,

one needs to take into consideration also the variability that comes from the fact that one

uses the estimates µ̂, σ̂2 instead of the true values of µ and σ. This can be done very naturally

within the framework of Bayesian statistics.

Advantages and disadvantages:

+ If the missing values are estimated appropriately, it can give ‘reasonable’ estimate of

the unknown parameter as well as of the variance of this estimate.

− To be done properly it requires the knowledge of Bayesian approach to statistics.

Re-weighting

Roughly speaking in this method each observation is given a weight (wi) that is proportional

to the inverse probability of being observed (πi), i.e.

wi =
1
πi∑

j:Rj=1
1
πj

, i ∈ {j : Rj = 1}.
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All the procedures are now weighted with respect to these weights, e.g. the M -estimator of

a parameter θ is given by

θ̂n = arg min
θ∈Θ

∑
i:Ri=1

wi ρ(Xi;θ).

Example 53. Suppose we have a study where for a large number of patients some basic and

cheap measurements have been done resulting in Z1, . . . ,ZN . Now a random subsample S of

size n from these patients has been done for some more expensive measurements. Note that

then S =
{
j ∈ {1, . . . , N} : Rj = 1

}
.

This method can be also used where one has some auxiliary variables Z1, . . . ,Zn that can

be used to estimate the probabilities πi with the help of for instance a logistic regression. The end of the

self study for

the week (13. 4. -

17. 4. 2020)

8 Bootstrap and other resampling methods

Suppose we observe independent and identically distributed k-dimensional random vectors

X1, . . . ,Xn from the distribution FX and let θX = θ(FX) be the quantity of interest. Let

Rn = g(X1, . . . ,Xn;θX) be a p-dimensional random vector that we want to use for doing

inference about θX , e.g.

Rn =
√
n
(
θ̂n − θX

)
or Rn =

(
θ̂n − θ0

)T[ ̂
avar(θ̂n)

]−1(
θ̂n − θ0

)
,

where θ̂n is an estimator of θX .

For doing inference about parameter θ, one needs to know the distribution of Rn. Usually

we are not able to derive the exact distribution of Rn analytically. For instance consider the

distribution of
√
n
(
θ̂n − θX

)
, where θ̂n is a maximum likelihood estimator whose formula

cannot be explicitly given. In such situations the inference is often based on the asymptotic

distribution of Rn. For example by Theorem 5 for a MLE estimator in regular models one

has
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p, I

−1(θX)
)
. Bootstrap presents an alternative to using the

asymptotic normality. As we will see later, bootstrap combines the ‘Monte Carlo principle’

and ‘substitution (plug-in) principle’.

8.1 Monte Carlo principle

Sometimes one knows the distribution of Xi and thus also of X = (X1, . . . ,Xn) so one

is (at least theoretically) able to derive the distribution of Rn = (Rn1, . . . , Rnp)
T. But the

derivations are too complicated and/or the resulting distribution is too complex to work with.

For instance consider the standard maximum likelihood tests without nuisance parameters as

in Chapter 2.4 when the null hypothesis holds.
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Note that if one knows the distribution of X = (X1, . . . ,Xn), then one can generate X∗,

which has the same distribution as X. Monte-Carlo principle thus runs as follows. Choose B

sufficiently large and for each b ∈ {1, . . . , B} independently generate the random samples

X
∗
b = (X∗1,b, . . . ,X

∗
n,b)

T such that the distribution of X∗b is the same as the distribution of X.

Thus we get B independent samples X∗1, . . . ,X
∗
B. Let R∗n,b be the quantity Rn calculated

from the b-th sample X∗b . The unknown distribution function

Hn(x) = P
(
Rn ≤ x

)
,

can now be estimated as

Ĥn,B(x) =
1

B

B∑
b=1

I
{
R∗n,b ≤ x

}
.

As R∗n,1, . . . ,R
∗
n,B are independent and identically distributed random variables and each

variable has the same distribution as Rn, the Glivenko-Cantelli Theorem (Theorem A3)

implies

sup
x∈Rp

∣∣Ĥn,B(x)−Hn(x)
∣∣ a.s.−−−−→
B→∞

0. (84)

Thus for a sufficiently large B one can use Ĥn,B(x) as an approximation of Hn(x).

Note that to achieve (84) it is not necessary to know the distribution of X exactly nor that

X1, . . . ,Xn are independent and identically distributed. The only thing we need is that we

are able to generate independent copies of Rn.

Application to hypotheses testing

If Rn is a (one-dimensional) test statistic whose large values are in favour of the alternative

hypothesis, then with the help of the Monte-Carlo principle the p-value of the test can be

approximated (estimated) by

p̂B =
1 +

∑B
b=1 I{R∗n,b ≥ Rn}
B + 1

,

as

p̂B =
1 +B

(
1− Ĥn,B(Rn−)

)
B + 1

a.s.−−−−→
B→∞

1−Hn(Rn−),

which is the ‘true’ (precise) p-value. Note that the quality of the approximation of p̂B as an

estimate of 1−Hn(Rn−) depends on B which we can take as large as we want (provided that

enough computation time is available).

Example 54. Suppose we observe a random variable with the multinomial distribution

MK(n; p1, . . . , pK). Denote p =
(
p1, . . . , pK

)T
and pX be the true value of the parameter p.

In some applications we are interested in testing

H0 : pX = p(0) vs. H1 : pX 6= p(0),
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where p(0) =
(
p

(0)
1 , . . . , p

(0)
K

)T
is a given vector. Explain how the Monte Carlo principle can

be used to estimate the p-value of the χ2-test of goodness of fit.

Example 55. Note that the significance of all the test statistics introduced in Chapter 2.4

for testing the null hypothesis H0 : θX = θ0 against the alternative H1 : θX 6= θ0 can be

assessed with the help of Monte Carlo principle.

In the following examples we will utilize that in fact it is not necessary to know the data-

generating mechanism of X exactly, provided we are able to generate independent copies

of Rn.

Example 56. Let (Y1, X1)T, . . . , (Yn, Xn)T be independent and identically distributed ran-

dom vectors from the bivariate normal distribution with the true value of the correlation

coefficient denoted as ρX . Suppose we are interested in testing the null hypothesis

H0 : ρX = ρ0, vs. H1 : ρX 6= ρ0. (85)

It can be showed that the distribution of the sample correlation coefficient ρ̂n depends only

on ρX . Thus one should be able (at least theoretically) calculate the distribution of the test

statistic Rn =
√
n (ρ̂n − ρ0) when the null hypothesis holds. But this distribution would be

very complicated.

Suggest how one can generate random variables (Y ∗1 , X
∗
1 )T, . . . , (Y ∗n , X

∗
n)T such that the

distribution of R∗n =
√
n (ρ̂∗n − ρ0) has under the null distribution the same distribution

as Rn. Think how this can be used to calculate (estimate) the p-value of the test of the

hypothesis (85).

Example 57. Let X1, . . . , Xn be a random sample from the distribution FX . Show how the

Monte Carlo principle can be used to test the following hypotheses

H0 : FX(x) = F0(x), ∀x ∈ R, H1 : ∃x ∈ R FX(x) 6= F0(x).

Example 58. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from the

the exponential distributions with the density f(x, λ) = λe−λxI[x > 0]. Let λX be the true

value of the parameter for the first sample and λY for the second sample. Show how the

Monte Carlo principle can be used to to test the following hypotheses

H0 : λX = λY , H1 : λX 6= λY .

Application to confidence intervals∗

Note that if Rn is one dimensional then also for each fixed u ∈ (0, 1):

Ĥ−1
n,B(u)

a.s.−−−−→
B→∞

H−1
n (u),

∗ Not done at the lecture.
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provided that Hn is continuous and increasing in u.∗ Thus one can use the quantiles H−1
n,B(u)

as estimate (approximation) of the quantiles H−1
n (u).

Let θ̂n =
(
θ̂n1, . . . , θ̂np

)T
be an estimate of θX =

(
θX1, . . . , θXp

)T
and Rn = θ̂n − θX .

Suppose that one is able to generate random variable R∗n with the same distribution as Rn.

Further suppose that we want to find the confidence interval for θXk (the k-th component

of θX). Denote Hn the distribution function of θ̂nk − θXk and Hn,B the empirical distribu-

tion function of the k-th component of R∗n,1, . . . ,R
∗
n,B. Now provided that the distribution

function Hn is continuous and increasing in H−1
n (α/2) and H−1

n (1− α/2), then one gets

lim
B→∞

P
(
Ĥ−1
n,B(α/2) < θ̂nk − θXk < Ĥ−1

n,B(1− α/2)
)

= 1− α.

Thus the approximate confidence interval for θXk can be calculated as(
θ̂nk − Ĥ−1

n,B(1− α/2), θ̂nk − Ĥ−1
n,B(α/2)

)
.

Example 59. Let X1, . . . , Xn be a random sample from a distribution FX such that FX

belongs to a location family, i.e.

FX ∈ F =
{
F (· − θ), θ ∈ R

}
,

where F is a known function and θ is an unknown parameter.

Let θX be the true value of the parameter θ (i.e. FX(x) = F (x− θX), for all x ∈ R) and θ̂n

be its estimator that is location equivariant, i.e.

θ̂n(X1 + c, . . . ,Xn + c) = θ̂n(X1, . . . , Xn) + c, ∀c ∈ R.

Then the distribution of Rn = θ̂n − θX depends only on the known function F but it does

not depend on θX . Thus the distribution of Rn can be approximated by simulating from the

distribution with a given θ0 (i.e. θ0 = 0) and calculating R∗n,b = θ̂∗n − θ0.

Usually in practice we do not know the data generating process completely. But very often

we are able to estimate the distribution of X. Depending on whether this distribution is

estimated parametrically or nonparametrically we distinguish parametric or nonparametric

bootstrap.

8.2 Standard nonparametric bootstrap

Suppose we observe independent and identically distributed random vectors X1, . . . ,Xn

from the distribution FX . Let θ(FX) be the quantity of interest and θ̂n be its estimator. For

∗ In fact it is sufficient to assume that H−1
n (u) is a unique solution of Hn(x−) ≤ u ≤ Hn(x), see e.g. Theorem

of Section 2.1.3 in Serfling (1980).
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presentation purposes it will be instructive to write the estimator as θ̂n = θ(F̂n), with F̂n

being the empirical distribution

F̂n(x) =
1

n

n∑
i=1

I{Xi ≤ x}.

Suppose we are interested in the distribution of a p-dimensional random vector

Rn = gn
(
θ̂n,θX

)
= gn

(
θ(F̂n),θ(FX)

) (
e.g. Rn =

√
n
(
θ̂n − θX

))
.

In nonparametric bootstrap∗ the unknown FX is estimated by the empirical distribution

function F̂n. Now generating independent random vectors X∗1, . . . ,X
∗
n from the distribu-

tion F̂n is equivalent to drawing a simple random sample with replacement† of size n from the

observed values X1, . . . ,Xn, i.e. P(X∗i,b = Xj |X) = 1
n for each b = 1, . . . , B, i, j = 1, . . . , n

and all the random variables
{
X∗i,b; i = 1, . . . , n, b = 1, . . . , B

}
are independent.

The bootstrap algorithm now runs as follows. Choose B sufficiently large and for each

b ∈ {1, . . . , B} independently generate the datasets X∗b = (X∗1,b, . . . ,X
∗
n,b)

T (i.e. the datasets

X
∗
1, . . . ,X

∗
B are independent). Let

R∗n,b = gn
(
θ̂
∗
n,b, θ̂n

)
= gn

(
θ(F̂ ∗n,b),θ(F̂n)

) (
e.g. R∗n,b =

√
n
(
θ̂
∗
n,b − θ̂n

))
,

where θ̂
∗
n,b is an estimator of θ based on X∗b and analogously F̂ ∗n,b is an empirical distribution

function based on X∗b . The unknown distribution function Hn(x) of Rn, i.e.

Hn(x) = P
(
Rn ≤ x

)
,

is now (by the combination of the MC and plug-in principle) estimated by

Ĥ∗n,B(x) =
1

B

B∑
b=1

I
{
R∗n,b ≤ x

}
. (86)

Note that the random variables/vectors R∗n,1, . . . ,R
∗
n,B are independent and identically

distributed as a generic random vector R∗n. As R∗n,1, . . . ,R
∗
n,B forms a random sample then

by the Glivenko-Cantelli Theorem (Theorem A3)

sup
x∈Rp

∣∣Ĥ∗n,B(x)− Ĥn(x)
∣∣ a.s.−−−−→
B→∞

0,

where

Ĥn(x) = P
(
R∗n ≤ x |X

)
= P

(
gn
(
θ(F̂ ∗n),θ(F̂n)

)
≤ x |X

)
= P

(
gn
(
θ̂
∗
n, θ̂n

)
≤ x |X

)
. (87)

∗ neparametrický bootstrap † prostý náhodný výběr s vraceńım
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Note that Ĥn depends on the random sample X and thus can be viewed as the estimator

of the distribution function Hn. The crucial question for the success of the nonparametric

bootstrap is whether Ĥn is ‘close’ (at least asymptotically) to Hn. To answer this question it

is useful to introduce the supremum metric on the space of distribution functions (of random

vectors on Rp) as

ρ∞(H1, H2) = sup
x∈Rp

∣∣H1(x)−H2(x)
∣∣.

The following lemma states that if the distribution function of the limiting distribution is

continuous, then ρ∞ can be used for metrizing the convergence in distribution.

Lemma 7. Suppose that Y 1,Y 2, . . . and Y be random vectors (with values in Rp) with the

corresponding distribution functions G1, G2, . . . and G. Further let the distribution function G

be continuous. Then Yn
d−−−→

n→∞
Y if and only if ρ∞(Gn, G)→ 0 as n→∞.

Proof. We would like to show that

ρ∞(Gn, G) −−−→
n→∞

0 ⇐⇒ Gn
w−−−→

n→∞
G.

The implication ⇒ is straightforward as supy∈Rp |Gn(y) − G(y)| → 0 implies that Gn(y) →
G(y) for each y ∈ Rp.

The implication∗ ⇐ is more difficult. By the continuity of G for each ε > 0 there exists a

finite set of points Bε = {y1, . . . ,yN} such that for each y ∈ Rp one can find yL,yU ∈ Bε
that

yL ≤ y ≤ yU , and G(yU )−G(yL) ≤ ε
2 .

Thus for each y ∈ Rp one can bound

Gn(y)−G(y) ≤ Gn(yU )−G(y) ≤ Gn(yU )−G(yU ) + ε
2 (88)

and analogously also

Gn(y)−G(y) ≥ Gn(yL)−G(y) ≥ Gn(yL)−G(yL)− ε
2 . (89)

Now combining (88) and (89) together with Gn
w−−−→

n→∞
G one gets that for all sufficiently

large n

sup
y∈Rp

∣∣Gn(y)−G(y)
∣∣ ≤ max

y∈Bε

∣∣Gn(y)−G(y)
∣∣+ ε

2 ≤
ε
2 + ε

2 = ε,

which implies the statement of the lemma.

Recall the random vector R∗n whose distribution function is given by (87). Note that

the distribution of R∗n depends on (the realizations of our data) X1, . . . ,Xn. Thus the

∗ This implication not shown at the lecture.
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distribution R∗n is conditionally on X1, . . . ,Xn. Thus in what follows we would like to define

the convergence of the conditional distributions.

Let ρ be a metric on the space of distribution functions that can be used for metrizing weak

convergence (for instance the supremum metric, but in literature other metrics can be found).

Let R be a candidate for the limiting random vector and H be its distribution function. Recall

that the distribution Ĥn given by (87) depends on X1, . . . ,Xn. Thus ρ(Ĥn, H) is in fact a

random variable (also depending on X1, . . . ,Xn).

Now we say that conditionally on X1,X2, . . . the random variable R∗n converges in

distribution to R in probability if

ρ(Ĥn, H)
P−−−→

n→∞
0
(

i.e. for each ε > 0 lim
n→∞

P
[
ω ∈ Ω : ρ

(
Ĥn(ω), H

)
≥ ε
]

= 0
)
.

Analogously we say that conditionally on X1,X2, . . . the random variable R∗n converges

in distribution to R almost surely if

ρ(Ĥn, H)
a.s.−−−→
n→∞

0
(

i.e. P
[
ω ∈ Ω : lim

n→∞
ρ
(
Ĥn(ω), H

)
= 0
]

= 1
)
.

Theorem 13. Suppose that Rn
d−−−→

n→∞
R, where R is a random vector with a continuous

distribution function H. Further suppose that

ρ∞(Ĥn, Hn)
P−−−→

n→∞
0 (or

a.s.−−−→
n→∞

0), (90)

then conditionally on X1,X2, . . . one gets R∗n
d−−−→

n→∞
R in probability (or almost surely).

Proof. By the triangle inequality, (90) and Lemma 7

ρ∞(Ĥn, H) ≤ ρ∞(Ĥn, Hn) + ρ∞(Hn, H)
P−−−→

n→∞
0 (or

a.s.−−−→
n→∞

0).

Although the proof of the above theorem is simply, there are several things worth noting.

It is assumed that Rn
d−−−→

n→∞
R, where R is a random vector with a continuous distribution

function. This requires that we use bootstrap to approximate a distribution that is asymp-

totically not degenerate. This is analogous to the the use of normal approximation (to which

using bootstrap is an alternative), where we also normalize the random vector so that it

asymptotically has a non-degenerate distribution.

Typically we know that Rn converges to a multivariate normal distribution, thus also the

continuity of the limit distribution of R is satisfied. Thus in view of Theorem 13 the crucial

question to answer is if the convergence (90) holds. The first answer in this aspect is the next

theorem, which states that (90) holds for a sample mean (for the proof see e.g. Theorem 23.4 of

van der Vaart, 2000, pp. 330–331). This initial result will be later generalized in Section 8.2.2.
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Theorem 14. Let X1,X2, ... be independent identically distributed random vectors such that

E ‖X1‖2 <∞ and consider Rn =
√
n
(
Xn − E X1

)
and R∗n =

√
n
(
X
∗
n −Xn). Then

ρ∞(Ĥn, Hn)
a.s.−−−→
n→∞

0. (91)

Note that for X1 being a p-variate random vector the central limit theorem implies that the

distribution function Hn converges weakly to the distribution function of Np
(
0p, var(X1)

)
.

Now Theorems 13 and 14 imply that conditionally on X1,X2, . . .

R∗n
d−−−→

n→∞
Np
(
0p, var(X1)

)
, almost surely.

Thus one can say that Ĥn estimates also the distribution function of Np
(
0p, var(X1)

)
.

Example 60. Let X1, . . . , Xn be independent and identically distributed random variables

and we are interested in the expectation E Xi. The usually approach to find the confidence

interval for E Xi is to make use of the convergence

√
n
(
Xn − E Xi

)
Sn

d−−−→
n→∞

N(0, 1), (92)

which holds provided that var(Xi) ∈ (0,∞).

In view of the theory presented above we want to approximate/estimate the distribution

function

Hn(x) = P(Rn ≤ x), where Rn =
√
n
(
Xn − E Xi

)
.

With the help of (92) the estimate of this distribution based on the normal approximation is

Ĥ(norm)
n (x) = Φ(xSn).

Alternatively one can use the nonparametric bootstrap resulting in an estimator Ĥ∗n,B, see (86).

Figure 60 illustrates the normal and the bootstrap approximation (with B = 10 000) for

the sample sizes n = 30 and n = 1 000 when the true distribution of Xi is exponential

Exp(1). In the plots in the first column one can find the densities of the true distribution

of Rn =
√
n
(
Xn − E Xi

)
(black solid), the normal approximation (blue solid) and limit

distribution which is N(0, 1) (dotted). The bootstrap approximation is given by the histogram.

In the plots in the second column one can find the difference of the true distribution

function Hn of Rn with its estimates. The difference Hn(x) − Ĥ(norm)
n (x) is in blue colour,

while the difference Hn(x) − Ĥn,B(x) is in red colour. Note that these differences are much

smaller for the bigger sample size. It is also worth noting that none of the approximation is

evidently preferable in this example.
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Figure 2: Comparison of the normal and bootstrap approximations of the distribution of the

random variable Rn =
√
n (Xn − E Xi).
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8.2.1 Comparison of nonparametric bootstrap and normal approximation

Note that Theorem 13 implies only the asymptotic validity of bootstrap provided that (90)

holds. The question is whether bootstrap estimate Ĥn is a better estimate of Hn than the

asymptotic distribution of H where one estimates the unknown parameters.

To answer the above question, consider p = 1. Further let X1 have a continuous distribution

and put γ1 = E
(X1−µ

σ

)3
, where µ = E X1, σ

2 = var(X1). Further let E X4
1 <∞. Then it can

be proved that

Hn(x) = P
(√

n (Xn−µ)
Sn

≤ x
)

= Φ(x) + γ1
6
√
n

(2x2 + 1)ϕ(x) +O
(

1
n

)
, (93)

whereXn = 1
n

∑n
i=1Xi, Sn = 1

n−1

∑n
i=1(Xi−Xn)2. Further it can be shown that an analogous

approximation also holds for Ĥn(x), i.e.

Ĥn(x) = P
(√

n (X
∗
n−Xn)
S∗n

≤ x
∣∣X) = Φ(x) + γ1n

6
√
n

(2x2 + 1)ϕ(x) +OP
(

1
n

)
, (94)

where X
∗
n = 1

n

∑n
i=1X

∗
i , S2∗

n = 1
n−1

∑n
i=1(X∗i − X

∗
n)2 and γ1n = 1

n

∑n
i=1

(
Xi−Xn
Sn

)3
. Thus

comparing (93) and (94) one gets

Ĥn(x)−Hn(x) = OP
(

1
n

)
.

On the other hand if γ1 6= 0, then by the normal approximation one gets only

Φ(x)−Hn(x) = O
(

1√
n

)
.

Thus if γ1 6= 0 then one can expect that in comparison with Φ the bootstrap estimator Ĥn is

closer to Hn.

Example 61. We are in the same situation as in Example 60. But instead of approxi-

mating/estimating the distribution
√
n (Xn − E Xi), we approximate the distribution of its

studentized version, i.e.

Rn =

√
n (Xn − E Xi)

Sn
.

Note that the normal approximation of the distribution of Rn is simply given by Ĥ
(norm)
n (x) =

Φ(x). The comparison of the true distribution function with its either normal or bootstrap

approximation is found in Figure 61. Similarly as in Example 60 the results are for the

random sample from the exponential distribution. Note that in agreement with the theory,

the bootstrap approximation is better than the normal approximation.
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Figure 3: Comparison of the normal and bootstrap approximation of the distribution of the

random variable Rn =
√
n (Xn−E Xi)

Sn
.

8.2.2 Smooth transformations of sample means

The standard nonparametric bootstrap also works for ‘smooth’ transformations of sample

means.

Theorem 15. Let X1,X2, . . . be independent identically distributed random (p-variate) vec-

tors such that E ‖X1‖2 < ∞. Further suppose that there exists a neighbourhood U of

µ = E X1 such that the function g : U → Rm has continuous partial derivatives in this

neighbourhood. Consider Rn =
√
n
(
g(Xn)− g(µ)

)
and R∗n =

√
n
(
g(X

∗
n)− g(Xn)

)
. Then

(91) holds.

The above theorem can be of interest for functions of (sample) moments whose asymptotic

distribution is difficult to derive (e.g. Pearson’s correlation coefficient, skewness, kurtosis,. . . ).

Remark 17. Suppose for simplicity that g : Rp → R. Let � = var(X1). Note that if

∇gT(µ)�∇g(µ) = 0, then although (91) holds, the bootstrap might be not useful as the

limiting distribution of Rn is degenerate.

To illustrate this consider p = 1. Let X1, . . . , Xn be a random sample from the distribution

with E X1 = µX . Further let g be a twice continuously differentiable function in µX such that

g′(µX) = 0 and g′′(µX) 6= 0. Then by Theorem 3 one gets Rn =
√
n
(
g(Xn)−g(µX)

) P−−−→
n→∞

0.

Thus although by Theorem 15 convergence (91) holds, one cannot say if bootstrap works as

the limiting distribution is not continuous (i.e. assumptions of Theorem 13 are not satisfied).

Nevertheless a finer analysis shows that (see Theorem B of Section 3.1 in Serfling, 1980)

R̃n = 2n
(
g(Xn)− g(µX)

) d−−−→
n→∞

[
g′′(µX)

]
σ2 χ2

1.
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So the bootstrap would work if the convergence (90) holds also for R̃∗n = 2n
(
g(X

∗
n)−g(Xn)

)
,

where Hn is now the distribution function of R̃n and Ĥn is the distribution function of R̃∗n.

But for this situation (90) does not hold (see Example 3.6 of Shao and Tu, 1996).

Roughly speaking one can say that (91) holds provided that θ̂n satisfies the following

asymptotic representation

θ̂n = θX +
1

n

n∑
i=1

IF (Xi) + oP
(

1√
n

)
,

where IF (x) is a given function. This can be formalised through the concept of Hadamard-

differentiability of the functional F 7→ θ(F ) at FX , but this is out of the scope of this course.

8.2.3 Limits of the standard nonparametric bootstrap

Although the standard nonparametric bootstrap often presents an interesting alternative to

the inference based on the asymptotic normality, it often fails in situations when the asymp-

totic normality does not hold. These include for instance extremal statistics and non-smooth

transformations of sample means. Note also that the standard nonparametric bootstrap as-

sumes that the observations are realisations of independent and identically distributed

random vectors. Thus among others the standard nonparametric bootstrap is not appropriate

in regression problems with fixed design or in time series problems.

Example 62. Let X1, . . . , Xn be a random sample from the uniform distribution on (0, θX).

Then the maximum likelihood estimator of θX is given by θ̂n = max1≤i≤nXi =: X(n). Note

that for x < 0

P
(
n(X(n) − θX) ≤ x

)
= P

(
X(n) ≤ θX + x

n

)
= FnX1

(
θX + x

n

)
=

[
θX+

x
n

θX

]n
=
[
1 + x

nθX

]n
−−−→
n→∞

e
x
θX .

Thus Rn = n (X(n) − θX)
d−−−→

n→∞
Y , where Y has a cumulative distribution function

P(Y ≤ x) =

{
e
x
θX , x < 0,

1, x ≥ 0.

On the other side

P(X∗(n) = X(n) |X) = 1− P
(
X(n) /∈ {X∗1 , . . . , X∗n} |X

)
= 1−

(
n−1
n

)n −−−→
n→∞

1− e−1

and thus (90) cannot hold for R∗n = n
(
X∗(n) −X(n)

)
.

Literature: Prášková (2004), Shao and Tu (1996) Chapter 3.2.2, Chapter 3.6, A.10. The end of the

self study for

the week (20. 4. -

24. 4. 2020)
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8.3 Confidence intervals

In what follows consider Rn =
√
n
(
θ̂n − θX

)
and suppose that Rn

d−−−→
n→∞

R, where R is a

random vector with a continuous distribution function. We will be interested in finding the

confidence interval for θXj (the j-th component of θX).

Suppose for a moment the the distribution Rnj (the j-th component of Rn) is known and

continuous. Then one has

P
[
rn(α/2) <

√
n
(
θ̂nj − θXj

)
< rn(1− α/2)

]
= 1− α,

where rn(α) is the α-quantile of Rnj . Thus one would get a ‘theoretical’ confidence interval(
θ̂nj − rn(1−α/2)√

n
, θ̂nj − rn(α/2)√

n

)
. (95)

The problem is that the distribution Rnj is not known and thus also the quantiles rn(α/2)

and rn(1− α/2) are not known.

8.3.1 Basic bootstrap confidence interval

Consider R∗n =
√
n
(
θ̂
∗
n − θ̂n

)
and suppose that the assumptions of Theorem 13 are satisfied.

Let r∗n(α) be the quantile of the bootstrap distribution of R∗nj =
√
n
(
θ̂∗nj − θ̂nj

)
. Then

Theorem 13 implies that r∗n(α)
P−−−→

n→∞
rj(α) (or even r∗n(α)

a.s.−−−→
n→∞

rj(α)), where rj(α) is the

α-quantile of Rj (the j-th coordinate of the limiting distribution R). Thus one gets

lim
n→∞

P
[
r∗n(α/2) <

√
n
(
θ̂nj − θXj

)
< r∗n(1− α/2)

]
= 1− α. (96)

Now with the help of (96) one can construct an asymptotic confidence interval for θXj as(
θ̂nj −

r∗n,B(1−α/2)
√
n

, θ̂nj −
r∗n,B(α/2)
√
n

)
, (97)

where r∗n,B(α) is a Monte-Carlo approximation (estimate) of r∗n(α). The confidence interval

in (97) is usually called basic bootstrap confidence interval.

It is worth noting that the formula for the confidence interval (97) mimics the formula

for the theoretical confidence interval (95). The bootstrap idea is to estimate the unknown

quantiles rn(α) with r∗n(α) that can be calculated only from the observed data X1, . . . ,Xn

(‘substitution principle’). Further as the quantiles r∗n(α) are difficult to calculate analytically,

one approximates them with r∗n,B(α) (‘Monte Carlo principle’).

Note that typically

Rn =
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np(0p,V). (98)

Then the advantage of the confidence interval given by (96) is that it does not require to

explicitly estimate the asymptotic variance matrix V. Thus this confidence interval
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can be used in situations where deriving or estimating the asymptotic variance of Rn is rather

difficult.

On the other hand the theoretical results stating that the bootstrap confidence interval

is more accurate require that the asymptotic distribution of Rnj is pivotal (i.e. it does not

depend on unknown parameters). If this is not the case, then the simulation studies show

that the basic bootstrap confidence interval (97) can be (for finite sample sizes) less accurate

than the standard asymptotic confidence interval(
θ̂nj −

u1−α/2
√
vn,jj√

n
, θ̂nj +

u1−α/2
√
vn,jj√

n

)
, (99)

where vn,jj is a consistent estimate of the j-th diagonal element of the matrix V. Thus if

possible, it is of interest to use Rnj which is asymptotically pivotal or at least ‘less dependent’

on unknown parameters (see Remark 19 below and Chapter 8.3.2).

Example 63. Suppose we observe Z1 =
(
X1

Y1

)
, . . . ,Zn =

(
Xn

Yn

)
a random sample, where, Xi

is a p-dimensional covariate and Yi is one-dimensional response. In regression models (linear

models, generalized linear models, quantile regression models, . . . ) one aims at estimating

βX which specifies how the covariate influences the response. Usually based on theoretical

results one can hope that
√
n
(
β̂n − βX

) d−−−→
n→∞

Np(0p,V)

and to find a confidence interval for βXj (the j-th component of βX) one needs to estimate V

(or at least its j-th diagonal element). But this might be rather difficult, see for instance the

general asymptotic variance matrix of the least absolute deviation estimator in Section 4.3.2.

The bootstrap can thus present an interesting alternative.

Note that in this situation the nonpametric bootstrap corresponds to generating Z∗1 =(X∗1
Y ∗1

)
, . . . ,Z∗n =

(X∗n
Y ∗n

)
as a simple random sample with replacement from Z1, . . . ,Zn.

In some textbooks a different formula than (97) can be found. To explain this formula

note that r∗n,B(α) is a sample α-quantile of R∗nj,1, . . . , R
∗
nj,B, where R∗nj,b =

√
n
(
θ̂∗nj,b − θ̂nj

)
.

Further let q∗n,B(α) be a sample α-quantile calculated from the values θ̂∗nj,1, . . . , θ̂
∗
nj,B. Then

r∗n,B(α) =
√
n
(
q∗n,B(α)− θ̂nj

)
(100)

and the confidence interval (97) can be also rewritten as(
2 θ̂nj − q∗n,B(1− α/2), 2 θ̂nj − q∗n,B(α/2)

)
. (101)

Thus in practice it is sufficient to calculate θ̂∗nj,b instead of R∗nj,b and then use formula (101).

On the other hand the approach based on calculating R∗nj,b is more appropriate from the
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theoretical point of view. The thing is that to justify the bootstrap one needs (among others)

that the limiting distribution Rnj has a continuous distribution function (see Theorem 13).

Remark 18. Sometimes in literature one can find a bootstrap confidence interval of the form(
q∗n,B(α/2), q∗n,B(1− α/2)

)
, (102)

which is usually called the percentile confidence interval. Note that with the help of (100)

this confidence interval can be rewritten as(
θ̂nj +

r∗n,B(α/2)
√
n

, θ̂nj +
r∗n,B(1−α/2)

√
n

)
.

Thus when using the percentile confidence interval one hopes that (taking B =∞)

lim
n→∞

P
[(
θ̂nj + r∗n(α/2)√

n
, θ̂nj + r∗n(1−α/2)√

n

)
3 θXj

]
= lim

n→∞
P
[
− r∗n(1− α/2) <

√
n
(
θ̂nj − θXj

)
< −r∗n(α/2)

]
= 1− α.

Thus the use of the percentile interval can be justified if the limiting distribution of Rnj is

symmetric, because then

r∗n(1− α/2)
P−−−→

n→∞
rj(1− α/2) = −rj(α/2)

and analogously r∗n(α/2)
P−−−→

n→∞
−rj(1− α/2). As the limiting distribution of Rn is typically

zero mean Gaussian distribution, the assumption of the symmetry of Rj is typically satisfied.

Note that the practical advantage of the percentile confidence is that it is always contained

in the parametric space.

Remark 19. Suppose for simplicity that θX ∈ R. Then using Rn =
√
n
(
θ̂n − θX

)
is natural

for location estimators. But sometimes it may be of interest to consider for instance Rn =
√
n
(
θ̂n
θX
−1
)

or Rn =
√
n
(
g(θ̂n)−g(θX)

)
, where g is a function that stabilises the asymptotic

variance (see Chapter 1.4).

8.3.2 Studentized bootstrap confidence interval

Usually it is recommended to ‘bootstrap’ a variable whose limit distribution is pivotal (i.e.

does not depend on the unknown parameters).

Suppose that (98) holds and consider R̃nj =
√
n (θ̂nj−θXj)√

vn,jj
, where vn,jj is a consistent estimate

of the j-th diagonal element of V. Let r̃∗n(α) be the α-th quantile of the distribution R̃∗nj =
√
n (θ̂∗nj−θ̂nj)√

v∗n,jj
, where v∗n,jj is an estimate of the j-th diagonal element of V but calculated from

the bootstrap sample. Thus if ‘bootstrap works’ (i.e. Theorem 13 holds), then

lim
n→∞

P
[
r̃∗n(α/2) <

√
n (θ̂nj−θXj)√

vn,jj
< r̃∗n(1− α/2)

]
= 1− α,
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which yields an asymptotic confidence interval(
θ̂nj −

r̃∗n,B(1−α/2)
√
vn,jj√

n
, θ̂nj −

r̃∗n,B(α/2)
√
vn,jj√

n

)
, (103)

where r̃∗n,B(α) is a Monte-Carlo approximation of r̃∗n(α). The confidence interval in (103) is

usually called the studentized bootstrap confidence interval.

Note that in comparison with (99) we replace the quantiles uα/2 and u1−α/2 with −r̃∗n,B(1−
α/2) and −r̃∗n,B(α/2). There are theoretical results that state that the studentized confidence

interval (103) is (for finite sample sizes) more accurate than the asymptotic confidence inter-

val (99) as well as (97).

Literature: Efron and Tibshirani (1993) Chapters 15 and 16.

8.4 Parametric bootstrap

Let X1, . . . ,Xn be random vectors having the joint distribution F (·;θX) that is known only

up to an unknown parameter θX . In parametric bootstrap we generate the bootstrap vectors

X∗1,b, . . . ,X
∗
n,b from F (·; θ̂n), where θ̂n is a consistent estimator of θX .

Example 64. Suppose we are in a situation of Example 62. Then it is possible to show that

if one uses the parametric bootstrap, i.e. if X∗1,b, . . . , X
∗
n,b is generated as a random sample

from the uniform distribution on (0, θ̂n), then bootstrap works. Note also that it is more

natural to resample Rn = n
(
θ̂n
θX
− 1
)
, as its asymptotic distribution is pivotal.

Example 65. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from the

the exponential distributions with the density f(x;λ) = λe−λxI{x > 0}. Let λX be the true

value of the parameter for the first sample and λY for the second sample. Find the confidence

interval for λX
λY

.

Solution. The maximum likelihood estimators are given by λ̂X = 1
Xn1

, λ̂Y = 1
Y n2

. Now gen-

erate X∗1 , . . . , X
∗
n1

and Y ∗1 , . . . , Y
∗
n2

as two independent random samples from the exponential

distributions with the parameters λ̂X and λ̂Y respectively. Put

Rn =
(
λ̂X
λ̂Y
− λX

λY

)
and R∗n =

(
λ̂∗X
λ̂∗Y
− λ̂X

λ̂Y

)
,

where λ̂∗X = 1
X
∗
n1

and λ̂∗Y = 1
Y
∗
n2

. The confidence interval for the ratio λX
λY

can now be

calculated as (
λ̂X
λ̂Y
− r∗n,B

(
1− α

2

)
, λ̂X
λ̂Y
− r∗n,B

(
α
2

))
,

where r∗n,B(α) is the estimate of the α-quantile of R∗n.

Alternatively instead of bootstrap one can use ∆-theorem (Theorem 3), which implies that(
λ̂X
λ̂Y
− λX

λY

)
as
≈ N

(
0,

λ2X
λ2Y

(
1
n1

+ 1
n2

))
.
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By combining ∆-theorem and bootstrap one can also use

R̃n =

λ̂X
λ̂Y
−λXλY

λ̂X
λ̂Y

√
1
n1

+
1
n2

, and R̃∗n =

λ̂∗X
λ̂∗Y
− λ̂X
λ̂X

λ̂∗X
λ̂∗Y

√
1
n1

+
1
n2

.

Example 66. Bootstrap estimation of the distribution of estimators of parameters in AR(p)

process.

Goodness of fit testing

Parametric bootstrap is often used in goodness of fit testing. Let X1, . . . ,Xn be a ran-

dom sample of k-variate random vectors with the distribution function F . Suppose we are

interested in testing that F belongs to a given parametric family, i.e.

H0 : F ∈ F =
{
F (x;θ),θ ∈ Θ

}
, H1 : F /∈ F .

As a test statistic one can use for instance

KSn = sup
x∈Rk

∣∣F̂n(x)− F (x; θ̂n)
∣∣,

where F̂n is an empirical distribution function and θ̂n is an estimate of θ under the null

hypothesis. As the asymptotic distribution of the test statistic under the null hypothesis is

rather difficult, the significance of the test statistic is derived as follows.

1. For b = 1, . . . , B generate a random sample X∗b = (X∗1,b, . . . ,X
∗
n,b) (of size n), where

each random vector X∗i,b has the distribution function F (x; θ̂n).

2. Calculate

KS∗n,b = sup
x∈Rk

∣∣F ∗n,b(x)− F (x; θ̂
∗
n,b)
∣∣,

where F ∗n,b(x) is the empirical distribution function calculated from X
∗
b and θ̂

∗
n,b is the estimate

of θ (under H0) calculated from X
∗
b .

3. Estimate the p-value as

1 +
∑B

b=1 I
{
KS∗n,b ≥ KSn

}
B + 1

,

where B is usually chosen as 999 or 9 999.

Remark 20. Sometimes people are ignoring the fact that the value of the parameter θX is not

fixed in advance and assess the significance of the Kolmogorov-Smirnov test statistic with the

help of the (asymptotic) distribution of

Zn =
√
n sup

x∈Rk

∣∣F̂n(x)− F (x;θX)
∣∣,
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where FX(x) = F (x;θX) is the true distribution function. The problem is that under the

null hypothesis the (asymptotic) distribution of

Z̃n =
√
n sup

x∈Rk

∣∣F̂n(x)− F (x; θ̂n)
∣∣

is rather different from the (asymptotic) distribution of Zn. The simulation studies show that

if the significance of
√
nKSn is assessed with the help of the distribution Zn, then the true

level of the test is much smaller than the prescribed value α. The intuitive reason is that as

θ̂n is estimated from X1, . . . ,Xn, the empirical distribution function F̂n(x) is closer to its

parametric estimate F (x; θ̂n) than to the true distribution F (x;θX).

To conclude, using the (asymptotic) distribution of Zn to assess the significance of the test

statistic
√
nKSn results in a huge loss of power.

Remark 21. Instead of the test statistic KSn it is usually recommended to use one of the

following statistics. The reason is that the tests based on these statistics have usually more

power against the alternatives that seem to be natural.

Cramér-von-Mises:

CMn =

∫ (
F̂n(x)− F (x; θ̂n)

)2
f(x; θ̂n) dx, or CMn =

1

n

n∑
i=1

(
F̂n(Xi)− F (Xi; θ̂n)

)2
.

Anderson-Darling:

ADn =

∫ (
F̂n(x)− F (x; θ̂n)

)2
F (x; θ̂n)

(
1− F (x; θ̂n)

) f(x; θ̂n) dx, or ADn =
1

n

n∑
i=1

(
F̂n(Xi)− F (Xi; θ̂n)

)2
F (Xi; θ̂n)

(
1− F (Xi; θ̂n)

) .
Example 67. Testing goodness-of-fit of multinomial distribution with estimated parameters.

8.5 Testing hypotheses and bootstrap

First of all note that provided the parameter of interest is one-dimensional and one can

construct a confidence interval for this parameter (see Section 8.3), then one can use the

duality of confidence intervals and testing hypotheses. But in many situations the approach

based on an appropriate test statistic is more straightforward.

Suppose that we have a test statistic Tn = T (X1, . . . ,Xn) and that large values of Tn speak

against the null hypothesis. Let X∗1 = (X∗1,1, . . . ,X
∗
n,1)T, . . . , X∗B = (X∗1,B, . . . ,X

∗
n,B)T be

independently resampled datasets by a procedure that mimics generating data under the

null hypothesis. Let T ∗n,b = Tn(X∗b) be the test statistic calculated from the b-th generated

sample X∗b (b = 1, . . . , B). Then the p-value of the test is estimated as

p̂B =
1 +

∑B
b=1 I{T ∗n,b ≥ Tn}
B + 1

. (104)
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Example 68. Let X1, . . . , Xn be a random sample such that varX1 ∈ (0,∞) and H0 : E X1 =

µ0. But one can use nonparametric bootstrap and generate X∗b,1, . . . , X
∗
b,n as a simple random

sample with replacement from X1 −Xn, . . . , Xn −Xn. A possible test statistic is then

Tn =

√
n (Xn − µ0)

Sn
,

and T ∗n,b =
√
n (X

∗
n,b−0)

S∗n,b
, where X

∗
n,b and S∗X,b are the sample mean and sample deviation

calculated from the bootstrap sample.

Note that in this situation no permutation test (permutation tests are introduced in Chap-

ter 8.6) is available.

Comparison of expectations in two-sample problems

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples from the distributions

F and G respectively. Suppose we are interested in testing the null hypotheses

H0 : E X1 = E Y1, H1 : E X1 6= E Y1.

In what follows we will mention several options how to test for the above null hypothesis.

1. Standard t-test is based on the test statistics

Tn =
Xn1 − Y n2

S∗
√

1
n1

+ 1
n2

,

where

S∗2 =
1

n1 + n2 − 2

[
(n1 − 1)S2

X + (n2 − 1)S2
Y

]
, S2

X =
1

n1 − 1

n1∑
i=1

(Xi −Xn1)2, S2
Y = . . . .

The crucial assumption of this test is the homoscedasticity, i.e. varX1 = var Y1 ∈ (0,∞) or

that n1
n1+n2

→ 1
2 . Then under the null hypothesis Tn

d−−−→
n→∞

N(0, 1).

2. Welch t-test is based on the test statistics

T̃n =
Xn1 − Y n2√

S2
X
n1

+
S2
Y
n2

.

The advantage of this test is that it does not require varX1 = var Y1 in order to have that

under the null hypothesis T̃n
d−−−→

n→∞
N(0, 1).

3. Parametric bootstrap. Suppose that F = N(µ1, σ
2
1) and G = N(µ2, σ

2
2). Thus the null

hypothesis can be written as H0 : µ1 = µ2. Let us generate X∗1,b, . . . , X
∗
n1,b

and Y ∗1,b, . . . , Y
∗
n2,b

as independent random samples from the distributions N(0, S2
X) and N(0, S2

Y ) respectively.
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Based on these bootstrap samples calculate |T̃ ∗n,1|, . . . , |T̃n,B∗ |. Alternatively one could use

also a test statistic Tn0 =
∣∣Xn1 − Y n2

∣∣, but it is recommended to use a test statistic whose

asymptotic distribution under the null hypothesis does not depend on unknown parameters.

4. Standard nonparametric bootstrap. Suppose that varX1, var Y1 ∈ (0,∞). Let us generate

X∗1,b, . . . , X
∗
n1,b

and Y ∗1,b, . . . , Y
∗
n2,b

as independent random samples with replacement from X1−
Xn1 , . . . , Xn1 −Xn1 and Y1 − Y n2 , . . . , Yn2 − Y n2 respectively.

Example 69. Suggest a test that would compare medians in two-sample problems.

8.6 Permutation tests

Permutation tests are interesting in particular in two (or more generally K) sample problems

and when testing for independence.

Two-sample problems

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples with the distribution

functions F and G respectively. Let the null hypothesis state that the distribution functions

F and G coincide, i.e. H0 : F (x) = G(x) for all x ∈ R.

Put n = n1 + n2 and denote Z = (Z1, . . . , Zn)T the joint sample, that is Zi = Xi for

i = 1, . . . , n1 and Zi = Yi−n1 for i = n1 + 1, . . . , n. Let Z(·) = (Z(1), . . . , Z(n))
T be the

ordered sample, that is Z(1) ≤ Z(2) ≤ . . . ≤ Z(n). Note that under the null hypothesis the

random variables Z1, . . . , Zn are independent and identically distributed. Thus the conditional

distribution of Z given Z(·) is a discrete uniform distribution on the set of all permutations of

Z(·). More formally,

P
(
Z = (z1, . . . , zn) |Z(·) = (z(1), . . . , z(n))

)
=

1

n!
I
{

(z1, . . . , zn) is a permutation of (z(1), . . . , z(n))
}
,

where z(1) ≤ z(2) ≤ . . . ≤ z(n).

The samples Z∗1, . . . ,Z
∗
B are now generated by randomly permuting the joint sample Z.

Now for each b ∈ {1, . . . , B} the test statistic T ∗n,b is recalculated from(
X∗1,b, . . . , X

∗
n1,b

)
=
(
Z∗1,b, . . . , Z

∗
n1,b

)
,

(
Y ∗1,b, . . . , Y

∗
n2,b

)
=
(
Z∗n1+1,b, . . . , Z

∗
n,b

)
and the p-value is estimated by (104).

Remark 22. Note that in fact for two-samples there are only
(
n
n1

)
permutations which can give

rise to different values of the test statistic. So if n1 and n2 are small then one can calculate the

p-value exactly, where exactly means with respect to the permutation distribution of the test
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statistic. But usually the number
(
n
n1

)
is already too big and one generates only B random

permutations to estimate the p-value.

Example 70. The permutation test approach can be used to assess for instance the signifi-

cance of the two-sample Kolmogorov-Smirnov test statistic

Kn1,n2 = sup
x∈R

∣∣F̂n1(x)− Ĝn2(x)
∣∣.

Note that the standard inference is based on asymptotic distribution of Kn that is derived

in case that the distribution function F (and under the null hypothesis also G) is continuous.

Thus using the permutation test can be of interest in particular in the presence of ties (e.g.

due to rounding).

Note that the test assumes that under the null hypothesis the distribution functions

F and G coincide. Then the permutation test is called exact. In practice it is of interest

to know whether the permutation test is useful also to test for instance the null hypothesis

that E X1 = E Y1 without assuming that F ≡ G. Usually it can be proved that if the

test statistic under null hypothesis has a limiting distribution that does not depend on the

unknown parameters, then the permutation test holds the prescribed level asymptotically.

In this situation the permutation test is called approximate. It was shown by simulations in

many different setting that the level of the approximate permutation test is usually closer to

the prescribed value α than the level of the test that directly uses the asymptotic distribution

of Tn.

Testing independence

Suppose we observe independent and identically distributed random vectors

Z1 = (X1, Y1)T, . . . ,Zn = (Xn, Yn)T

and we are interested in testing the null hypothesis that X1 is independent with Y1. Then

under the null hypothesis

P

((
X1

Y1

)
=

(
x1

y1

)
, . . . ,

(
Xn

Yn

)
=

(
xn

yn

) ∣∣∣∣
(
X1

Y(1)

)
=

(
x1

y(1)

)
, . . . ,

(
Xn

Y(n)

)
=

(
xn

y(n)

))

=
1

n!
I
{

(y1, . . . , yn) is a permutation of (y(1), . . . , y(n))
}
.

Thus one can generate Z∗1, . . . ,Z
∗
n by permuting Y1, . . . , Yn while keeping X1, . . . , Xn fixed.

The permutation scheme as described above can be used for instance for assessing the

significance of the test statistic based on a correlation coefficient or of the χ2-test of indepen-

dence.
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Example 71. Permutation version of χ2-test of independence.

Remark 23. Generally K-sample problem can be viewed as the testing of independence prob-

lem. The reason is that one can view the data as random vectors
(
Z1

I1

)
, . . . ,

(
Zn
In

)
, where Ii = k

(for i = 1, . . . , n, k = 1, . . . ,K), if the observation Zi belongs to the k-th sample. Thus

independence of Z1 and G1 is equivalent to the fact that all the random samples have the

same distribution function.

Literature: Davison and Hinkley (1997) Chapters 4.1–4.4, Efron and Tibshirani (1993)

Chapters 15 and 16.

8.7 Bootstrap in linear models

Suppose we observe
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
a random sample, where, Xi is a p-dimensional random

vector. The standard nonparametric bootstrap generates
(X∗1
Y ∗1

)
, . . . ,

(X∗n
Y ∗n

)
as a simple random

sample with replacement from the vectors
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
. Note that one can usually assume

that this bootstrap method works, provided the estimator β̂n is asymptotically normal.

In linear models we usually assume a more specific structure

Yi = XT
i β + εi, i = 1, . . . , n, (105)

where ε1, . . . , εn are independent and identically distributed zero-mean random variables in-

dependent of X1, . . . ,Xn. Then the model-based boostrap runs as follows. Let β̂n be the

estimate of β. Calculate the standardized residuals as

ε̂i =
Yi −XT

i β̂n√
1− hii

, i = 1, . . . , n,

where hii is the i-th diagonal element of the projection matrix H = X(XT
X)−1

X
T. Then one

can generate the response in the bootstrap sample as

Y ∗i = XT
i β̂n + ε∗i , i = 1, . . . , n,

where ε∗1, . . . , ε
∗
n is a simple random sample with replacement from the residuals ε̂1, . . . , ε̂n.

As the covariate values are fixed the bootstrap sample is given by
(
X1

Y ∗1

)
, . . . ,

(
Xn

Y ∗n

)
.

The advantage of the nonparametric bootstrap is that it does not require model (105)

to hold. On the other hand if model (105) holds then the distribution of
√
n (β̂

∗
n − β̂n)

from the model based bootstrap is closer to the conditional distribution of
√
n (β̂n − β)

given the values of the covariates X1, . . . ,Xn than the corresponding distribution from the

nonparametric bootstrap. Further, the model based bootstrap can be also used in the case of

a fixed design. On the other hand this method is not appropriate for instance in the presence

of heteroscedasticity.

Literature: Davison and Hinkley (1997) Chapter 6.3.
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8.8 Variance estimation and bootstrap

Often one knows that
√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,V

)
,

but the matrix V typically depends on unknown parameters (or it might be ‘too difficult’ to

derive the analytic form of V). In such a situation a straightforward bootstrap estimation of

the asymptotic variance matrix Vn = 1
n V is given by

V̂∗n,B =
1

B − 1

B∑
b=1

(
θ̂
∗
n,b − θ

∗
n,B

)(
θ̂
∗
n,b − θ

∗
n,B

)T
, where θ

∗
n,B =

1

B

B∑
b=1

θ̂
∗
n,b.

Note that

V̂∗n,B
a.s.−−−−→

B→∞
var
(
θ̂
∗
n |X

)
.

Thus for a valid inference we need that

n var
(
θ̂
∗
n |X

) P−−−→
n→∞

V. (106)

Note that
√
n (θ̂

∗
n − θ̂n)

d−−−→
n→∞

N(0,V) almost surely (or in probability) conditionally on

X1,X2, . . . generally does not imply that (106) holds. The reason is that var
(
θ̂
∗
n |X

)
estimates var

(
θ̂n
)

rather than 1
nV.

Example 72. Let X1, . . . , Xn be a random sample from the distribution with the density

f(x) = 3
x4
I[x ≥ 1]. Then by the central limit theorem

√
n
(
Xn − 3

2

) d−−−→
n→∞

N
(
0, 3

4

)
.

Further consider the transformation g(x) = ex
4
. Then with the help of ∆-theorem (Theo-

rem 3) one gets
√
n
[
g(Xn)− g

(
3
2

)] d−−−→
n→∞

N
(

0,
[
g′
(

3
2

)]2 · 3
4

)
.

But it is straightforward to calculate that E
(
g(Xn)

)
= ∞ and thus var

(
g(Xn)

)
does not

exist. Further it can be proved that var
(
g(X

∗
n)|X

) a.s.−−−→
n→∞

∞.

Literature: Efron and Tibshirani (1993) Chapters 6 and 7, Shao and Tu (1996) Chapter

3.2.2.

8.9 Bias reduction and bootstrap∗

In practice one can get unbiased estimators for only very simple models. Let θ̂n be an

estimator of θX and put bn = E θ̂n − θX for the bias of θ̂n. The bias bn can be estimated

by b∗n = E [θ̂
∗
n|X]− θ̂n. The bias corrected estimator of θ is then defined as θ̂

(bc)

n := θ̂n−b∗n.

∗ Not done at the lecture nor exercise class.
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Example 73. Let X1, . . . , Xn be a random sample, E X4
1 < ∞ and g : R → R be such that

g′′′ is bounded and continuous in a neighbourbood of µ = E X1 . Then Xn is an unbiased

estimator of µ. But if g is not linear then g(Xn) is not an unbiased estimator of g(µ). Put

σ2 = var(X1). Then the bias of g(Xn) can be approximated by

E g(Xn)− g(µ) = E
{
g′(µ)(Xn − µ) + g′′(µ)

2 (Xn − µ)2
}

+
Rn
3!

=
g′′(µ)σ2

2n
+O

(
1

n3/2

)
, (107)

where we have used that

|Rn| ≤ sup
x

∣∣g′′′(x)
∣∣ E ∣∣Xn − µ

∣∣3 ≤ sup
x

∣∣g′′′(x)
∣∣ [E ∣∣Xn − µ

∣∣4]3/4
=
[
O
(

1
n2

)]3/4
= O

(
1

n3/2

)
.

Analogously one can calculate that

b∗n = E [g(X
∗
n) |X]− g(Xn) =

g′′(Xn)

2n
var[X∗1 |X] +OP

(
1

n3/2

)
=
g′′(Xn) σ̂2

n

2n
+OP

(
1

n3/2

)
. (108)

where σ̂2
n = 1

n

∑n
i=1(Xi −Xn)2.

Now by comparing (107) and (108) one gets that the bias of the estimator θ̂
(bc)
n is given by

bn − b∗n =
1

2n

(
g′′(µ)σ2 − g′′(Xn)σ̂2

n

)
+OP

(
1

n3/2

)
= OP

(
1

n3/2

)
,

where we used that by the delta-theorem

g′′(Xn) = g′′(µ) +OP
(

1√
n

)
, σ̂2

n = σ2 +OP
(

1√
n

)
.

Literature: Efron and Tibshirani (1993) Chapter 10.

8.10 Jackknife∗

Jackknife can be considered as an ancestor of bootstrap. It was originally suggested to reduce

the bias of an estimator. Later it was found out that it can be often also used to estimate

the variance of an estimator.

Bias reduction

Let X1, . . . ,Xn be a random sample and denote Tn = T(X1, . . . ,Xn) the estimator of the

parameter of interest θX . Put

Tn−1,i = T(X1, . . . ,Xi−1,Xi+1, . . .Xn)

∗ Not done at the lecture nor exercise class.
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for the estimate when the i-th observation is left out. Further put Tn = 1
n

∑n
i=1 Tn−1,i. Then

the bias of the estimator Tn is estimated by

b̂n = (n− 1)
(
Tn −Tn

)
and the ‘bias-corrected’ estimator is defined as

T(bc)
n = Tn − b̂n. (109)

Remark 24. The rationale of the estimator (109) is as follows. For simplicity let θX be a

one-dimensional parameter and suppose that the bias of estimator Tn is given by

E Tn − θX =
a

n
+

b

n3/2
+

c

n2
+ o
(

1
n5/2

)
. (110)

Then also analogously

E Tn−1,i − θX =
a

n− 1
+

b

(n− 1)3/2
+

c

(n− 1)2
+ o
(

1
(n−1)5/2

)
,

and the same holds true also for Tn = 1
n

∑n
i=1 Tn−1,i. This further implies that

E b̂n = (n− 1)
( a

n− 1
+

b

(n− 1)3/2
+

c

(n− 1)2
+ o
(

1
(n−1)5/2

)
− a

n
− b

n3/2
− c

n2
− o
(

1
n5/2

))
,

= (n− 1)

(
a

n(n− 1)
+
b(1− 1

n)3/2

(n− 1)3/2
+
c(1− 1

n)2

(n− 1)2

)
+O

(
1

n3/2

)
=
a

n
+O

(
1

n3/2

)
. (111)

Now combining (110) and (111) gives that

E T (bc)
n − θX = O

(
1

n3/2

)
while E Tn − θX = O

(
1
n

)
.

Variance estimation

To estimate the variance, let us define jackknife pseudovalues as

T̃n,i = nTn − (n− 1) Tn−1,i, i = 1, . . . , n.

Then (under some regularity assumptions) the variance of Tn can be estimated as if Tn

was a mean of jackknife pseudovalues T̃n,1, . . . , T̃n,n that are independent and indentically

distributed, i.e.

̂var
(
Tn

)
=

1

n
S2
Tn , where S2

Tn =
1

n− 1

n∑
i=1

(
T̃n,i −

1

n

n∑
j=1

T̃n,j

)(
T̃n,i −

1

n

n∑
j=1

T̃n,j

)T
.

Literature: Shao and Tu (1996) Chapter 1.3. The end of the

self study for

the week (27. 4. -

1. 5. 2020)
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9 Kernel density estimation∗

Suppose we have independent identically distributed random variables X1, . . . , Xn drawn from

a distribution with the density f(x) with respect to a Lebesgue measure and we are

interested in estimating this density nonparametrically.

As

f(x) = lim
h→0+

F (x+ h)− F (x− h)

2h
,

a naive estimator of f(x) would be

f̃n(x) =
F̂n(x+ hn)− F̂n(x− hn)

2hn
=

1

2hn

n∑
i=1

I{Xi ∈ (x− hn, x+ hn]}
n

, (112)

where F̂n(x) = 1
n

∑n
i=1 I{Xi ≤ x} is the empirical distribution function and (the bandwidth)

hn is a sequence of positive constants going to zero.

It is straightforward to show

E f̃n(x) =
F (x+ hn)− F (x− hn)

2hn
−−−→
n→∞

f(x)

and

var(f̃n(x)
)

=

[
F (x+ hn)− F (x− hn)

][
1− F (x+ hn) + F (x− hn)

]
4h2

n n

=
F (x+ hn)− F (x− hn)

2hn

1− F (x+ hn) + F (x− hn)

2nhn
−−−→
n→∞

0

provided that hn → 0 and at the same time (nhn)→∞.

Note that the estimator (112) can be rewritten as

f̃n(x) =
1

2nhn

n∑
i=1

I
{
− 1 ≤ x−Xi

hn
< +1

}
=

1

nhn

n∑
i=1

w
(
x−Xi
hn

)
, (113)

where w(y) = 1
2 I{y ∈ [−1, 1)} can be viewed as the density of the uniform distribution on

[−1, 1). Generalising (113) we define the kernel estimator of a density as

f̂n(x) =
1

nhn

n∑
i=1

K
(
x−Xi
hn

)
, (114)

where the function K is called a kernel function and hn is usually called bandwidth† or

smoothing parameter. Usually the function K is taken as a symmetric density of a probability

distribution. The common choices of K are summarised in Table 1.

Remark 25. Note that:

∗ Jádrové odhady hustoty † V češtině se mluv́ı o š́ıřce vyhlazovaćı okna nebo jednodušeji o vyhlazovacńım

prametru.
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Epanechnikov kernel: K(x) = 3
4(1− x2) I{|x| ≤ 1}

Triangular kernel: K(x) = (1− |x|) I{|x| ≤ 1}
Uniform kernel: K(x) = 1

2 I{|x| ≤ 1}
Biweight kernel: K(x) = 15

16(1− x2)2 I{|x| ≤ 1}
Tricube kernel: K(x) = 70

81(1− |x|3)3 I{|x| ≤ 1}
Gaussian kernel: K(x) = 1√

2π
exp{−x2/2}

Table 1: Commonly used kernel functions.

(i) When compared to a histogram both estimators f̃n(x) and f̂n(x) do not require to

specify the starting point to calculate the intervals.

(ii) Note that f̂n(x) is continuous (has a continuous derivative) if K is continuous (has a

continuous derivative). That is why usually a continuous function K is preferred.

(iii) If K is a density of a probability distribution, then
∫
f̂n(x) dx = 1.

Example 74. Consider a random sample of size 200 from the distribution with the distribu-

tion function

F (x) = 1
2 Φ
(
x
)

+ 1
2 Φ
(
x−4

2

)
,

i.e. the distribution is given by the normal mixture 1
2 N(0, 1)+ 1

2 N(4, 4). The kernel estimates

with different bandwidth choices of hn and the Gaussian kernel is found Figure 74. For reasons

of comparison also the corresponding histogram with the width of the columns given by 2hn

is included.

The true density is indicated by the black solid line. Note that a reasonable bandwidth

seems to be between 0.5 and 1. The bandwidth smaller than 0.5 results in a estimate that is

too wiggly (the variance dominates). On the other hand the bandwidth greater than 1 results

in an estimate that is too biased.

Unfortunately in practice we do not know what is the true density so it is much more

difficult to guess what a reasonable bandwidth should be. Note that for the histogram the

problem of the choice of the bandwidth hn correspond to the choice of the width of the

columns.

9.1 Consistency and asymptotic normality

Theorem 16 (Bochner’s theorem). Let the function K satisfy

(B1)

∫ +∞

−∞
|K(y)| dy <∞, (B2) lim

|y|→∞
|y K(y)| = 0. (115)
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Figure 4: Kernel estimates vs. histograms for different bandwidth choices.
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Further let the function g satisfy
∫ +∞
−∞ |g(y)| dy <∞. Put

gn(x) =
1

hn

∫ +∞

−∞
g(z)K

(
x−z
hn

)
dz,

where hn ↘ 0 as n→∞. Then in each point x of the continuity of g it holds that

lim
n→∞

gn(x) = g(x)

∫ +∞

−∞
K(y) dy. (116)

Proof. ∗ Let x be the point of continuity g. We need to show that

lim
n→∞

∣∣∣∣gn(x)− g(x)

∫
K(y) dy

∣∣∣∣ = 0.

Using the substitutions y = x− z and z = y
hn

one can write

gn(x)− g(x)

∫
K(z) dz =

1

hn

∫
g(x− y)K

( y
hn

)
dy − g(x)

hn

∫
K
( y
hn

)
dy

=
1

hn

∫
[g(x− y)− g(x)]K

( y
hn

)
dy.

Before we proceed note that for each fixed δ > 0:

δ

hn
→∞ and

1

δ
sup

t:|t|≥ δ
hn

∣∣tK(t)
∣∣→ 0, as n→∞.

Thus there exists a sequence of positive constants {δn} such that

δn → 0,
δn
hn
→∞ and

1

δn
sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣→ 0, as n→∞. (117)

Taking δn satisfying (117) one can bound∣∣∣∣gn(x)− g(x)

∫
K(y) dy

∣∣∣∣ ≤ 1

hn

∫ δn

−δn

∣∣g(x− y)− g(x)
∣∣ ∣∣K( yhn )∣∣ dy︸ ︷︷ ︸

=:An

+
1

hn

∫
y:|y|≥δn

∣∣g(x− y)− g(x)
∣∣ ∣∣K( yhn )∣∣ dy︸ ︷︷ ︸

=:Bn

. (118)

Dealing with An. As g is continuous in the point x

An ≤ sup
y:|y|≤δn

∣∣g(x− y)− g(x)
∣∣ ∫ δn

−δn

1
hn

∣∣K( yhn )∣∣ dy ≤ o(1)

∫
R
|K(t)| dt︸ ︷︷ ︸
<∞; (B1)

= o(1), (119)

as n→∞.

∗ Not done at the lecture.
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Dealing with Bn. Further one can bound Bn with

Bn ≤
1

hn

∫
y:|y|≥δn

∣∣g(x− y)
∣∣∣∣K( yhn )∣∣dy︸ ︷︷ ︸

=:B1n

+
1

hn

∫
y:|y|≥δn

∣∣g(x)
∣∣∣∣K( yhn )∣∣dy︸ ︷︷ ︸

=:B2n

. (120)

Using the substitution t = y
hn

and (117) one gets

B2n =
∣∣g(x)

∣∣ ∫
y:|y|≥δn

1
hn

∣∣K( yhn )∣∣ dy =
∣∣g(x)

∣∣ ∫
t:|t|≥ δn

hn

|K(t)|dt −−−→
n→∞

0. (121)

Finally using (117)

B1n =

∫
y:|y|≥δn

|y|
hn

∣∣K( yhn )∣∣︸ ︷︷ ︸
≤sup

t:|t|≥ δn
hn

|tK(t)|

∣∣g(x− y)
∣∣

|y|
dy ≤ sup

t:|t|≥ δn
hn

∣∣tK(t)
∣∣ ∫

y:|y|≥δn

∣∣g(x−y)
∣∣

|y| dy

≤ sup
t:|t|≥ δn

hn

∣∣tK(t)
∣∣ 1

δn

∫ ∣∣g(x− y)
∣∣ dy︸ ︷︷ ︸

=
∫
|g(y)| dy<∞

−−−→
n→∞

0. (122)

Now combining (118), (119), (120), (121) and (122) yields the statement of the theorem.

Remark 26. Note that:

(i) If K is a density, then
∫
|K(y)|dy =

∫
K(y) dy = 1 and assumption (B1) holds.

(ii) Assumption (B2) holds true if K has a bounded support. Further from the last part

of the proof of Theorem 16 (dealing with B1n) it follows that for K with a bounded

support one can drop assumption
∫ +∞
−∞ |g(y)| dy <∞ from Theorem 16.

(iii) If K is a density but with an unbounded support, then assumption (B2) is satisfied

if there exists a finite constant c > 0 such that K is non-decreasing on (−∞,−c) and

non-increasing on (c,∞).

(iv) If g is uniformly continuous then one can show that also the convergence in (116) is

uniform.

(v) Note that the kernel K(x) =
∑∞

n=1
1

2n I
{
x ∈ (2n − 1, 2n + 1)

}
meets assumption (B1),

but (B2) is not satisfied.

Theorem 17 (Variance and consistency of f̂n(x)). Let the estimator f̂n(x) be given by (114)

and the function K satisfies (B1) and (B2) introduced in (115). Further, let
∫
K(y) dy = 1,

supy∈R |K(y)| < ∞, hn ↘ 0 as n → ∞ and (nhn) → ∞ as n → ∞. Then at each point of

continuity of f :
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(i) limn→∞ nhn var
(
f̂n(x)

)
= f(x)

∫
K2(y) dy;

(ii) f̂n(x)
P−−−→

n→∞
f(x).

Proof. Let x be the point of continuity of f .

Showing (i). Let us calculate

var
(
f̂n(x)

)
= var

[
1

nhn

n∑
i=1

K
(
x−Xi
hn

)]
=

1

nh2
n

var
[
K
(
x−X1
hn

)]
=

1

nh2
n

[
E K2

(
x−X1
hn

)
−
(
E K

(
x−X1
hn

))2
]
. (123)

Now using Theorem 16

1

hn
E K

(
x−X1
hn

)
=

∫
1

hn
K
(x−y
hn

)
f(y) dy −−−→

n→∞
f(x)

∫
K(y) dy = f(x). (124)

Analogously

1

hn
E K2

(
x−X1
hn

)
=

1

hn

∫
K2
(x−y
hn

)
f(y) dy −−−→

n→∞
f(x)

∫
K2(y) dy, (125)

where we have used again Theorem 16 with K replaced by K2. Note that assumptions (B1)

and (B2) are satisfied as

ad (B1) :

∫
|K2(y)|dy ≤ sup

y∈R
|K(y)|︸ ︷︷ ︸
<∞

∫
|K(y)|dy︸ ︷︷ ︸
<∞

<∞

and

ad (B2) : lim
|y|→∞

|yK2(y)| ≤ sup
y∈R
|K(y)|︸ ︷︷ ︸
<∞

lim
|y|→∞

|yK(y)|︸ ︷︷ ︸
=0

= 0.

Now combining (123), (124) and (125) yields

nhn var
(
f̂n(x)

)
=

1

hn
E K2

(
x−X1
hn

)
︸ ︷︷ ︸
→f(x)

∫
K2(y) dy

−
[

1

hn
E K

(
x−X1
hn

)]2

︸ ︷︷ ︸
→f(x)

hn −−−→
n→∞

f(x)

∫
K2(y) dy.

Showing (ii). Note that with the help of (124)

E f̂n(x) =
1

hn
E K

(
x−X1
hn

)
−−−→
n→∞

f(x). (126)

Now with the help of (i) and (126)

E
[
f̂n(x)− f(x)

]2
= var

[
f̂n(x)

]
+
[
E f̂n(x)− f(x)

]2
−−−→
n→∞

0,

which implies the consistency of f̂n(x).
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Remark 27. Note that Theorem 17 implies only pointwise consistency. It would be much

more difficult to show that supx∈R

∣∣f̂n(x)− f(x)
∣∣ P−−−→
n→∞

0.

Remark 28. Note that one cannot use the standard law of large numbers to prove the con-

sistency, as one would need a law of large numbers for a triangular array.

Theorem 18 (Asymptotic normality of f̂n(x)). Let the assumptions of Theorem 17 be satis-

fied and further that f(x) > 0. Then

f̂n(x)− E f̂n(x)√
var
(
f̂n(x)

) d−−−→
n→∞

N(0, 1).

Proof. From Theorem 17 we know that

var
(
f̂n(x)

)
f(x)R(K)
nhn

−−−→
n→∞

1,

where R(K) =
∫
K2(y) dy. Thus thanks to CS (Theorem 2) it is sufficient to consider

f̂n(x)− E f̂n(x)√
f(x)R(K)
nhn

=

1√
nhn

∑n
i=1

[
K
(
x−Xi
hn

)
− E K

(
x−Xi
hn

)]√
f(x)R(K)

=
n∑
i=1

Xn,i,

where

Xn,i =
1√
nhn

K
(
x−Xi
hn

)
− E K

(
x−Xi
hn

)√
f(x)R(K)

, i = 1, . . . , n,

are independent and identically distributed random variables (with the distribution depending

on n). Thus the statement would follow from the Lindeberg-Feller central limit theorem (see

e.g. Proposition 2.27 in van der Vaart, 2000), provided its assumptions are satisfied. It is

straightforward to verify the assumptions as

E Xn,1 = · · · = E Xn,n = 0 and
n∑
i=1

var(Xn,i) −−−→
n→∞

1.

Further for each ε > 0 for all sufficiently large n it holds that uniformly in i = 1, . . . , n:

I
{
|Xn,i| ≥ ε

}
= I

{
1√
nhn

∣∣∣∣∣K
(
x−Xi
hn

)
− E K

(
x−Xi
hn

)√
f(x)R(K)

∣∣∣∣∣ ≥ ε
}

≤ I

{
1√
nhn

2 supy |K(y)|√
f(x)R(K)

≥ ε
}

= 0,

which implies that the ‘Feller-Lindeberg condition’

lim
n→∞

n∑
i=1

E
[
X2
n,i I
{
|Xn,i| ≥ ε

}]
= 0

is satisfied.
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Remark 29. Note that Theorem 18 implies

f̂n(x)− f(x)√
var
(
f̂n(x)

) d−−−→
n→∞

N(0, 1), (127)

only if

E f̂n(x)− f(x)√
var
(
f̂n(x)

) =
bias(f̂n(x))√
var
(
f̂n(x)

) −−−→n→∞
0,

which depends on the rate of hn. As we will see later, typically we have

E f̂n(x)− f(x)√
var
(
f̂n(x)

) =
O(h2

n)√
O
(

1
nhn

) = O
(√

nh5
n

)

and thus limn→∞ nh
5
n = 0 is needed to show (127). But this would require that hn = o

(
n−1/5

)
which would exclude the optimal bandwidth choice (see the next section).

9.2 Bandwidth choice

Basically we distinguish two situations:

(i) hn depends on x (on the point where we estimate the density f), then we speak about

the local bandwidth;

(ii) the same hn is used for all x, then we speak about the global bandwidth.

The standard methods of choosing the bandwidth are based on the mean squared error

MSE(f̂n(x)) = var
(
f̂n(x)

)
+
[
bias

(
f̂n(x)

)]2
.

Note that by Theorem 17

var
(
f̂n(x)

)
=
f(x)R(K)

nhn
+ o
(

1
nhn

)
, (128)

where R(K) =
∫
K2(y) dy.

To approximate the bias suppose that f is twice differentiable in x that is an interior

point of the support of f . Further let the kernel K be a bounded symmetric function with a

bounded support such that
∫
K(t) dt = 1,

∫
tK(t) dt = 0 and

∫
|t2K(t)| dt <∞. Then for all

sufficiently large n

E f̂n(x) = 1
hn

E K
(
x−X1
hn

)
=

∫
1

hn
K
(x−y
hn

)
f(y) dy

=

∫
K(t)f(x− thn) dt =

∫
K(t)

[
f(x)− thnf ′(x) + 1

2 t
2 h2

n f
′′(x) + o(h2

n)
]

dt

= f(x) + 1
2 h

2
n f
′′(x)µ2K + o(h2

n),
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where µ2K =
∫
y2K(y) dy. Thus one gets

bias
(
f̂n(x)

)
= E f̂n(x)− f(x) = 1

2 h
2
n f
′′(x)µ2K + o(h2

n),

which together with (128) implies

MSE
(
f̂n(x)

)
= 1

nhn
f(x)R(K) + 1

4 h
4
n [f ′′(x)]2µ2

2K + o
(

1
nhn

)
+ o
(
h4
n

)
. (129)

Ignoring the remainder o(·) terms in (129), AMSE (asymptotic mean squared error) of

f̂n(x) is given by

AMSE
(
f̂n(x)

)
= 1

nhn
f(x)R(K) + 1

4 h
4
n [f ′′(x)]2µ2

2K . (130)

Minimising (130) one gets asymptotically optimal local bandwidth (i.e. bandwidth that min-

imises the AMSE)

h(opt)
n (x) = n−1/5

[
f(x)R(K)

[f ′′(x)]2 µ2
2K

]1/5

. (131)

To get a global bandwidth it is useful to define (A)MISE - (asymptotic) mean inte-

grated squared error. Introduce

MISE
(
f̂n
)

=

∫
MSE

(
f̂n(x)

)
dx =

∫
E
[
f̂n(x)− f(x)

]2
dx,

and its asymptotic approximation

AMISE
(
f̂n
)

=

∫
AMSE

(
f̂n(x)

)
dx =

∫
1

nhn
f(x)R(K) +

[f ′′(x)]2µ22K
4 h4

n dx

=
R(K)

nhn
+ h4

n

R(f ′′)µ2
2K

4
, (132)

where R(f ′′) =
∫ [
f ′′(x)

]2
dx.

Minimising (132) one gets asymptotically optimal global bandwidth (i.e. bandwidth that

minimises the AMISE)

h(opt)
n = n−1/5

[
R(K)

R(f ′′)µ2
2K

]1/5

. (133)

Remark 30. Note that after substitution of the optimal bandwidth (133) into (132) one gets

that the optimal AMISE is given by

5
[
R(f ′′)

]1/5
4n4/5

{[
R(K)

]2
µ2K

}2/5
.

It can be shown that if we consider kernels that are densities of probability distributions

then
[
R(K)

]2
µ2K is minimised for K being Epanechnikov kernel. Further note that for

K̃(x) =
√
µ2K K

(√
µ2K x

)
one has

µ
2K̃

= 1 and
[
R(K̃)

]4/5
=
[
R(K)

]4/5
µ

2/5
2K
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and the optimal AMISE is the same for K̃ and K. That is why some authors prefer to use

the kernels in a standardised form so that µ2K = 1. Some of the most common kernels having

this property are summarised in Table 2.

Epanechnikov kernel: K(x) = 3
4
√

5

(
1− x2

5

)
I
{
|x| ≤

√
5
}

Triangular kernel: K(x) = 1√
6
(1− |x|) I

{
|x| ≤

√
6
}

Uniform kernel: K(x) = 1
2
√

3
I
{
|x| ≤

√
3
}

Biweight kernel: K(x) = 15
16
√

7
(1− x2)2 I

{
|x| ≤

√
7
}

Tricube kernel: K(x) = 70
√

243
81
√

35
(1− |x|3)3 I

{
|x| ≤

√
35
243

}
Gaussian kernel: K(x) = 1√

2π
exp{−x2/2}

Table 2: Some kernel functions standardised so that µ2K = 1.

9.2.1 Normal reference rule

The problem of asymptotically optimal bandwidths given in (131) and (133) is that the

quantities f(x), f ′′(x) and R(f ′′) are unknown. Normal reference rule assumes that f(x) =
1
σ ϕ(x−µσ ), where ϕ(x) is density of a standard normal distribution.

Then

f ′(x) = 1
σ2ϕ

′(x−µ
σ

)
, f ′′(x) = 1

σ3ϕ
′′(x−µ

σ

)
,

where

ϕ′(x) = 1√
2π

e−
x2

2 (−x) = −x√
2π

e−
x2

2 ,

ϕ′′(x) = −1√
2π

e−
x2

2 + x2√
2π

e−
x2

2 = (x2 − 1)ϕ(x).

Thus with the help of (131) one gets

ĥn(x) = n−
1
5 σ̂

[
R(K)

µ2
2K

1[ (x−µ̂)2

σ̂2 − 1
]2
ϕ
(x−µ̂

σ̂

)]
1
5

,

where µ̂ a σ̂2 are some estimates of the unknown parameters µ and σ2, for instance µ̂ =

Xn, σ̂
2 = 1

n−1

∑n
i=1(Xi −Xn)2.

For the global bandwidth choice we need to calculate

R(f ′′) =

∫ [
f ′′(x)

]2
dx =

∫ {
1

σ3

[(x−µ
σ

)2 − 1
]
ϕ
(x−µ

σ

)}2

dx

=
1

σ6

∫ [(x−µ
σ

)2 − 1
]2
ϕ2
(x−µ

σ

)
dx
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=

∣∣∣∣∣ t = x−µ
σ

dt = dx
σ

∣∣∣∣∣ =
1

σ5

∫
(t2 − 1)2ϕ2(t) dt

=
1

σ5

∫
(t4 − 2t2 + 1)

1

2π
e−t

2
dt =

1

σ52
√
π

∫
(t4 − 2t2 + 1)

1√
π

e−t
2

︸ ︷︷ ︸
∼N(0, 1

2)

dt

=
1

2σ5
√
π

E (Y 4 − 2Y 2 + 1) =
1

2σ5
√
π

[
3 ·
(

1
2

)2 − 2 · 1
2 + 1

]
=

3

8σ5
√
π
,

where Y ∼ N
(
0, 1

2

)
. Thus the asymptotically optimal global bandwidth would be

h(opt)
n = σ n−1/5

[
8
√
π R(K)

3µ2
2K

]1/5

.

Further if one uses a Gaussian kernel K(y) = 1√
2π

e−
y2

2 , one gets

µ2K =

∫
y2K(y) dy = 1,

R(K) =

∫
K2(y) dy = 1

2
√
π

∫
1√
π

e−y
2

dy = 1
2
√
π
,

which results in

h(opt)
n = σ n−1/5

[
4

3

]1/5
.
= 1.06σ n−1/5.

The standard normal reference rule is now given by

hn = 1.06n−1/5 min
{
Sn, ĨQRn

}
, (134)

where

Sn =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄n)2, and ĨQRn =
F̂−1
n (0.75)− F̂−1

n (0.25)

1.34
.

It was found out that the bandwidth selector (134) works well if the true distribution is ‘very

close’ to the normal distribution. But at the same time the bandwidth is usually too large

for distributions ‘moderately’ deviating from normal distribution. That is why some authors

prefer to use

hn = 0.9n−1/5 min
{
Sn, ĨQRn

}
.

For a more detailed argumentation see Silverman (1986), page 48.

9.2.2 Least-squares cross-validation∗

By this method we choose the bandwith as

h(LSCV )
n = arg min

hn>0
L(hn),

∗ ‘cross-validation’ se stř́ıdavě překládá jako metoda kř́ıžového ověřováńı, metoda kř́ıžové validace nebo prostě

jako krosvalidace.
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where

L(hn) =

∫ [
f̂n(x)

]2
dx− 2

n

n∑
i=1

f̂−i(Xi),

with f̂−i(x) = 1
(n−1)hn

∑n
j=1,j 6=iK

(x−Xj
hn

)
being the kernel density estimator based on a sample

that leaves out the i-th observation.

The rationale behind the above method is as follows. Suppose we are interested in mini-

mizing MISE
(
f̂n
)
. Note that MISE

(
f̂n
)

can be rewritten as

MISE
(
f̂n
)

=

∫
E
(
f̂n(x)− f(x)

)2
dx

Fub.
= E

∫
f̂2
n(x)− 2f̂n(x)f(x) + f2(x) dx

= E

∫
f̂2
n(x) dx− 2 E

∫
f̂n(x)f(x) dx+

∫
f2(x) dx.

An unbiased estimator for E
∫
f̂2
n(x) dx is simply given by

∫
f̂2
n(x) dx. Further the term∫

f2(x) dx does not depend on hn. Thus it remains to estimate E
∫
f̂n(x)f(x) dx. Let us

consider the following estimate

Ân =
1

n

n∑
i=1

f̂−i(Xi),

where

f̂−i(x) =
1

(n− 1)hn

n∑
j=1,j 6=i

K
(x−Xj

hn

)
is the estimate of f(x) that is based the sample without the i-th observation Xi. In what

follows it is shown that Ân is an unbiased estimator of
∫
f̂n(x)f(x) dx. Note that

E Ân =
1

n

n∑
i=1

E f̂−i(Xi).

Now with the help of (124) and (126)

E f̂−i(Xi) = E

[
1

(n− 1)hn

n∑
j=1,j 6=i

K
(Xi−Xj

hn

)]
=

1

hn
E K

(
X1−X2
hn

)
=

1

hn

∫ ∫
K
(x−y
hn

)
f(x)f(y) dx dy =

∫ [∫
1

hn
K
(x−y
hn

)
f(y) dy

]
︸ ︷︷ ︸

=E f̂n(x)

f(x) dx (135)

=

∫
E f̂n(x)f(x) dx

Fub
= E

∫
f̂n(x)f(x) dx.

Thus Ân is an unbiased estimator of E
∫
f̂n(x)f(x) dx and L(hn) is an unbiased estimator of

E
∫
f̂2
n(x) dx− 2 E

∫
f̂n(x)f(x) dx.
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Remark 31. Stone (1984) has proved that

ISE
(
h

(LSCV )
n

)
minhn ISE(hn)

a.s.−−−→
n→∞

1,

where ISE(hn) =
∫

(f̂n(x)−f(x))2 dx. But the simulations show that the variance of h
(LSCV )
n

(for not too big sample sizes) is rather large. Thus this method cannot be used blindly.

9.2.3 Biased cross-validation∗

This method aims at minimizing the AMISE given by (132). Note that to estimate AMISE

it is sufficient to estimate R(f ′′). It was found that the straightforward estimator R
(
f̂ ′′n
)

is

(positively) biased. To correct for the main term in the bias expansion it is recommended to

use R
(
f̂ ′′n
)
− R(K′′)

nh5n
instead. That is why in this method the bandwidth is chosen as

h(BCV )
n = arg min

hn>0
B(hn),

where

B(hn) =
R(K)

nhn
+ 1

4 h
4
n µ

2
2K

[
R
(
f̂ ′′n
)
− R(K ′′)

nh5
n

]
.

Remark 32. It can be proved that ĥ
(BCV )
n

h
(opt)
n

P−−−→
n→∞

1, where h
(opt)
n is given by (131).

9.3 Higher order kernels†

By a formal calculation (for sufficiently large n, sufficiently smooth f and x an interior point

of the support) one gets

E f̂n(x) =

∫
K(t)f(x− thn) dt

= f(x)

∫
K(t) dt− f ′(x)hn

∫
tK(t) dt

+
f ′′(x)

2
h2
n

∫
t2K(t) dt− f ′′′(x)

3!
h3
n

∫
t3K(t) dt+ . . . .

The kernel of order p is such that
∫
K(t) dt = 1 and∫

tjK(t) dt = 0, j = 1, . . . , p− 1, and

∫
tpK(t) dt 6= 0.

But note that if the above equations hold for p > 2, then (among others)
∫
t2K(t) dt = 0,

which implies that K cannot be non-negative. As a consequence it might happen that f̂n(x) <

0.

One of possible modifications of a Gaussian kernel to get a kernel of order 4 is given by

K(y) = 1
2 (3− y2) 1√

2π
e−y

2/2.

∗ Not done at the lecture. † Not done at the lecture.
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9.4 Mirror-reflection∗

The standard kernel density estimator (114) is usually not consistent in the points, where the

density f is not continuous. These might be the boundary points of the support. Even if the

density is continuous at these points, the bias at these points is usually only of order O(hn)

and not O(h2
n). There are several ways how to improve the performance of f̂n(x) close to the

boundary points. The most straightforward is the mirror-reflection method.

To illustrate this method suppose we know that the support of the distribution with the

density f is [0,∞). The modified kernel density estimator that uses mirror-reflection is given

by

f̂ (MR)
n (x) =

{
1

nhn

∑n
i=1K

(
x−Xi
hn

)
+ 1

nhn

∑n
i=1K

(
x+Xi
hn

)
, x ≥ 0,

0, x < 0.
(136)

Note that the first term on the right-hand side of (136) (for x ≥ 0) is the standard kernel

density estimator f̂n(x). The second term on the right-hand side of (136) is in fact also

a standard kernel density estimator f̂n(x), but based on the ‘mirror reflected’ observations

−X1, . . . ,−Xn. This second term is introduced in order to compensate for the mass of the

standard kernel density estimator f̂n(x) that falls outside the support [0,∞).

Literature: Wand and Jones (1995) Chapters 2.5, 3.2, 3.3. The end of the

self study for

the week

(4. 5. -8. 5. 2020)

10 Kernel regression†

Suppose that one observes independent and identically distributed bivariate random vectors(
X1

Y1

)
, . . . ,

(
Xn
Yn

)
. Our primary interest in this section is to estimate the conditional mean

function of Y1 given X1 = x, i.e.

m(x) = E [Y1 |X1 = x]

without assuming any parametric form of m(x).

In what follows it is useful to denote the conditional variance function as

σ2(x) = var [Y1 |X1 = x].

10.1 Local polynomial regression

Suppose that the function m is a p-times differentiable function at the point x, then for Xi

‘close’ to x one can approximate

m(Xi)
.
= m(x) +m′(x) (Xi − x) + . . .+ m(p)(x)

p! (Xi − x)p. (137)

∗ Not done at the lecture. † Jádrové regresńı odhady
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Thus ‘locally’ one can view and estimate the function m(x) as a polynomial. This motivates

defininition of the local polynomial estimator as

β̂(x) =
(
β̂0(x), . . . , β̂p(x)

)T
= arg min

b0,...,bp

n∑
i=1

[
Yi − b0 − b1(Xi − x)− . . .− bp(Xi − x)p

]2
K
(
Xi−x
hn

)
, (138)

where K is a given kernel function and hn is a smoothing parameter (bandwidth) going to

zero as n→∞.

Comparing (137) and (138) one gets that β̂j(x) estimates m(j)(x)
j! . Often we are interested

only in m(x) which is estimated by β̂0(x).

Put

Y =


Y1

Y2

. . .

Yn

 , Xp(x) =


1 (X1 − x) . . . (X1 − x)p

1 (X2 − x) . . . (X2 − x)p

. . . . . . . . . . . .

1 (Xn − x) . . . (Xn − x)p


and W(x) for the diagonal matrix with the i-th element of the diagonal given by K

(
Xi−x
hn

)
.

Note that the optimisation problem in (138) can be written as the weighted least squares

problem

β̂(x) = arg min
b∈Rp+1

{(
Y−Xp(x) b

)T
W(x)

(
Y−Xp(x) b

)}
, (139)

where b = (b0, b1, . . . , bp)
T. The solution of (139) can be explicitly written as

β̂(x) =
(
X

T
p (x)W(x)Xp(x)

)−1
X

T
p (x)W(x)Y,

provided that the matrix
(
X

T
p (x)W(x)Xp

)
is non-singular.

The following technical lemma will be useful in deriving the properties of the local polyno-

mial estimator.

Lemma 8. Let the kernel K be bounded, symmetric around zero, positive, with a support

(−1, 1) and such that
∫
K(x) dx = 1. For l ∈ N ∪ {0} put

Sn,l(x) =
1

n

n∑
i=1

1
hn
K
(
Xi−x
hn

) (
Xi−x
hn

)l
.

Suppose further that hn → 0 and (nhn) → ∞ and that the density fX of X1 is positive and

twice differentiable in x. Then

Sn,l(x) =

 fX(x)
∫
K(t) tl dt+ h2n

2 f ′′X(x)
∫
K(t) tl+2 dt+ o(h2

n) +OP
(

1√
nhn

)
, l even,

hn f
′(x)

∫
K(t) tl+1 dt+ o(h2

n) +OP
(

1√
nhn

)
, l odd.
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Proof. Analogously as in the proof of asymptotic normality of f̂n(x) (Theorem 18) one can

show that√
nhn

(
Sn,l(x)− E Sn,l(x)

) d−−−→
n→∞

N
(
0, σ2(x)

)
, where σ2(x) = fX(x)

∫
t2lK2(t) dt.

Thus

Sn,l(x) = E Sn,l(x) +OP
(

1√
nhn

)
and it remains to calculate E Sn,l(x). Using the substitution t = y−x

hn
and the Taylor expansion

of the function fX(x+ t hn) around the point x one gets

E Sn,l(x) = E 1
hn
K
(
X1−x
hn

)(
X1−x
hn

)l
=

∫
1
hn
K
(y−x
hn

)(y−x
hn

)l
fX(y) dy

=

∫
K(t) tl fX(x+ thn) dt

= fX(x)

∫
K(t)tl dt+ hnf

′
X(x)

∫
K(t)tl+1 dt+ h2n

2 f
′′
X(x)

∫
K(t)tl+2 dt+ o(h2

n).

As K is symmetric, then one gets that
∫
K(t)tl+1 dt = 0 for l even and

∫
K(t)tl+2 dt = 0 for

l odd.

Remark 33. Note that Lemma 8 implies that

Sn,0(x) = fX(x) + h2n
2 f ′′X(x)µ2K + o(h2

n) +OP
(

1√
nhn

)
= fX(x) + oP (1), (140)

Sn,1(x) = hn f
′(x)µ2K + o(h2

n) +OP
(

1√
nhn

)
= oP (1), (141)

Sn,2(x) = f(x)µ2K + oP (1), (142)

Sn,3(x) = hn f
′(x)

∫
t4K(t) dt+ o(h2

n) +OP
(

1√
nhn

)
= oP (1). (143)

10.2 Nadaraya-Watson estimator

For p = 0 the local polynomial estimator given by (138) simplifies to

β̂0(x) = arg min
b0∈R

n∑
i=1

[
Yi − b0

]2
K
(
Xi−x
hn

)
,

and solving this optimisation task one gets

β̂0(x) =
n∑
i=1

wni(x)Yi =: m̂NW (x),

where

wni(x) =
K
(
Xi−x
hn

)∑n
j=1K

(Xj−x
hn

) =
1

nhn
K
(
Xi−x
hn

)
Sn,0(x)

.
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This estimator is in the context of the local polynomial regression also called a locally

constant estimator.

Note that for each x for which the weights are defined

n∑
i=1

wni(x) = 1.

Moreover if the kernel K is non-negative function then also the weights are non-negative.

Remark 34. Let us consider the kernel with the support [−1, 1]. Then the wni(x) is zero if

Xi 6∈ [x− hn, x+ hn].

Further, if we assume the uniform kernel, i.e. K(x) = 1
2 I{|x| ≤ 1}, then all the weights

wni(x) for which Xi ∈ [x− hn, x+ hn] are equal. Thus for this kernel the Nadaraya-Watson

estimator m̂NW (x) is given simply by the sample mean calculated from the observation Yi for

which Xi ∈ [x− hn, x+ hn], i.e.

m̂NW (x) =

∑n
i=1 Yi I{|Xi − x| ≤ hn}∑n
i=1 I{|Xi − x| ≤ hn}

Thus one can view m̂NW (x) as a ‘moving average’ in the covariate direction.

To formulate some theoretic properties of m̂NW (x) put X = (X1, . . . , Xn). Further let

bias
(
m̂NW (x)|X

)
and var

(
m̂NW (x)|X

)
stand for the conditional bias and variance of the

estimator m̂NW (x) given X.

Theorem 19. Suppose that the assumptions of Lemma 8 are satisfied and further that

(nh3
n) −−−→

n→∞
∞, the density fX(·) is continuously differentiable and positive at x, the function

m(·) is twice differentiable at the point x and the function σ2(·) is continuous at the point x.

Then

bias
(
m̂NW (x)|X

)
= h2

n µ2K

(
m′(x) f ′X(x)

fX(x) + m′′(x)
2

)
+ oP (h2

n), (144)

var
(
m̂NW (x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
, (145)

where

R(K) =

∫
K2(x) dx and µ2K =

∫
x2K(x) dx. (146)
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Proof. Showing (144). Let us calculate

E [m̂NW (x)|X] =

n∑
i=1

wni(x) E [Yi|X] =

n∑
i=1

wni(x) E [Yi|Xi] =

n∑
i=1

wni(x)m(Xi)

=

n∑
i=1

wni(x)
[
m(x) + (Xi − x)m′(x) + (Xi−x)2

2 m′′(x) + (Xi − x)2 R̃(Xi)
]

= m(x)
n∑
i=1

wni(x) +m′(x)
n∑
i=1

wni(x)(Xi − x) +
m′′(x)

2

n∑
i=1

wni(x)(Xi − x)2

+
n∑
i=1

wni(x)(Xi − x)2R̃(Xi)

= m(x) +m′(x)An +
m′′(x)

2
Bn + Cn, (147)

where R̃(z)→ 0 as z → x and

An =
n∑
i=1

wni(x)(Xi − x), Bn =
n∑
i=1

wni(x)(Xi − x)2, Cn =
n∑
i=1

wni(x)(Xi − x)2R̃(Xi). (148)

Now with the help of (140) and (141)

An =
n∑
i=1

wni(x)(Xi − x) =
hn
∑n

i=1K
(
Xi−x
hn

)
(Xi − x) 1

h2n∑n
j=1K

(Xj−x
hn

)
1
hn

=
hnSn,1(x)

Sn,0(x)

=
hn

[
hnf

′
X(x)µ2K + o(h2

n) +OP

(
1√
nhn

)]
fX(x) + oP (1)

=
h2
nf
′
X(x)µ2K + o(h3

n) +OP

(
hn√
nhn

)
fX(x) + oP (1)

=
h2
nf
′
X(x)µ2K

fX(x)
+ oP (h2

n) +OP

(
h2n√
nh3n

)
=
h2
nf
′
X(x)µ2K

fX(x)
+ oP (h2

n), (149)

as (nh3
n)→∞. Further with the help of (140) and (142)

Bn =
n∑
i=1

wni(Xi − x)2 = . . . =
h2
nSn,2(x)

Sn,0(x)

=
h2
n [fX(x)µ2K + oP (1)]

fX(x) + oP (1)
= h2

nµ2K + oP (h2
n). (150)

Concerning Cn thanks to (150) and the fact that the support of K is (−1, 1) one can bound

|Cn| ≤

∣∣∣∣∣
n∑
i=1

wni(x)(Xi − x)2R̃(Xi)

∣∣∣∣∣ ≤ sup
z:|z−x|≤hn

|R̃(z)|
n∑
i=1

wni(x)(Xi − x)2

= o(1)OP (h2
n) = oP (h2

n). (151)

Now combining (149), (150) and (151) one gets

E [m̂NW (x)|X] = m(x) +m′(x)h2
n

f ′X(x)

fX(x)
µ2K +

m′′(x)

2
h2
nµ2K + oP (h2

n),
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which implies (144).

Showing (145). Let us calculate

var[m̂NW (x)|X] =
n∑
i=1

w2
ni(x) var[Yi|Xi] =

n∑
i=1

w2
ni(x)σ2(Xi)

=

∑n
i=1K

2
(
Xi−x
hn

)
σ2(Xi)[∑n

j=1K
(Xj−x

hn

)]2 =
1

nhn

Vn
[Sn,0(x)]2

,

where Vn = 1
nhn

∑n
i=1K

2
(
Xi−x
hn

)
σ2(Xi).

Now completely analogously as in Theorem 17 it is proved that f̂n(x)
P−−−→

n→∞
f(x), we will

show that

Vn
P−−−→

n→∞
fX(x)σ2(x)R(K), (152)

which combined with (140) implies (145).

Showing (152). First with the help of Bochner’s theorem (Theorem 16)

E Vn =
1

hn
E
[
K2
(
X1−x
hn

)
σ2(X1)

]
=

∫
1

hn
K2
(
z−x
hn

)
σ2(z)fX(z) dz −−−→

n→∞
σ2(x)fX(x)

∫
K2(t) dt.

Now it remains to show that var(Vn) −−−→
n→∞

0. Using again Bochner’s theorem (Theorem 16)

var(Vn) =
1

nh2
n

[
E K4

(
X1−x
hn

)
σ4(X1)−

(
E K2

(
X1−x
hn

)
σ2(X1)

)2
]

=
1

nhn

[
1

hn
E K4

(
X1−x
hn

)
σ4(X1)

]
− 1

n

[
1

hn
E K2

(
X1−x
hn

)
σ2(X1)

]2

=
1

nhn

[
σ4(x)fX(x)

∫
K4(t) dt+ o(1)

]
− 1

n

[
σ2(x)fX(x)

∫
K2(t) dt+ o(1)

]2

−−−→
n→∞

0.

10.3 Local linear estimator

For p = 1 the local polynomial estimator given by (138) simplifies to

(
β̂0(x), β̂1(x)

)
= arg min

b0,b1

n∑
i=1

[
Yi − b0 − b1 (Xi − x)

]2
K
(
Xi−x
hn

)
.

By solving the above optimisation task one gets

β̂0(x) =

n∑
i=1

wni(x)Yi =: m̂LL(x),
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where the (local linear) weights can be written in the form

wni(x) =
1

nhn
K
(
Xi−x
hn

)(
Sn,2(x)− Xi−x

hn
Sn,1(x)

)
Sn,0(x)Sn,2(x)− S2

n,1(x)
, i = 1, . . . , n. (153)

It is easy to check (see also Remark 35 below) that the weights satisfy (for each x that the

weights are defined)

n∑
i=1

wni(x) = 1,
n∑
i=1

wni(x)(Xi − x) = 0. (154)

On the other hand it might happen that the weights are negative. In practice this happens if

x is either ‘close’ to to the minimal or maximal value of the covariate.

Remark 35. To see (154) note that

n∑
i=1

wni(x) =
Sn,0(x)Sn,2(x)− S2

n,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= 1

and

n∑
i=1

wni(x)(Xi − x) =

∑n
i=1

1
nhn

K
(
Xi−x
hn

)
(Xi − x)Sn,2(x)− 1

nh2n

∑n
i=1K

(
Xi−x
hn

)
(Xi − x)2

Sn,0(x)Sn,2(x)− S2
n,1(x)

=
Sn,1(x)Sn,2(x)− Sn,2(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= 0.

Theorem 20. Suppose that the assumptions of Theorem 19 hold. Then

bias
(
m̂LL(x)|X

)
= h2

n µ2K
m′′(x)

2 + oP (h2
n), (155)

var
(
m̂LL(x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
, (156)

where R(K) and µ2K are given in (146).

Note that by Theorem 19 for the Nadaraya-Watson estimator one has

bias
(
m̂NW (x)|X

)
= h2

n µ2K

(
m′(x) f ′X(x)

fX(x) + m′′(x)
2

)
+ oP (h2

n),

var
(
m̂NW (x)|X

)
= σ2(x)R(K)

fX(x)nhn
+ oP

(
1

nhn

)
.

It is worth noting that the main terms in the approximation of the conditional variances of

m̂NW (x) and m̂LL(x), i.e.

var
(
m̂NW (x)|X

)
= var

(
m̂LL(x)|X

)
+ oP

(
1

nhn

)
.

Also the conditional biases are of the same order. But the conditional bias of m̂LL(x) in com-

parison to m̂NW (x) has ‘a simple structure’, as it does not contain the term h2
n µ2K

m′(x) f ′X(x)

fX(x) .

This is the reason why usually the authors usually prefer m̂LL(x) to m̂NW (x).
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Proof of Theorem 20. Showing (155). Completely analogously as in the proof of Theorem 19

one can arrive at (147) with the only difference that now the weights wni(x) are given by (153).

Now with the help of (154)

An =

n∑
i=1

wni(x)(Xi − x) = 0. (157)

Further using (140), (141), (142) and (143)

Bn =
n∑
i=1

wni(x) (Xi−x)2

h2n
h2
n = h2

n

S2
n,2(x)− Sn,3(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

= h2
n

[
fX(x)

∫
t2K(t) dt+ oP (1)

]2 − oP (1)oP (1)

(fX(x) + oP (1))
[
fX(x)

∫
t2K(t) dt+ oP (1)

]
− (oP (1))2

= h2
n µ2K + oP (h2

n). (158)

Thus it remains to show that Cn = oP (h2
n). Put Dn = Sn,0(x)Sn,2(x)−S2

n,1(x) and note that

with the help of (140)–(142) one gets

Dn = f2
X(x)µ2

2K + oP (1). (159)

Now with the help (159) and Lemma 8 one can bound

|Cn| ≤ sup
z:|z−x|≤hn

|R̃(z)|h2
n

n∑
i=1

|wni(x)| (Xi−x)2

h2n

≤ h2
n o(1)

S2
n,2(x) + |Sn,1(x)|

∑n
i=1

1
nhn

K
(
Xi−x
hn

)∣∣Xi−x
hn

∣∣3
|Dn(x)|

= o(h2
n)
f2
X(x)µ2

2K + oP (1) + oP (1)
[
fX(x)

∫
K(t) |t|3 dt+ oP (1)

]
f2
X(x)µ2K + oP (1)

= oP (h2
n),

which together with (148), (157) and (158) yields (155).

Showing (156). With the help of (141), (142), (152) and (159) one can calculate

var[m̂LL(x)|X] =

n∑
i=1

w2
ni(x)σ2(Xi)

=
1

D2
n(x)

[
1

n2h2
n

n∑
i=1

K2
(
Xi−x
hn

) (
Sn,2(x)− Xi−x

hn
Sn,1(x)

)2
σ2(Xi)

]

=
1

nhn

1

D2
n(x)

[
S2
n,2(x) + oP (1)

] 1

nhn

n∑
i=1

K2
(
Xi−x
hn

)
σ2(Xi)

=
1

nhn

1

f4
X(x)µ2

2K + oP (1)

[
f2
X(x)µ2

2K + oP (1)
] [
fX(x)σ2(x)R(K) + oP (1)

]
,

which implies (156).
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10.4 Locally polynomial regression (general p)∗

Analogously as for p ∈ {0, 1} one gets the estimator of m(x) in the form

m̂p(x) =

n∑
i=1

wni(x)Yi,

where the weights wni(x) are given by the first row of the matrix(
X

T
p (x)W(x)Xp(x)

)−1
X

T
p (x)W(x)

and satisfy that

n∑
i=1

wni(x) = 1 and
n∑
i=1

wni(x)(Xi − x)` = 0, ` = 1, . . . , p.

With the help of this property one can show (analogously as in Theorems 19 and 20) that if p

is even then the conditional biases of m̂p(x) and m̂p+1(x) are of the same order (OP (hp+2
n )),

but the bias of m̂p+1(x) has a simpler structure than the bias of m̂p(x).

Further, it can be proved that conditional variances are of the same order for each p and it

holds

var
(
m̂p(x)|X

)
=

Vp σ
2(x)

fX(x)nhn
+ oP

(
1

nhn

)
,

where V0 = V1 < V2 = V3 < V4 = V5 < . . . and so on.

To sum it up, for p even increasing the order of polynomial to p+ 1 does not increase the

asymptotic variance but it has a potential to reduce the bias. On the other hand if p is odd

then increasing the order of polynomial to p+ 1 increases the asymptotic variance.

That is why in practice usually odd choices of p are preferred.

Literature: Fan and Gijbels (1996) Chapters 3.1 and 3.2.1.

10.5 Bandwidth selection

10.5.1 Asymptotically optimal bandwidths

In what follows we will consider p = 1. With the help of Theorem 20 one can approximate

the conditional MSE (mean squared error) of m̂LL(x) as

MSE
(
m̂LL(x) |X

)
= 1

nhn

σ2(x)R(K)
fX(x) + 1

4 h
4
n [m′′(x)]2µ2

2K + oP
(

1
nhn

)
+ oP

(
h4
n

)
. (160)

Ignoring the remainder oP (.) terms in (160), we get that AMSE (asymptotic mean squared

error) of m̂LL(x) is given by

AMSE
(
m̂LL(x) |X

)
= 1

nhn

σ2(x)R(K)
fX(x) + 1

4 h
4
n [m′′(x)]2µ2

2K . (161)

∗ Not done at the lecture.
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Minimising (161) one gets asymptotically optimal local bandwidth (i.e. bandwidth that min-

imises the AMSE)

h(opt)
n (x) = n−1/5

[
σ2(x)R(K)

fX(x) [m′′(x)]2 µ2
2K

]1/5

.

The integrated mean squared error (MISE) is usually defined as

MISE
(
m̂LL |X

)
=

∫
MSE

(
m̂LL(x) |X

)
w0(x) fX(x) dx (162)

where w0(x) is a given weight function which is introduced in order to guarantee that the

integral is hopefully finite (for instance w0(x) = I{x ∈ [a, b]}).
Now with the help of (161) and (162) the asymptotic integrated mean squared error

(AMISE) is defined as

AMISE
(
m̂LL |X

)
=

∫
AMSE

(
m̂LL(x) |X

)
w0(x) fX(x) dx

=
R(K)

nhn

∫
σ2(x)w0(x) dx+ 1

4 h
4
n µ

2
2K

∫
[m′′(x)]2w0(x) fX(x) dx. (163)

Minimising (163) one gets asymptotically optimal global bandwidth (i.e. the bandwidth

that minimises the AMISE)

h(opt)
n = n−1/5

[
R(K)

∫
σ2(x)w0(x) dx

µ2
2K

∫
[m′′(x)]2w0(x) fX(x) dx

]1/5

. (164)

10.5.2 Rule of thumb for bandwidth selection

Suppose that σ(x) is constant. Then the asymptotically optimal global bandwidth (164) is

for m̂LL given by

h(opt)
n = n−1/5

[
R(K)σ2

∫
w0(x) dx

µ2
2K

∫
[m′′(x)]2w0(x) fX(x) dx

]1/5

.

Now let m̃(x) be an estimated mean function fitted by the (global) polynomial regression of

order 4 (generally p+ 3 is recommended) through the standard least squares method.

Now in (164) one replaces the unknown quantity σ2 by σ̃2 = 1
n−5

∑n
i=1

[
Yi − m̃(Xi)

]2
and m′′(x) by m̃′′(x). Finally the integral

∫
[m′′(x)]2w0(x) fX(x) dx = EX [m′′(X1)]2w0(X1),

which can be estimated by

1

n

n∑
i=1

[m̃′′(Xi)]
2w0(Xi).

This results in the bandwidth selector

h(ROT )
n = n−1/5

[
R(K) σ̃2

∫
w0(x) dx

µ2
2K

1
n

∑n
i=1[m̃′′(Xi)]2w0(Xi)

]1/5

.
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10.5.3 Cross-validation

h(CV )
n = arg min

hn>0
CV(hn),

where

CV(hn) =
1

n

n∑
i=1

[
Yi − m̂(−i)

p (Xi)
]2
w0(Xi)

with m̂
(−i)
p being the estimator based on a sample that leaves out the i-th observation.

The rationale of the above procedure is that one aims at minimising the estimated integrated

squared error, i.e.

ISE
(
m̂p(x)

)
=

∫ (
m̂p(x)−m(x)

)2
fX(x)w0(x) dx

= EX′
(
m̂p(X

′)−m(X ′)
)2
w0(X ′), (165)

where X ′ is independent of observations
(
X1

Y1

)
, . . . ,

(
Xn
Yn

)
.

To illustrate that put εi = Yi −m(Xi) and calculate

CV(hn) =
1

n

n∑
i=1

[
εi +m(Xi)− m̂(−i)

p (Xi)
]2
w0(Xi)

=
1

n

n∑
i=1

ε2
i w0(Xi) +

2

n

n∑
i=1

εi

[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi)

+
1

n

n∑
i=1

[
m(Xi)− m̂(−i)

p (Xi)
]2
w0(Xi).

Now 1
n

∑n
i=1 ε

2
i w0(Xi) does not depend on hn and thus it is not interesting.

Further 1
n

∑n
i=1

[
m(Xi) − m̂(−i)

p (Xi)
]2
w0(Xi) can be considered as a reasonable estimate

of (165).

Finally 2
n

∑n
i=1 εi

[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi) does not ‘bias’ the estimate of (165), as

E
[
εi
[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi)

]
= E

{
E
[
εi
[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi) |X

]}
= E

{
E [εi|Xi] E

[[
m(Xi)− m̂(−i)

p (Xi)
]
w0(Xi) |X

]}
= 0,

where we have used that E [εi|Xi] = 0 and that εi and
[
m(Xi) − m̂

(−i)
p (Xi)

]
w0(Xi) are

independent conditionally on Xi (and thus also conditionally on X).

Remark 36. Note that it would not make much sense to search for hn that minimises the

residual sum of squares. RSS(hn) = 1
n

∑n
i=1

[
Yi − m̂(Xi)

]2
w0(Xi). The reason is that

RSS(hn) is minimised if Yi = m̂(Xi), which would result in a very low bandwidth hn.
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Remark 37. Another view of the cross-validation procedure is that we aim at finding the

bandwidth hn that minimizes the prediction error. More precisely, suppose that
(
X′

Y ′

)
is a

random vector that has the same distribution as
(
X1

Y1

)
and that is independent with our

random sample
(
X1

Y1

)
, . . . ,

(
Xn
Yn

)
. Then the prediction error (viewed as a function of hn) is

given by

R(hn) = EX′,Y ′
(
Y ′ − m̂p(X

′)
)2
w(X ′),

where the expectation is taken only with respect to the random vector
(
X′

Y ′

)
. Now CV(hn)

presents a natural estimator of R(hn) as
(
Xi
Yi

)
is independent of m̂

(−i)
p .

10.5.4 Nearest-neighbour bandwidth choice

Suppose that the support of the kernel function K is the interval (−1, 1). Note that then

wni(x) = 0 if |Xi − x| > hn. The aim of the nearest-neighbour bandwidth choice is to choose

such hn so that for at least k observations |Xi− x| ≤ hn. This can be technically achieved as

follows.

Put

d1(x) =
∣∣X1 − x

∣∣, . . . , dn(x) =
∣∣Xn − x

∣∣
for the distances of the observations X1, . . . , Xn from the point of interest x. Let d(1)(x) ≤
. . . ≤ d(n)(x) be the ordered sample of d1(x), . . . , dn(x). Then choose hn as

h(NN)
n (x) = d(k)(x). (166)

Note that (166) presents a local bandwidth choice.

To get an insight into the bandwidth choice (166) let us approximate

1

n

n∑
i=1

I{|Xi − x| ≤ h}
.
= F̂n(x+ h)− F̂n(x− h)

.
= FX(x+ h)− FX(x− h)

.
= fX(x)2h. (167)

By plugging h = d(k)(x) = hn(x) into (167) one gets k
n
.
= fX(x)2hn(x) which further implies

that

h(NN)
n (x)

.
=

k

2nfX(x)
.

Remark 38. To derive the asymptotic properties of m̂LL when bandwidth hn is chosen as

(166) one needs to consider kn →∞ and kn
n → 0 as n→∞.

Remark 39. Using h
(NN)
n (x) makes usually the problem more computational intensive as

one is using a local bandwidth. Further there is no guarantee that the estimator m̂p(x) is

continuous even if K is continuous. To prevent those difficulite some authors recommend to

transform the covariates as

X ′i = F̂n(Xi), i = 1, . . . , n,
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where F̂n(x) = 1
n

∑n
i=1 I{Xi ≤ x} is the empirical distribution function of the covariates. Then

the transformed covariates are ‘approximately uniformly spread’ on (0, 1)∗ and one can use a

global bandwidth choice (e.g. by the cross-validation procedure described in Section 10.5.3).

As Fn is a consistent estimator of FX one should keep in mind that when using the transformed

covariates X ′i one estimates

E [Y |FX(X) = x] = E [Y |X = F−1
X (x)] = m

(
F−1
X (x)

)
.

10.6 Robust locally weighted regression (LOWESS)

LOWESS is an algorithm for ‘LOcally WEighted Scatterplot Smoothing’. It is used among

others in regression diagnostics. It runs as follows.

In the first step the local linear fit m̂LL(x) with the tricube kernel function, K(t) = 70
81

(
1−

|t|3
)3

I{|t| ≤ 1}, is calculated. The bandwidth is chosen by the nearest-neighbour method

with k = bn fc, where the default choice of f is 2
3 . Then for a given number of iterations the

fit is recalculated as follows.

Let

ri = Yi − m̂(Xi), i = 1, . . . , n

be the residuals of the current fit. Calculate the ‘measures of outlyingness’

δi = B
(

ri

6med
(
|r1|,...,|rn|

)), i = 1, . . . , n,

where B(t) = (1 − t2)2 I{|t| ≤ 1}. With the help of δi the outlying observations are down-

weighted and the local linear fit is recalculated as m̂(x) = β̂0(x), where

(
β̂0(x), β̂1(x)

)
= arg min

b0,b1

n∑
i=1

[
Yi − b0 − b1 (Xi − x)

]2
K
(
Xi−x
hn

)
δi.

By default there are 3 iterations.

10.7 Conditional variance estimation

Note that σ2(x) = E
[
Y 2

1 |X1 = x
]
−m2(x), thus the most straightforward estimate is given

by

σ̂2
n(x) =

n∑
i=1

wni(x)Y 2
i − m̂2

p(x), (168)

∗ Note that in case there are no ties in covariate values one gets {X ′1, . . . , X ′n} = { 1
n
, . . . , n

n
}.
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where m̂p(x) =
∑n

i=1wni(x)Yi is an estimator of m(x) = E
[
Y1 |X1 = x

]
. This estimator is

usually preferred in theoretical papers as its properties can be derived completely analogously

as for m̂n(x). But in practice it is usually recommended to use the following estimator

σ̃2
n(x) =

n∑
i=1

wni(x)
(
Yi − m̂p(Xi)

)2
. (169)

Note that if the weights wni(x) are not guaranteed to be non-negative, then there is generally

no guarantee that either of the estimators (168) or (169) is positive.

Literature: Fan and Gijbels (1996) Chapters 2.4.1, 3.2.3, 4.2, 4.10.1, 4.10.2. The end of the

self study for

the week (11. 5. -

15. 5. 2020)
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Appendix

Inverse function theorem

The following theorem is sometimes also called the theorem about the local diffeomorphism.

It follows easily from the implicit function theorem applied to the function g(x,y) = x−f(y).

Theorem A1. Let f : Rn → Rn have continuous first order partial derivatives in a neigh-

bourhood of the point a ∈ Rn and the Jacobi matrix Df (a) is a non-singular matrix. Then

there exist open neighbourhoods U of the point a and V of the point f(a) such that f is a

bijection of U on V . Further there exists an inverse function f−1 on V with continuous first

order partial derivatives.

Banach fixed point theorem

Definition. Let (P, ρ) be a metric space. Then a map T : P 7→ P is called a contraction

mapping on P if there exists q ∈ [0, 1) such that for all x, y ∈ P

ρ
(
T (x), T (y)

)
≤ qρ(x, y).

Theorem A2. Let (P, ρ) be a non-empty complete metric space with a contraction mapping

T : P 7→ P . Then T admits a unique fixed-point x∗ ∈ P (i.e. T (x∗) = x∗).

Uniform consistency of the empirical distribution function

The following theorem can be found for instance in Section 2.1.4 of Serfling (1980) as Theo-

rem A.

Theorem A3. (Glivenko-Cantelli theorem) Suppose we observe independent and iden-

tically distributed random vectors X1, . . . ,Xn (in Rk) from a distribution with the empirical

cumulative distribution function F . Let

F̂n(x) =
1

n

n∑
i=1

I{Xi ≤ x}

be the cumulative empirical distribution function. Then

sup
x∈Rk

∣∣F̂n(x)− F (x)
∣∣ a.s.−−−→
n→∞

0.

Bayes theorem for densities

Theorem A4. Suppose that X = (X1, . . . , Xk)
T and Z = (Z1, . . . , ZG)T be random vectors

defined on the same probability space. Let fX and fZ be the densities of X and Z respectively
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and fX|Z be the conditional density of X given Z. Then the conditional density of Z given

X equals

fZ|X(z|x) =


fX|Z(x|z)fZ(z)

fX(x) , for fX(x) > 0,

0, for fX(x) = 0.

Proof. The proof follows from the fact that fX,Z(x, z) = fX|Z(x|z)fZ(z) is the joint density

of
(
X
Z

)
and then by the definition of the conditional density. For details see e.g. Chapter 3.5

of Anděl (2007).
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