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The model

Modified regression model

By modified regression model we will understand model

Vi=x/g+x]6-1{i>m}+¢e, i=1,...n

wherem <n, 8= (fi,...,55), 6 = (61,...,0p) #0and ey, ..., e, areiid random errors
with zero mean, nonzero variance o2 and finite moment E [|e,~|2+A] with some A > 0.

Hypothesis for the change point parameter m:

Ho : m = n (no change) against Hy:m<n
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Important formulas

Partial sums

k k
Sk—zx,(Y,—X,-TBn)—ZX,U,, k=1,..,n
i=1 i=1
k k
T

where R R
Bn = (XX)XTY, ui=Y—x .

is the LSE of 5 in the modified regression model with m = n i.e. no change.

MFF UK Change point 5/23



Notation

Let us denote the partial regression matrices by

T T
X X1
. (o} .
Xy = : , X = :
T T
X x!

Clearly X, = X.
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Test statistics

Statistic based on Si:
T, = lz max {s[ (kaxk) - (xTx) (xgrx;’) - sk}

0f p<k<n—p

Statistic based on S;;:

n |Sk]
T = — .k
n E&ﬁ{\/k(n—k) an}
We require
1
2 2
—0°=0p | ————) asn— .
n 7 p(vloglogn) o
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Estimator of variance

The condition

i=1 i=k+1

k
2= min {Z(Y—x’ﬁk +Z x,»TBE)Q},

where Bk and B,? are the LSE based on Y1, ..., Y and Yy, ..., Yn, respectively. It can be
shown that 62 can be rewritten as

e, (s 0)” 00 ) s}
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Interpretation of 7,

Large values of T, speaks against Hp.

Estimated variance based on 52
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Interpretation of T},

Large values of T} speaks against Hy. Clearly, Hy is violated on the figure below.
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Interpretation of T},

More probable case under H.
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Modified test statistics

Letq() : [0,1] — R™ be a positive weight function.
Statistic based on Si:

_ o -1
Tn(q) = OS<111<)1 {q 2(1-)O-n 28[(n+1)tjn (XTX) S\_(”-H)t]”}

Statistic based on S;;:
8*
[(n+1)t]n
Th(q) = su
(9) = 0<tI<)1{ Vnq(t)6n }

We will not focus on those.
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Assumptions

e A1-Interceptisincluded in the model and the covariates are centered.

n
xp=1,i=1..n and > x;=0,j=2.p.

i=1

® A2 - There exists a positive definite p x p matrix C such that for any sequence
{ln}, limp_s o0 bn = 00, €n < n, it holds that
=2 (i)

1
‘ = (X0, X0, — XiXe) — C

Cn

uniformly for1 < k <n—¢,.
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Assumptions

e A3-Itholdsasn — oo, that
4 4
X +— X =0(
mkx( > Il ,§k+:1” ,||) ).

The condition A.3 is implied by a more interpretable condition

4
=01
max [x* = 0(1)
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Limit Theorem

Asymptotic distribution of T, and T,

Let assumptions A.1- A.3 be satisfied and Hy hold. Then

d
g(logn)T; — hi(logn) —— 2
d
g(log n)\/T_n - hp(log n) m} V4
where Z ~ Gumbel(log 2,1), g(y) = v/2logy, hp(y) =2logy+ 5loglogy —log (I'(5))

Remark: The assertions of the theorem remain true also for random design.
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Bootstrap
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Permutation

LetR = (R, ..., Rn) be arandom permutation on 1, ..., n. Define

Sk(R) = Xk:X/‘UH X[ X (X ijug}
i—1
_ Z s
i1
o {Z“ -, max {STR) (%) (x°%) (x¢'x7) sk<n>}}

p<k<n—p

Permutational versions T,(R), T;(R) of Ty, T are defined by replacing Sy, S; and 62 by
their permutational counterparts.
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Limit Theorem - permutation

Asymptotic distribution of T and T,

Let assumptions A.1- A.3 be satisfied. Then

g(logn)T,(R) — hi(logn) | Yn HLOJ Z in probability,

d . -
g(logn)\/Th(R) — hp(logn) | Y —>Z in probability,
where Z ~ Gumbel(log 2,1), g(y) = v2logy. hp(y) = 2logy + 5loglogy —log (' (5)).

Remark: Notice that, contrary to the previous theorem, we do not require Hy to hold.
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Application - Mala Raztoka
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Semi-simulation study

Comparison of critical regions: Gumbel density (orange) versus kernel density
estimation from permutation resamples based on T}, (blue).
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Semi-simulation study

Comparison of critical regions: Gumbel density (orange) versus kernel density
estimation from permutation resamples based on T, (red).
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The Problem with Asymptotic Distribution

Critical region based on Gumbel distribution is very conservative.
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The Problem with Asymptotic Distribution
Critical region based on Gumbel distribution is very conservative.
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The Problem with Asymptotic Distribution
Critical region based on Gumbel distribution is very conservative.
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The Problem with Asymptotic Distribution
Critical region based on Gumbel distribution is very conservative.
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The Problem with Asymptotic Distribution

Critical region based on Gumbel distribution is very conservative.
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Comparison with Central Limit Theorem

Let Xi,..., X, be random sample from Unif(0,1). Denote I/ = ﬁ(:d(%x]?)[m
Limit CDF (Normal) vs Bootstrap based ECDF (n=10)
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Comparison with Central Limit Theorem

Let Xi,..., X, be random sample from Unif(0,1). Denote VV = V(X —EX]) )
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Comparison with Central Limit Theorem
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Application - Mala Raztoka - Small effect
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Figure 5. Simulated data and model.
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