Change point

Erik Mendroš, Marek Bedřich

PMSE – Matematická statistika Matematicko-fyzikální fakulta Univerzita Karlova v Praze

28.3.2024

MFF UK

Change point

1/23

1. Definitions and Notation

2. Statistical Testing

3. Permutation Test Procedures

4. Simulations

Malá Ráztoka

No change?

The model

Modified regression model

By modified regression model we will understand model

$$Y_i = \mathbf{x}_i^T \beta + \mathbf{x}_i^T \delta \cdot \mathbb{1}\{i > m\} + \varepsilon_i, \quad i = 1, ..., n$$

where $m \leq n$, $\beta = (\beta_1, ..., \beta_p)$, $\delta = (\delta_1, ..., \delta_p) \neq \mathbf{0}$ and $\varepsilon_1, ..., \varepsilon_n$ are iid random errors with zero mean, nonzero variance σ^2 and finite moment $\mathbb{E}\left[|\varepsilon_i|^{2+\Delta}\right]$ with some $\Delta > \mathbf{0}$.

Hypothesis for the **change point** parameter *m*:

 $H_0: m = n$ (no change) against $H_1: m < n$

Important formulas

Partial sums

$$\mathbf{S}_{k} = \sum_{i=1}^{k} \mathbf{x}_{i} \left(Y_{i} - \mathbf{x}_{i}^{T} \widehat{\beta}_{n} \right) = \sum_{i=1}^{k} \mathbf{x}_{i} u_{i}, \quad k = 1, ..., n$$
$$\mathbf{S}_{k}^{*} = \sum_{i=1}^{k} \left(Y_{i} - \mathbf{x}_{i}^{T} \widehat{\beta}_{n} \right) = \sum_{i=1}^{k} u_{i}, \quad k = 1, ..., n$$

where

$$\widehat{\beta}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}, \quad u_i = Y_i - \mathbf{x}_i^T \widehat{\beta}_n.$$

is the LSE of β in the modified regression model with m = n i.e. no change.

Notation

Let us denote the **partial regression matrices** by

$$\mathbf{X}_{k} = \begin{pmatrix} \mathbf{x}_{1}^{T} \\ \vdots \\ \mathbf{x}_{k}^{T} \end{pmatrix}, \quad \mathbf{X}_{k}^{o} = \begin{pmatrix} \mathbf{x}_{k+1}^{T} \\ \vdots \\ \mathbf{x}_{n}^{T} \end{pmatrix}.$$

Clearly $\mathbf{X}_n = \mathbf{X}$.

Test statistics

Statistic based on S_k :

$$T_{n} = \frac{1}{\hat{\sigma}_{n}^{2}} \max_{p < k < n-p} \left\{ \mathbf{S}_{k}^{T} \left(\mathbf{X}_{k}^{T} \mathbf{X}_{k} \right)^{-1} \left(\mathbf{X}^{T} \mathbf{X} \right) \left(\mathbf{X}_{k}^{oT} \mathbf{X}_{k}^{o} \right)^{-1} \mathbf{S}_{k} \right\}$$

Statistic based on S_k^* :

$$T_n^* = \max_{1 \le k < n} \left\{ \sqrt{\frac{n}{k(n-k)}} \cdot \frac{|S_k^*|}{\hat{\sigma}_n} \right\}$$

We require

$$\hat{\sigma}_n^2 - \sigma^2 = o_p\left(\frac{1}{\sqrt{\log \log n}}\right) \text{ as } n \to \infty.$$

Estimator of variance

The condition

$$\hat{\sigma}_n^2 - \sigma^2 = o_p\left(\frac{1}{\sqrt{\log \log n}}\right) \text{ as } n \to \infty$$

is satisfied by e.g.

$$\hat{\sigma}_n^2 = \frac{1}{n-p} \min_{p < k < n-p} \left\{ \sum_{i=1}^k (Y_i - \mathbf{x}_i^T \widehat{\beta}_k)^2 + \sum_{i=k+1}^n (Y_i - \mathbf{x}_i^T \widehat{\beta}_k^0)^2 \right\},\$$

where $\hat{\beta}_k$ and $\hat{\beta}_k^0$ are the LSE based on $Y_1, ..., Y_k$ and $Y_{k+1}, ..., Y_n$, respectively. It can be shown that $\hat{\sigma}_n^2$ can be rewritten as

$$\hat{\sigma}_{n}^{2} = \frac{1}{n-p} \left\{ \sum_{i=1}^{n} u_{i}^{2} - \max_{p < k < n-p} \left\{ \mathbf{S}_{k}^{T} \left(\mathbf{X}_{k}^{T} \mathbf{X}_{k} \right)^{-1} \left(\mathbf{X}^{T} \mathbf{X} \right) \left(\mathbf{X}_{k}^{oT} \mathbf{X}_{k}^{o} \right)^{-1} \mathbf{S}_{k} \right\} \right\}$$

Large values of T_n speaks against H_0 .

Estimated variance based on $\tilde{\sigma}^2$

0.8

0.9

Prior to deforestation

After deforestation

- H0 regression line

$$S_1^* = -0.18$$

 $S_2^* = -0.18 + (-0.04)$
 $S_3^* = -0.18 + (-0.04) + (-0.12)$

Large values of T_n^* speaks against H_0 . Clearly, H_0 is violated on the figure below.

10/23

Large values of T_n^* speaks against H_0 . Clearly, H_0 is violated on the figure below.

Change point

Modified test statistics

Let $q(\cdot) : [0,1] \to \mathbb{R}^+$ be a positive weight function. Statistic based on \mathbf{S}_k :

$$T_n(\boldsymbol{q}) = \sup_{0 < t < 1} \left\{ \boldsymbol{q}^{-2}(t) \hat{\sigma}_n^{-2} \mathbf{S}_{\lfloor (n+1)t \rfloor n}^T \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{S}_{\lfloor (n+1)t \rfloor n} \right\}$$

Statistic based on S_k^* :

$$T_n^*(\boldsymbol{q}) = \sup_{0 < t < 1} \left\{ \frac{\left| S_{\lfloor (n+1)t \rfloor n}^* \right|}{\sqrt{n}q(t)\hat{\sigma}_n} \right\}$$

We will not focus on those.

Assumptions

• A.1 - Intercept is included in the model and the covariates are centered.

$$x_{i1} = 1, i = 1, ..., n$$
 and $\sum_{i=1}^{n} x_{ij} = 0, j = 2, ..., p.$

• A.2 - There exists a positive definite $p \times p$ matrix **C** such that for any sequence $\{\ell_n\}, \lim_{n\to\infty} \ell_n = \infty, \ell_n \leq n$, it holds that

$$\left\|\frac{1}{\ell_n}(\mathbf{X}_{k+\ell_n}^{\mathsf{T}}\mathbf{X}_{k+\ell_n}-\mathbf{X}_{k}^{\mathsf{T}}\mathbf{X}_{k})-\mathbf{C}\right\|_2=o\left(\frac{1}{\log\ell_n}\right)$$

uniformly for $1 \le k \le n - \ell_n$.

Assumptions

• A.3 - It holds as $n \to \infty$, that

$$\max_{1 \le k < n} \left(\frac{1}{k} \sum_{i=1}^{k} \|\mathbf{x}_i\|^4 + \frac{1}{n-k} \sum_{i=k+1}^{n} \|\mathbf{x}_i\|^4 \right) = O(1).$$

The condition A.3 is implied by a more interpretable condition

$$\max_{1\leq i< n} \|\mathbf{x}_i\|^4 = O(1)$$

Limit Theorem

Asymptotic distribution of T_n^* and T_n

Let assumptions A.1 - A.3 be satisfied and H_0 hold. Then

$$g(\log n)T_n^* - h_1(\log n) \xrightarrow[n \to \infty]{d} Z$$
$$g(\log n)\sqrt{T_n} - h_p(\log n) \xrightarrow[n \to \infty]{d} Z$$

where $Z \sim Gumbel(\log 2, 1), \ g(y) = \sqrt{2\log y}, \ h_p(y) = 2\log y + \frac{p}{2}\log\log y - \log\left(\Gamma\left(\frac{p}{2}\right)\right)$

Remark: The assertions of the theorem remain true also for random design.

Bootstrap

Permutation

Let $\mathbf{R} = (R_1, ..., R_n)$ be a random permutation on 1, ..., n. Define

.

$$\mathbf{S}_{k}(\mathbf{R}) = \sum_{i=1}^{k} \mathbf{x}_{i} u_{R_{i}} - \mathbf{X}_{k}^{\mathsf{T}} \mathbf{X}_{k} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \sum_{j=1}^{n} \mathbf{x}_{j} u_{R_{j}}$$
$$S_{k}^{*}(\mathbf{R}) = \sum_{i=1}^{k} u_{R_{i}}$$
$$(\mathbf{R}) = \frac{1}{n-p} \left\{ \sum_{i=1}^{n} u_{i}^{2} - \max_{p < k < n-p} \left\{ \mathbf{S}_{k}^{\mathsf{T}}(\mathbf{R}) \left(\mathbf{X}_{k}^{\mathsf{T}} \mathbf{X}_{k} \right)^{-1} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right) \left(\mathbf{X}_{k}^{o\mathsf{T}} \mathbf{X}_{k}^{o} \right)^{-1} \mathbf{S}_{k}(\mathbf{R}) \right\} \right\}$$

Permutational versions $T_n(\mathbf{R})$, $T_n^*(\mathbf{R})$ of T_n , T_n^* are defined by replacing \mathbf{S}_k , S_k^* and $\hat{\sigma}_n^2$ by their permutational counterparts.

MFF UK Change point

 $\hat{\sigma}_n^2$

Limit Theorem - permutation

Asymptotic distribution of T_n^* and T_n

Let assumptions A.1 - A.3 be satisfied. Then

$$\begin{split} g(\log n)T_n^*(\mathbf{R}) - h_1(\log n) \mid \mathbf{Y}_n \xrightarrow[n \to \infty]{d} Z \quad \text{in probability,} \\ g(\log n)\sqrt{T_n(\mathbf{R})} - h_p(\log n) \mid \mathbf{Y}_n \xrightarrow[n \to \infty]{d} Z \quad \text{in probability,} \\ \text{where } Z \sim \textit{Gumbel}(\log 2, 1), \ g(y) = \sqrt{2\log y}, \ h_p(y) = 2\log y + \frac{p}{2}\log\log y - \log\left(\Gamma\left(\frac{p}{2}\right)\right). \end{split}$$

Remark: Notice that, contrary to the previous theorem, we do not require H₀ to hold.

Application - Malá Ráztoka

MFF UK

Change point

Semi-simulation study

Comparison of critical regions: Gumbel density (orange) versus kernel density estimation from permutation resamples based on T_n^* (blue).

Semi-simulation study

Comparison of critical regions: Gumbel density (orange) versus kernel density estimation from permutation resamples based on T_n^* (blue).

19/23

Semi-simulation study

Comparison of critical regions: Gumbel density (orange) versus kernel density estimation from permutation resamples based on T_n (red).

Comparison with Central Limit Theorem

Comparison with Central Limit Theorem

Comparison with Central Limit Theorem

Change point

Application - Malá Ráztoka - Small effect

MFF UK

Change point