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Malá Ráztoka

Change? No change?
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The model

Modified regression model

By modified regression model we will understand model

Yi = xTi β + xTi δ · 1{i > m} + εi, i = 1, ..., n

wherem ≤ n, β = (β1, ..., βp), δ = (δ1, ..., δp) ̸= 0 and ε1, . . . , εn are iid random errors
with zero mean, nonzero variance σ2 and finite moment E

[
|εi|2+∆

]
with some∆ > 0.

Hypothesis for the change point parameterm :

H0 : m = n (no change) against H1 : m < n
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Important formulas

Partial sums

Sk =
k∑
i=1

xi
(
Yi − xTi β̂n

)
=

k∑
i=1

xiui, k = 1, ..., n

S∗
k =

k∑
i=1

(
Yi − xTi β̂n

)
=

k∑
i=1

ui, k = 1, ..., n

where
β̂n = (XTX)−1XTY, ui = Yi − xTi β̂n.

is the LSE of β in the modified regression model withm = n i.e. no change.
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Notation

Let us denote the partial regression matrices by

Xk =


xT1
...
xTk

 , Xok =


xTk+1
...
xTn

 .

Clearly Xn = X.
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Test statistics

Statistic based on Sk:

Tn =
1

σ̂2
n

max
p<k<n−p

{
STk

(
XkTXk

)−1 (
XTX

) (
Xok

TXok
)−1

Sk

}
Statistic based on S∗

k :

T∗
n = max

1≤k<n

{√
n

k(n − k)
· |S∗

k |
σ̂n

}
We require

σ̂2
n − σ2 = op

(
1√

log log n

)
as n −→ ∞.
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Estimator of variance
The condition

σ̂2
n − σ2 = op

(
1√

log log n

)
as n −→ ∞

is satisfied by e.g.

σ̂2
n =

1
n − p

min
p<k<n−p


k∑
i=1

(Yi − xTi β̂k)
2 +

n∑
i=k+1

(Yi − xTi β̂
0
k )

2

 ,

where β̂k and β̂0
k are the LSE based on Y1, ..., Yk and Yk+1, ..., Yn, respectively. It can be

shown that σ̂2
n can be rewritten as

σ̂2
n =

1
n − p

{ n∑
i=1

u2i − max
p<k<n−p

{
STk

(
XkTXk

)−1 (
XTX

) (
Xok

TXok
)−1

Sk

}}
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Interpretation of Tn

Large values of Tn speaks against H0.

Estimated variance based on σ̂2 Estimated variance based on σ̃2
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Interpretation of T∗
n

Large values of T∗
n speaks against H0. Clearly, H0 is violated on the figure below.

S∗
1 = −0.18
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Interpretation of T∗
n

More probable case under H0.
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Modified test statistics

Let q(·) : [0, 1] −→ R+ be a positive weight function.
Statistic based on Sk:

Tn(q) = sup
0<t<1

{
q−2(t)σ̂−2

n ST⌊(n+1)t⌋n

(
XTX

)−1
S⌊(n+1)t⌋n

}
Statistic based on S∗

k :

T∗
n(q) = sup

0<t<1


∣∣∣S∗

⌊(n+1)t⌋n

∣∣∣
√
nq(t)σ̂n


We will not focus on those.
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Assumptions

• A.1 - Intercept is included in the model and the covariates are centered.

xi1 = 1, i = 1, ..., n and
n∑
i=1

xij = 0, j = 2, ...,p.

• A.2 - There exists a positive definite p × pmatrix C such that for any sequence
{ℓn}, limn→∞ ℓn = ∞, ℓn ≤ n, it holds that∥∥∥∥ 1

ℓn
(XTk+ℓnXk+ℓn − XTkXk) − C

∥∥∥∥
2
= o

(
1

log ℓn

)
uniformly for 1 ≤ k ≤ n − ℓn.
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Assumptions

• A.3 - It holds as n −→ ∞, that

max
1≤k<n

 1
k

k∑
i=1

∥xi∥4 +
1

n − k

n∑
i=k+1

∥xi∥4
 = O(1).

The condition A.3 is implied by a more interpretable condition

max
1≤i<n

∥xi∥4 = O(1)
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Limit Theorem

Asymptotic distribution of T∗
n and Tn

Let assumptions A.1 - A.3 be satisfied and H0 hold. Then

g(log n)T∗
n − h1(log n)

d−−−−→
n−→∞

Z

g(log n)
√
Tn − hp(log n)

d−−−−→
n−→∞

Z

where Z ∼ Gumbel(log 2, 1), g(y) =
√
2 log y, hp(y) = 2 log y+ p

2 log log y − log
(
Γ

(p
2

))
Remark: The assertions of the theorem remain true also for random design.
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Bootstrap
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Permutation

Let R = (R1, ..., Rn) be a random permutation on 1, ..., n. Define

Sk(R) =
k∑
i=1

xiuRi − XTkXk(X
TX)−1

n∑
j=1

xjuRj

S∗
k(R) =

k∑
i=1

uRi

σ̂2
n(R) =

1
n − p

{ n∑
i=1

u2i − max
p<k<n−p

{
STk(R)

(
XkTXk

)−1 (
XTX

) (
Xok

TXok
)−1

Sk(R)
}}

Permutational versions Tn(R), T∗
n(R) of Tn, T∗

n are defined by replacing Sk, S∗
k and σ̂2

n by
their permutational counterparts.
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Limit Theorem - permutation

Asymptotic distribution of T∗
n and Tn

Let assumptions A.1 - A.3 be satisfied. Then

g(log n)T∗
n(R) − h1(log n) | Yn

d−−−−→
n−→∞

Z in probability,

g(log n)
√
Tn(R) − hp(log n) | Yn

d−−−−→
n−→∞

Z in probability,

where Z ∼ Gumbel(log 2, 1), g(y) =
√
2 log y, hp(y) = 2 log y+ p

2 log log y − log
(
Γ

(p
2

))
.

Remark: Notice that, contrary to the previous theorem, we do not require H0 to hold.
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Application - Malá Ráztoka
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Semi-simulation study
Comparison of critical regions: Gumbel density (orange) versus kernel density
estimation from permutation resamples based on T∗

n (blue).
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Semi-simulation study
Comparison of critical regions: Gumbel density (orange) versus kernel density
estimation from permutation resamples based on T∗

n (blue).
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Semi-simulation study
Comparison of critical regions: Gumbel density (orange) versus kernel density
estimation from permutation resamples based on Tn (red).
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The Problem with Asymptotic Distribution
Critical region based on Gumbel distribution is very conservative.
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The Problem with Asymptotic Distribution
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Comparison with Central Limit Theorem
Let X1, . . . , Xn be random sample from Unif(0, 1). Denote V =

√
n(X −E[X1])
sd(X1)

.
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Application - Malá Ráztoka - Small effect

MFF UK Change point 23/23


	Definitions and Notation
	Statistical Testing
	Permutation Test Procedures
	Simulations

