1. With given parameter $c \in \mathbb{R}$ find all solutions $x \in \mathbb{R}$ of the inequation

$$
\frac{\log |x+c|}{c} \leq 2
$$

2. Which planar curve is determined by the equation

$$
x^{2}-4 y^{2}=2 x ?
$$

3. Compute the limit

$$
\lim _{n \rightarrow \infty} n \cdot\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-1}\right)
$$

or prove it does not exists.

Results.

1. Notice that $c \neq 0$. The inequation rearrangements depend on positivity/negativity of c.
(a) $c>0$.

$$
\begin{aligned}
\log |x+c| & \leq 2 c \\
e^{\log |x+c|}=|x+c| & \leq e^{2 c} \\
-e^{2 c} & \leq x+c \leq e^{2 c}, \text { i.e. }
\end{aligned}
$$

$x \in\left\langle-e^{2 c}-c, e^{2 c}-c\right\rangle$.
(b) $c<0$.

$$
\log |x+c| \geq 2 c
$$

the rest is similar, $|x+c| \geq e^{2 c}$ gives $x \in\left(-\infty,-e^{2 c}-c\right\rangle \cup\left\langle e^{2 c}-c,+\infty\right)$.
2. Since the sign of coefficient of x^{2} is positive and that of y^{2} is negative, let us try to rearrange the equation to

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1
$$

- the equation of hyperbola.
$x^{2}-2 x=x^{2}-2 x+1-1=(x-1)^{2}-1$, thus we get

$$
\begin{aligned}
& (x-1)^{2}-4 y^{2}=1, \text { i.e. } \\
& (x-1)^{2}-\frac{y^{2}}{\frac{1}{4}}=1
\end{aligned}
$$

This is an equation of hyperbola with center [1,0], open horizontally, with semiaxes $a=1$ and $b=\frac{1}{2}$.
3. The straightforward computation gives ' $\infty \cdot(\infty-\infty)$ ' - an undefined expression, thus we have to rearrange the square roots first.

$$
\begin{aligned}
\sqrt{n^{2}+1}-\sqrt{n^{2}-1} & =\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-1}\right) \cdot \frac{\sqrt{n^{2}+1}+\sqrt{n^{2}-1}}{\sqrt{n^{2}+1}+\sqrt{n^{2}-1}} \\
& =\frac{2}{\sqrt{n^{2}+1}+\sqrt{n^{2}-1}}
\end{aligned}
$$

consequently

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \cdot\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-1}\right) & =\lim _{n \rightarrow \infty} \frac{2 n}{\sqrt{n^{2}+1}+\sqrt{n^{2}-1}} \\
& =\lim _{n \rightarrow \infty} \frac{2 n}{n \cdot\left(\sqrt{1+\frac{1}{n^{2}}}+\sqrt{1-\frac{1}{n^{2}}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{2}{\left(\sqrt{1+\frac{1}{n^{2}}}+\sqrt{1-\frac{1}{n^{2}}}\right)}
\end{aligned}
$$

Now, $\frac{1}{n^{2}} \rightarrow 0$, and arithmetics of limits applies:

$$
\lim _{n \rightarrow \infty} n \cdot\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-1}\right)=\frac{2}{\sqrt{1}+\sqrt{1}}=2
$$

