- Find all the real solutions of the equations
(1) $4^{x-1}+4^{2-x}=5$
$x \in\{1 ; 2\}$. Introducing a new variable $y=4^{x-1}$ leads to the quadratic equation $y^{2}-5 y+4=0$. Its solution $y=4$ yields $x=2$, and $y=1$ gives $x=1$.
(2) $\log _{3}^{2} x+\log _{3} 9^{3}=\log _{3} x^{5}$
$x \in\{9 ; 27\}$. Put $y=\log _{3} x$. Then $y \in\{2 ; 3\}$.
(3) $\sin x-\sin (\pi+x)=2 \sin ^{2} x$
$x \in\{k \pi ; k \in \mathbb{Z}\} \cup\{\pi / 2+2 k \pi ; k \in \mathbb{Z}\}$. Since $\sin (\pi+x)=-\sin x$, we can solve an equation in the variable $y=\sin x$. Do not forget to distinguish $\sin x=0$ and $\sin x \neq 0$.
- Find all $x \in \mathbb{R}$ such that
(1) $\frac{x-1}{x-4}>\frac{x-2}{x-3}$
$x \in(5 / 2,3) \cup(4,+\infty)$. The inequation is equivalent to $\frac{2 x-5}{(x-3)(x-4)}>0$. Now discuss negativity/positivity of the numerator and denominator, $x \neq 3 ; 4$.
(2) $\frac{x^{2}-x-4}{x+1} \geq 0$
$x \in\left\langle\frac{1-\sqrt{17}}{2},-1\right) \cup\left\langle\frac{1+\sqrt{17}}{2},+\infty\right)$. Notice that $x \neq-1$.
(3) $|4-|x-3||<2$
$x \in(-3,1) \cup(5,9)$.
(4) $|x+1|+|x+3|<4$
$x \in(-4,0)$. Discuss the positivity/negativity of $x+1$ and $x+3$.
(5) $\log _{2}\left(x^{2}+x+6\right)>0$
$x \in \mathbb{R}$. The inequation is equivalent to $x^{2}+x+6>1$.
(6) $x^{2}+1-|x+2|>0$
$x \in\left(-\infty, \frac{1-\sqrt{5}}{2}\right) \cup\left(\frac{1+\sqrt{5}}{2},+\infty\right)$. As an alternative approach, you may consider two functions $x^{2}+1$ and $|x+2|$, study the position of the graphs and compute their intersections.
(7) $\cos ^{2} x+\frac{3}{2} \cos x-1<0$
$x \in \bigcup_{k \in \mathbb{Z}}\left(\frac{\pi}{3}+2 k \pi, \frac{5}{3} \pi+2 k \pi\right)$. Solve the respective quadratic equation in the variable $y=\cos x$. Of course, $y \in\langle-1,1\rangle . y<\frac{1}{2}$ gives the result.
- Having given parameter $c \in \mathbb{R}$, determine all $x \in \mathbb{R}$ satisfying
(1) $c x^{2}+x+1>0$
$x>-1$ for $c=0$. For $c>0: x \in\left(-\infty, \frac{-1-\sqrt{1-4 c}}{2 c}\right) \cup\left(\frac{-1+\sqrt{1-4 c}}{2 c},+\infty\right)$ for $c \in(0,1 / 4\rangle, x \in \mathbb{R}$ for $c>1 / 4 . x \in\left(\frac{-1+\sqrt{1-4 c}}{2 c}, \frac{-1-\sqrt{1-4 c}}{2 c},\right)$ for $c<0$.
(2) $c e^{x} \in(-1,0\rangle$

No such x for $c>0, x \in \mathbb{R}$ for $c=0, x \in(\log (-1 / c),+\infty)$ for $c<0$.
(3) $\log |x|+c \in(-\pi / 2, \pi / 2)$
$x \in\left(-e^{\frac{\pi}{2}-c},-e^{-\frac{\pi}{2}-c}\right) \cup\left(e^{-\frac{\pi}{2}-c}, e^{\frac{\pi}{2}-c}\right)$.
(4) $|\cos x|-c>0$
$x \in \mathbb{R}$ for $c<0 . x \in \bigcup_{k \in \mathbb{Z}}(k \pi-\arccos c, k \pi+\arccos c)$ for $c \in\langle 0,1)$. No such x for $c \geq 1$. Sketching the graph of \cos is recommended.
$e^{\sin x}-c \in(0,+\infty)$
$x \in \mathbb{R}$ for $c<1 / e . \quad x \in \bigcup_{k \in \mathbb{Z}}(\arcsin \log c+2 k \pi, \pi-\arcsin \log c+2 k \pi)$ for $c \in\langle 1 / e, e)$. No such x for $c \geq e$. Sketching the graph is recommended.

- Sketch the graphs of the functions
(1) $\left|\frac{3 x+3}{2 x-4}\right|$
$\frac{3 x+3}{2 x-4}=\frac{3}{2}+\frac{9}{2} \cdot \frac{1}{x-2}-$ the graph is a hyperbole with center $[2,3 / 2]$, intersecting axes in $[0,-3 / 4]$ and $[-1,0]$. To get the graph of $\left|\frac{3 x+3}{2 x-4}\right|$, consider the positive part of the previous graph with mirror image on the axis x of the negative part.
(2) $|\tan (-\pi x)|$
$|\tan (-\pi x)|=|-\tan (\pi x)|=|\tan (\pi x)|$. The graph of $\tan (\pi x)$ is the graph of tangent with primitive period $1(x \neq 1 / 2+k, k \in \mathbb{Z})$. To get the graph of $|\tan (-\pi x)|$, consider the positive part of the previous graph with mirror image of the negative part.
(3) $|\sin (2-x)-1|$
$|\sin (2-x)-1|=|-\sin (x-2)-1|=|\sin (x-2)+1|=\sin (x-2)+1$. Shift the graph of sine from $[0,0]$ to $[2,0]$ and then to $[2,1]$.
(4) $|\log | x-1| |$

The graph of $\log |x|$ consists of two logaritmic curves (the graph of log and its reflection on the axis y). To get the graph of $\log |x-1|$, shift the previous one from $[0,0]$ to $[1,0]$. Then reflect its negative parts on the axis x.

- Analytic geometry:
(1) Let the line p be determined by the points $[0,1]$ and $[1,0]$. Compute the distance between p and the point $\left[\frac{1}{2}, 1\right]$.
$\frac{\sqrt{2}}{4}$. Sketching the situation is recommended.
(2) Express the intersection of the planes $x+y+z=1$ and $x-z+1=0$ in \mathbb{R}^{3} as a line by vector equation (i.e. in the form $\vec{a}+t \vec{v}$, where $\vec{a}, \vec{v} \in \mathbb{R}^{3}$ and $t \in \mathbb{R}$ is a parameter).
There are many different expressions, e.g. $(0,0,1)+t(1,-2,1), t \in \mathbb{R}$. It suffices to find two different points, A, B of the intersection and then form $A+t .(B-A)$.
(3) Describe the curve given by the equality

$$
4 x^{2}+y^{2}-16 x-8 y+16=0
$$

and draw an appropriate picture.
$4 x^{2}+y^{2}-16 x-8 y+16=0$ is equivalent to $\left(4 x^{2}-16 x+16\right)+\left(y^{2}-8 x+16\right)=16$, i.e. $\left(\frac{x-2}{2}\right)^{2}+\left(\frac{y-4}{4}\right)^{2}=1$ - the equation of ellipse with center $[2,4]$ and major radius 4 (vertical), minor radius 2 (horizontal).

