- Find all the real solutions of the equations
 - (1) 4^{x-1} + 4^{2-x} = 5 x ∈ {1;2}. Introducing a new variable y = 4^{x-1} leads to the quadratic equation y² - 5y + 4 = 0. Its solution y = 4 yields x = 2, and y = 1 gives x = 1.
 (2) log₃² x + log₃ 9³ = log₃ x⁵
 - $x \in \{9; 27\}$. Put $y = \log_3 x$. Then $y \in \{2; 3\}$.
 - (3) $\sin x \sin(\pi + x) = 2 \sin^2 x$ $x \in \{k\pi; k \in \mathbb{Z}\} \cup \{\pi/2 + 2k\pi; k \in \mathbb{Z}\}$. Since $\sin(\pi + x) = -\sin x$, we can solve an equation in the variable $y = \sin x$. Do not forget to distinguish $\sin x = 0$ and $\sin x \neq 0$.
- Find all $x \in \mathbb{R}$ such that
 - (1) $\frac{x-1}{x-4} > \frac{x-2}{x-3}$ $x \in (5/2,3) \cup (4,+\infty)$. The inequation is equivalent to $\frac{2x-5}{(x-3)(x-4)} > 0$. Now discuss negativity/positivity of the numerator and denominator, $x \neq 3$; 4.

(2)
$$\frac{x^2 - x - 4}{x + 1} \ge 0$$
$$x \in \left\langle \frac{1 - \sqrt{17}}{2}, -1 \right\rangle \cup \left\langle \frac{1 + \sqrt{17}}{2}, +\infty \right\rangle.$$
 Notice that $x \neq -1$.

(3)
$$|4 - |x - 3|| < 2$$

 $x \in (-3, 1) \cup (5, 9).$

- (4) |x+1| + |x+3| < 4 $x \in (-4, 0)$. Discuss the positivity/negativity of x + 1 and x + 3.
- (5) $\log_2(x^2 + x + 6) > 0$ $x \in \mathbb{R}$. The inequation is equivalent to $x^2 + x + 6 > 1$.
- (6) $x^2 + 1 |x+2| > 0$ $x \in \left(-\infty, \frac{1-\sqrt{5}}{2}\right) \cup \left(\frac{1+\sqrt{5}}{2}, +\infty\right)$. As an alternative approach, you may consider two functions $x^2 + 1$ and |x+2|, study the position of the graphs and compute their intersections.
- (7) $\cos^2 x + \frac{3}{2}\cos x 1 < 0$ $x \in \bigcup_{k \in \mathbb{Z}} \left(\frac{\pi}{3} + 2k\pi, \frac{5}{3}\pi + 2k\pi\right)$. Solve the respective quadratic equation in the variable $y = \cos x$. Of course, $y \in \langle -1, 1 \rangle$. $y < \frac{1}{2}$ gives the result.
- Having given parameter $c \in \mathbb{R}$, determine all $x \in \mathbb{R}$ satisfying

(1)
$$cx^2 + x + 1 > 0$$

 $x > -1$ for $c = 0$. For $c > 0$: $x \in \left(-\infty, \frac{-1 - \sqrt{1 - 4c}}{2c}\right) \cup \left(\frac{-1 + \sqrt{1 - 4c}}{2c}, +\infty\right)$ for $c \in (0, 1/4), x \in \mathbb{R}$ for $c > 1/4$. $x \in \left(\frac{-1 + \sqrt{1 - 4c}}{2c}, \frac{-1 - \sqrt{1 - 4c}}{2c}, \right)$ for $c < 0$.
(2) $ce^x \in (-1, 0)$

No such x for c > 0, $x \in \mathbb{R}$ for c = 0, $x \in (\log(-1/c), +\infty)$ for c < 0.

- (3) $\log |x| + c \in (-\pi/2, \pi/2)$ $x \in (-e^{\frac{\pi}{2}-c}, -e^{-\frac{\pi}{2}-c}) \cup (e^{-\frac{\pi}{2}-c}, e^{\frac{\pi}{2}-c}).$
- (4) $|\cos x| c > 0$

 $x \in \mathbb{R}$ for c < 0. $x \in \bigcup_{k \in \mathbb{Z}} (k\pi - \arccos c, k\pi + \arccos c)$ for $c \in (0, 1)$. No such x for $c \ge 1$. Sketching the graph of cos is recommended.

(5) $e^{\sin x} - c \in (0, +\infty)$

 $x \in \mathbb{R}$ for c < 1/e. $x \in \bigcup_{k \in \mathbb{Z}} (\operatorname{arcsin} \log c + 2k\pi, \pi - \operatorname{arcsin} \log c + 2k\pi)$ for $c \in \langle 1/e, e \rangle$. No such x for $c \geq e$. Sketching the graph is recommended.

- Sketch the graphs of the functions
 - (1) $\left|\frac{3x+3}{2x-4}\right|$ $\frac{3x+3}{2x-4} = \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x-2}$ - the graph is a hyperbole with center [2, 3/2], intersecting axes in [0, -3/4] and [-1, 0]. To get the graph of $\left|\frac{3x+3}{2x-4}\right|$, consider the positive part of the previous graph with mirror image on the axis x of the negative part.
 - (2) $|\tan(-\pi x)|$ $|\tan(-\pi x)| = |-\tan(\pi x)| = |\tan(\pi x)|$. The graph of $\tan(\pi x)$ is the graph of tangent with primitive period 1 ($x \neq 1/2 + k, k \in \mathbb{Z}$). To get the graph of $|\tan(-\pi x)|$, consider the positive part of the previous graph with mirror image of the negative part.
 - (3) $|\sin(2-x)-1|$ $|\sin(2-x)-1| = |-\sin(x-2)-1| = |\sin(x-2)+1| = \sin(x-2)+1$. Shift the graph of sine from [0,0] to [2,0] and then to [2,1].
 - (4) |log |x − 1|| The graph of log |x| consists of two logarithmic curves (the graph of log and its reflection on the axis y). To get the graph of log |x − 1|, shift the previous one from [0,0] to [1,0]. Then reflect its negative parts on the axis x.
- Analytic geometry:
 - (1) Let the line p be determined by the points [0, 1] and [1, 0]. Compute the distance between p and the point $[\frac{1}{2}, 1]$.

 $\frac{\sqrt{2}}{4}$. Sketching the situation is recommended.

(2) Express the intersection of the planes x + y + z = 1 and x - z + 1 = 0 in \mathbb{R}^3 as a line by vector equation (i.e. in the form $\vec{a} + t\vec{v}$, where $\vec{a}, \vec{v} \in \mathbb{R}^3$ and $t \in \mathbb{R}$ is a parameter).

There are many different expressions, e.g. $(0, 0, 1) + t(1, -2, 1), t \in \mathbb{R}$. It suffices to find two different points, A, B of the intersection and then form A+t.(B-A).

(3) Describe the curve given by the equality

$$4x^2 + y^2 - 16x - 8y + 16 = 0$$

and draw an appropriate picture.

 $4x^2+y^2-16x-8y+16=0$ is equivalent to $(4x^2-16x+16)+(y^2-8x+16)=16$, i.e. $\left(\frac{x-2}{2}\right)^2+\left(\frac{y-4}{4}\right)^2=1$ – the equation of ellipse with center [2,4] and major radius 4 (vertical), minor radius 2 (horizontal).