MATHEMATICS I Exam, February 5, 2013

1. Compute the limit of the sequence or prove it does not exist:

$$
\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+2 n+3}-\sqrt{n^{2}+3 n+4}\right) \cdot \arcsin \left(\frac{\pi}{n+\pi}\right)}{\log \frac{1}{n}-\log \frac{1}{n+1}} .
$$

13 points

2. Compute the limit of the function or prove it does not exist:

$$
\lim _{x \rightarrow 0+} \frac{\operatorname{tg}(x+\pi)+\operatorname{arctg}(x+1)+\frac{\log (\cos \sqrt{x})}{x}}{\sqrt[3]{x}}
$$

12 points

3. Find domain of the given function, determine the set of all points in which it is continuous (continuous from the left/from the right). Compute its derivative (oneside derivatives) at each point where it exists.

$$
f(x)=\left\{\begin{array}{l}
0 \text { for } x \in(-\infty, 0) \\
\max \left\{x^{4}, 2-x^{2}\right\} \quad \text { for } x \in\langle 0,+\infty) .
\end{array}\right.
$$

Hint: investigate first, where (on which intervals) the function equals x^{4} and where $2-x^{2}$.

17 points

4. Investigate properties of the function and draw its graph:

$$
f(x)=\operatorname{arctg} \frac{2 x}{1+x^{2}}
$$

16 points

Write detailed arguments for each nontrivial step and verify assumptions of theorems you use.

