MATHEMATICS I Exam, January 29, 2013

1. Compute the limit of the sequence or prove it does not exist:

$$
\lim _{n \rightarrow \infty} \frac{n^{2} \cdot\left(\log \left(n^{2}+1\right)-\log \left(n^{2}+2\right)\right) \cdot \operatorname{tg}\left(n^{-\frac{1}{3}}\right)}{\sqrt[3]{n^{2}+4 n+5}-\sqrt[3]{n^{2}+6 n+7}}
$$

13 points

2. Compute the limit of the function or prove it does not exist:

$$
\lim _{x \rightarrow 0+}(x \cdot \cos x)^{\arcsin (\arcsin x)}
$$

12 points

3. Find domain of the given function, determine the set of all points in which it is continuous (continuous from the left/from the right). Compute its derivative (oneside derivatives) at each point where it exists.

$$
f(x)=\left\{\begin{array}{l}
\operatorname{arctg}\left(\frac{1}{x}\right) \quad \text { for } x \leq 1 \quad \& x \neq 0 \\
-\frac{\pi}{2} \quad \text { for } x=0
\end{array}\right.
$$

15 points

4. Investigate properties of the function and draw its graph:

$$
f(x)=e^{-2 x^{2}+2 x+\log 2}
$$

17 points

Write detailed arguments for each nontrivial step and verify assumptions of theorems you use.

