MATHEMATICS I Exam, January 23, 2013

1. Compute the limit of the sequence or prove it does not exist:

$$
\lim _{n \rightarrow \infty}\left(\frac{n+2}{n+1}\right)^{n+3} \cdot \frac{1}{n^{4}} \cdot \frac{\sqrt[n]{5^{n}+9^{n}}}{\sqrt[3]{n^{6}+7}-\sqrt[3]{n^{6}+8}}
$$

12 points

2. Compute the limit of the function or prove it does not exist:

$$
\lim _{x \rightarrow 0+}(1+\sin (2 \operatorname{tg} x))^{\frac{x^{2}}{1-\cos (3 x \sqrt{x})}}
$$

13 points

3. Find domain of the given function, determine the set of all points in which it is continuous (continuous from the left/from the right). Compute its derivative (oneside derivatives) at each point where it exists.

$$
f(x)=\left\{\begin{array}{l}
\operatorname{sgn} x+|\sin x| \quad \text { for } x \neq 0, \\
1 \text { for } x=0 .
\end{array}\right.
$$

15 points

4. Investigate properties of the function and draw its graph:

$$
f(x)=\frac{1}{x}+2 \operatorname{arctg} x
$$

17 points

Write detailed arguments for each nontrivial step and verify assumptions of theorems you use.

