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1 Motivation

Our contribution deals with numerical analy-
sis. What is numerical analysis? And what
is its relation to computer science (comput-
ing sciences)? It is hard to give a definition.
Sometimes “pure” mathematicians do not con-
sider numerical analysis as a part of mathe-
matics and “pure” computer scientists do not
consider it as a part of computer science. Nev-
ertheless, hardly anyone would argue against
the importance of this field. Dramatic devel-
opment in high technology in the last decades
would not be possible without mathematical

modelling and extensive use of the numerical
analysis, mentioning just one important area
of application.

Nick Trefethen proposes in his unpublished
note [38] the following definition:

Numerical analysis is the study of
algorithms for mathematical prob-
lems involving continuous variables

The keywords are algorithm and continuous,
the last typically means real or complex. Since
real or complex numbers cannot be represented
exactly on computers, the part of the business
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of numerical analysis must be to study round-
ing errors. To understand finite algorithms or
direct methods, e.g. Gaussian elimination or
Cholesky factorization for solving systems of
linear algebraic equation, one have to under-
stand the computer architectures, operation
counts and the propagation of rounding errors.
This example, however, does not tell you all
the story. Most mathematical problems involv-
ing continuous variables cannot be solved (or
effectively solved) by finite algorithms. A clas-
sical example - there are no finite algorithms
for matrix eigenvalue problems (the same con-
clusion can be extended to almost anything
nonlinear). Therefore the deeper business of
numerical analysis is approximating unknown
quantities that cannot be known exactly even in
principle. A part of it is, of course, estimating
the precision of the computed approximation.

Our goal is to show on several examples the
great achievements of the numerical analysis,
together with the principal problems and rela-
tions to other disciplines. We restrict ourselves
to numerical linear algebra, or more specifi-
cally, to solving Ax = b, where A is a real
nonsingular n by n matrix and b a real n-
dimensional vector (for simplicity we restrict
ourselves to real systems; many statements ap-
ply, of course, also to the complex case), and
to computing eigenvalues of a square matrix A.
Much of scientific computing depends on these
two highly developed subjects (or on closely
related ones). This restriction allows us to go
deep and show things in a sharp light (well, at
least in principle; when judging this contribu-
tion you must take into account our - certainly
limited - expertise and exposition capability).

We emphasize two main ideas which can be
found behind our exposition and which are es-
sential for the recent trends and developments
in numerical linear algebra. First, our strong
belief is that any “software→ solution” without
a deep understanding of mathematical (physi-
cal, technical, ...) background of the problem
is very dangerous and may lead to fatal er-
rors. This is illustrated, e.g., on the prob-
lem of computing eigenvalues and on charac-
terizing the convergence of the iterative meth-
ods. Second, there is always a long way (with
many unexpectably complicated problems) from

the numerical method to the efficient and reli-
able code. We demonstrate that especially on
the current trends in developing sparse direct
solvers.

2 Solving large sparse linear alge-

braic systems

Although the basic scheme of the symmetric
Gaussian elimination is very simple and can
be casted in a few lines, the effective algo-
rithms which can be used for the really large
problems usually take from many hundreds
to thousands of code statements. The differ-
ence in the timings can then be many orders
of magnitude. This reveals the real complex-
ity of the intricate codes which are necessary
to cope with the large real-world problems.
Subsection 2.1 is devoted to the sparse direct
solvers stemming from this symmetric Gaus-
sian elimination. Iterative solvers, which are
based on the approaching the solution step by
step from some initial chosen approximation,
are discussed in subsection 2.2. A comparison
of both approaches is given in subsection 2.3.

2.1 Sparse direct solvers

This section provides a brief description of the
basic ideas concerning sparsity in solving large
linear systems by direct methods. Solving the
large sparse linear systems is the bottleneck in
a wide range of engineering and scientific com-
putations. We restrict to the symmetric and
positive definite case where most of the impor-
tant ideas about algorithms, data structures
and computing facilities can be explained. In
this case, the solution process is inherently sta-
ble and we can thus avoid numerical pivoting
which would complicate the description other-
wise.

Efficient solution of large sparse linear sys-
tems needs a careful choice of the algorith-
mic strategy influenced by the characteristics
of computer architectures (CPU speed, mem-
ory hierarchy, bandwidths cache/main mem-
ory and main memory/auxiliary storage). The
knowledge of the most important architectural
features is necessary to make our computations
really efficient.

First we provide a brief description of the
Cholesky factorization method for solving of a
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sparse linear system. This is the core of the
symmetric Gaussian elimination. Basic nota-
tion can be found, e.g., in [2], [18].

We use the square root formulation of the
factorization in the form

A = LDLT ,

where L is lower triangular matrix and D is
diagonal matrix. Having L, solution x can be
computed using two back substitutions and one
diagonal scaling:

Lȳ = b ; y = D−1ȳ ; LTx = y.

Two primary approaches to factorization
are as follows (we do not mention the row-
Cholesky approach since its algorithmic prop-
erties usually do no fit well with the modern
computer architectures).

The left-looking approach can be described
by the following pseudo-code:

(1) for j = 1 to n
(2) for k = 1 to j − 1 if akj 6= 0
(3) for i = k + 1 to n if lik 6= 0
(4) aij = aij − likakj
(5) end i
(6) end k
(7) dj = ajj
(8) for i = k + 1 to n
(9) lij = aij/ajj
(10) end i
(11) end j

In this case, a column j of L is computed by
gathering all contributions from the previously
computed columns (i.e. the columns to the left
of the column j in the matrix) to the column
j. Since the loop at the lines (3)–(5) in this
pseudo-code involves two columns, j and k,
with potentially different nonzero structures,
the problem of matching corresponding nonze-
ros must be resolved. Vector modification of

the column j by the column k at the lines (3)–
(5) is denoted by cmod(j, k). Vector scaling at
the lines (8)–(10) is denoted by cdiv(j).

The right-looking approach can be de-
scribed by the following pseudo-code:

(1) for k = 1 to n

(2) dk = ak
(3) for i = k + 1 to n if aik 6= 0

(4) lik = aik/dk
(5) end i

(6) for j = k + 1 to n if akj 6= 0

(7) for i = k + 1 to n if lik 6= 0

(8) aij = aij − likakj
(9) end i

(10) end j

(11) end k

In the right-looking approach, once a col-
umn k is completed, it immediately generates
all contributions to the subsequent columns,
i.e., columns to the right of it in the matrix.
A number of approaches have been taken in
order to solve the problem of matching nonze-
ros from columns j and k at the lines (6)-(10)
of the pseudo-code as will be mentioned later.
Similarly as above, operation at the lines (3)–
(5) we denote cdiv(k) and column modification
at the lines (7)–(9) is denoted by cmod(j, k).

Discretized operators from most of the ap-
plications such as structural analysis, compu-
tational fluid dynamics, device and process
simulation and electric power network prob-
lems contain only a fraction of nonzero ele-
ments: these matrices are very sparse. Explicit
consideration of sparsity leads to substantial
savings in space and computational time. Usu-
ally, the savings in time are more important ,
since the time complexity grows quicker as a
function of the problem size than the space
complexity (memory requirements).

A =
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∗ ∗
∗ ∗
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Figure 1.1: The arrow matrix and in the natural and reverse ordering.
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For a dense problem we have CPU time
proportional to n3 while the necessary mem-
ory is proportional to n2. For the sparse prob-
lems arising from the mesh discretization of 3D
problems CPU time is proportional (typically)

to n2 and space proportional to n
4
3 .

We will demonstrate the time differences
using the following simple example from [30]:

Example 2.1 Elapsed CPU time for the ma-
trix arising from a finite element approxima-
tion of a 3D problem (design of an automo-
bile chassis). Dimension of a the matrix: n =
44609. Proportion of nonzeros: 0.1%. Time on
Cray X-MP (1 processor) when considered as
a full (dense) matrix: 2 days. Time on Cray
X-MP when considered as a sparse matrix: 60
seconds.

Considering matrix sparsity we must care
about the positions of nonzeros in the matrix
patterns of A and L. For a given vector v ∈ Rk

define

Struct(v) = {j ∈ k̂|vj 6= 0}.

Usually, nonzero elements are introduced
into the new positions outside the pattern of
A during the decomposition. These new ele-
ments are known as fill-in elements. In order
to reduce time and storage requirements, it is
necessary to minimize the number of the fill-
in elements. This can be accomplished by a
combination of a good choice of data structures
used for matrix elements, matrix ordering and
an efficient implementation of the pseudo-code.

A typical example showing how the matrix
ordering influences time and storage is the case
of an arrow matrix in the Figure 1.1. While in
the first matrix A we do not get any fill-in dur-
ing the Cholesky factorization process, reverse
ordering of variables provides matrix Ā, which
completely fills after the first step of the de-
composition:

2.1.1 A Special sparsity structure

– Profile, band and frontal

schemes

A well-known way to make use of the sparsity
in the Cholesky factorization is to move the
nonzero elements of A into the area “around”

the diagonal. Natural orderings of many appli-
cation problems lead to such concentrations of
nonzeros.

Define fi = min {j | aji 6= 0} for i ∈ n̂.
This locates the leftmost nonzero element in
each row. Set δi = i − fi. The profile is de-
fined by

∑n
i=1 δi. The problem of concentrat-

ing elements around the diagonal can be thus
reformulated as the problem of minimizing the
profile using symmetric reordering of matrix
elements.
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∗ ∗ ∗ ∗ ∗















Figure 1.2: An matrix illustrating the pro-
file Cholesky scheme. We have f1 = 1, f2 =
1, f3 = 2, f4 = 3, f5 = 1.

Sometimes we use a rougher measure of the
quality of the ordering - we are minimizing
only band of the matrix - (often) defined as
β = max δi, for i ∈ n̂.
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Figure 1.3: An example of a band matrix
with β = 2.

More advanced variant of this principle re-
lies on the dynamical reordering of the matrix
to get the nonzeros as close to the diagonal
as possible during the Cholesky factorization.
Such an algorithm we call the frontal method.
In this case we use in any step only the el-
ements of a certain window which is moving
down the diagonal.

For the algorithms to reorder matrices ac-
cording to this principles see [18]. Advantages
of the methods considered in this subsection
are in their simplicity. To store the nonzeros
we need to store only that part of the matrix
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A which is covered by the elements which de-
termine the profile or the band of A or the
dynamical window of the frontal method.

Simple result (see, for instance, [18]) guar-
antees that all the nonzeros of L are inside
the above-mentioned part determined from the
pattern of A. This observation justifies the
three algorithmic types mentioned in this sub-
section.

To implement band elimination we need
only to store nonzero elements in a rectangular
array of the size β × n. Some problems gen-
erate matrices with a main diagonal and with
one or more nonzero subdiagonals. In this case
we can store also these diagonals and diagonals
necessary for fill-in as a set of “long” vectors.
To implement the profile method, we usually
need even less nonzero positions and one addi-
tional pointer vector to point to the first nonze-
ros in the matrix rows. Frontal elimination
needs vectors to perform row and column per-
mutations of the system dynamically, through-
out the factorization steps. More complicated
implementation is compensated by the advan-
tage of smaller working space. All these pos-
sibilities can be considered in both the right-
and left-looking implementations but the dif-
ferences are not, in general, very large since all
these models are based on similar principles.

Although all these three schemes are very
simple to implement and also the data struc-
tures are simple (nonzero parts of rows,
columns or diagonals are stored in vectors or
rectangular arrays as dense pieces), they are
not used very often as in recent sparse sym-
metric solvers.

First reason is algorithmic. General sparse
schemes may have much less fill-in elements
than the previous schemes would implicitly
suppose. We demonstrate this fact on the pre-
viously mentioned example taken from [30]:

Example 2.2 Comparison of factor size and
number of floating-point operations for the ma-
trix arising from the finite element approxi-
mation of a 3D problem (design of an auto-

mobile chassis). Dimension of a the matrix:
n = 44609. Memory size used and number of
floating-point operations for the factor L for
the frontal solver: 52.2 MByte / 25 Billion.
Memory size used and number of floating-point
operations for L when general sparse solver was
used: 5.2 MByte / 1.1 Billion.

The second reason is architectural. Hard-
ware gather/scatter facilities used in modern
computers (see [26]) caused that even the sim-
plicity of data structures for band, profile
and frontal solvers are not able to guarantee
competitive computation times. They behave
worse than general sparse solvers even in the
case when the difference in number of fill-in el-
ements (size of the factor L) is not so dramatic.

2.1.2 General Sparse Solvers

To describe basic ideas used in today’s general
sparse solvers we need to introduce some ter-
minology. Undirected graphs are useful tools
in the study of symmetric matrices. A given
matrix A can be structurally represented by its
associated graph G(A) = (X(A), E(A)), where
nodes inX(A) = {1, . . . , n} correspond to rows
and columns of the matrix and edges in E(A)
correspond to nonzero entries.

Filled matrix F = L + LT contains gener-
ally more nonzeros than A. Structure of F is
captured by the filled graph G(F ). The prob-
lem how to get structure of nonzeros of F was
solved first in [33] using graph-theoretic tools
to transform G(A) to G(F ).

An important concept in sparse factoriza-
tion is the elimination tree of L. It is defined
by

parent(j) = min {i | lij 6= 0, i > j}.

In other words, column j is a child of column
i if and only if the first subdiagonal nonzero
of column j in L is in row i. Figure 1.4 shows
structures of matrices A and L and the elimi-
nation tree of L.
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Figure 1.4: Structures of matrices A, L and of the elimination tree of L. By stars we denote
original nonzeros of A, additional fill-in in L is denoted by the letter f .

Following few lemmas recall some impor-
tant properties of elimination trees which will
help us to understand basic principles of sparse
solvers. For a deeper insight into this subject
we refer to [25]. Note, that elimination tree
can be computed directly from the structure
of nonzeros of A in complexity nearly linear in
n (see [27]).

Lemma 2.1 If lij 6= 0, then the node i is an
ancestor of j in the elimination tree.

This observation provides a necessary con-
dition in terms of the ancestor-descendant re-
lation in the elimination tree for an entry to be
nonzero in the filled matrix.

Lemma 2.2 Let T [i] and T [j] be two disjoint
subtrees of the elimination tree (rooted at i and
j, respectively). Then for all s ∈ T [i] and
t ∈ T [j], lst = 0.

One important problem concerning the
Cholesky factorization is how to determine row
structures of L. For instance, in the left-
looking pseudo-code, nonzeros in a row k of
L correspond to columns from {1, . . . , k − 1}
which contribute to column k.

Lemma 2.3 lij 6= 0 if and only if the node j is
an ancestor of some node k in the elimination
tree, where aik 6= 0.

This result can be used to characterize the
row structure of the Cholesky factor. Define
Tr[i], the structure of the i − th row of the
Cholesky factor as follows

Tr[i] = {j|lij 6= 0, j ≤ i}.

Then we have

Tr[i] ⊆ T [i].

Moreover, it can be shown that Tr[i] is a
pruned subtree of T [i] and that its leaves can
be easily determined.

The important corollary from these consid-
erations is that structure of rows in L can be
easily determined using the elimination tree.

The second important problem concerning
the implementations - determination of the
structures of columns of L - can be also very
easily solved also using the elimination tree:

Lemma 2.4 Struct(L∗j) ≡ {i|lij 6= ∅ ∧ i ≥ j}
=

⋃

k is son j

in T (A)

Struct(L∗k)
⋃

Struct(A∗j)

−{1, . . . , j − 1}
This is a simple corollary of the Cholesky

decomposition step and dependency relations
captured by the elimination tree. This formula
means that in order to get the structure of a
column i in L we need only to merge struc-
tures of the column i in A with structures of
sons of i in L. Consequently, the algorithm
to determine the column structure of L can be
implemented in O(m) operations where m is a
number of nonzeros in L.

The elimination tree gathers the most im-
portant structural dependencies in the Cholesky
factorization scheme. Numbering of its vertices
determines the order in which the matrix en-
tries are processed by the solver. Moreover, we
can renumber vertices and/or even modify the
elimination tree while preserving the amount
of fill-in elements in the correspondingly per-
muted factor L. Motivations for such changes
will be described in the following subsection.

Basic structure of the general sparse left-
looking solver can then be given in the follow-
ing four steps (not taking into account the or-
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dering phase):

• Form the elimination tree.

• Find the structure of columns of L (sym-
bolic factorization).

• Allocate the static data structures for L
based on the result of the previous step.

• Do numerical updates corresponding to
the left-looking pseudo-code.

Implementation of the right-looking solver
can be based on the similar scheme.

One of the popular type of the right-looking
algorithm is the multifrontal method (see [12],
[3]). In that method, the update step of the
pseudo-code (steps (6)–(10)) is implemented
using dense matrix operations. Updates are
stored separately, usually in the separate stack
working area, but some of them can make use
of the final space for L. We do not discuss
this method as a special case in our overview
of sparse techniques, because its implementa-
tions on various computers can mix the ideas
previously mentioned.

Since we can effectively compute structures
of columns and rows of L, the symbolic over-
head in the computations is rather small. But
this does not mean that our computations are
effective. The problem is that the choice of
the algorithmic strategy has to match with the
computer architecture. We will consider some
issues of this kind in the following subsection.

2.1.3 Let the architecture reign

Suppose we have the usual memory hierarchy
with fast and small memory parts at its top
(registers, cache) and slower and bigger parts
at the bottom. Usually, it is not possible to
embed the large problems completely into the
cache and transfer between memory hierarchy
levels takes considerable time. On the other
side, computations are the most effective only
if the active data are as close to the top as
possible. This implies that we must in some
way maximize the proportion of the number of
floating-point operations (flops) to number of
memory references which enable us to keep the
data in the cache and registers.

Basic approach how to accomplish that is
to use rather operations with blocks of data in-
stead of operations with matrix elements. This
important observation is now commonly used
in linear algebra operations (see [15]). It was
introduced after the spreading of vector su-
percomputer architectures. The main problem
with achieving the supercomputer performance
on these architectures was to keep the vector
functional units busy - to get enough data for
them. Blocking data to use matrix-vector and
matrix-matrix operations was found to be very
successful.

A comparison of number of memory refer-
ences and number of flops for the three types
of basic operations in dense matrix computa-
tions is in the Table 1.1. We consider α to be
a scalar, x, y to be vectors and B,C,D to be
(square) matrices; n represents the size of the
vectors and matrices.

operation # m. r. # flops #m.r.
#flops

y ← αx+ y 3n 2n 3
2

y ← Dx+ y n2 2n2 1
2

B ← DC +B 4n2 2n3 2
n

Table 1.1: Comparison of number of mem-
ory references (m.r.) and number of flops for
the three types of block hierarchy in dense ma-
trix computations.

A similar principle can be applied also
for the scalar computations in general sparse
solvers. Note, that vector pipelining is not
decisive; much more important is keeping
the CPU unit as busy as possible while
minimizing the data transfers. Thus, the
efficient implementations of both the left-
looking and right-looking algorithms require
that columns of L sharing the same sparsity
structure are grouped together into supern-
odes. More formally, the set of continguous
columns {j, j + 1, . . . , j + t} constitutes a su-
pernode if Struct(l∗k) = Struct(l∗k+1) ∪ {k}
for j ≤ k ≤ j + t− 1. Note that these columns
have a dense diagonal block and have identical
column structure below row j+t. A supernode
can be treated as a computational and storage
unit. Following example shows the difference
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in timings for the sparse Cholesky right-looking
decomposition using supernodes.

Example 2.3 Elapsed time for the linear sys-
tem with the SPD matrix of the dimension n =
5172 arising from the 3D finite element dis-
cretization. Computer: 486/33 IBM PC com-
patible. Virtual paging system uses the mem-
ory hierarchy: registers /cache /main mem-
ory /hard disk. General sparse right-looking
solver. Elapsed time without block implemen-
tation: 40 min. Elapsed time with supernodal
implementation: 4 min.

Another way how to decrease the amount
of communication in the general sparse solver
is to try to perform the update operations in
such a way that the data necessary in a step
of the decomposition are as close together as
possible. Elimination tree can serve as an ef-
ficient tool to describe this principle. Having
an elimination tree, we can renumber some of
its vertices in such a way that the Cholesky
decomposition with the corresponding permu-
tation will provide the factor L of the same
size. Consider the renumbering of the elimina-
tion tree from the Figure 1.4. This elimination
tree is renumbered by a so-called postordering
(a topological ordering numbering any subtree
by an interval of indices). This reordering is
equivalent to the original one in the sense that
it provides the same factor L.

✉ ✉

✉ ✉

✉
5

1

4

2 3

Figure 1.5: Postordering of the elimination
tree of the Figure 1.4

Since the postordering numbers indices in
such a way that vertices in any subtree are
numbered before giving numbers to any dis-
joint subtree, we can expect much less data
communications than in the previous case.
The difference is described by the number of
page faults in the virtual paging system in the
following example (see [31]).

Example 2.4 Comparison of number of page
faults for a matrix arising from the 9-point dis-
cretization of a regular 2D 180 × 180 grid (di-
mension n = 32400). Number of page faults
for an level-by-level ordering of the elimination
tree from the bottom to the top: 1.670.000.
Number of page faults using postordering of
the elimination tree: 18.000.

Another strategy to obtain the equivalent
reordering that can reduce the active storage
is to rearrange the sequences of children in the
elimination tree. The situation is depicted on
the Figure 1.6. While on the left part of the
figure we have a tree with some initial pos-
tordering, on the right side we are numbering
“large” children first. We are doing it in any
node and recursively. For instance, considering
vertex 18, we have numbered “largest” subtree
of the right side elimination tree first.

More precisely, the new ordering is based
on the structural simulation of the Cholesky
decomposition. Active working space in each
step can be determined for various renumber-
ings of children of any node. In this way,
the recursive structural simulation can deter-
mine a new renumbering permuting the sub-
trees corresponding to the tree nodes in order
to minimize the active working space without
changing the elimination tree. Consider, for in-
stance, vertex 18 in the elimination trees. De-
cision, in which order we will process its sons
(and, of course, all its subtrees considering pos-
tordered elimination tree) is based on the re-
cursively computed value of the temporary ac-
tive working space. The natural idea is to start
with processing of “large” subtrees. Both the
children rearrangements are postorderings of
the original elimination tree. The actual size of
the working space depends directly on whether
we are minimizing working space for the mul-
tifrontal method or for some left-looking or
right-looking out-of-core (out-of-cache) solver.

If we are looking for the equivalent transfor-
mations of the elimination tree in order to min-
imize the active working space, we can not only
shrink vertices into supernodes and renumber
elimination tree. We can also to change the
whole structure of the elimination tree. Theo-
retical basis of this transformation is described
in [29].
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Figure 1.6: Rearranging of the children sequences in the elimination tree.

Instead of the balanced elimination tree as
provided by some matrix reorderings minimiz-
ing fill-in elements we can use unbalanced elim-
ination tree which can in practice decrease the
active working space about the size up to 20%.

Balanced and unbalanced elimination trees
are schematically depicted on the Figure 1.7.

In practice, all these techniques deal with
the supernodes rather than with the individual
entries.

Balanced and effective use of the described
techniques is a difficult task strongly depend-
ing on the computer architecture for which the
solver is constructed. For computers with rel-
atively quick (possibly vectorizable) floating-
point operations and slow scalar arithmetics,
one can effectively merge into the supernodes
more vertices despite the fact that the resulting
structure of L would have additional nonzeros
(see [5]). On the other hand, sometimes it is
necessary to construct smaller supernodes by
breaking large blocks of vertices into pieces (see
[35]). This is the case of workstation and also
of some PC implementations. Elimination tree
rearrangements provide an a posteriori infor-
mation for the optimal partitioning of blocks
of vertices.

Computer architecture is the prominent
source of information for implementing any
general sparse solver. Without knowledge of
the basic architectural features and techni-

cal parameters we are not able even to de-
cide which combination of the left-looking and
right-looking techniques is optimal. There are
many open problems in this area. Theoretical
investigation leads often to the directly appli-
cable results.

2.2 Recent development in iterative

solvers: steps towards a black box

iterative software?

A large amount of black box software in the
form of mathematical libraries as LAPACK
(LINPACK), NAG, EISPACK, IMSL etc. and
general sparse solvers as MA27, MA42, MA48,
UMFPACK, etc. have been developed and are
widely used in many applications.

Users can exploit this software with high
confidence for general problem classes. Con-
cerning systems of linear algebraic equations,
codes are based almost entirely on direct meth-
ods. Black box iterative solvers would be
highly desirable and practical - they would
avoid most of the implementation problems re-
lated to exploiting the sparsity in direct meth-
ods. In recent years many authors devote a
lot of energy into the field of iterative methods
and a tremendous progress have been achieved.
For a recent survey we refer e.g. to [14] and [8].
Sometimes the feeling is expressed that this
progress have already established a firm base
for developing a black box iterative software.
This is, however, very far from our feeling.
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Figure 1.7: Balanced and unbalanced elimination trees.

Strictly speaking, we do not believe that
any good (fast, precise, reliable and robust)
black box iterative software for solving systems
of linear algebraic equations will be available in
the near future. This section describes several
good reasons supporting our opinion. Many it-
erative methods have been developed; for the
excellent surveys of the classical results we re-
fer to [39], [41], [7] and [22]. For historical rea-
sons we recall briefly the basic iterative meth-
ods and then turn to the state-of-the-art: the
Krylov space methods.

The best known iterative methods - the lin-
ear stationary iterative methods of the first
kind - are characterized by the simple formula

x(k) = Bx(k−1) + c

where x(k) is the current approximation to the
solution at the k-th step, (x(0) is given at the
beginning of computation), the n by n matrix
B and vector c characterize the method. Any
method of this type is linear because x(k) is
given as a linear function of the previous ap-
proximations; it is of the first kind because the
iteration formula involves the information just

about the one previous step and it is station-
ary because neither B nor c depend upon the
iteration step k. Everyone knows examples as
the Richardson method, the Jacobi method,
the Gauss-Seidel method, the Successive Over-
relaxation method (SOR) and the Symmetric
Successive Overrelaxation method (SSOR). We
are not going to repeat the formulas or the the-
ory of these methods here, that can be found
elsewhere. Instead, we recall the very well
known fact, that these simple methods (espe-
cially SOR and SSOR) may show an excellent
performance while carefully tuned to a specific
problem, but their performance is very prob-
lem - sensitive. This lack of robustness avoid
their general use for a wide class of problems.

Nonstationary iterative methods differ
from stationary methods in that the param-
eters of the formula for computing the current
approximation depend on the iteration step.
Consequently, these methods are more robust;
in many cases they are characterized by some
minimizing property. In the last years most of
the effort in this field is devoted into the Krylov
space methods.
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Krylov space methods for solving linear
systems start with an initial guess x(0) for the
solution and seek the k-th approximate solu-
tion in the linear variety

x(k) ∈ x(0) +Kk(A, r
(0))

where r(0) = b−Ax(0) is the initial residual and
Kk(A, r

(0)) is the k-th Krylov space generated
by A, r(0),

Kk(A, r
(0)) = span {r(0), Ar(0), . . . , Ak−1r(0)}.

Then, the k-th error and the k-th residual are
written in the form

x− x(k) = pk(A)(x − x(0))

r(k) = pk(A)r
(0),

where pk ∈ Pk, Pk denotes the set of polyno-
mials p(λ) of the degree at most k satisfying
p(0) = 1. Based on that, Krylov space meth-
ods are also referred to as polynomial methods.
An enormous variety of the Krylov space meth-
ods exists, including the famous conjugate gra-
dient method (CG), the conjugate residual
method (CR), SYMMLQ, the minimal resid-
ual method (MINRES), the biconjugate gra-
dient method (BiCG), the quasiminimal resid-
ual method (QMR), the generalized minimal
residual method (GMRES), giving just a few
names.

In the rest of this subsection we will concen-
trate on the Krylov space methods and show
several principial questions which must be sat-
isfactorily answered prior to constructing any
good black box iterative solver.

First question can be formed as: What
characterizes convergence of the Krylov space
method? This is certainly a key question.
Without giving an answer one can hardly build
up theoretically well justified preconditioned
methods. For the Hermitian and even the nor-
mal systems (i.e. the systems characterized by
the Hermitian or normal matrix) the answer
is: the rate at which a Krylov space method
converges is determined by the eigenvalue dis-
tribution and the initial approximation (ini-
tial error, initial residual). It can be clearly
seen by substituting the unitary eigendecom-
position of the the matrix A, A = UΛU∗,

U∗U = UU∗ = I, I is the identity matrix, into
the polynomial formulation of the methods.
For nonnormal matrices, hovewer, no unitary
eigendecomposition exist. Despite that, many
authors extend intuitively the feeling that the
spectrum of the coefficient matrix plays deci-
sive role in the characterization of convergence
even in the nonnormal case. This is actually
a very popular belief which is (at least implic-
itly) present in discussions of the experimental
results in many papers. This belief is, however,
wrong!

As an example we can take the GMRES
method. GMRES approximations are chosen
to minimize the Euclidean norm of the resid-
ual vector r(k) = b−Ax(k) among all the Krylov
space methods, i.e.,

‖ r(k) ‖= min
u∈x(0)+Kk(A,r(0))

‖ b−Au ‖ .

Residual norms of successive GMRES approx-
imations are nonincreasing, since the residuals
are being minimized over a set of expanding
subspaces. Notice that due to the minimizing
property, the size of GMRES residuals forms a
lower bound for the size of the residual of any
other Krylov space method. In other words,
GMRES shows how small residual can be found
in the variety

r(0) +AKk(A, r
(0)).

If GMRES performs poorly, then any other
Krylov space method performs poorly as well
(measured by the size of the residual). But the
size of the residual - that is the only easy-to-
compute convergence characteristic.

A key result was proven in [21] (for the
other related results see also [20]). It can be
reformulated in a following way. Given a non-
increasing positive sequence f(0) ≥ f(1) ≥
. . . f(n − 1) ≥ 0, and a set of nonzero com-
plex numbers {λ1, . . . λn}, there is a n by n
matrix A having eigenvalues {λ1, . . . λn}, and
an initial residual r(0) with ‖ r(0) ‖= f(0)
such that the GMRES algorithm applied to
the linear system Ax = b, with initial residual
r(0), generates approximations x(k) such that
‖ r(k) ‖= f(k), k = 1, 2, . . . , n − 1. In other
words, any nonincreasing convergence curve
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can be obtained with GMRES applied to a ma-
trix having any desired eigenvalues! The re-
sults of [20] and [21] demonstrate clearly that
eigenvalues alone are not the relevant quanti-
ties in determining the behavior of GMRES for
nonnormal matrices. It remains an open prob-
lem to determine the most appropriate set of
system parameters for describing the GMRES
behavior.

A second question is: What is the precision
level which can be achieved by iterative meth-
ods and which stopping criteria can be effec-
tively used? The user will always ask: Where
to stop the iteration? Stopping criteria should
guarantee a small error. If error is considered
as a distance to the true solution (measured
e.g. in the Euclidean norm), then the question
is too hard - one usually has no tools to esti-
mate directly this so called forward error. The
other possibility is to consider the error in the
backward sense, i.e., consider the approxima-
tion x(k) to the solution x as the exact solution
of a perturbed system

(A+∆A)x(k) = b+∆b,

and try to make the perturbations ∆A and ∆b
as small as possible. It is well known, see [24],
that for a given x(k) such a minimal perturba-
tions, measured in the Euclidean resp. spectral
norms, exist, and their size is given by

min{ν : (A+ δA)x(k) = b+∆b,

‖ ∆A ‖ / ‖ A ‖≤ ν,

‖ ∆b ‖ / ‖ b ‖≤ ν} =
= ‖ b−Ax(k) ‖ /(‖ A ‖‖ x(k) ‖ + ‖ b ‖).

Consequently, to guarantee a small backward
error, it is sufficient to use the stopping criteria
based on the value of

‖ b−Ax(k) ‖ /(‖ A ‖‖ x(k) ‖ + ‖ b ‖).

The problem seems to be solved, because the
residual is always available and the spectral
norm of A can be approximated e.g. by the
easily computable Frobenius norm. A careful
reader will, however, raise a question about
rounding errors. This is a real crucial point.
Without a careful rounding error analysis we

cannot say anything about the size of the ul-
timate (or “final”) residual in practical com-
putations. Consequently - we cannot predict a
priori the precision level on which the iteration
should be stopped! For more details we refer
to [11] and [36].

One can form many other questions of sim-
ilar importance. As stated earlier, a good it-
erative black box software must be fast, pre-
cise, reliable and robust. In all these at-
tributes it must compete with highly effective
(sparse) modern direct codes. We have dis-
cussed here some troubles related to the first
two attributes. Even from the short character-
ization of iterative methods given above it is
clear that the third and fourth attributes cause
also a lot of problems which are unresolved yet
(lacking in space we are not going into details
here). Based on that, we do not believe in con-
structing competitive black box iterative solvers
in the near future.

2.3 Direct or iterative solvers?

In this section we will first give some considera-
tions concerning complexity of direct and itera-
tive methods for the solution of linear systems
arising in one special but important applica-
tion (see [40]). Then we will state objections
against the straightforward generalization of
this simple case.

The matrix for our simple comparison
arises from the self-adjoint elliptic boundary-
value problem on the unit cube in 2D or 3D.
The domain is covered with a mesh, uniform
and equal in all 2 or 3 dimensions with mesh-
width h. Discretizing this problem we get the
symmetric and positive definite matrix A of the
dimension n and the right-hand side vector b.

Consider the iterative method of conjugate
gradients applied to this system. Considering
exact arithmetics, the error reduction per it-

eration is ∼
√
κ−1√
κ+1

, where κ is the condition

number of A defined as κ = ||A||||A−1||.
Relation among the condition number κ

and problem dimension as follows: for a 3D
problem we have κ ∼ h−2 ≈ n

2
3 , for a 2D prob-

lem we have κ ∼ h−2 ≈ n.

Then, for the error reduction below the
level ǫ, we have that
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(

1− 1
√

κ

1+ 1
√

κ

)j

≈ (1− 2√
κ
)j ≈ exp(−2j√

κ
) < ǫ =⇒

j ∼ − log ǫ
2

√
κ.

Assume the number of flops per iteration to
be ∼ fn (f is a small integer standing for the
average number of nonzeros per row and the
overhead introduced by the iterative scheme).
Then the number of flops for the convergence
below the level ǫ is proportional to fnj ∼ n

4
3

for 3D problems and ∼ fnj ∼ n
3
2 for 2D prob-

lems.

It is known, that many preconditioners (see
[10]) are able to push the condition number of
the system down to O(h−1). Then the number

of flops per reduction to ǫ is given by ∼ n
7
6 and

∼ n
5
4 for 3D and 2D problem, respectively.

Consider now a direct method. Using ef-
fective ordering strategies, we can have for the
matrix mentioned above number of operations
∼ n2 and the size of the fill-in ∼ n

4
3 in 3 di-

mensions. For 2D problem the corresponding
numbers are ∼ n

3
2 for the number of opera-

tions and ∼ n log n for the fill-in size. The
corresponding estimates and their relation to
practical problems can be found in [34] and

[1]. Back substitution can be done in ∼ n
4
3

operations for the 3D problem and in n log n
operations for the 2D problem.

If we have to solve one system at a time
then for large ǫ (small final precision) or very
large n, iterative methods may be preferable.
Having more complicated mesh structure or
more right-hand sides, direct methods can be
usually preferable up to very large matrix di-
mensions. Iterative methods are usually more
susceptible to instabilities (or slowing down
the convergence) in finite precision arithmetics.
Moreover, notice that the additional effort due
to the computation and use of the precondi-
tioner are not reflected in the asymptotic for-
mulas. For many large problems we need so-
phisticated preconditioners which increase sub-
stantially the computational effort described
for the model problem.

The amount of memory needed for com-
putations makes also an important defference.
This is usually much smaller for the iterative
methods. On the other side, we can use space
of the size O(n) for the sparse Cholesky fac-

torization (see [13]) when only one right-hand
side is present.

Summarizing, sparse direct solvers would
win as a general purpose codes up to the very
large size of the problems n. For specific ap-
plications, or extremely large n, the iteration
with preconditioning might be a better or even
the only alternative. This conclusion repre-
sents the state of knowledge in the early 90’s
and are, of course, subject to change depending
on the progress in the field.

3 Computing eigenvalues - a princi-

pal problem!

To show how hopeless and dangerous might be
a naive “software → solution” approach with-
out understanding the “nature” of the problem
we consider an “elementary” problem - com-
puting eigenvalues {λ1, λ2, . . . , λn} of a n by n
matrix A.

We will not specify the algorithm; just sup-
pose that it is backward stable, i.e., the com-
puted approximations {µ1, µ2, . . . µn} are ex-
act eigenvalues of the matrix A which is just a
slight perturbation of the matrix A,

A = A+ E, ‖ E ‖≤ δ,

where δ is small (proportional to the ma-
chine precision). That is the best we can
hope for. A question is, however, how close
are {µ1, . . . , µn} to {λ1, . . . , λn}. We define
the (optimal) matching distance between the
eigenvalues of A and A as

md(A,A) = min
π
{max

i
|λπ(i) − µi|}

where π is taken over all permutations of
{1, . . . , n}. Using a naive approach, one might
say: eigenvalues are continuous functions of
the matrix coefficients. Therefore we can ex-
pect that for A close to A, the corresponding
eigenvalues will be also close to each other and
md(A,A) will be small.

The last conclusion is, of course, wrong!
For a general matrix A, there is no bound on
the md(A,A) linear in ‖ E ‖, i.e., we can
not guarantee anything reasonable about the
precision of the computed eigenvalue approx-
imations based on the size of the backward
error. Even worse, for any small δ and any
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large ω, one can find matrices A,A such that
‖ E ‖=‖ A − A ‖≤ δ and md(A,A) ≥ ω. Any
small perturbation of the matrix (any small
backward error) may in principle cause an ar-
bitrary large perturbation of eigenvalues! In
other words – even the best software gives you,
in general, no guarantee on the precision of the
computed results. This is certainly a striking
statement.

Fortunately, there is an important class of
matrices for which the situation is more opti-
mistic. We recall the following theorem (for
details see, e.g., [37]):

Theorem 3.1 Let A be normal. Then
md (A,A) ≤ (2n− 1) ‖ E ‖.
For Hermitian matrices even stronger results
can be proven. We see that for normal ma-
trices the size of the backward error essentially
determine the precision of the computed eigen-
value approximations.

To summarize, for normal matrices any
good (i.e. backward stable) method will give
us what we want - good approximation to the
true eigenvalues. For highly nonnormal ma-
trices, however, the computed approximation
may be very far from the true eigenvalues even
if the best software is used.

In this context please notice that many
times authors just plot the computed eigen-
value approximations and declare it as the true
eigenvalues without paying any attention to
the normality (or other relevant properties) of
their matrices.

4 Sparse linear solvers: parallelism

in attack or in defense?

To show the difficulties related to parallel im-
plementations of linear solvers, we concentrate
here on sparse direct solvers. Description of the
parallel implementation of the iterative meth-
ods is much more simple and can be found else-
where.

Dense matrix computations are of such ba-
sic importance in scientific computing that
they are usually among the first algorithms
implemented in any new computing environ-
ment. Sparse matrix computations are equally
as important, but both their performance and
their influence on computer system design have
tended to lag those of their dense matrix

counterparts. One could add that for the
greater complexity and irregularity, sparse ma-
trix computations are more realistic represen-
tatives of typical scientific computations, and
therefore more useful as benchmark criteria,
than the dense matrix computations, that usu-
ally played this role.

Despite the difficulty with sparse matrix
computations on the advanced computer ar-
chitectures, some noticeable success has been
achieved in attaining very high performance
(see [9]) and the needs of sparse matrix com-
putations have had notable effect on computer
design (indirect addressing with gather/scatter
facilities). Nevertheless, it is ironic that sparse
matrix computations contain more inherent
parallelism than the corresponding dense ma-
trix computations, yet typically show signifi-
cantly lower efficiency on today’s parallel ar-
chitectures.

Roughly speaking, the most widely avail-
able and commercially successful parallel archi-
tectures fall into three classes : shared-memory
MIMD computers, distributed-memory MIMD
architectures and SIMD computers. Some ma-
chines have an additional level of parallelism in
the form of vector units within each individual
processor. We will concentrate on the general
and widely applicable principles which can be
used in wide variations of these computing en-
vironments.

In the sparse Cholesky decomposition we
can analyze the following levels of parallelism
(see [28]):

• Large-grain parallelism in which each
computational task is the completion of
all columns in a subtree of the elimina-
tion tree.

• Medium-grain parallelism in which each
task correspond to one simple cycle of
column update cmod or column scaling
cdiv operation in the left- and right-
looking pseudo-codes.

• Fine-grain parallelism in which each task
is a single floating-point operation or a
multiply-add pair.

Fine-grain parallelism can be exploited in
two distinctly different ways:
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1. Vectorization of the inner cycles on vec-
tor processors.

2. Parallelizing the rank-one update in the
right-looking pseudo-code.

Vectorization of the operations is one of
the basic tools to improve effectiveness of
the sparse solvers using array processors, vec-
tor supercomputers or RISC processors with
some pipelining. Efficient vectorization was a
very strong argument to promote band, pro-
file and frontal solvers when first vector pro-
cessors appeared. As noted above, except for
special types of discretized partial differential
equations, they are not very important now,
and other concepts are used for the Cholesky
decomposition of general matrices. This is
caused by enormous work which was done
in the research of direct sparse solvers, by
gather/scatter facilities in today’s computers
for scientific computing and by the high-speed
scalar arithmetics in workstations.

Hardware gather/scatter facilities can usu-
ally reach no more than 50% of the perfor-
mance of the corresponding dense vector oper-
ations. No wonder, that the use of dense vec-
tors and/or matrices in the inner cycles of the
Cholesky decomposition is still preferable. The
above-mentioned multifrontal implementation
of the right-looking algorithm widely exploits
this idea. The structure of the elimination tree
enables to deal only with those elements which
correspond to nonzeros in the factor L.

To obtain better performance using vec-
tor functional units, we usually strive to have
dense vectors and matrices of the sufficiently
large dimensions (we are not going into the
careful analysis of the situation which is usu-
ally quite more complex). Thus, forming su-
pernodes is usually highly desirable since it
helps to increase the dimension of the subma-
trices processed in the inner cycle.

The problem of parallelizing rank-one up-
date is a difficult one, and research on this
topic is still in its infancy (see [19]). Note,
that the right-looking algorithm presents for
SIMD machines much better alternative that
the column left-looking approach. When rows
and columns of the sparse matrix A are dis-
tributed to the rows and columns of a grid of

processors, the algorithm of sparse Cholesky
decomposition is scalable. (by a scalable al-
gorithm we call an algorithm that maintains
efficiency bounded away from zero as the num-
ber p of processors grows and the size of the
data structures grows roughly linearly in p,
see [19]). Up to date, however, even this
method has not achieved high efficiency on a
highly parallel machine. With this note we left
the realm of the highly-parallel and massively-
parallel SIMD machines aside and we will turn
to the parallelism exploited in the most pop-
ular parallel implementations: large-grain and
medium-grain left-looking algorithms and mul-
tifrontal codes.

Let us turn now to the problem of medium-
grain algorithms. Of the possible formulations
of the sparse Cholesky algorithms, left-looking
algorithm is the simplest to implement. It
is shown in [16], that the algorithm can be
adapted in a straightforward manner to run ef-
ficiently in parallel on shared-memory MIMD
machines.

Each column j corresponds to a task

Tcol(j) = {cmod(j, k)|k ∈ Struct(l∗j)}
∪{cdiv(j)}.

These tasks are given to a task queue in
the order given by some possible rearrange-
ment of columns and rows of A, i.e., given
by some renumbering of the elimination tree.
Processors obtain column tasks from this sim-
ple “pool of tasks” in this order. The basic
form of the algorithm has two significant draw-
backs. First, the number of synchronization
operations is quite high. Second, since the al-
gorithm does not exploit supernodes, it will not
vectorize well on vector supernodes with mul-
tiple processors. The remedy is to use the su-
pernodes to decrease also the synchronization
costs.

Algorithms for distributed-memory ma-
chines are usually characterized by the a pri-
ori distribution of the data to the processors.
In order to keep the cost of the interproces-
sor communication at acceptable levels, it is
essential to use local data locally as much as
possible. The distributed fan-out (see [17]),
fan-in (see [6]), fan-both (see [4]) and multi-
frontal algorithm (see overview [23]) are typi-
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cal examples of the implementations. All these
algorithms are designed in the following frame-
work:

• They require assignment of the matrix
columns to the processors.

• They use the column assignment to dis-
tribute the medium-grained tasks in the
outer loop of left- or right-looking sparse
Cholesky factorization.

The differences among these algorithms
stem from the various formulations of the
sparse-Cholesky algorithm.

The fan-out algorithm is based on the
right-looking Cholesky algorithm. We will de-
note the k−th task performed by the outer loop
of the algorithm (lines (3)–(10) of the right-
looking pseudo-code) by Tsub(k), which is de-
fined by

Tsub(k) = {cdiv(k)}
∪{cmod(j, k)|j ∈ Struct(l∗k)}.

That is, Tsub(k) first forms l∗k by scal-
ing of the k − th column, and then perform
all column modifications that use the newly
formed column. The fan-out algorithm par-
titions each task Tsub(k) among the proces-
sors. It is a data-driven algorithm, where the
data sent from one processor to another repre-
sent the completed factor columns. The outer
loop of the algorithm for a given processor reg-
ularly checks the message queue for the incom-
ing columns. Received columns are used to
modify every column j owned by the processor
for which cmod(j, k) is required. When some
column j is completed, it is sent immediately
to all the processors, by which it is eventually
used to modify subsequent columns of the ma-
trix.

The fan-in algorithm is based on the left-
looking Cholesky pseudo-code. It partitions
each task Tcol(j) among the processors in a
manner similar to the distribution of tasks
Tsub(k) in the fan-out algorithm. It is a
demand-driven algorithm where the data re-
quired from a processor pa to complete the
j− th column on a given processor pb are gath-
ered in the form of results cmod(j, k) and sent
together. Communication costs incurred by

this algorithm are usually much lower than by
the historically older fan-out algorithm.

The fan-both algorithm was described as
an intermediate parametrized algorithm parti-
tioning both the subtasks Tcol(j) and Tsub(j).
Processors are sending both the aggregate col-
umn updates and completed columns.

The distributed multifrontal algorithm par-
titions among the processors the tasks upon
which the sequential multifrontal method is
based:

1. Partial dense right-looking Cholesky fac-
torization for the vertices of independent
subtrees of the elimination tree.

2. Medium-grain or large-grain subtasks of
the partial Cholesky factorizations of the
dense matrices.

The first source of the parallelism is prob-
ably the most natural. Its theoretical justifi-
cation is given by the Lemma 1.2. Indepen-
dent branches of the elimination tree can be
eliminated independently. Towards the root,
number of independent tasks corresponding to
these branches decreases. Then tasks cor-
responding to partial updates of the right-
looking pseudo-code near to the root can be
partitioned among the processors. Combining
these two principles we obtain the core of the
distributed-memory (but also of the shared-
memory) multifrontal method. All the parallel
right-looking implementations of the Cholesky
factorization are essentially based on the same
principles.

Large-grain parallelism present in the con-
temporary implementations is usually very
transparent. We do not care very much about
the mapping relation column–processor. The
actual architecture provides hints how to solve
this problem. Using for instance hypercube
architectures, the subtree-subcube mapping is
very natural and we can speak about this type
of parallelism.

Shared-memory vector multiprocessors
with a limited number of processing units rep-
resent a similar case. The natural way is to
map rather large subtrees of the elimination
tree to the processor. The drawback in this sit-
uation can be the memory management, since
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we need more working space than if purely
scalar computations are considered.

So far we have concentrated on the issues
related to the numerical factorization. We left
out the issues of the symbolic decomposition,
initial ordering and making other symbolic ma-
nipulations in parallel. Although in case of
scalar computations the numerical phase tim-
ing is usually dominant, in the parallel environ-
ment it is not always so. The following exam-
ple shows the proportion of the time spent in
the symbolic and numeric phases of the sparse
Cholesky factorization. It is taken from [31].

Example 4.1 Comparison of ordering and
numeric factorization time for the matrix com-
ing from structural mechanics. Dimension n =
217918, number of nonzeros in A is 5.926.567,
number of nonzeros in L is 55.187.841. Or-
dering time was 38s, right-looking factorization
time was 200s.

Optimizing parallel performance of the
symbolic manipulations (including matrix or-
dering, computation of row and column struc-
tures, tree manipulations, ...) is an important
challenge. For the overview of the classical
techniques see [23].

Number of parallel steps to compute the
Cholesky decomposition is determined by the
height of the elimination tree. But, while in
the one processor case we preferred the unbal-
anced form of the elimination tree (see Figure
1.7), the situation is different now. Unbalanced
tree induces more parallel steps. Therefore, for
the parallel elimination, the balanced alterna-
tive seems to be better. On the other side, the
cumulative size of working space is in this case
higher.

Also the problem of the renumbering of the
elimination tree is casted into another light in
the parallel case. The level-by-level renum-
bering and balanced children sequences of the
elimination tree are the objects of further re-
search.

Even in the “scalar” case, all the implemen-
tations are strongly connected with computer
architectures. It is only natural that, in the
parallel environment, where some features of
the computing facilities (e.g. , communication)
provide even more variations, this dependence
is also more profound.

Naive hopes that with more processors we
could avoid in some extent the difficulties faced
in scalar Cholesky decomposition came to an
disappointment. We are still trying to find bet-
ter algorithmic alternatives which make both
the scalar and parallel computations more ef-
fective.

5 Concluding remarks

The world of numerical linear algebra is de-
veloping very fast. We have tried to show
that many problems which are considered by
the numerical analyst working in this area are
very complicated and still unresolved despite
the fact, that most of it has been formulated a
few decades or even one or two hundred years
ago.

Among the current trends in this field we
want to point out the strong movement to-
wards the justification of the numerical algo-
rithms. A method or algorithm programmed
to a code should not only give some output,
but it should guarantee an exactly defined re-
lation of the computed approximation to the
unknown true solution or warn the user about
the possible incorrectness of the result. Our
intuition must be checked carefully by formal
proofs or at least by developing theories offer-
ing a deep insight into a problem. Attempts to
solve problems without such insight may fail
completely. Another trend can be character-
ized by the proclamation: There is no simple
general solution to the difficult tasks as, e.g.,
solving large sparse linear systems. Consider-
ing parallel computers, things are even getting
worse. A combination of different techniques
is always necessary, most of which use very ab-
stract tools (as the graph theory etc. ) to
achieve very practical goals. There is where
the way from theory to practice is very short.
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