
Solving symmetric indefinite systems
using memory efficient incomplete
factorization preconditioners

J Scott, M Tuma,

February 2015

Submitted for publication in Siam Journal of Scientific Computing

 Preprint
RAL-P-2015-002

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

SOLVING SYMMETRIC INDEFINITE SYSTEMS USING MEMORY EFFICIENT

INCOMPLETE FACTORIZATION PRECONDITIONERS

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. Sparse symmetric indefinite linear systems of equations arise in numerous practical applications. In many

situations, an iterative method is the method of choice but a preconditioner is normally required for this to be effective. In

this paper, the focus is on the development of incomplete factorization algorithms that can be used to compute high quality

preconditioners for general indefinite systems, including saddle-point problems. A limited memory approach is used that

generalises recent work on incomplete Cholesky factorization preconditioners. A number of new ideas are proposed with the

goal of improving the stability, robustness and efficiency of the resulting preconditioner. These include the monitoring of

stability as the factorization proceeds and the use of pivot modifications when potential instability is observed. Numerical

experiments involving test problems arising from a range of real-world applications are used to demonstrate the effectiveness

of our approach and comparisons are made with a state-of-the-art sparse direct solver.

Key words. sparse matrices, sparse linear systems, indefinite symmetric systems, iterative solvers, preconditioning,

incomplete factorizations, pivoting.

AMS subject classifications. Primary, 65F05, 65F50; Secondary, 15A06, 15A23

1. Introduction. Large sparse symmetric indefinite linear systems of equations arise in a wide

variety of practical applications. In many cases, the systems are of saddle-point type; for a comprehensive

overview of the numerical solution of saddle-point problems, see the paper by Benzi et al. [5]. However, in

other cases (including problems coming from statistics, acoustics, optimization, eigenvalue problems, and

sequences of shifted systems), the indefinite systems possess no nice block structure. The development

of incomplete factorization preconditioners that are applicable to saddle-point systems as well as to more

general indefinite systems is the main focus of this paper.

In recent years, considerable effort has gone into the development of robust and efficient sparse direct

solvers for symmetric indefinite systems. Notable examples include MA57 [19], HSL MA97, [36, 37], MUMPS

[2], PARDISO [60], WSMP [32] and, most recently, the package SSIDS for GPU architectures [34]. A key

feature of these solvers is the employment of sparsity preserving orderings combined with 1× 1 and 2× 2

pivots for numerical stability (see, for example, [3, 39, 56]). A numerical overview can be found in the

survey [28].

A significant attraction of direct methods is that they can often be used (possibly in combination

with a refinement technique) as black box solvers. Moreover, the increase in the amount of main memory

available on modern computers as well as the use of out-of-core techniques (such as described, for example,

in [55]) has extended the size of systems that they can tackle to well beyond that which could have been

envisaged 20 years ago. Nevertheless, to solve still larger systems (typically those from three dimensional

problems) it is necessary to use an iterative method. Iterative methods can also be the most efficient option

if only an approximation to the solution is needed (for example, if the problem data is not known to high

accuracy). However, in general, to be effective iterative methods need to be used in combination with a

preconditioner. Unfortunately, the construction of a suitable preconditioner is highly problem dependent.

A number of possible approaches have been proposed for indefinite systems. For those of saddle-point

type, an enormous amount of effort has gone into exploiting the underlying block structure and retaining

it throughout the solution process. An overview of work on these so-called segregated approaches up until

2005 can be found in [5]. Other techniques that make use of the block structure include, for example,

constraint preconditioners [42, 48], and symmetric-triangular (ST) preconditioners [72]. Alternatively,

the saddle-point structure may be partially exploited. For example, the structure may be used as a

∗Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX, UK.

jennifer.scott@stfc.ac.uk. Supported by EPSRC grant EP/I013067/1.
†Institute of Computer Science, Academy of Sciences of the Czech Republic. tuma@cs.cas.cz. Partially supported by

the Grant Agency of the Czech Republic Project No. 13-06684 S. Travel support from the Academy of Sciences of the Czech

Republic is also acknowledged.

1

starting point before the blocks are “mixed” through the use of more general symmetric permutations.

The motivation here is that general permutations can lead to incomplete factorization preconditioners

that are sparser (and cheaper to apply) than those resulting from a segregated approach. A theoretical

background that supports such approaches used, for example, in optimization, is available for symmetric

quasi-definite (SQD) systems. Vanderbei [70] shows that such matrices are strongly factorizable while a

stability analysis related to the factorization of SQD matrices is given by Gill et al. [26] (see also [27]).

Recent work emphasizing the connection of optimization and numerical linear algebra includes [30, 31, 51]

while an overview of various approaches for saddle-point problems in optimization that use indefinite

factorizations rather than the segregated approach is given in [65].

In some approaches, the incomplete factorization of an indefinite matrix is forced to be positive definite.

This may be achieved by taking absolute values of 1× 1 pivots and transforming 2× 2 pivots into positive

definite matrices; see the influential paper by Gill et al. [25] and the recent symmetric positive definite

(absolute value) preconditioner of Vecharynski and Knyazev [71]. The motivation for doing this is that

a symmetric Krylov space method with short recurrences such as MINRES [52], the conjugate residual

method [47, 68], or SYMMLQ [52] can then be employed. For saddle-point systems, Gould, Orban and

Rees [29] recently showed that MINRES and SYMMLQ are well defined in the presence of an indefinite

preconditioner. For more general indefinite systems, if the preconditioner is indefinite, a general non

symmetric iterative method such as GMRES [57] needs to be used since, in general, the preconditioned

matrix is not symmetric in any inner product [53].

As already observed, in many practical applications the indefinite system does not have a saddle-point

structure. Again, it is possible to construct either a positive definite or a general indefinite preconditioner,

with implications for the choice of iterative method. An important contribution by Chow and Saad

[14] considers the more general class of incomplete LU preconditioners for solving indefinite problems.

While there were some early attempts to compute such preconditioners, efficient implementations were

lacking. The 2005 work of Li and Saad [44] represented a key step in the development of well-implemented

general indefinite preconditioners based on a left-looking approach. Li and Saad integrated pivoting

procedures [3, 12, 13] with scaling [10] and reordering [16]. Building on this, Greif, He, and Liu [31]

recently developed a new incomplete factorization package SYM-ILDL for general symmetric indefinite

matrices. This code includes optional equilibration scaling of the matrix and ordering using the reverse

Cuthill-McKee algorithm [16] or approximate minimum degree [1], while Bunch-Kaufman pivoting [12] is

employed to try and maintain stability and avoid breakdown.

Sophisticated ordering techniques based on bipartite graph matchings motivated further ideas for

the development of incomplete factorizations of indefinite systems. In the mid 1990s, Olschowka and

Neumaier [50] introduced the use of weighted matchings for the scaling of non symmetric matrices; their

ideas were developed and implemented for sparse non symmetric problems in [22]; see also their use for

ILU factorizations coupled with non symmetric iterative solvers in [6, 61]. The symmetric adaption was

originally proposed by Duff and Gilbert [20] and was subsequently built upon by Duff and Pralet [24]

(see also [38]), while Hagemann and Schenk [33] employed matching-based orderings when computing

incomplete factorizations of symmetric indefinite systems.

In this paper, we consider incomplete factorizations of general indefinite systems (including saddle-

point systems) and propose a number of new ideas with the goal of improving the stability, robustness

and efficiency of the resulting preconditioner. Our incomplete factorization is based on the limited

memory version of the approach of Tismenetsky [69] that we proposed and implemented in the software

package HSL MI28 [63, 64] for symmetric positive definite systems (see also [65] for saddle-point problems).

Incomplete factors L and R are computed; R is used in the computation of L but is normally subsequently

discarded. Using a nonzero R can significantly improve the quality of the preconditioner and, in the

positive definite case, it was demonstrated in [64] that its memory can be used to enable L to be

sparser and thus more efficient to apply. Our proposed approach for general symmetric indefinite systems

incorporates a number of ordering and pivoting strategies and uses preprocessing to try to minimize the

modifications in the pivot ordering needed for stability. Further, our factorization algorithm includes the

2

use of diagonal modifications to improve stability and generalizes such modifications to 2×2 blocks. Even

with well bounded entries in the factors, the triangular solves that are needed when applying an incomplete

factorization preconditioner can be highly unstable. One of our key ideas is that of monitoring stability

as the factorization proceeds and, in the case of possible instability, we propose using the intermediate R

memory to formulate an optimization problem that aims to improve the stability of the factorization by

moving either all of R or selected entries of R to L.

The rest of the paper is organised as follows. In Section 2, we describe our incomplete factorization

algorithm and the different pivoting strategies that it offers. Then in Section 3, we look at using a shift

and/or a diagonal multiplier to prevent the factorization from becoming unstable. We introduce the

concept of local growth and show how 1× 1 or 2× 2 pivots can be modified to reduce the local growth. In

Section 4, we propose monitoring possible instability as the factorization proceeds. Numerical results for a

range of problems from real-world applications are presented in Section 5; these demonstrate the efficiency

and effectiveness of our proposed approach. Finally, in Section 6, our findings are summarised and some

concluding comments are made.

2. Factorization and pivoting. In this section, we describe our incomplete factorization algorithm

and the pivoting options that it offers.

2.1. Limited-memory incomplete factorization. We first summarize the limited-memory

incomplete Cholesky (IC) factorization algorithm that is implemented within the package HSL MI28 from

the HSL mathematical software library [40, 63]. We assume here that A is a symmetric and positive-definite

matrix for which an IC factorization is required. For such A, HSL MI28 computes an IC factorization

(QL)(QL)T , where Q is a permutation matrix, chosen to preserve sparsity. The matrix A is optionally

scaled and, if necessary, shifted to avoid breakdown of the factorization (see Section 3). Thus the incomplete

factorization of Ā = S̄QTAQS̄ + αI is computed, where S̄ = {s̄i} is a diagonal scaling matrix and α is a

positive shift. The user supplies the lower triangular part of A in compressed sparse column format and

the computed L is returned to the user in the same format; a separate entry performs the preconditioning

operation y = Pz, where P = (L̄L̄T)−1, L̄ = QS̄−1L, is the incomplete factorization preconditioner.

The algorithm implemented by HSL MI28 is based on a limited memory version of the left-looking

approach by Tismenetsky [69] and Kaporin[41]. The basic scheme is based on a matrix factorization of

the form

Ā = (L+R)(L+R)T − E, (2.1)

where L is a lower triangular matrix with positive diagonal entries that is used for preconditioning, R is

a strictly lower triangular matrix with small entries that is used to stabilize the factorization process but

is subsequently discarded, and E has the structure

E = RRT .

The Tismenetsky incomplete factorization does not compute the full update and thus a positive semidefinite

modification is implicitly added to A. The matrix R represents intermediate memory, that is, memory

that is used in the construction of the preconditioner but is not part of the preconditioner.

Following the ideas of Kaporin [41], HSL MA28 optionally uses drop tolerances to limit the memory

required in the computation of the incomplete factorization. The user controls the dropping of small

entries from L and R and the maximum number of entries within each column of L and R (and thus

the amount of memory for L and the intermediate work and memory used in computing the incomplete

factorization). The parameters lsize and rsize must be set by the user to the maximum number of fill

entries in each column of L (so that column j of L has at most lszie+nzj entries, where nzj is the number

of entries in column j of A) and the maximum number of entries in each column of R, respectively. Further

details are given in [63, 64, 65].

We now consider the case where A is symmetric indefinite. In this case, (2.1) will be replaced by

Ā = (L+R)D(L+R)T − E, (2.2)

3

where L and R are as before (with L now having unit diagonal entries), D is block diagonal with 1 × 1

and 2× 2 blocks and E is of the form

E = RDRT .

2.2. Pivoting strategies. In the positive definite case, pivoting is not used. Furthermore, for saddle-

point systems, we are able to avoid pivoting by using an appropriately chosen constrained ordering (see

[65] for details). However, in the indefinite case, pivoting is needed to try and maintain stability. We

incorporate a number of pivoting strategies; namely, that of Bunch and Kaufman [12], Bunch tridiagonal

pivoting [11], and the threshold variant of the Bunch and Kaufman approach introduced by Liu [46]. We

also allow the option of pivoting down the diagonal with breakdown considered to have occurred if the

pivot candidate is too small, in which case a shift is applied. This option may be suitable if the matrix is

(close to) positive definite or if preprocessing of the matrix has ensured large diagonal entries.

The partial pivoting strategy by Bunch and Kaufman has been widely used for factorizing (dense)

symmetric indefinite matrices using 1× 1 and 2× 2 pivots. The algorithm for choosing the i-th pivot may

be outlined as follows.

Bunch-Kaufman partial pivot strategy (1977)

αp := (1 +
√

17)/8 ≈ 0.64

Find j 6= i such that |aji| = max{|aki|, k 6= i} =: λ

if |aii| ≥ αp |λ| then
use aii as a 1× 1 pivot

else

σ := max{|akj |, k 6= j}
if |aii|σ ≥ αp λ2 then

use aii as a 1× 1 pivot

else if |ajj | ≥ αp σ then

use ajj as a 1× 1 pivot

else

use

(
aii aij
aij ajj

)
as a 2× 2 pivot

end

end

The parameter αp := (1 +
√

17)/8 is chosen to minimize the bound on element growth. This pivoting

strategy was incorporated into the incomplete factorizations of Li and Saad [44] and Greif et al. [31].

Although Bunch-Kaufman pivoting is popular for dense systems, it is generally viewed as not suitable

for sparse systems. In the sparse case, if j−i is large then the choice of j as a 1×1 pivot (or (i, j) as a 2×2

pivot) at the i-th step can seriously adversely effect the sparsity of the computed factors. Consequently, in

the sparse case, it is common to use a threshold-based strategy that limits the search so that j − i cannot

be large (see, for example, [21, 56]). Here we use the localized threshold pivoting as proposed by Liu [46].

This is a simple modification of the Bunch-Kaufman strategy. Recall that, at each stage, λ is the largest

off-diagonal entry in the first column of the reduced matrix. In the Bunch-Kaufman approach, λ is always

chosen to form the 2 × 2 pivot. Liu proposed imposing a threshold condition on the selection of 2 × 2

pivots. A sparsity threshold τ in the range (0, 1] must be a chosen and, in place of the largest entry in the

first column, the entry of smallest row index in the first column that satisfies the threshold condition is

chosen. The strategy for picking the i-th pivot is as follows.

The optimal value of αp now depends on the value of τ . Liu [46] shows that, given τ , the optimal

αp satisfies a cubic equation and is monotonically increasing with respect to τ . The threshold strategy

has the advantage of being more localized than the Bunch-Kaufman approach, possibly at the expense of

stability.

4

Liu threshold partial pivoting (1987)

Choose a sparsity threshold value τ such that 0 < τ ≤ 1

Find j 6= i such that |aji| = max{|aki|, k 6= i} =: λ

Find s 6= i such that s = min{k, k 6= i, |aki| ≥ τ |aλi|}.
if |aii| ≥ αp |λ| then

use aii as a 1× 1 pivot

else

σ := max{|aks|, k 6= s}
if |aii|σ ≥ αp λ2 then

use aii as a 1× 1 pivot

else if |ass| ≥ αp σ then

use ass as a 1× 1 pivot

else

use

(
aii asi
asi ass

)
as a 2× 2 pivot

end

end

A tridiagonal matrix is, of course, a special case of a sparse matrix and for such matrices it is possible

to use a yet more localized pivoting strategy. In 1974, Bunch [11] introduced the following scheme for the

i-th pivot of a symmetric tridiagonal matrix (for simplicity, we assume here that the subdiagonal entries

are nonzero).

Bunch tridiagonal pivoting strategy (1974)

αp = (
√

5− 1)/2 ≈ 0.62

σ:= the entry of largest absolute in the initial matrix

if |aii|σ ≥ αp |ai+1,i1|2 then

use aii as a 1× 1 pivot

else

use

(
aii ai,i+1

ai+1,i ai+1,i+1

)
as a 2× 2 pivot

end

This strategy was used by Hagemann and Schenk [33] in combination with a symmetric version of

a maximum weighted matching ordering for the incomplete factorization of sparse symmetric indefinite

problems. The matching-based ordering is used to a priori permute large entries to the subdiagonal

positions; the hope is that these can be used to provide stable 2 × 2 pivots (for the sparse direct case,

see [24, 39]). Hagemann and Schenk employ a local perturbation if the candidate pivot is too small to

be inverted. Advantages of this approach are that no entries beyond the diagonal and subdiagonal are

searched and no swapping of rows/columns is needed during the factorization, which offers potential time

savings and significantly simplifies the software development. Hagemann and Schenk report encouraging

results for some saddle-point systems arising from interior-point problems; results for general indefinite

systems are less positive.

3. The use of shifts and multipliers. We start by recalling the use of shifts in the case where A is

symmetric and positive definite. The problem of breakdown during an incomplete Cholesky factorization

because of the occurrence of zero or negative pivots is well known. Arbitrarily small pivots can also lead to

unstable and therefore inaccurate factorizations. In the late 1970s, Kershaw [43] proposed locally replacing

non-positive diagonal entries by a small positive number; the hope being that if only a few entries need

to be replaced, the resulting factorization will still yield an acceptable preconditioner. This idea helped

5

popularise incomplete factorizations, but ad hoc local perturbations with no relation to the overall matrix

can lead to large growth in the entries and to unstable preconditioners. Thus a more commonly used

approach is the one originally suggested by Manteuffel [49] that involves factorizing the diagonally shifted

matrix A+ αI for some positive α. Note that provided α is large enough, the incomplete factorization of

the shifted positive definite matrix always exists, although currently the only way to find a suitable global

shift is essentially by trial-and-error (see [45] and [64] for a discussion of the strategies used for increasing

and decreasing shifts in the IC factorization codes ICFS and HSL MI28, respectively). The power of the

technique was perhaps somewhat underestimated, probably because of the need to restart the factorization

with each new shift and the fact that the shifted matrix may be far from the original one if a suitable small

value of α cannot be found. However, the recent results presented in [63, 64] illustrate how effective it can

be in increasing the stability of the factorization for positive definite problems coming from a wide range

of practical applications. Moreover, by monitoring the diagonal entries as the factorization progresses, the

extra work that results from restarting the factorization (possibly multiple times) is generally not found

to be prohibitive.

A relatively simple generalization of the global shift strategy was used by Scott and Tůma [65] for

symmetric indefinite systems in saddle-point form. They employ two shifts: a positive shift for the (1, 1)

block and a negative shift for the (2, 2) block. The shifts can always be chosen such that a signed incomplete

Cholesky factorization exists. Such a shifting strategy is closely connected to the regularization techniques

used by the numerical optimization community (see, for example, Saunders and Tomlin [59]). The results

given in [65] illustrate the use of two shifts can lead to effective preconditioners.

Shifts have also been used in the construction of incomplete factorizations of general sparse matrices.

In particular, the package IFPACK offers level-based ILUT(k) preconditioners and suggests the use of a

global shift if the computed factors are found to be unstable. IFPACK factorizes the scaled and shifted

matrix B, whose entries are given by

bij =

{
aij if i 6= j

ρ aii + sgn(aii)α if i = j,
(3.1)

where α and ρ are positive parameters that must be determined by the user. The documentation for the

code suggests a trial-and-error method for selecting suitable values.

In this paper, our interest is in the general symmetric indefinite case. Our incomplete factorization

approach uses both 1×1 and 2×2 pivots combined with a shift strategy to compute a factorization of the

form LDLT , where D is block diagonal, with blocks of order 1 and 2. If at some stage of the factorization

a suitable pivot cannot found, the matrix A is shifted and the factorization is restarted. There are two

possibilities. We could retain the sequence of pivots that was chosen before breakdown occurred; this would

potentially have the advantage of saving work in the pivot searches. Alternatively, because of pivoting,

the elimination order generated after the shift strategy is applied may be different. For implementation

reasons, we adopt the latter approach and recompute from scratch the pivot sequence for each new choice

of shift(s). Of course, there is no guarantee that the new choice will not lead to breakdown at an earlier

step than previously. However, it is always possible to choose shifts such that the diagonal blocks of the

shifted matrix are sufficiently diagonally dominant for the factorization to be breakdown free. Of course,

such a choice may lead to an inaccurate factorization of the unshifted matrix and hence to a poor quality

preconditioner.

We assume that the chosen 2× 2 pivots satisfy the following condition.

Assumption 3.1. 2× 2 pivots are chosen such that the (positive) product of their off-diagonal entries

is larger than the product of the magnitudes of their diagonal entries. Note that the Bunch Kaufman

pivoting satisfies this assumption. Namely, the 2 × 2 pivot (i, j) is chosen only if both |ajj | < αpσ and

|aii|σ < αpλ
2. Putting these together, we have |aii||ajj | < α2

pλ
2 < λ2, from which it follows that the

assumption is satisfied.

In general, the stability of matrix factorizations is reflected in a quantity called the growth factor,

which measures possible growth of the entries in the factors. Standard references on symmetric indefinite

6

factorizations such as [9, 13] derive formulae for the growth factor based on the global behavior of the

pivoted factorization, see also the recent discussion of the growth factor in [18]. The derivation of the

growth factor employs such quantities as the maximum magnitudes of the diagonal and off-diagonal entries

of A. In this paper, we use shifts and so we are interested in the growth caused by shifting pivots and, in

particular, the case of 2× 2 pivots.

Definition 3.1. Consider a 1× 1 or 2× 2 (nonsingular) pivot P used in an indefinite factorization.

The value of the entry of largest absolute value in P−1 is called the local growth factor. If p ∈ R →
p ∈ R \ {0}, the local growth factor is just θ = 1/|p|. Consider now a 2× 2 pivot P given by

P =

(
a b

b c

)
, (3.2)

with inverse

P−1 =
1

ac− b2

(
c −b
−b a

)
. (3.3)

Then the corresponding local growth factor is

θ =
max(|a|, |b|, |c|)
|ac− b2|

.

In the following, we describe how the local growth factor is influenced by a shift and, in particular,

how θ can be decreased by the use of a shift and also possibly a positive multiplier ρ ≥ 1.0. The case of a

1× 1 pivot P = p, as in (3.1), is simple. We use a positive shift α and a multiplier ρ ≥ 1.0

p = ρ p+ sgn(p)α

and the local growth factor is reduced. The case of 2 × 2 pivots needs to be considered more carefully.

First, Assumption 3.1 implies that to increase the diagonal dominance of (3.2) it is important to modify

its off-diagonal entries. One possible approach to shifting a 2 × 2 pivot is to derive the shift from a

comparison with the situation of two consecutive 1 × 1 pivots. While the analysis of diagonal pivoting

strategies starting with the seminal contribution of Bunch and Parlett [13] based on upper bounds of the

magnitudes of entries, often uses this approach, local determination of the shift with possible restarts does

not allow this. For example, if we consider a 2× 2 pivot with zeros on the diagonal, the first column does

not update the second. For this reason, in the following we discuss shifts for such pivots independently

and separately from the motivation for 1 × 1 pivots. For simplicity of explanation, we follow [21] and

distinguish three basic types of 2 × 2 pivots. Throughout our discussion, the shift α is positive and the

multiplier ρ is at least 1.0.

3.1. Oxo pivots. An oxo pivot is a 2× 2 pivot of the form

Poxo =

(
0 b

b 0

)
.

Taking into account (3.3), this pivot clearly implies the local growth factor

θoxo =
|b|
b2

=
1

|b|
.

Thus stability of Poxo is increased by increasing the absolute value of its off diagonal entry b. The modified

oxo pivot is

P+
oxo =

(
0 ρ b+ sgn(b)α

ρ b+ sgn(b)α 0

)
,

which has a smaller local growth factor equal to

θ+
oxo =

|ρ b+ sgn(b)α|
(ρ b+ sgn(b)α)2

=
1

|ρ b+ sgn(b)α|
.

7

3.2. Tile pivots. Tile pivots have one non zero diagonal entry and one diagonal entry equal to zero,

that is,

Ptile =

(
a b

b 0

)
.

To improve pivot stability by shifting the entries of Ptile, first consider the effect of modifying the off

diagonal entry b to ρ b+ sgn(b)α. Clearly, the local growth factor (see (3.3)) after the modification is

θ+
tile =

max(|ρ b+ sgn(b)α|, |a|)
(ρ b+ sgn(b)α)2

= max

(
1

|ρ b+ sgn(b)α|
,

|a|
(ρ b+ sgn(b)α)2

)
. (3.4)

It is easy to see that the following holds.

Observation 3.1. The local growth factor (3.4) is a non increasing function of α > 0 and ρ ≥ 1.0.

This means that if the shift α > 0 is applied in this way, the local growth factor is either unchanged or

is reduced, which is our goal. However, if |a| > |ρ b+ sgn(b)α|, θ+
tile can be reduced further by decreasing

|a|. In addition, the Euclidean condition number decreases by decreasing |a|, as we can see from the

following result.

Lemma 3.2. The Euclidean condition number of Ptile is an increasing function of |a| > 0.

Proof: The characteristic equation of the eigenvalue problem connected to Ptile is −λ(a − λ) − b2 = 0.

Therefore, its condition number is given by

κtile =
|a+

√
a2 + 4b2|

|a−
√
a2 + 4b2|

.

Since a 6= 0 this can be rewritten as

κtile =
1 +

√
1 + 4(b/a)2

|1−
√

1 + 4(b/a)2|
.

Hence

κtile =
2 + 4(b/a)2 + 2

√
1 + 4(b/a)2

4(b/a)2
= 1 + 1/(2(b/a)2) + (

√
1/(b/a)4 + 4/(b/a)2)/2.

The last expression clearly reveals that κtile can be decreased if |a| is decreased. Note that the form of

the expression for κtile is such as to allow its easy application later. �

Lemma 3.2 and (3.4) imply the practical modification procedure. By modifying the off diagonal entries

described above the local growth factor is made smaller. Then, if we have in addition

|a| > |ρ b+ sgn(b)α|

we can further decrease the local growth factor and, simultaneously, the condition number of Ptile. It does

not have a sense to decrease the magnitude of the nonzero diagonal entry further under |ρ b + sgn(b)α|
because the monitored quantity, the local growth factor, cannot be decreased any more. Summarizing

this, we replace a by a− sgn(a) δ with

δ = min (α, |a| − |ρ b+ sgn(b)α|) > 0. (3.5)

The modified tile pivot can be then written as

P+
tile =

(
a− sgn(a)δ ρ b+ sgn(b)α

ρ b+ sgn(b)α 0

)
with the local growth factor

θ+
tile =

max (|ρ b+ sgn(b)α| , |a− sgn(a) δ|)
(ρ b+ sgn(b)α)2

.

8

3.3. Full 2× 2 pivots. Finally, consider a full 2× 2 pivot

Pfull =

(
a b

b c

)
with a, b, c 6= 0. Recall that we assume that b2 > |ac| (Assumption 3.1). Without loss of generality, we

also assume |a| ≥ |c| > 0 since otherwise we can exchange these diagonal entries.

As in the previous case, the stability of Pfull is increased by modifying the off diagonal entry b to

become ρ b+ sgn(b)α. The local growth factor of the pivot with modified off diagonal entries is then

θ+
full =

max(|ρ b+ sgn(b)α|, |a|)
(|ρ b+ sgn(b)α)2

. (3.6)

Similarly to above, we have the following observation.

Observation 3.2. The local growth factor (3.6) is a decreasing function of α > 0 and ρ ≥ 1.0.

Since Assumption 3.1 implies that b2 > |ac| we have |c| < |ρ b + sgn(b)α| for |a| > |ρ b + sgn(b)α|.
As in the case of the tile pivots, the local growth factor can be still decreased further by decreasing |a| as

shown in the following result.

Lemma 3.3. Assume b2 − |ac| > 0, |a| ≥ |c| > 0. Then

q =
b2 − ac
(a+ c)2

(3.7)

is a decreasing function of |a|.

Proof: Consider first the case a > 0. The first derivative of q with respect to a is then

− (c2 + 2b2 − ac)
(a+ c)3

. (3.8)

For all a and c with b2 − |ac| > 0, c2 + 2b2 − ac is positive and the derivative is negative. Thus if a and c

are both positive or if c < 0 and a > 0 then since a+ c > 0, the derivative is negative as in the first case.

Summarizing this, we conclude q is a decreasing function of a > 0. If a is negative we will get the same

conclusion considering the growth in the pivot −Pfull and decreasing the entry −a > 0. We can conclude

that q is a decreasing function of |a|. �

Lemma 3.3 can be then used to prove similar property for the condition number of the full pivot as

we have for tile pivots.

Theorem 3.4. The Euclidean condition number of Pfull under the assumptions from Lemma 3.3 is

an increasing function of |a| > 0.

Proof: The characteristic equation of the eigenvalue problem connected to Pfull is (c−λ)(a−λ)− b2 = 0.

Therefore, its condition number is

κfull =
1 +

√
1 + 4 b2−ac

(a+c)2∣∣∣1−√1 + 4 b2−ac
(a+c)2

∣∣∣ .
As in Lemma 3.2, this can be rewritten as

1 + 1/

(
2
b2 − ac
(a+ c)2

)
+

√1/

(
b2 − ac
(a+ c)2

)2

+ 4/

(
b2 − ac
(a+ c)2

) /2

The result from Lemma 3.3 completes the proof. �

9

As in the case of tile pivots, Lemma 3.4 implies that for |a| > |ρ b + sgn(b)α| we can simultaneously

decrease both the local growth factor and the condition number of Pfull. In practice, we should again

limit size of the modification of a by the use of a− sgn(a) δ with δ given by (3.5). The modified full 2× 2

pivot can then be written as

P+
full =

(
a− sgn(a) δ ρ b+ sgn(b)α

ρ b+ sgn(b)α c

)
with the local growth factor

θ+
full =

max (|ρ b+ sgn(b)α| , |a− sgn(a) δ| , |c|)
(ρ b+ sgn(b)α)2

.

4. Instability growth. A well-studied problem in sparse symmetric indefinite factorizations as well

as in sparse nonsymmetric factorizations is the growth in the size of the entries of the factors. As already

discussed, the usual approach in complete factorizations is to employ a pivoting scheme so that the entries

in the factors are bounded. In Sections 2 and 3, we considered trying to limit growth in the factors through

the use of both pivoting and global shifts and multipliers. Nevertheless, even with well bounded entries in

L and D, the triangular solves can be highly unstable. A sign of unstable triangular solves is when ||L−1||
is very large and, unfortunately, this can occur without the presence of small pivots. The problem was

discussed by Chow and Saad [14], who proposed checking three quantities: the size of the inverse of the

smallest pivot, the size of the largest entry in the computed factors and a statistic they call condest. This

is defined to be

condest = ||(LDLT)−1e||∞,

where e = (1, ..., 1)T is the vector of all ones. It measures the stability of the triangular solves and is also

a lower bound for ||(LDLT)−1||∞ and indicates a relation between unstable triangular solves and poorly

conditioned L factor. IFPACK [59] also uses condest and, as already discussed (equation (3.1)) proposes

a priori diagonal perturbations if the condition estimate is larger than machine precision.

In this section, we propose monitoring possible instability as the factorization proceeds. In contrast

to the nonsymmetric factored approximate inverse factorization of Bollhöfer and Saad [7, 8], we do not

use dropping or pivoting information on the approximate inverse. Instead, we are concerned with the

stability of the triangular solves when the factors are used in the subsequent iterative method. Our

proposed approach enables us to monitor stability at each stage of the factorization, allowing us to restart

the factorization with a new shift or multiplier or with different parameter settings as soon as possible

instability is detected. Furthermore, as in [14], our monitoring of stability can serve as a measure of

the usefulness of the computed factors. As a consequence, we are able to obtain more robust incomplete

symmetric indefinite factorizations that provide higher quality preconditioners. This is illustrated in

Section 5.

Recall two facts related to our indefinite factorization algorithm. First, the (block) diagonal entries may

be modified (when used as pivots or block pivots). As observed previously, there is extensive experimental

evidence in the positive definite case and for saddle point systems [63, 65] that this can be efficient and

more robust than using ad hoc local modifications. Second, in the positive definite case, we observed in

[64] that the memory used for the preconditioner L, which is parametrized by lsize can, to some extent,

be replaced by the intermediate memory R, which is parametrized by rsize (that is, lsize can be reduced

and rsize increased without significantly effecting the quality of L as a preconditioner). As R is used for

the computation of L but is then discarded, this can lead to a sparser preconditioner that is less expensive

to apply. Our experimental results (see Section 5) illustrate that monitoring stability as the factorization

proceeds can provide an indication as to whether R should be discarded or whether retaining it (or part of

it) could lead to a higher quality preconditioner. The approach we propose is based on these observations

and motivated also by Chow and Saad’s use of condest.

The factors L and R are computed in ν steps, where ν is equal to n minus the number of 2× 2 pivots.

Let Lk, Rk and Dk of dimension nk (k = 1, . . . , ν) (with nν ≡ n) denote the leading principal submatrices

10

of L, R and D, respectively. Further, let pk be the dimension of the k-th pivot (pk = 1 or 2). Also let δk
denote the k-th diagonal pivot. We then introduce the following definition of instability growth.

Definition 4.1. Let the instability growth factor gk at the k-th factorization step be the entry of

largest absolute value in the vector D−1
k L−1

k ek, where ek is the nk dimensional vector of all ones. The

instability growth factor at the final (ν-th) step is denoted by g.

To compute gk, for k = 2, . . . , ν, consider the factor Lk in the bordered form

Lk =

(
Lk−1

lk Ik

)
,

where Ik is the identity matrix of dimension pk, lk is the pk × nk−1 block of the off diagonal entries in the

k-th (block) row of L, and L1 is the identity matrix I1. gk can be computed as follows.

v1 = I1
g1 = ||D−1

1 ||∞
for k = 2, . . . , ν

vk = L−1
k ek =

(
Lk−1

lk Ik

)−1

ek ≡
(

L−1
k−1

−lkL−1
k−1 Ik

)
ek ≡

(
vk−1

epk − lkvk−1

)
gk = ||D−1

k vk||∞ = max(gk−1, ||δ−1
k (vk)nk−1+1:nk ||∞)

end

This computation requires us to store the current instability factor and a vector v that is computed

incrementally. (Note that its k-th update has dimension nk.) That is, for a particular 2 ≤ k ≤ ν, we

update positions nk−1 + 1 : nk of vk using

(vk)nk−1+1:nk = epk − lkvk−1. (4.1)

The instability growth factor gk can be used to monitor stability at each step of the factorization and to

control when a shift and restart are needed. However, we have observed experimentally that, for hard

indefinite systems, adding the computed R to L can reduce g for the resulting L. Thus if g is large, this

suggests it can be advantageous to add R to L (that this, it can lead to a more efficient preconditioner,

albeit one that requires more memory than L alone). Alternatively, we could selectively add to L entries

of R that could decrease g. Our experiments in Section 5 illustrate that if this partial addition of R with

L leads to a significant improvement in the stability of the factors measured by condest, then in terms

of the efficiency of the preconditioner (see Section 5, equation (5.1) for a definition of the efficiency of a

preconditioner), the improvement for L+R is typically even better.

Thus we can regard R as a source of additional entries that can potentially improve the final incomplete

factor. We propose a possible simple strategy based on this idea. Observe that since R is used in the

updates in the same way as L, it is sufficient at each step of the factorization to flag the entries of R that

may be moved to L and then the actual merging of these entries into L can be done once the factorization

is complete.

For k = 2, . . . , ν, let the factor Rk be written in the bordered form

Rk =

(
Rk−1

rk 0k

)
,

where 0k is the null matrix of dimension pk, rk is the pk×nk−1 block of the off diagonal entries in the k-th

(block) row of R, and R1 is the null matrix 01. Let λk denote a set of column indices from j ∈ {1, . . . , nk−1}
for which (lk)∗j is nonzero. Then equation (4.1) can be written as

11

(vk)nk−1+1:nk = epk −
∑
j∈λk

(lk)∗j(vk−1)j .

Our goal is to find a subset ρk of indices j ∈ {1, . . . , nk−1} for which (rk)∗j is nonzero and minimizes the

sum

epk −
∑
j∈λk

(lk)∗j(vk−1)j −
∑
j∈ρk

(rk)∗j(vk−1)j .

This sum is used to evaluate gk after scaling by the corresponding diagonal entry/entries. This

approximation problem is a special instance of the sparse approximation problem, in particular, selecting

a few columns from a source matrix S such that their sum well approximates a target matrix T is a matrix

generalization of the subset sum selection problem [15] in which the matrix has at most two rows. Let us

denote by l̄k the pk×nk−1 block with the scaled entries (l̄k)ij = (lk)ij(vk−1)j , i = 1, . . . , pk, j = 1, . . . , nk−1.

Further denote by r̄k the pk×nk−1 block with entries (r̄k)ij = (rk)ij(vk−1)j , i = 1, . . . , pk, j = 1, . . . , nk−1.

The problem is then defined as follows.

Problem 4.1. For k = 2, . . . , nν , find a subset ρ̄k of indices from the index set ρk that minimizes

some norm of

epk −
∑
j∈λk

nk∑
i=nk−1+1

(l̄k)ij −
∑
j∈ρ̄k

nk∑
i=nk−1+1

(r̄k)ij

As we only seek to reduce the instability growth approximately, we propose a simple greedy strategy

for the related subset sum selection problem. Instead of columns of rk and lk, we consider in the objective

function their 1-norms. The algorithm is below.

do

sum = epk −
∑
j∈λk(l̄k)∗j

jρ = argminj∈ρk ||sum+ (r̄k)∗j ||1
sum+ = sum+ (r̄k)∗jρ
if ||sum+||1 < ||sum||1 then

sum = sum+

λk = λk ∪ {jρ}
ρk = ρk \ {jρ}

else

exit

end

end do

Entries of R that correspond to the chosen set of indices form a factor Rs. Our experiments illustrate

that, if condest for L is large, for L+Rs it is typically smaller, leading to the iterative method converging

in a smaller number of iterations.

5. Numerical experiments.

5.1. Test environment. All the software used to obtained the results presented in this paper is

written in Fortran and the gfortran Fortran compiler (version 4.8.2) with option -O3 is used. The

implementations of the GMRES(1000) algorithm (with right preconditioning) [58] offered by the HSL

routine MI24 is employed, with starting vector x0 = 0, the right-hand side vector b computed so that the

exact solution is x = 1, and stopping criteria

‖Ax̂− b‖2 ≤ 10−8‖b‖2,

12

where x̂ is the computed solution. In addition, for each test we impose a limit of 2000 iterations. Following

[62], in our experiments we define the efficiency of the preconditioner P to be

efficiency = iter × nz(L), (5.1)

where iter is the iteration count for P = (LDLT)−1. The lower the value of (5.1), the better the

preconditioner. We also define the fill in the incomplete factor to be the ratio

fillIL = (number of entries in the incomplete factor)/nz(K), (5.2)

Our test problems are real indefinite matrices taken from the University of Florida (UFL) Sparse Matrix

Collection [17].

5.2. Results for interior-point optimization matrices. Our first set (Test Set 1) are interior-

point optimization matrices that are of saddle point form, namely,

A =

(
H BT

B −C

)
. (5.3)

For the problems in Test Set 1 (which are listed in Table 5.1), H is n× n symmetric positive definite, B

is rectangular m× n (m ≤ n), and C = 10−8I (where I is the identity matrix) is m×m. These problems

represent a subset of the largest c-xx problems in the GHS indef and Schenk IBMNA test sets (and include

those from these sets that were used in [65]). Table 5.1 gives the order n of the (1, 1) block H, the order

m of the (2, 2) block C and the number nz(A) of entries in the lower triangular part of A. Here and

elsewhere, we use the direct solver HSL MA97 [36] to compute the number of entries in the complete factor

of A. For the HSL MA97 runs, we use the scaling from a symmetrized version of the package MC64 [22, 23].

We remark that this scaling has been found to work well for direct solvers when used to solve “tough”

indefinite systems [35, 39]. We use the nested dissection ordering and also a matching-based ordering

computed using the HSL package MC80. We report fillL(ND) (respectively, fillL(match)) to be the ratio

of the number of entries in the factor for the default ordering (respectively, matching-based ordering) to

nz(A) (we also tried approximate minimum degree ordering but found that, for most of these examples,

the resulting fill was greater than for nested dissection). These ratios are reported for later comparison

with the fill for the incomplete factorizations. Note that the matching-based ordering leads to significantly

denser factors.

Table 5.1

Interior-point test problems (Test Set 1). n and m denote the order of H and C (see (5.3)), nz(A) is the number of

entries in the lower triangular part of A, fillL(ND) (respectively, fillL(match)) is the ratio of the number of entries in the

complete factor of A for the nested dissection ordering (respectively, for the matching-based ordering) to nz(A).

Identifier n m nz(A) fillL(ND) fillL(match)

Schenk IBMNA/c-54 17664 14129 208890 2.8 4.7

GHS indef/c-55 19121 13659 218115 15.6 27.1

Schenk IBMNA/c-56 19923 15987 208075 3.0 4.4

GHS indef/c-59 23813 17469 260909 14.3 24.0

Schenk IBMNA/c-61 25043 18575 176817 5.4 8.0

Schenk IBMNA/c-62 25158 16573 300536 22.8 28.7

GHS indef/c-63 25505 18729 239469 9.5 14.3

GHS indef/c-68 36546 28264 315403 19.1 31.6

GHS indef/c-69 38432 29026 345686 7.8 12.6

GHS indef/c-70 39302 29622 363955 9.5 15.9

GHS indef/c-71 44814 31824 468079 29.4 46.9

GHS indef/c-72 47950 36114 395805 9.2 12.4

Schenk IBMNA/c-73 86417 83005 724348 3.5 5.8

Schenk IBMNA/c-big 201877 143364 1343050 30.4 45.3

For any sparse matrix factorization algorithm, the ordering of the matrix is important and the effects of

sparse matrix orderings on the convergence of preconditioned Krylov subspace methods have been widely

13

reported on in the literature (the survey by Benzi [4], for example, contains a large number of references

and a brief summary discussion). In the positive definite case, we found that preordering using the profile

reduction algorithm of Sloan [54, 66, 67] generally led to a high quality incomplete Cholesky factorization

preconditioner [63]. To investigate whether the same conclusion is valid for the the c-xx problems, in

Table 5.2, we compare the number of GMRES iterations required when the incomplete factorization is

combined with different orderings.

Table 5.2

A comparisons of the number of iterations of GMRES(1000) required using different ordering algorithms for Test Set

1. AMD denote approximate minimum degree, ND denotes nested dissection, RCM denotes reverse Cuthill McKee and SL

denotes the Sloan algorithm. For each problem, the lowest number of iterations is in bold. – denotes failure to converge

within 2000 iterations.

Identifier Matching-based

None AMD ND RCM SL AMD ND RCM SL

Schenk IBMNA/c-54 1956 – – – – 306 266 294 –

GHS indef/c-55 – 78 135 160 560 30 26 31 42

Schenk IBMNA/c-56 174 156 1440 447 828 78 66 87 312

GHS indef/c-58 727 35 47 41 54 28 26 41 52

GHS indef/c-59 73 41 98 135 174 28 27 35 88

Schenk IBMNA/c-61 – 15 39 19 47 9 11 13 16

Schenk IBMNA/c-62 – 426 100 435 473 26 31 47 119

GHS indef/c-63 – 66 72 129 294 20 21 18 95

GHS indef/c-68 711 102 161 81 69 6 6 31 22

GHS indef/c-69 198 22 74 38 87 13 15 22 40

GHS indef/c-70 1532 46 115 73 319 16 17 21 27

GHS indef/c-71 655 152 98 82 246 21 21 25 42

GHS indef/c-72 164 29 125 38 126 14 14 19 30

Schenk IBMNA/c-73 – – – 200 – 11 22 142 –

Schenk IBMNA/c-big – 13 68 740 851 9 11 11 16

The orderings considered are approximate minimum degree (AMD), nested dissection (ND), reverse

Cuthill McKee (RCM) and the Sloan algorithm (SL). These are applied to A and are also each combined

with a matching-based ordering (that is, each is applied to the compressed graph that is obtained using

a matching algorithm; see [39] for details). These results are for lsize = rsize = 10, Bunch Kaufman

pivoting and MC64 scaling. Here and throughout the remainder of this subsection, no shifts are used and

entries of R are not used to improve L. Note that, as lsize and rsize are held constant, fillIL (5.2) is

similar for each ordering. The results clearly indicate that for this class of problems, using a matching-

based ordering leads to higher quality preconditioners. Moreover, employing either AMD or ND combined

with matching generally gives the best ordering in terms of the GMRES iteration count. In the remainder

of this section, we use AMD in combination with matching.

We now compare the different pivoting strategies discussed in Section 2.2; results are given in Tables 5.3

and 5.4. lsize and rsize are again set to 10. We see that, for most of these problems, having performed

the matching ordering, pivoting is not needed (that is, pivoting does not improve the preconditioner).

Moreover, the fill is significantly less than for the direct solver (recall Table 5.1). The timings in Table 5.4

are for solving for a single right-hand side and the time Tf to compute the incomplete factorization includes

the time for preordering and scaling the matrix. The results illustrate the overheads that pivoting incurs.

In particular, we see that Bunch Kaufman can be much more expensive than using the threshold pivoting

of Liu, which is only slightly more expensive than the simple tridiagonal strategy,

Tables 5.5 and 5.6 report results for different choices of lsize and rsize (with Liu threshold pivoting,

MC64 scaling and AMD combined with the matching ordering). We see that using a non zero R can

substantially improve the quality of the preconditioner albeit at additional cost in the time taken to

compute the incomplete factorization. Of course, if more than one system is to be solved using the

preconditioner, the cost of the incomplete factorization can be amortized over the number of right-hand

sides and it is then clearly advantageous to use rsize > 0 and, if there is sufficient memory available, to

increase both lsize and rsize. For comparison, in Table 5.6, we also report times for the direct solver

HSL MA97. Since HSL MA97 is an OpenMP code, the reported timings are for running the code in parallel

14

Table 5.3

A comparison of the pivoting strategies for Test Set 1. BK denotes Bunch Kaufman, Btri denotes Bunch tridiagonal

pivoting and Liu denotes the threshold partial pivoting strategy of Liu (with threshold τ = 0.1). Iterations is the number of

iterations of GMRES(1000) performed. – denotes failure to converge within 2000 iterations.

Identifier fillIL Iterations

None BK Btri Liu None BK Btri Liu

Schenk IBMNA/c-54 2.10 1.79 2.28 1.91 – 306 – 195

GHS indef/c-55 2.19 2.20 2.22 2.19 31 30 33 30

Schenk IBMNA/c-56 2.30 2.33 2.40 2.30 70 78 42 28

GHS indef/c-58 1.84 2.08 2.10 1.85 57 28 30 58

GHS indef/c-59 2.19 2.33 2.34 2.19 23 28 27 23

Schenk IBMNA/c-61 2.58 2.84 2.87 2.58 8 9 9 8

Schenk IBMNA/c-62 2.11 2.12 2.14 2.11 30 26 26 29

GHS indef/c-63 2.41 2.51 2.52 2.41 19 20 19 19

GHS indef/c-68 2.15 2.26 2.26 2.15 6 6 6 6

GHS indef/c-69 2.35 2.54 2.56 2.35 13 13 13 13

GHS indef/c-70 2.35 2.48 2.49 2.35 16 16 14 16

GHS indef/c-71 2.24 2.36 2.38 2.24 22 21 20 22

GHS indef/c-72 2.35 2.59 2.65 2.37 16 14 18 17

Schenk IBMNA/c-73 1.25 1.42 1.45 1.25 16 11 10 10

Schenk IBMNA/c-big 2.65 2.65 2.65 2.65 9 9 9 9

Table 5.4

Timings (in seconds) for Test Set 1 using the pivoting strategies. BK denotes Bunch Kaufman, Btri denotes Bunch

tridiagonal pivoting and Liu denotes the threshold partial pivoting strategy of Liu (with threshold τ = 0.1). Tf and Tg are

the times to compute the factorization and run GMRES(1000), respectively. The total time T is the sum of Tf and Tg. The

fastest total time is in bold. – denotes failure to converge within 2000 iterations.

Identifier None BK Btri Liu

Tf Tg T Tf Tg T Tf Tg T Tf Tg T

Schenk IBMNA/c-54 – – – 0.76 2.10 2.86 – – – 0.46 0.99 1.45

GHS indef/c-55 0.33 0.08 0.41 0.47 0.08 0.54 0.32 0.09 0.41 0.34 0.08 0.42

Schenk IBMNA/c-56 0.23 0.23 0.46 0.43 0.26 0.69 0.23 0.13 0.36 0.25 0.08 0.32

GHS indef/c-58 0.38 0.21 0.59 0.50 0.09 0.59 0.33 0.10 0.44 0.41 0.21 0.62

GHS indef/c-59 0.35 0.07 0.43 0.44 0.09 0.54 0.34 0.09 0.43 0.35 0.08 0.43

Schenk IBMNA/c-61 0.20 0.02 0.22 0.30 0.02 0.32 0.21 0.02 0.24 0.20 0.02 0.22

Schenk IBMNA/c-62 0.42 0.11 0.53 0.55 0.09 0.64 0.45 0.10 0.56 0.46 0.12 0.58

GHS indef/c-63 0.38 0.06 0.44 0.49 0.07 0.56 0.34 0.06 0.40 0.38 0.06 0.44

GHS indef/c-68 0.77 0.03 0.79 1.41 0.03 1.44 0.78 0.03 0.81 0.78 0.03 0.80

GHS indef/c-69 0.53 0.07 0.60 0.70 0.06 0.76 0.49 0.06 0.55 0.56 0.06 0.62

GHS indef/c-70 0.60 0.08 0.68 0.74 0.08 0.82 0.57 0.07 0.64 0.62 0.08 0.70

GHS indef/c-71 0.81 0.15 0.96 1.26 0.14 1.40 0.72 0.14 0.86 0.81 0.14 0.95

GHS indef/c-72 0.66 0.10 0.76 1.20 0.09 1.29 0.58 0.13 0.72 0.65 0.10 0.76

Schenk IBMNA/c-73 0.39 0.13 0.51 10.62 0.09 10.71 0.41 0.08 0.49 0.41 0.08 0.49

Schenk IBMNA/c-big 2.68 0.26 2.93 7.00 0.25 7.26 2.73 0.25 2.97 2.75 0.25 3.00

on 8 threads and are again for a single right-hand side. We observe that for these test problems the (serial)

incomplete factorization can be significantly faster than the direct solver, particularly if lsize and rsize

are relatively small (but the direct solver obtains a much more accurate solution, with a scaled residual of

10−16).

Finally, we provide a comparison with the signed incomplete Cholesky factorization approach of [65]

that is implemented within HSL MI30 and with SYM-ILDL. The results in Table 5.7 use lsize = rsize = 30.

HSL MI30 uses initial shifts αin(1 : 2) = 0.01, Sloan ordering, and equilibration scaling (see [65] for details

of these settings). For SYM-ILDL, we use equilibration scaling, AMD ordering and the parameter settings

fill = 12.0 and tol = 0.003 (again, see [65]). With these choices, the level of fill is similar to that for

our incomplete LDLT factorization and the signed IC factorization. We see that our incomplete LDLT

factorization generally results in the best preconditioner (in terms of fill, iteration count and efficiency).

5.3. Results for power system optimization matrices. Test Set 2 are from the TSOPF test

set of the UFL Collection and are transient stability-constrained optimal power flow problems. They are

of the saddle point structure (5.3) but, in this case, H is not positive definite and C = 0, the m × m
15

Table 5.5

GMRES(1000) convergence results for Test Set 1 using different choices of lsize and rsize.

Identifier lsize = rsize = 10 lsize = 10 lsize = rsize = 30

rsize = 0

fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters

Schenk IBMNA/c-54 1.91 7.9×107 195 1.27 1.3×108 488 2.65 4.8×107 86

GHS indef/c-55 2.19 1.4×107 30 1.56 1.3×107 38 3.67 8.0×106 10

Schenk IBMNA/c-56 2.30 1.3×107 28 1.41 5.7×107 196 2.70 5.1×106 9

GHS indef/c-58 1.85 3.2×107 58 1.41 2.8×107 67 2.79 7.4×106 9

GHS indef/c-59 2.19 1.3×107 23 1.53 3.6×107 90 3.68 9.6×106 10

Schenk IBMNA/c-61 2.58 3.6×106 8 1.64 5.5×106 19 2.79 1.5×106 3

Schenk IBMNA/c-62 2.11 1.8×107 29 1.58 4.2×107 88 3.41 1.3×107 13

GHS indef/c-63 2.41 1.1×107 19 1.57 2.8×107 74 3.90 6.5×106 7

GHS indef/c-68 2.15 4.1×106 6 1.44 3.6×106 8 3.31 3.1×106 3

GHS indef/c-69 2.35 1.1×107 13 1.54 1.5×107 29 3.44 4.8×106 4

GHS indef/c-70 2.35 1.4×107 16 1.57 3.9×107 68 3.60 1.0×107 8

GHS indef/c-71 2.24 2.3×107 22 1.59 3.0×107 41 3.64 1.9×107 11

GHS indef/c-72 2.37 1.6×107 17 1.57 8.1×107 130 3.08 4.9×106 4

Schenk IBMNA/c-73 1.25 9.0×106 10 1.06 4.3×107 56 1.25 8.1×106 9

Schenk IBMNA/c-big 2.65 3.2×107 9 1.68 4.1×107 18 3.05 2.1×107 5

Table 5.6

Timings (in seconds) for Test Set 1 using different choices of lsize and rsize and for the direct solver HSL MA97. Tf
and Tg are the times to compute the factorization and run GMRES(1000), respectively. The total time T is the sum of Tf
and Tg. The fastest total time is in bold.

Identifier lsize = rsize = 10 lsize = 10 lsize = rsize = 30 HSL MA97

rsize = 0

Tf Tg T Tf Tg T Tf Tg T

Schenk IBMNA/c-54 0.45 0.99 1.44 0.26 4.71 4.98 0.49 0.31 0.80 0.42

GHS indef/c-55 0.35 0.08 0.43 0.10 0.09 0.20 1.30 0.03 1.33 0.54

Schenk IBMNA/c-56 0.24 0.07 0.31 0.11 1.04 1.14 0.26 0.03 0.28 0.28

GHS indef/c-58 0.38 0.21 0.59 0.13 0.25 0.39 1.20 0.03 1.23 0.48

GHS indef/c-59 0.37 0.08 0.44 0.12 0.37 0.49 1.68 0.04 1.72 0.71

Schenk IBMNA/c-61 0.21 0.02 0.23 0.07 0.05 0.12 0.20 0.01 0.21 0.26

Schenk IBMNA/c-62 0.46 0.12 0.57 0.18 0.38 0.57 1.70 0.06 1.76 0.98

GHS indef/c-63 0.36 0.06 0.43 0.10 0.28 0.38 0.87 0.03 0.90 0.39

GHS indef/c-68 0.79 0.03 0.81 0.14 0.03 0.17 2.03 0.02 2.05 1.51

GHS indef/c-69 0.53 0.06 0.59 0.15 0.14 0.29 0.86 0.03 0.88 0.53

GHS indef/c-70 0.62 0.08 0.70 0.16 0.40 0.56 1.52 0.05 1.57 0.64

GHS indef/c-71 0.82 0.15 0.97 0.24 0.26 0.50 4.08 0.09 4.17 2.74

GHS indef/c-72 0.65 0.11 0.76 0.17 1.25 1.42 0.81 0.03 0.84 0.66

Schenk IBMNA/c-73 0.41 0.08 0.49 0.33 0.61 0.94 0.43 0.07 0.50 2.87

Schenk IBMNA/c-big 2.75 0.25 3.00 0.76 0.44 1.20 2.93 0.16 3.08 11.8

Table 5.7

GMRES(1000) convergence results for Incomplete LDLT and signed incomplete Cholesky applied to Test Set 1 (lsize =

rsize = 30). Results are also given for SYM-ILDL. – denotes failure to converge within 2000 iterations.

Identifier Incomplete LDLT HSL MI30 SYM-ILDL

fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters

Schenk IBMNA/c-54 2.65 4.8×107 86 3.75 3.3×107 41 6.87 – –

GHS indef/c-55 3.67 8.0×106 10 3.37 3.0×107 41 4.35 7.4×107 78

Schenk IBMNA/c-56 2.70 5.1×106 9 4.08 1.0×108 123 6.22 – –

GHS indef/c-58 2.79 7.4×106 9 2.78 5.6×107 68 2.60 1.4×108 183

GHS indef/c-59 3.68 9.6×106 10 3.67 3.9×107 41 4.33 1.1×108 97

Schenk IBMNA/c-61 2.79 1.5×106 3 3.94 2.5×107 36 3.38 9.6×106 16

Schenk IBMNA/c-62 3.41 1.3×107 13 3.40 6.2×107 61 3.23 3.3×107 34

GHS indef/c-63 3.90 6.5×106 7 3.79 4.3×107 47 4.46 6.5×107 61

GHS indef/c-68 3.31 3.1×106 3 4.06 1.8×107 14 4.31 8.3×107 61

GHS indef/c-69 3.44 4.8×106 4 4.00 4.1×107 30 3.81 5.5×107 42

GHS indef/c-70 3.60 1.0×107 8 3.88 6.3×107 45 3.61 2.9×107 22

GHS indef/c-71 3.64 1.9×107 11 3.51 8.7×107 53 4.03 7.0×107 37

GHS indef/c-72 3.08 4.9×106 4 3.91 5.7×107 37 4.02 9.7×107 61

Schenk IBMNA/c-73 1.25 8.1×106 9 4.88 8.6×108 244 3.84 3.5×109 1267

Schenk IBMNA/c-big 3.05 2.1×107 5 4.44 3.3×108 56 4.47 – –

16

null matrix. Note that, as H is not positive definite, a signed incomplete Cholesky factorization is not

recommended. The problems are listed in Table 5.8. HSL MA97 is run with nested dissection ordering and

MC64 scaling. Note that, although of structural full rank, these problems are not all of full numerical rank.

Table 5.8

TSOPF test problems (Test Set 2).

Identifier n m nz(A) HSL MA97

fillL Time

TSOPF FS b9 c6 7230 7224 75801 6.01 0.06

TSOPF FS b39 c7 14118 14098 368599 5.48 0.24

TSOPF FS b39 c19 38118 38098 998359 5.57 0.61

TSOPF FS b39 c30 60118 60098 1575639 5.76 1.20

TSOPF FS b162 c1 5424 5374 305732 5.60 0.16

TSOPF FS b162 c3 15424 15374 904612 5.90 0.55

TSOPF FS b162 c4 20424 20374 1204322 5.99 0.71

In Table 5.9 results are given for lsize = rsize = 30 using AMD combined with a matching-based

ordering, (symmetric) MC64 scaling, and Bunch tridiagonal pivoting. The first two sets of three columns

are results for using L as the preconditioner while the last two sets of three columns are for using L + R

as the preconditioner. We present results for initial shifts α = 0 and 0.01. With α = 0, for a number of

the problems (TSOPF FS b39 c7, TSOPF FS b39 c19 and TSOPF FS b162 c1) the factorization suffers

breakdown. For this test set, we found that using a shift that was smaller than 0.01 generally led to

a poorer quality preconditioner. We see that using a non zero initial shift and/or using L + R yields a

reduction in the number of iterations although, because the fill is greater for L + R, efficiency may not

be improved. We also ran using L+ Rs as the preconditioner, where Rs includes only selected entries of

R, as discussed in Section 4. We found that the results (in terms of the fill and the number of iterations)

lie, as expected, between those for L and those for L+R. For instance, for problem TSOPF FS b39 c30,

using L+Rs with α = 0.01, we obtain fillIL = 3.14 and an iteration count of 673.

Timings are given in Table 5.10 for α = 0.01. Comparing columns 4 and 7 , we see that adding R into

L incurs a small overhead in the factorization time but this is more than offset by the resulting reduction

in the GMRES time. However, the incomplete factorization times are, for these examples, not competitive

with the those of the (parallel) direct solver (Table 5.8).

Table 5.9

Results for lsize = rsize = 30 with and without an initial non-zero shift, using L and L+R as the preconditioner. BD

denotes factorization breakdown. – indicates condest greater than 1016.

Identifier L, α = 0.0 L, α = 0.01 L+ R, α = 0.0 L+ R, α = 0.01

fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters

TSOPF FS b9 c6 2.78 6.3×106 30 2.74 8.3×106 40 3.05 1.8×106 8 3.01 5.3×106 23

TSOPF FS b39 c7 BD BD BD 2.31 2.5×108 296 BD BD BD 3.51 2.5×108 194

TSOPF FS b39 c19 BD BD BD 2.32 1.1×109 463 BD BD BD 3.50 9.2×108 263

TSOPF FS b39 c30 2.30 – – 2.46 2.8×109 732 4.05 2.6×108 40 4.04 2.5×109 386

TSOPF FS b162 c1 BD BD BD 1.77 9.8×107 181 BD BD BD 2.83 1.1×108 125

TSOPF FS b162 c3 1.68 1.2×109 790 1.67 2.1×108 141 2.70 5.8×108 237 2.69 2.1×108 87

TSOPF FS b162 c4 1.67 8.0×108 397 1.67 3.0×108 149 2.69 6.6×108 205 2.69 3.0×108 93

So far, in all the reported results, we have used a fixed global multiplier ρ = 1.0. In Table 5.11,

results are given for ρ = 1.1 with shift α = 0.0 and 0.01 (here L is used as the preconditioner). As our

analysis predicted, using a multiplier ρ > 1.0 reduces condest and this can lead to a substantial reduction

in the iterations needed for convergence (problems TSOPF FS b162 c3 and TSOPF FS b162 c4). condest

is reduced further by using a positive shift. Note, however, that using ρ > 1.0 can lead to an increase in

the iteration count since the computed L is now for a perturbed system (this is illustrated by problem

TSOPF FS b9 c6).

17

Table 5.10

Timings (in seconds) for Test Set 2 using L and L + R as the preconditioner (α = 0.01). Tf and Tg are the times to

compute the factorization and run GMRES(1000), respectively. The total time T is the sum of Tf and Tg.

Identifier L L+ R

Tf Tg T Tf Tg T

TSOPF FS b9 c6 0.03 0.03 0.06 0.03 0.02 0.05

TSOPF FS b39 c7 0.25 2.14 2.39 0.34 1.32 1.66

TSOPF FS b39 c19 0.72 12.2 12.9 0.85 5.55 6.41

TSOPF FS b39 c30 1.56 43.4 45.0 1.88 16.8 18.7

TSOPF FS b162 c1 0.23 0.38 0.61 0.25 0.33 0.58

TSOPF FS b162 c3 0.82 1.10 1.91 0.86 0.71 1.56

TSOPF FS b162 c4 1.05 1.42 2.47 1.19 1.03 2.22

Table 5.11

Results for lsize = rsize = 30 with and without an initial non-zero shift α and non-unit multiplier ρ, using L as the

preconditioner. BD denotes factorization breakdown. – indicates convergence not achieved.

Identifier ρ = 1.0, α = 0.0 ρ = 1.1, α = 0.0 ρ = 1.1, α = 0.01

fillIL efficiency iters condest fillIL efficiency iters condest fillIL efficiency iters condest

TSOPF FS b9 c6 2.78 6.3×106 30 5.77×109 2.65 2.8×107 137 1.55×105 2.66 3.0×107 147 9.45×104

TSOPF FS b39 c7 BD BD BD BD 2.58 9.2×108 965 5.06×108 2.27 4.6×108 553 3.51×105

TSOPF FS b39 c19 BD BD BD BD 2.59 – – 3.12×108 2.28 2.1×109 906 3.57×105

TSOPF FS b39 c30 2.30 – – 2.33×1020 2.20 – – 4.15×109 2.28 7.1×109 1991 5.85×105

TSOPF FS b162 c1 BD BD BD BD BD BD BD BD 1.75 1.4×108 267 7.69×105

TSOPF FS b162 c3 1.68 1.2×109 790 2.91×1013 1.66 3.0×108 197 2.03×107 1.65 2.9×108 191 1.60×107

TSOPF FS b162 c4 1.67 8.0×108 397 6.34×1011 1.65 4.1×108 206 1.92×107 1.65 3.9×108 198 1.51×107

5.4. Results for density functional theory matrices. So far, we have reported results for

indefinite systems that have a saddle point structure for which using a matching-based ordering is

advantageous. We now consider symmetric indefinite problems that are from symmetric eigenvalue

problems in density functional theory calculations; these problems do not have a saddle-point structure.

Test Set 3 is summarised in Table 5.12; these problems are from the PARSEC group of the UFL Collection.

Using a direct solver is very expensive for some of these problems as the amount of fill is high and there

are a number that HSL MA97 was unable to solve because of insufficient memory.

Table 5.12

PARSEC test problems (Test Set 3). – denotes the factorization failed because insufficient memory (in these cases,

fillL is the predicted fill returned by the analyse phase on the basis of the sparsity pattern).

Identifier n nz(A) HSL MA97

fillL Time

CO 221119 3943588 495 –

Ga10As10H30 113081 3114357 216 400

Ga19As19H42 133123 4508981 179 532

Ga3As3H12 61349 3016148 80 62.7

Ga41As41H72 268096 9378286 275 –

GaAsH6 61349 1721579 136 48.8

Ge87H76 112985 4002590 160 327

Ge99H100 112985 4282190 153 527

H2O 67024 1141880 198 48.6

Si10H16 17077 446500 70 5.52

Si34H36 97569 2626974 185 231

Si41Ge41H72 185639 7598452 186 –

Si5H12 19896 379247 119 8.99

Si87H76 240369 5451000 376 –

SiO 33401 675528 131 15.8

SiO2 155331 5719417 181 –

Results using initial shifts α = 0 and 0.01 are given in Tables 5.13 and 5.14. In these experiments,

we use Bunch Kaufman pivoting, Sloan ordering and MC64 scaling. We see that, as expected, if condest

is large, there is no convergence but that using α = 0.01 can substantially reduce condest and improve

18

Table 5.13

Results for lsize = rsize = 10 with and without an initial non-zero shift, using L and L + R as the preconditioner. –

indicates convergence not achieved within 2000 iterations.

Identifier L, α = 0.0 L, α = 0.01 L+ R, α = 0.0 L+ R, α = 0.01

fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters

CO 1.54 4.1×108 68 1.54 4.1×108 68 2.11 4.6×108 56 2.10 5.0×108 60

Ga10As10H30 1.24 2.7×109 691 1.21 9.7×108 258 1.61 1.3×109 255 1.57 9.7×108 199

Ga19As19H42 1.16 – – 1.11 5.4×109 1083 1.45 4.9×109 746 1.40 2.5×109 390

Ga3As3H12 0.85 2.1×108 81 0.83 2.4×108 94 1.05 2.4×108 75 1.04 2.8×108 90

Ga41As41H72 1.18 – – 1.11 7.3×109 704 1.47 – – 1.39 7.3×109 557

GaAsH6 1.14 1.1×108 56 1.14 1.7×108 89 1.50 1.3×108 52 1.49 2.0×108 77

Ge87H76 1.12 – – 1.08 – – 1.40 – – 1.36 5.0×109 923

Ge99H100 1.11 – – 1.07 – – 1.37 – – 1.34 – -1

H2O 1.56 5.3×107 30 1.56 5.9×107 33 2.15 6.6×107 27 2.14 7.3×107 30

Si10H16 1.23 9.1×107 166 1.21 2.5×108 460 1.62 8.3×107 115 1.59 1.1×108 156

Si34H36 1.22 – – 1.17 9.4×108 307 1.59 1.8×109 439 1.54 1.0×109 246

Si41Ge41H72 1.01 – – 0.91 4.0×109 574 1.25 – – 1.15 4.2×109 483

Si5H12 1.46 2.2×107 40 1.45 2.4×107 43 1.98 2.5×107 33 1.97 2.8×107 37

Si87H76 1.39 – – 1.37 – – 1.83 – – 1.82 – –

SiO 1.37 4.0×107 43 1.36 3.7×107 40 1.87 4.4×107 35 1.86 4.4×107 35

SiO2 0.77 1.9×108 43 0.76 2.3×108 53 1.04 2.3×108 39 1.03 2.9×108 49

Table 5.14

condest for the incomplete factorization preconditioner computed using lsize = rsize = 10 with and without an initial

non-zero shift; L and L+R are used. The timings in the final column are total times (in seconds) for L+R with α = 0.01.

– denotes convergence not achieved within 2000 iterations.

Identifier condest(L) condest(L+ R)

α = 0.0 α = 0.01 α = 0.0 α = 0.01 Time

CO 2.43×102 8.59 2.08×101 9.25 5.52

Ga10As10H30 5.22×106 6.16×104 2.49×102 3.09×102 8.36

Ga19As19H42 1.43×1016 1.39×108 2.96×104 2.35×104 23.4

Ga3As3H12 2.19×101 1.42×102 2.30×101 1.65×102 3.08

Ga41As41H72 1.12×1048 4.35×103 6.46×106 1.13×102 80.0

GaAsH6 6.67×101 4.24×103 8.25×101 2.14×102 2.01

Ge87H76 8.76×1027 2.80×1016 4.21×105 5.58×103 74.1

Ge99H100 3.74×1036 2.28×1021 2.27×106 1.19×104 –

H2O 4.94 1.28×101 8.59 1.44×101 1.15

Si10H16 5.21×105 7.03×107 4.27×102 1.26×102 0.90

Si34H36 9.64×1011 1.67×102 2.84×104 6.09×101 8.71

Si41Ge41H72 5.35×1035 3.50×103 8.84×105 1.34×102 45.0

Si5H12 3.24×101 1.11×101 3.28×101 1.09×101 0.33

Si87H76 1.30×1038 9.78×1030 8.48×108 1.93×108 –

SiO 7.39×101 6.24×101 6.91×101 2.16×101 0.57

SiO2 4.17×101 9.38 4.83×101 9.96 4.35

the quality of the preconditioner. Moreover, if condest(L) is large, then in these tests condest(L + R) is

significantly smaller and using L + R again improves preconditioner quality. As in the previous section,

if L+Rs is used as the preconditioner, then the fill and the number of iterations lie between those for L

and those for L + R. Note that a modest value of condest does not guarantee convergence. Comparing

the timings reported in the last column of Table 5.14 with those for the direct solver given in Table 5.12,

we see that, not only is the iterative method successful in solving more problems, but the time taken is

substantially less than is required by HSL MA97 (although when it is successful, HSL MA97 again computes

a solution of higher accuracy). For the PARSEC test problems, we thus have a potentially attractive

alternative to a sparse direct solver that requires substantially less memory and computational time.

5.5. Growth instability monitoring and enriching L by entries from R. The following

experiments demonstrate the relationship between preconditioning using L, L + R and also L + Rs. We

first consider problem Ga3As3H12 from the PARSEC test set; we use the same settings as in Section 5.4

with initial shift α = 0.01 and multiplier ρ = 1.0. As already observed, the incomplete factorization of this

matrix provides a high quality preconditioner, even for small values of lsize and rsize. To explore what

19

happens as the ratio of rsize to lsize decreases, we fix rsize = 5 and let lsize vary from 1 to 45; iteration

counts, efficiency , and condest are reported in Figure 5.1. We see that, as expected, as lsize increases, R

Fig. 5.1. Iteration counts (top left), efficiency (top right) and condest (bottom left) for problem Ga3As3H12 with

rsize = 5 and lsize varying.

becomes less significant and the differences in the statistics for L, L + Rs and L + R reduce. Moreover,

the prediction of the instability growth that is used to construct Rs works well, with condest(L + Rs)

generally lying between condest(L) and condest(L+R). In terms of efficiency (recalling that the smaller

the value of efficiency the better), we see using L is generally best as the modest reduction in the iteration

counts for L+Rs and L+R are unable to offset the increase in factor size.

We next consider problem Si10H16 from the PARSEC set. In Table 5.15, we report the iteration count

and condest for a range of values of rsize with lsize = 10 and α = 0.0, ρ = 1.0. As lsize is fixed, nz(L) is

essentially the same for all choices of rsize while nz(L+R) ' nz(L) + rsize ∗ n. This example illustrates

that using intermediate memory R in the construction of L does not guarantee to improve the quality of

L as a preconditioner but that stability in this case is recovered using L + R. If we set rsize = 0 and

Table 5.15

Iteration counts and condest for problem Si10H16 using lsize = 10 and rsize varying.

rsize L L+ R

iters condest iters condest

0 123 7.14×102

10 166 5.21×105 115 4.27×102

20 391 3.66×107 118 1.41×103

30 524 2.35×108 114 3.08×102

40 532 2.14×108 99 1.62×103

50 429 2.72×107 86 2.73×102

increase lsize, for a given value lsize = l0, the quality of the resulting L0 as a preconditioner is, as we

would expect, similar to that of L+R computed using lsize = 10 and rsize = l0 − 10. The advantage of

20

the latter is that if the prediction of the instability growth indicates there is no instability, the sparser L

can be used without including entries of R.

Figure 5.2 reports iteration counts and efficiency for problem Schenk IBMNA/c-56 from Test Set 1.

For this example, as lsize = rsize is increased, condest slowly varies from about 106 to 104 and this is

reflected in the value of the instability growth estimate that is computed inside our code. A modest value

of the instability growth allows us to choose between using L or L+R as the preconditioner, depending on

whether we need the preconditioner to be as sparse as possible and/or whether it is important to minimise

the iteration count. For this problem, using L+Rs does not offer advantages over using L.

Fig. 5.2. Iteration counts (left) and efficiency (right) for problem Schenk IBMNA/c-56 with lsize = rsize varying.

Our final experiment considers problem CO from the PARSEC group. In order to emphasize further

the importance of monitoring instability growth and the potential advantage of employing L + R as the

preconditioner, we use Liu threshold partial pivoting with a threshold of 0.1. As illustrated in Table 5.4,

this leads to faster computation of the incomplete factorization compared to using Bunch Kaufman pivoting

but it can result in instabilities, especially if L or L+Rs is used as the preconditioner. Iteration counts and

efficiency are reported in Figure 5.3 for lsize = rsize in the range 10 to 68. In this case, we see that using

Fig. 5.3. Iteration counts (left) and efficiency (right) for problem PARSEC/CO with lsize = rsize varying.

L+R as the preconditioner stabilizes the relaxed Liu pivoting. The specific choices of lsize = rsize that

give the peaks in Figure 5.3 correspond to significantly higher values of condest(L) than of condest(L+R).

We recommend that if condest(L) is much larger than condest(L+R), L+R should be the preconditioner

of choice.

6. Concluding remarks. In this paper, we have focused on the development of incomplete

factorization preconditioners for symmetric indefinite sparse linear systems. We have employed a limited

memory approach that has proved robust for positive definite systems. We have incorporated numerical

21

pivoting to prevent the entries of the factors from becoming large and have proposed new ideas to prevent

instability growth and to monitor stability as the factorization proceeds.

In our experience, the problems that prove difficult to solve with our incomplete factorization approach

are generally those for which the triangular solves are unstable, as indicated by a large value of condest.

It is possible to improve the stability of the triangular solves using pivot modifications and we have

discussed how to do this for both 1 × 1 pivots and for the different types of 2 × 2 pivots. Our numerical

experiments have shown that pivot modifications can be very effective in reducing condest and improving

preconditioner quality. However, if the shift α and/or multiplier ρ needs to be large to prevent instability

then the computed incomplete factorization is inaccurate and convergence of the iterative solver may not

be achieved. Moreover, increasing the amount of fill is not always sufficient to obtain an accurate and

stable factorization.

To successfully solve a wide range of problems, our software incorporates a number of different pivoting

options as well as different scalings. In addition, the user can control the choice of shift and multiplier

as well as the amount of memory available for L and R. Our tests have shown that using intermediate

memory (R 6= 0) can be beneficial but this is not guaranteed. Furthermore, using L+R (or, in some cases,

the sparser L + Rs) can provide a better preconditioner than L that is much less sensitive to the choice

of lsize and rsize. The difficulty for a given problem is determining which options should be selected

and choosing appropriate values for the parameters. For saddle-point problems, we recommend using

a matching-based ordering and scaling combined with using intermediate memory; with these choices L

has been seen to provide a high-quality preconditioner. For some classes of problems, the incomplete

factorization preconditioner combined with GMRES can compete with a state-of-the-art parallel direct

solver and can solve problems for which the direct solver fails because of its memory requirements.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate minimum degree ordering algorithm.

ACM Transactions on Mathematical Software, 30:381–388, 2004.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal solver using distributed

dynamic scheduling. SIAM J. on Matrix Analysis and Applications, 23:15–41, 2001.

[3] C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite linear equation solvers. SIAM J. on Matrix

Analysis and Applications, 20(2):513–561, 1999.

[4] M. Benzi. Preconditioning techniques for large linear systems: a survey. J. of Computational Physics, 182(2):418–477,

2002.

[5] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005.

[6] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric matrices. SIAM J. on

Scientific Computing, 22(4):1333–1353, 2000.

[7] M. Bollhöfer and Y. Saad. A factored approximate inverse preconditioner with pivoting. SIAM J. on Matrix Analysis

and Applications, 23(3):692–705, 2001/02.

[8] M. Bollhöfer and Y. Saad. On the relations between ILUs and factored approximate inverses. SIAM J. on Matrix

Analysis and Applications, 24(1):219–237, 2002.

[9] J. R. Bunch. Analysis of the diagonal pivoting method. SIAM J. on Numerical Analysis, 8:656–680, 1971.

[10] J. R. Bunch. Equilibration of symmetric matrices in the max-norm. Journal of the ACM, 18:566–572, 1971.

[11] J. R. Bunch. Partial pivoting strategies for symmetric matrices. SIAM Journal on Numerical Analysis, 11:521–528,

1974.

[12] J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric linear systems.

Mathematics of Computation, 31:162–179, 1977.

[13] J. R. Bunch and B. Parlett. Direct methods for solving symmetric indefinite systems of linear systems. SIAM J. on

Numerical Analysis, 8:639–655, 1971.

[14] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. J. of Computational and

Applied Mathematics, 86(2):387–414, 1997.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, Cambridge, MA,

third edition, 2009.

[16] E. H. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings 24th National

Conference of the ACM, pages 157–172. ACM Press, 1969.

22

[17] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Transactions on Mathematical

Software, 38(1), 2011.

[18] A. Druinsky and S. Toledo. The growth-factor bound for the Bunch-Kaufman factorization is tight. SIAM J. Matrix

Anal. Appl., 32(3):928–937, 2011.

[19] I. S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions on

Mathematical Software, 30(2):118–144, 2004.

[20] I. S. Duff and J. R. Gilbert. Maximum-weighted matching and block pivoting for symmetric indefinite systems. In

Abstract book of Householder Symposium XV, pages 73–75. Peebles, Scotland, 2002.

[21] I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner. Factorization of sparse symmetric indefinite matrices.

IMA Journal of Numerical Analysis, 11:181–204, 1991.

[22] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM J. on

Matrix Analysis and Applications, 22:973–996, 2001.

[23] I. S. Duff and S. Pralet. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM J. on

Matrix Analysis and Applications, 27:313–340, 2005.

[24] I.S. Duff and S. Pralet. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM J. on Matrix

Analysis and Applications, 27:313 – 340, 2005.

[25] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Preconditioners for indefinite systems arising in

optimization. SIAM J. on Matrix Analysis and Applications, 13(1):292–311, 1992.

[26] P. E. Gill, M. A. Saunders, and J. R. Shinnerl. On the stability of Cholesky factorization for symmetric quasidefinite

systems. SIAM J. on Matrix Analysis and Applications, 17(1):35–46, 1996.

[27] G. H. Golub and C. F. Van Loan. Unsymmetric positive definite linear systems. Linear Algebra and its Applications,

28:85–97, 1979.

[28] N. I. M. Gould, Y. Hu, and J. A. Scott. A numerical evaluation of sparse direct solvers for the solution of large sparse

symmetric linear systems of equations. ACM Transactions on Mathematical Software, 33(2), 2007.

[29] N. I. M. Gould, D. Orban, and T. Rees. Projected krylov methods for saddle-point systems. Technical Report RAL-P-

2013-006, Rutherford Appleton Laboratory, 2013.

[30] C. Greif. Preconditioners for linear systems arising from interior-point methods. Presentation at the International

Conference On Preconditioning Techniques for Scientific and Industrial Applications, The University of Oxford,

2013.

[31] C. Greif, S. He, and P. Liu. SYM-ILDL: C++ package for incomplete factorizations of symmetric indefinite matrices.

https://github.com/inutard/matrix-factor, 2013.

[32] A. Gupta, M. Joshi, and V. Kumar. Wssmp: A high-performance serial and parallel sparse linear solver. Technical

Report RC 22038 (98932), IBM T.J. Watson Reserach Center, 2001.

[33] M. Hagemann and O. Schenk. Weighted matchings for preconditioning symmetric indefinite linear systems. SIAM J.

on Scientific Computing, 28(2):403–420, 2006.

[34] J. D. Hogg, E. Ovtchinnikov, and J. A. Scott. A sparse symmetric indefinite direct solver for GPU architectures.

Technical Report RAL-P-2014-006, Rutherford Appleton Laboratory, 2014.

[35] J. D. Hogg and J. A. Scott. The effects of scalings on the performance of a sparse symmetric indefinite solver. Technical

Report RAL-TR-2008-007, Rutherford Appleton Laboratory, 2008.

[36] J. D. Hogg and J. A. Scott. HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems. Technical

Report RAL-TR-2011-024, Rutherford Appleton Laboratory, 2011.

[37] J. D. Hogg and J. A. Scott. New parallel sparse direct solvers for multicore architectures. Algorithms, 6:702–725, 2013.

Special issue: Algorithms for Multi Core Parallel Computation.

[38] J. D. Hogg and J. A. Scott. Optimal weighted matchings for rank-deficient sparse matrices. SIAM J. on Matrix Analysis

and Applications, 34:1431–1447, 2013. DOI 10.1137/120884262.

[39] J. D. Hogg and J. A. Scott. Pivoting strategies for tough sparse indefinite systems. ACM Transactions on Mathematical

Software, 40, 2013. Article 4, 19 pages.

[40] HSL. A collection of Fortran codes for large-scale scientific computation, 2013. http://www.hsl.rl.ac.uk.

[41] I. E. Kaporin. High quality preconditioning of a general symmetric positive definite matrix based on its

UTU + UTR+RTU decomposition. Numerical Linear Algebra with Applications, 5:483–509, 1998.

[42] C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite linear systems. SIAM J. on

Matrix Analysis and Applications, 21(4):1300–1317, 2000.

[43] D. S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear

equations. J. of Computational Physics, 26:43–65, 1978.

[44] N. Li and Y. Saad. Crout versions of ILU factorization with pivoting for sparse symmetric matrices. Electronic

Transactions on Numerical Analysis, 20:75–85, 2005.

[45] C.-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited memory. SIAM J. on Scientific Computing,

21(1):24–45, 1999.

23

[46] J.-W. H. Liu. A partial pivoting strategy for sparse symmetric matrix decomposition. ACM Trans. Math. Software,

13(2):173–182, 1987.

[47] D. G. Luenberger. The conjugate residual method for constrained minimization problems. SIAM J. on Numerical

Analysis, 7:390–398, 1970.

[48] L. Lukšan and J. Vlček. Indefinitely preconditioned inexact Newton method for large sparse equality constrained

non-linear programming problems. Numerical Linear Algebra with Applications, 5(3):219–247, 1998.

[49] T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems. Mathematics of

Computation, 34:473–497, 1980.

[50] M. Olschowka and A. Neumaier. A new pivoting strategy for Gaussian elimination. Linear Algebra and its Applications,

240:131–151, 1996.

[51] D. Orban. Limited-memory LDLT factorization of symmetric quasi-definite matrices. GERAD Technical Report G-

2013-87, 2013.

[52] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. on Numerical

Analysis, 12(4):617–629, 1975.

[53] Beresford N. Parlett. The symmetric eigenvalue problem. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980. Prentice-Hall

Series in Computational Mathematics.

[54] J. K. Reid and J. A. Scott. Ordering symmetric sparse matrices for small profile and wavefront. International J. of

Numerical Methods in Engineering, 45:1737–1755, 1999.

[55] J. K. Reid and J. A. Scott. An out-of-core sparse Cholesky solver. ACM Transactions on Mathematical Software, 36(2),

2009. Article 9, 33 pages.

[56] J. K. Reid and J. A. Scott. Partial factorization of a dense symmetric indefinite matrix. ACM Transactions on

Mathematical Software, 38, 2011. article 10, 19 pages.

[57] Y. Saad and M. H. Schulz. Topological properties of hypercubes. Research Report YALE/DCS/RR-389, Department

of Computer Science, Yale University, 1985.

[58] Y. Saad and M. H. Schulz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.

SIAM Journal on Scientific and Statistical Computing, 7:856–869, 1986.

[59] M. A. Saunders and J. A. Tomlin. Solving regularized linear porograms using barrier methods and KKT systems.

Technical Report SOL-96-4, SOL, Department of Operations Research, Stanford University, 1996.

[60] O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse LU factorization with left-right looking strategy on shared

memory multiprocessors. BIT, 40(1):158–176, 2000.

[61] O. Schenk, S. Röllin, and A. Gupta. The Effects of Unsymmetric Matrix Permutations and Scalings in Semiconductor

Device and Circuit Simulation. IEEE Transactions On Computer-Aided Design Of Integrated Circuits And Systems,

23(3):400 – 411, 2004.

[62] J. A. Scott and M. Tůma. The importance of structure in incomplete factorization preconditioners. BIT Numerical

Mathematics, 51:385–404, 2011.

[63] J. A. Scott and M. Tůma. HSL MI28: an efficient and robust limited-memory incomplete Cholesky factorization code.

ACM Trans. Math. Software, 40(4):Art. 24, 19, 2014.

[64] J. A. Scott and M. Tůma. On positive semidefinite modification schemes for incomplete Cholesky factorization. SIAM

J. on Scientific Computing, 36(2):A609–A633, 2014.

[65] J. A. Scott and M. Tůma. On signed incomplete Cholesky factorization preconditioners for saddle-point systems. SIAM

J. on Scientific Computing, 36(6):A2984–A3010, 2014.

[66] S. W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. International J. of Numerical Methods

in Engineering, 23:239–251, 1986.

[67] S. W. Sloan. A Fortran program for profile and wavefront reduction. International J. of Numerical Methods in

Engineering, 28:2651–2679, 1989.

[68] E. Stiefel. Relaxationsmethoden besterr Strategie zur Lösung linearer Gleichungssysteme. Commentarii Mathematici

Helvetici, 29:157–179, 1955.

[69] M. Tismenetsky. A new preconditioning technique for solving large sparse linear systems. Linear Algebra and its

Applications, 154–156:331–353, 1991.

[70] R. J. Vanderbei. Symmetric quasidefinite matrices. SIAM J. on Optimization, 5(1):100–113, 1995.

[71] E. Vecharynski and A. V. Knyazev. Absolute value preconditioning for symmetric indefinite linear systems. SIAM J.

on Scientific Computing, 35(2):A696–A718, 2013.

[72] X. Wu, G. H. Golub, J. A. Cuminato, and J. Y. Yuan. Symmetric-triangular decomposition and its applications Part

II: Preconditioners for indefinite systems. BIT, 48(1):139–162, 2008.

24

	RAL-P-2015-002 cover
	RAL-P-2015-002 report

