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1 Introduction

Iterative methods are widely used for the solution of large sparse symmetric linear systems of equations

Ax = b. To increase their robustness, the system matrix A generally needs to be transformed by

preconditioning. For positive-definite systems, an important class of preconditioners is represented by

incomplete Cholesky (IC) factorizations, that is, factorizations of the form LLT in which some of the fill

entries (entries that were zero in A) that would occur in a complete factorization are ignored. Over the last

fifty years or so, many different algorithms for computing incomplete factorizations have been proposed

and used to solve problems from a wide range of application areas. A brief historical overview of some of

the key developments may be found in [44].

An important step in the practical use of algebraic preconditioning based on incomplete factorizations

came with the 1977 paper of Meijerink and van der Vorst [35]. They proved the existence of the IC

factorization, for arbitrary choices of the sparsity pattern, for the class of symmetric M -matrices; this

property was later also proved for H-matrices with positive diagonal entries [34, 49]. However, for a

general symmetric positive-definite A (including many examples that arise from practical applications)

the incomplete factorization can breakdown because of the occurrence of zero or negative pivots.

The problem of breakdown is well known and various approaches have been employed to circumvent

it. Indeed, shortly after the work of Meijerink and van der Vorst, Kershaw [29] showed that the IC

factorization of a general symmetric positive-definite matrix from a laser fusion code can suffer seriously

from breakdowns. To complete the factorization, Kershaw locally replaced non-positive diagonal entries

by a small positive number. The hope was that if only a few of the diagonal entries had to be replaced, the

resulting factorization would still yield a useful preconditioner. The use of perturbations helped popularise

incomplete factorizations, although local perturbations with no relation to the overall matrix can lead to

large growth in the entries and the subsequent Schur complements and hence to unstable preconditioners.

Heuristics have been proposed for how to choose the perturbations and a discussion of the possible effects

on more general incomplete factorizations (and that can occur even in the symmetric positive-definite

case) can be found in [9].

Manteuffel [34] introduced an alternative strategy that involved the notion of a shifted factorization. He

proposed factorizing the diagonally shifted matrix A+αI for some positive α (note that provided α is large

enough, the incomplete factorization always exists). Diagonal shifts were used in some implementations

even before Manteuffel (see [36, 37]) and, although currently the only way to find a suitable global shift is

by trial-and-error, provided an α can be found that is not too large, the approach is surprisingly effective

and remains well used. One of the best implementations of incomplete Cholesky factorization is the ICFS

code of Lin and Moré [30]. It uses an efficient loop for changing the shift within a prescribed memory

approach. The use of prescribed memory builds on the work of Jones and Plassman [25, 26] and of

Saad [41]. Given p ≥ 0, the ICFS code retains the nj + p largest entries in the lower triangular part of

the j−th column of L (where nj is the number of entries in the lower triangular part of column j of A)

and it uses only memory as the criterion for dropping entries. Reported results for large-scale trust region

subproblems indicate that allowing additional memory can substantially improve performance on difficult

problems.

A very different technique to avoid factorization breakdown is that of using a semidefinite modification

scheme. As in any incomplete factorization, entries are discarded as the factorization progresses but

the idea here is to use the discarded entries to guarantee preservation of positive definiteness of the

reduced matrices so that the method is breakdown free. In this paper we consider two such schemes.

The first is that of Jennings and Malik [23, 24] who, in the mid 1970s, introduced a modification

strategy to prevent factorization breakdown for symmetric positive-definite matrices arising from structural

engineering. Jennings and Malik were motivated only by the need to compute a preconditioner without

breakdown and not by any consideration of the conditioning of the preconditioned system. Their work was

extended by Ajiz and Jennings [1], who discussed dropping (rejection) strategies as well as implementation

details. Variations of the Jennings-Malik scheme were adopted by engineering communities and it is
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recommended in, for example, [39] and used in experiments in [6] to solve some hard problems, including

the analysis of structures and shape optimization.

The second scheme we consider is that proposed in the early 1990s by Tismenetsky [48], with significant

later improvements by Suarjana and Law [47] and Kaporin [27]. The Tismenetsky approach has been

used to provide robust preconditioners for some real-world problems, see, for example, [2, 3, 31, 32].

However, despite the fact that the computed preconditioners frequently outperform those from other known

incomplete factorization techniques, as Benzi remarks in his authoritative survey paper [4], Tismenetsky’s

idea “has unfortunately attracted surprisingly little attention”. Benzi also highlights a serious drawback

of the scheme which is that its memory requirements can be prohibitively large (in some cases, more than

70 per cent of the storage required for a complete Cholesky factorization is needed, see also [7]. ).

In this paper, we seek to gain a better understanding of the Jennings-Malik and Tismenetsky

semidefinite modifications schemes and to explore the relationship between them. In Section 2, we

introduce the schemes and then, in Section 3, present new theoretical results that compare the 2-norms

of the modifications to A that each approach makes. In Section 4, we propose a memory-efficient variant

of the Tismenetsky approach, optionally combined with the use of drop tolerances and the Jennings-

Malik modifications to reduce factorization breakdowns. In Section 5, we report on extensive numerical

experiments in which we aim to isolate the effects of the modifications so as to assess their usefulness

in the development of robust algebraic incomplete factorization preconditioners. Finally, we draw some

conclusions in Section 6.

2 Positive semidefinite modification schemes

2.1 The Jennings-Malik scheme

The scheme proposed by Jennings and Malik [23, 24] can be interpreted as modifying the factorization

dynamically by adding to A simple symmetric positive semidefinite matrices, each having just four nonzero

entries. At each stage, we compute a column of the factorization and then modify the subsequent Schur

complement. For j = 1, we consider the matrix A and, for 1 < j < n, we obtain the j−th Schur

complement by applying the previous j − 1 updates and possible additional modifications. Throughout

our discussions, we denote the Schur complement of order n − j + 1 that is computed on the j−th step

by Â and let Âj be the first column of Â (corresponding to column j of A). The j−th column of the

incomplete factor L is obtained from Âj by dropping some of its entries (for example, using a drop tolerance

or the sparsity pattern). The Jennings-Malik scheme modifies the corresponding diagonal entries every

time an off-diagonal entry is discarded. Specifically, if the nonzero entry âij of Âj is to be discarded, the

Jennings-Malik scheme adds to A a modification (or cancellation) matrix of the form

Eij = eie
T
i γ|âij |+ eje

T
j γ
−1|âij | − eieTj âij − ejeTi âij . (2.1)

Here the indices i, j are global indices (that is, they relate to the original matrix A). Eij has nonzero

entries γ|âij | and γ−1|âij | in the ith and jth diagonal positions, respectively, and entry −âij in the (i, j)

and (j, i) positions. The scalar γ may be chosen to keep the same percentage change to the diagonal entries

âii and âjj that are being modified (see [1]). Alternatively, γ may be set to 1 (see [19]) and this is what

we employ in our numerical experiments (but see also the weighted strategy in [14]). A so-called relaxed

version of the form

E′ij = ωeie
T
i γ|âij |+ ωeje

T
j γ
−1|âij | − eieTj âij − ejeTi âij , (2.2)

with 0 ≤ ω ≤ 1, was proposed by Hladik, Reed and Swoboda [19].

It is easy to see that the modification matrix Eij is symmetric positive semidefinite (while for 0 ≤ ω < 1,

E′ij is indefinite). We use ω = 1. The sequence of these dynamic changes leads to a breakdown-free

factorization that can be expressed in the form

A = LLT − E,
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where L is the computed incomplete factor and E is a sum of positive semidefinite matrices with non-

positive off-diagonal entries and is thus positive semidefinite.

2.2 Tismenetsky scheme

The second modification scheme we wish to consider is that of Tismenetsky [48]. A matrix-based

formulation with significant improvements and theoretical foundations was later supplied by Kaporin [27]

(see also [28]). The Tismenetsky scheme is a matrix decomposition of the form

A = (L+R)(L+R)T − E, (2.3)

where L is a lower triangular matrix with positive diagonal entries that is used for preconditioning, R is

a strictly lower triangular matrix with small entries that is used to stabilize the factorization process, and

the error matrix E has the structure

E = RRT . (2.4)

Consider the decomposition locally. At the j−th step, the first column of the computed Schur

complement Âj can be decomposed into a sum of two vectors each of length n− j + 1

lj + rj ,

such that lTj rj = 0 (with the first entry in lj nonzero), where lj (respectively, rj) contains the entries that

are retained (respectively, not retained) in the incomplete factorization. At step j + 1 of the standard

factorization, the Schur complement of order n − j is updated by subtracting the outer product of the

pivot row and column. That is, by subtracting

(lj + rj)(lj + rj)
T .

The Tismenetsky incomplete factorization does not compute the full update as it does not subtract

Ej = rjr
T
j . (2.5)

Thus, the positive semidefinite modification Ej is implicitly added to A. Note that we can also regard LRT

and RLT as error matrices because R is not part of the computed preconditioner and such an approach

led to a successful condition number analysis of the decomposition process in [27]. However, we feel that

to get an insight into the updates it is better to consider the error locally in the form (2.3), and so we

denote the error matrix at the j-th step as Ej .

The obvious choice for rj (which was proposed in the original paper [48]) is the vector of the smallest

off-diagonal entries in the column (those that are smaller in magnitude than a chosen drop tolerance).

Then in a right-looking formulation1, at each stage implicitly adding Ej is combined with the standard

steps of the Cholesky factorization, with entries dropped from the incomplete factor after the updates

have been applied to the Schur complement. The approach is naturally breakdown-free because the only

modification of the Schur complement that is used in the later steps of the factorization is the addition of

the positive semidefinite matrices Ej .

The fill in L can be controlled by choosing the drop tolerance to limit the size of |lj |. However,

it is important to note that this does not limit the memory required to compute L. A right-looking

implementation of a sparse factorization is generally very demanding from the point of view of memory as

it is necessary to store all the fill-in for column j until the modification is applied in the step j, as follows

from (2.5). Hence, a left-looking implementation (or, as in [27], an upward-looking implementation) might

be thought preferable. But to compute column Âj in a left-looking implementation and to apply the

modification (2.5) correctly, all the vectors lk and rk for k = 1, . . . , j − 1 have to be available. Therefore,

1A right-looking formulation directly updates the approximate Schur complement, while a left-looking column-oriented

approach computes the same decomposition but the operations are performed in a different order. Full details may be found,

for example, in [38].
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the dropped entries have to be stored throughout the left-looking factorization and the rk may only be

discarded once the factorization is finished (and similarly for an upward-looking implementation). These

vectors thus represent intermediate memory. Note the need for intermediate memory is caused not just by

the fill in the factorization: it is required because of the structure of the positive semidefinite modification

that forces the use of the rk. Sparsity allows some of the rk to be discarded before the factorization is

complete (especially if A can be preordered to have a narrow bandwidth since this would allow special

implementation that exploited structure to discard some nonzero entries) but essentially the total memory

is as for a complete factorization, without the other tools that direct methods offer. This memory problem

was discussed by Kaporin [27], who proposed using two drop tolerances droptol1 > droptol2. Only entries

of magnitude at least droptol1 are kept in L and entries smaller than droptol2 are dropped from R; the

larger droptol2 is, the closer the method becomes to that of Jennings and Malik. The local error matrix

E then has the structure

E = RRT + F + FT ,

where F is a strictly lower triangular matrix that is not computed while R is used in the computation of

L but is then discarded.

When drop tolerances are used, the factorization is no longer guaranteed to be breakdown-free. To

avoid breakdown, modifications (as in the Jennings-Malik scheme) for the entries that are dropped from

R may be used. Kaporin coined the term second order incomplete Cholesky factorization to denote this

combined strategy (but note an earlier proposal of virtually the same strategy by Suarjana and Law [47]).

Finally, consider again the left-looking implementation of the Jennings-Malik scheme where the column

Âj that is computed at stage j is based on the columns computed at the previous j − 1 stages. Standard

implementations perform the updates using the previous columns of L (without the dropped entries). But

the dropped entries may also be used in the computation and, if we do this, the only difference between

the Jennings-Malik and Tismenetsky schemes lies in the way in which the factorization is modified to

safeguard against breakdown.

2.3 Related research

A discussion of the Tismenetsky approach and a modification with results for finite-element modeling of

linear elasticity problems is given in [28]. In [54], Yamazaki et al use the Kaporin approach combined with

the global diagonal shift strategy of Manteuffel [34]. In contrast to Kaporin [27], who uses the upward-

looking factorization motivated by Saad [41], Yamazaki et al employ a left-looking implementation based

on the pointer strategy from Eisenstat et al [15, 16]; moreover, they do not compensate the diagonal entries

fully as in the Jennings-Malik diagonal modification strategy. There is an independent derivation of the

Tismenetsky approach for incomplete Cholesky factorizations in [53], which emphasizes the relation with

the special case of incomplete QR factorization (see also [50]). In fact, this variant of the incomplete QR

factorization of A in which there is no dropping in Q is equivalent to the Tismenetsky approach applied

to ATA. For completeness, note that a related incomplete QR factorization was introduced earlier by

Jennings and Ajiz [22]. From a theoretical point of view, the authors of [51, 52] show some additional

structural properties of this type of incomplete Cholesky factorization.

An interesting application of both the Jennings-Malik and Tismenetsky ideas to multilevel Schur

complement evaluations was proposed by Janna et al [21]. A block incomplete factorization preconditioner

with automatic selection and tuning of the factorization parameters was recently presented by Gupta

and George [18]. Rather than using a modification scheme or a global shift, Gupta and George propose

switching from an incomplete Cholesky factorization to an LDLT factorization if a pivot becomes negative.

This removes the requirement that the preconditioner is positive definite. Another recent paper of interest

here is that of Maclachlan et al [33]. Although devoted to nonsymmetric incomplete factorizations, the

authors point out that a quantification of the norms of the updates could be further developed theoretically.

Note that [33] discusses modifications and errors from the local point of view as we do.

The Tismenetsky approach has been used to provide a robust preconditioner for some real-world
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problems, see, for example, the comparison for tasks in linear elasticity in [2], emphasizing reduced

parametrization in the upward-looking implementation of Kaporin [27], diffusion equations in [31, 32] and

Stokes problem in [3]. We note, however, that there are no reported comparisons with other approaches

that take into account not only iteration counts but also the size of the preconditioner.

3 Theoretical results

The importance of the size of the modifications to the matrix was emphasized by Duff and Meurant in

[13]. In particular, the modifications should not be large in terms of the norm of the matrix. In this

section, we consider the Jennings-Malik and Tismenetsky modifications from this point of view. We have

the following simple lemma for the size of the Jennings-Malik modification.

Lemma 3.1. The 2-norm of the modification in the Jennings-Malik approach based on the fill-in entry

âij and the update formula (2.1) is equal to

γ|âij |+ γ−1|âij |.

Proof: The modification (2.1) can be written as the outer product matrix

Eij = vvT ,

where v ∈ Rn has entries

vk =


(|âij |γ)1/2, if k = i

−sgn(âij)(|âij |/γ)1/2, if k = j

0, otherwise.

The result follows from the fact that the 2-norm of vvT is equal to vT v. �

In the following, we assume in the Jennings-Malik modification the parameter γ = 1. For the

Tismenetsky approach, we introduce some further notation. Here and elsewhere we denote the reduced

vector of nonzero entries in lj by l̄j with |l̄j | = nj + lsize = lsize′ (where nj is the number of entries in the

lower triangular part of column j of A) and, similarly, we denote the reduced vector of nonzero entries in

rj by r̄j with |r̄j | = rsize; in the remainder of our discussion, we use bars for the quantities corresponding

to these reduced vectors. Further, let us assume that the entries in both these reduced vectors are in

descending order of their magnitudes and that the magnitude of each entry in l̄j is at least as large as the

magnitude of the largest entry in r̄j . We have the following result.

Lemma 3.2. The 2-norm of the j−th modification in the Tismenetsky approach (2.5) is equal to

(r̄1,j , ..., r̄rsize,j)(r̄1,j , ..., r̄rsize,j)
T =

rsize∑
k=1

r̄2k,j , (3.1)

where r̄k,j is the kth entry of the vector r̄j.

It is natural to ask how these modifications are related. To compare them, we assume that the Jennings-

Malik modification is applied only to the Schur complement that corresponds to the truncated update,

that is, to the submatrix (r̄1,j , ..., r̄rsize,j)
T (r̄1,j , ..., r̄rsize,j). Setting γ = 1 in (2.1), the two previous

simple lemmas imply the following result that explains why the Tismenetsky modification should often be

considered preferable in practice. A comparison of norms in Theorem 3.1 indicates that the Jennings-Malik

modification may give better results, particularly if the decomposition does not generate too much fill-in.

Theorem 3.1. Assume Âj has been computed and all but the lsize′ entries of largest magnitude are dropped

from column j of L. Denote the 2-norm of the Jennings-Malik modification (2.1) that compensates for all

the dropped entries in rjr
T
j by |JM | and denote the 2-norm of the Tismenetsky modification (2.5) related

to the remaining |Âj | − lsize ≡ rsize > 1 entries by |T |. Then |JM | ≤ (rsize− 1)|T |.
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Proof: From Lemma 3.2, the 2-norm of the Tismenetsky modification in (3.1) is given by the squared

diagonal entries of the matrix rjr
T
j . Each of the modifications in the Jennings-Malik approach is of the

form of a submatrix (2.1) with the off-diagonal entry r̄k,j r̄l,j for some 1 ≤ k, l ≤ rsize, k 6= l. Note that

the off-diagonal entry corresponds to moving the fill-in from a product of entries of the vector rj to the

diagonal of rjr
T
j . The sum of the 2-norms of these modifications is equal to the overall 2-norm of the

modifications and is, by Lemma 3.1 (with γ = 1), equal to

|JM | = 2 ∗
∑

(k,l)∈Zj ,k<l

|r̄k,j r̄l,j |,

where Zj denotes the set of pairs (i, j) of off-diagonal positions in Âj corresponding to the dropped entries

for which the Jennings-Malik modification was used. Note that Zj does not include the positions that are

present in the final decomposition. Further, we have

|T | =
rsize∑
k=1

r̄2k,j .

Using the fact that n
∑n

i=1 a
2
i ≥ (

∑n
i=1 ai)

2
for any real numbers a1, . . . , an, we obtain the result

|T |+ |JM | =

rsize∑
k=1

r̄2k,j + 2 ∗
∑

(k,l)∈Zj ,k<l

|r̄k,j r̄l,j | (3.2)

≤
rsize∑
k=1

r̄2k,j + 2 ∗
∑

1≤k<l≤rsize

|r̄k,j r̄l,j | (3.3)

=

(
rsize∑
k=1

|r̄k,j |

)2

≤ rsize ∗ |T |,

and |JM | ≤ (rsize− 1)|T | follows. �

The key to understanding the relationship between the two updates is the last part of the proof. If the

gap between (3.2) and (3.3) is large, the Jennings-Malik modification can be better than the Tismenetsky

one. A simple example is a dense submatrix rTj rj that does need to be updated in the Jennings-Malik

scheme but the original Tismenetsky strategy still comes with the error rjr
T
j . Similarly, the Jennings-

Malik modification can be beneficial for sparse matrices for which the factorization generates only a small

amount of fill-in [5]. As soon as the amount of fill-in grows, the Jennings-Malik approach becomes less

attractive. Note that, if at stage j, we use the Jennings-Malik scheme for all the entries of rjr
T
j , the number

of modifications is equal to |Zj | ≤ (|Âj | − lsize′)(|Âj | − lsize′ − 1)/2. Such a potentially large number

of modifications may result in the preconditioner being far from the original matrix (and hence of poor

quality). Theorem 3.1 also shows how the two modification schemes are in some sense complementary and

that their norms can be far apart once rsize is large. A natural consequence of the result is that we can

possibly make the Cholesky decomposition with the Tismenetsky update more precise by also updating the

entries that are nonzero in the actual Schur complement. These are the entries that may provide potential

advantage for the Jennings-Malik modifications since they do not need to induce a diagonal modification

and, similarly, they do not need to be a part of the error matrix Ej in the Tismenetsky scheme. This

offers the potential for additional improvements inside this submatrix based on its structural pattern, as

we will discuss in the numerical experiments section.

While we discuss here dropping in the Schur complement, our implementation of the Jennings-Malik

modifications differs since we use a left-looking implementation (see Section 4) whereas Theorem 3.1

describes and compares both modification approaches cumulatively for a major step j of the decomposition

and suggests other possible ways of improving both approaches. A natural idea is to incorporate the

Jennings-Malik approach on top of the Tismenetsky update. This may appear to be an obvious idea
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because it can make the Tismenetsky update sparser. However, it follows from the Courant-Fischer

theorem (e.g., in [17], see also a nice overview of properties of the sums of positive semidefinite matrices in

[8]) that if a 2× 2 Jennings-Malik modification of the form (2.1) is added on top of a symmetric positive

semidefinite submatrix that may represent the Tismenetsky update (3.1) then both eigenvalues of the

resulting matrix can only increase.

Thus using the Tismenetsky approach and then the Jennings-Malik modification to nullify some off-

diagonal entries does not appear helpful. However, as Theorem 3.1 points out, the two schemes can

be combined differently. Indeed, the new unified explanation of the Tismenetsky and Jennings-Malik

modifications indicates two ideas that we will report on in Section 5: (1) the norm of the matrix

modification during the Tismenetsky update can be decreased by including some entries of RRT and

(2) the remaining off-diagonal entries of RRT can be compensated for using the Jennings-Malik scheme.

As we will see, the strategy that is the best theoretically with unlimited memory may not be the best

when solving practical problems using limited memory.

An important consideration for any practical strategy for computing incomplete factorizations is

limiting the number of parameters that must be set by the user while still getting an acceptably robust

preconditioner. As we shall see in Section 5, we have observed in our numerical experiments that the

intermediate memory can, to some extent, replace the memory used for the preconditioner and this

experimentally-based fact motivates the following discussion. Our experiments show that if the sum

lsize+ rsize = tsize is kept constant (and lsize is not too small in relation to rsize), the performance of

the preconditioner is maintained. Therefore, we could require a single input parameter tsize and choose

lsize and rsize internally. Consider stage j of the factorization and the Tismenetsky update restricted to

the reduced submatrix determined by the first nj + tsize components of the reduced column Āj (with the

nonzero entries āk,j , j ≤ k ≤ nj + tsize, of Āj in descending order of their magnitudes). The modification

restricted to this submatrix is the “error” block

(ānj+lsize+1,j , ..., ānj+tsize,j)
T (ānj+lsize+1,j , ..., ānj+tsize,j),

where lsize is to be determined. Consequently, we have to find a splitting of tsize into lsize and rsize

such that the off-diagonal block that is used in the updates

(ānj+lsize+1,j , ..., ānj+tsize,j)
T (ānj+1,j , ..., ānj+lsize,j)

is not small with respect to the error block measured in a suitable norm. Recall that this diagonal error

block is excluded from the actual updates. Assuming lsize, rsize ≥ 1, a possible strategy is to choose

lsize such that

1/lsize

nj+lsize∑
k=nj

|ākj | ≥ β/(tsize− lsize)
nj+tsize∑

k=nj+lsize+1

|ākj |

for some modest choice of β ≥ 1 (that is, the average magnitude of the entries nj to nj + lsize in Āj is

compared to β times the average magnitude of the remaining entries). If there is no such lsize (which

occurs if there is insufficient “block diagonal dominance” in the considered part of the column), lsize is

set to tsize; if there is reasonable diagonal dominance in L, lsize should be smaller than tsize. Such a

strategy provides a dynamic splitting of tsize since it is determined separately for each column of L. Using

the following result, lsize can be found by a simple search through part of the reduced column Āj .

Lemma 3.3. The function f(s) defined as

1/s

nj+s∑
k=nj

|ākj | − β/(tsize− s)
nj+tsize∑
k=nj+s+1

|ākj |

is nondecreasing for s = 0, ..., tsize− 1.

The proof follows from the fact that the nonzero entries in Āj are ordered in descending order of their

magnitudes. �
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4 Algorithm outline

For an algebraic preconditioner to be practical it needs to have predictable and reasonable memory

demands. All implementations of the Tismenetsky-Kaporin approach known to us drop entries based

only on their magnitude but this does not provide practical predictable memory demands. As in the ICFS

code of Lin and Moré [30], the memory predictability in our IC implementation depends on specifying a

parameter lsize that limits the maximum number of nonzero off-diagonal fill entries in each column of L.

In addition, we retain at most rsize entries in each column of R. At each step j of the factorization, the

candidate entries for inclusion in the j−th column of L are sorted and the largest nj + lsize off-diagonal

entries plus the diagonal are retained; the next rsize largest entries form the j−th column of R and all

other entries are discarded. Following Kaporin, the use of drop tolerances can be included. In this case,

entries in L are retained only if they are at least droptol1 in magnitude while those in R must be at least

droptol2.

Algorithm 4.1. Memory-limited incomplete Cholesky decomposition

Absolute dropping, left-looking column formulation, limited memory, Tismenetsky approach combined with1

Jennings-Malik modifications2

Input: Symmetric and positive definite A ∈ Rn×n; lsize, rsize, droptol1, droptol23

Initialize: L,R ∈ Rn×n, L = I,R = 0, w ∈ Rn, w = 04

for j=1:n5

w = A:,j ! Store original sparsity pattern of column j6

for k < j and Lj,k 6= 0 do7

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗ Lj,k ! LLT updates8

Aj:n,j ⇐ Aj:n,j −Rj:n,k ∗ Lj,k ! RLT updates9

end10

for k < j and Rj,k 6= 0 do11

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗Rj,k ! LRT updates12

end13

while k < j and Rj,k 6= 0 do14

while i >= j and Ri,k 6= 0 do15

if Ai,j 6= 0 ! Handle RRT entries by allowing those that cause no fill.16

Ai,j ⇐ Ai,j −Ri,k ∗Rj,k17

else ! JM modification for all other off-diagonal entries.18

Aj,j ⇐ Aj,j + |Ri,k ∗Rj,k|19

Ai,i ⇐ Ai,i + |Ri,k ∗Rj,k|20

end21

end22

end23

Put into L:,j the min{lsize+ nj , n− j} entries of A:,j of largest magnitude,24

provided they are at least droptol125

26

Put into R:,j the min{rsize, n− j} entries of A:,j that are next largest in magnitude,27

provided they are at least droptol228

29

Denote the entries As1,j , . . . , Asj ,j that are not in L:,j or R:,j by Sj30

for each Ask,j ∈ Sj with wsk = 0 do ! JM modification for entries not in L or R31

Aj,j ⇐ Aj,j + |Lsk,j |32

Ak,k ⇐ Ak,k + |Lsk,j |33

end34

35

Scale Lj+1:n,j ⇐ Lj+1:n,j/
√
Aj,j, Rj+1:n,j ⇐ Rj+1:n,j/

√
Aj,j36
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37

Set Lj,j =
√
Aj,j and reset w = 038

39

end40

Algorithm 4.1 presents an outline of our memory-limited incomplete Cholesky factorization. It shows

the basic steps but, for simplicity, omits details of our sparse implementation. Because the limited memory

approach is not guaranteed to be breakdown free, in practice we combine it with using a global diagonal

shift using a strategy similar to that of [30] (see [43] for details). For clarity, we omit this from the outline.

The user is required to provide the memory parameters lsize and rsize plus the drop tolerances droptol1

and droptol2.

In our experiments (Section 5.6), we will consider applying Jennings-Malik modifications in a number

of different ways. It can be applied to all the entries of L and R that are smaller than the drop tolerances

droptol1 and droptol2, respectively; this corresponds to lines 30–34 in the algorithm. It can also be used

for the entries that correspond to the off-diagonal entries of RRT . This use corresponds to lines 18–21.

The (limited memory) Tismenetsky approach discards all entries of RRT and corresponds to deleting lines

14–23.

5 Numerical experiments

5.1 Test environment

All the numerical results reported on in this paper are performed (in serial) on our test machine that has

two Intel Xeon E5620 processors with 24 GB of memory. Our software is written in Fortran and the ifort

Fortran compiler (version 12.0.0) with option -O3 is used. The implementation of the conjugate gradient

algorithm offered by the HSL routine MI22 is employed, with starting vector x0 = 0, the right-hand side

vector b computed so that the exact solution is x = 1, and stopping criteria

‖Ax̂− b‖2 ≤ 10−10‖b‖2, (5.1)

where x̂ is the computed solution. In addition, for each test we impose a limit of 2000 iterations. In

all the tests, we order and scale the matrix A prior to computing the incomplete factorization. Based

on numerical experiments (see [43]), we use a profile reduction ordering based on a variant of the Sloan

algorithm [40, 45, 46]. We also use l2 scaling, in which the entries in column j of A are normalised by

the 2-norm of column j; this scaling is chosen as it is used by Lin and Moré [30] in their ICFS incomplete

factorization code and it is inexpensive and simple to apply. Note that it is important to ensure the

matrix A is prescaled before the factorization process commences; other scalings are available and yield

comparable results but, if no scaling is used, the effectiveness of the incomplete factorization algorithms

used in this paper can significantly affected (see [43] for some results).

We define the iteration count for an incomplete factorization preconditioner for a given problem to be

the number of iterations required by the iterative method using the preconditioner to achieve the requested

accuracy and we define the preconditioner size to be the number of entries nz(L) in the incomplete factor

L.

While we are well aware that the number of entries in the preconditioner may increase but its

effectiveness decrease, in many practical situations, the mutual relation between the iteration count

and preconditioner size provides an important insight into the usefulness of an incomplete factorization

preconditioner if we assume that the following two important conditions are fulfilled:

1. the preconditioner is sufficiently robust with respect to changes to the parameters of the

decomposition, such as the limit on the number of entries in a column of L and of R;

2. the time required to compute the preconditioner grows slowly with the problem dimension n.
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We define the efficiency of the preconditioner P to be

iter × nz(L), (5.2)

where iter is the iteration count for P = (LLT )−1 (see [42]). Assuming the IC preconditioners Pq =

(LqL
T
q )−1 (q = 1, . . . , r) each satisfy the above conditions, we say that, for solving a given problem, Pi is

the most efficient of the r preconditioners if

iteri × nz(Li) ≤ min
q 6=i

(iterq × nz(Lq)). (5.3)

We use this measure of efficiency in our numerical experiments.

A weakness of this measure is that it does not taken into account the number of entries in R. We

anticipate that, with the number of entries in each column of L fixed, increasing the permitted number of

entries in each column of R will lead to a more efficient preconditioner. However, this improvement will

be at the cost of additional work in the construction of the preconditioner. Thus we record the time to

compute the preconditioner together with the time for convergence of the iterative method: the sum of

these will be referred to as the total time and will also be used to assess the quality of the preconditioner.

Note that the efficiency (5.2) is independent of nz(A). During the application of the iterative solver, the

operations with A can be implemented by the user in various ways (MI22 is a reverse communication code

so that it is the user’s responsibility to decide how to implement matrix-vector products). In this study, a

simple matrix-vector product routine is used with the lower triangular part of A held in compressed sparse

column format: we have not attempted to perform either the matrix-vector products or the application of

the preconditioner in parallel and all times are serial times.

Our test problems are real positive-definite matrices of order at least 1000 taken from the University

of Florida Sparse Matrix Collection [10]. Many papers on preconditioning techniques and iterative solvers

select a small set of test problems that are somehow felt to be representative of the applications of interest.

However, our interest is more general and we want to test the different ideas and approaches on as wide a

range of problems as we can. Thus we took all such problems and then discarded any that were diagonal

matrices and, where there was more than one problem with the same sparsity pattern, we chose only one

representative problem. This resulted in a test set of 153 problems of order up to 1.5 million. Following

initial experiments, 8 problems were removed from this set as we were unable to achieve convergence to the

required accuracy within our limit of 2000 iterations without allowing a large amount of fill. The same set

of tests problems is used in each of the experiments reported on in this paper. To assess performance on

our test set, we use performance profiles [12]. A performance profile measures the relative performance of

two or more preconditioners on a set S of problems. Let ek,P be the efficiency of using preconditioner P to

solve problem k and define the efficiency performance ratio to be ratiok,P = ek,P /min{ek,Pi
: for all Pi}.

If the number of problems in S is N , the efficiency performance profile for P

ρP (τ) = (1/N) | {k ∈ S : ratiok,P ≤ τ}|

is the probability that an efficiency performance ratio ratiok,P is within a factor τ of the best possible ratio.

For instance, ρP (1) gives the fraction of the test problems for which P is the most efficient preconditioner

and ρP (2) gives how often P can get results with an efficiency that is within twice that of the best

preconditioner. The closer ρP is to 1, the greater the probability that preconditioner P can solve all

problems from S. By plotting the curves ρPi
(τ) on a single plot we can easily compare them and deduce

information about the relative performance of the respective preconditioners.

5.2 No intermediate memory, without Jennings-Malik modifications

We first present results for lsize varying and rsize = 0, without Jennings-Malik modifications for the

discarded entries. We set the drop tolerance droptol1 to zero. This is very similar to the ICFS code of

Lin and Moré [30]. The efficiency and iteration performance profiles are given in Figure 5.1. Note that
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the asymptotes of the performance profile provide a statistic on reliability and as the curve for lsize = 5

lies below the others on the right-hand axis of the profiles in Figure 5.1, this indicates poorer reliability

for small lsize. We see that increasing lsize improves reliability and reduces the number of iterations for

convergence but the efficiency is not very sensitive to the choice of lsize (although, of course, the time to

compute the factorization and the storage for L increase with lsize). This suggests that when performing

numerical experiments it is not necessarily appropriate to consider just one of the counts used in (5.2)

without also checking its relation to the other. If the preconditioner is to be used in solving a sequence of

problems (so that the time to compute the incomplete factorization becomes an insignificant part of the

total time than for a single problem), the user may want to choose the parameter settings to reduce either

the iteration count or the preconditioner size, depending on which they consider to be the most important.

Figure 5.1: Efficiency (left) and iteration (right) performance profiles for lsize varying and rsize = 0.

5.3 No intermediate memory, with Jennings-Malik modifications

We now explore the effects of Jennings-Malik modifications (still with rsize = 0. We first consider the

structure-based approach originally proposed by Jennings and Malik that compensates for all the entries

that are not retained in the factor (only lsize fill entries are retained, with no tolerance-based dropping).

Our findings are presented in Figure 5.2. We see that the best results are without using standard Jennings-

Malik modifications (SJM = F) and that if it is used (SJM = T), increasing lsize has little effect on the

efficiency (but improves the reliability). The advantage of using the modifications is that, for the majority

of the test problems, the factorization is breakdown free. However, a closer look at the results shows

that the penalty for this breakdown free property can be a poor quality preconditioner. Whereas using a

diagonal shift led to convergence failure for just two of our test problems, with Jennings-Malik modifications

there were 11 convergence failures (lsize = 10). In Table 5.1, we present detailed results for some of our

test problems that used a non-zero diagonal shift. We report the number of shifts used, the number of

iterations of CG required for convergence, the time to compute the preconditioner and the total time

(the reported times includes the time taken to restart the factorization following breakdown). In each

case, using a diagonal shift leads to a reduction in the iteration count, and this can be by more than a

factor of two. This, in turn, reduces the time for the conjugate gradient algorithm and this reduction

generally more than offsets the additional time taken for the factorization as a result of restarting. We

remark, however, that Benzi [5] reports that for some highly sparse matrices (where few modifications

are necessary) Jennings-Malik modifications can work well (see also [6]) and this is fully consistent with

Theorem 3.1 and the comments following its proof.
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Figure 5.2: Efficiency (left) and iteration (right) performance profiles with (SJM = T) and without (SJM

= F) Jennings-Malik modifications for rsize = 0.

Table 5.1: A comparison of using a global diagonal shift (SJM = F) with the Jennings-Malik strategy

(SJM = T) (rsize = 0, lsize = 10). The figures in parentheses are the number of diagonal shifts used and

the final shift; times are in seconds.

Problem Iterations Factor time Total time

F T F T F T

HB/bcsstk28 232 (2, 2.0 ∗ 10−3) 468 0.025 0.026 0.120 0.221

Cylshell/s3rmq4m1 648 (2, 2.0 ∗ 10−3) 838 0.027 0.026 0.381 0.459

Rothberg/cfd2 550 (4, 3.2 ∗ 10−2) 791 0.541 0.442 5.85 6.42

GHS psdef/ldoor 434 (3, 8.0 ∗ 10−3) 643 6.63 4.04 66.4 91.5

GHS psdef/audikw 1 708 (2, 2.0 ∗ 10−3) 1442 11.3 8.66 157 303
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We now consider a dropping-based Jennings-Malik strategy in which off-diagonal entries that are less

than a chosen tolerance droptol1 in absolute value are dropped from L and added to the corresponding

diagonal entries. The largest (in absolute value) entries in each column j (up to lsize + nj entries) are

retained in the computed factor. Figure 5.3 presents an efficiency performance profile for a range of values

of droptol1. We include droptol1= 0 (no dropping and no modifications). Although not given here, the

total time performance profile is very similar. For these experiments, we use lsize = 10. We see that, as

droptol1 increases, the efficiency steadily deteriorates and the robustness of the preconditioner decreases.

In Figure 5.4, we compare dropping small entries without modifications (denoted by JM = F) with using

Jennings-Malik modifications (JM = T). It is clear that, in terms of efficiency, it is better not to use the

Jennings-Malik modifications. However, an advantage of the latter is that, taken over the complete test

set, it reduces the number of breakdowns and subsequent restarts. Furthermore, the computed incomplete

factor is generally sparser when Jennings-Malik modifications are used, potentially reducing its application

time.

Figure 5.3: Efficiency performance profile for the Jennings-Malik strategy based on a drop tolerance for

rsize = 0 and a range values of the drop tolerance droptol1.

5.4 Results for rsize varying, without Jennings-Malik modifications

We have seen that increasing lsize with rsize = 0 does little to improve the efficiency of the preconditioner.

We now consider fixing the incomplete factor size (lsize = 5) and varying the amount of intermediate

memory (controlled by rsize). We run with no intermediate memory, rsize = 2, 5 and 10, and with

unlimited intermediate memory (all entries in R are retained, which we denote by rsize = −1. Note

that the latter is the original Tismenetsky approach with the memory limit lsize used to determine L.

Figure 5.5 presents the efficiency (top left), time to compute the preconditioner (top right) and total time

(bottom left) performance profiles. Since lsize is the same for all runs, the fill in L is essentially the same

in each case and thus comparing the efficiency here is equivalent to comparing the iteration counts. For

many of our test problems, we see that the Tismenetsky approach (rsize = −1) gives the most efficient

preconditioner but it is also expensive to compute and there were a number of our largest problems that

we were not able to factorize in this case because of insufficient memory, that is, a memory allocation error

was returned before the factorization was complete; this is reflected by poor reliability and, as anticipated,

makes the original Tismenetsky approach impractical for large problems.

We see that, as rsize is increased from 0 to 10, the efficiency and robustness of the preconditioner

steadily increases (along with the time to compute it), but without significantly increasing the total time.
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Figure 5.4: Efficiency performance profile with (JM = T) and without (JM = F) the Jennings-Malik

strategy based on a drop tolerance. Here rsize = 0.

Figure 5.5: Efficiency (top left), time to compute the preconditioner (top right) and total time (bottom

left) performance profiles for rsize varying.
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Since a larger value of rsize reduces the number of iterations required, if more than one problem is to be

solved with the same preconditioner, it may be worthwhile to increase rsize in this case (but the precise

choice of rsize is not important).

5.5 Results for lsize+ rsize constant, without Jennings-Malik modifications

We present the efficiency performance profile for tsize = lsize + rsize = 10 in Figure 5.6. We see that

Figure 5.6: Efficiency performance profile for different pairs (lsize, rsize) with lsize+ rsize = 10.

increasing rsize at the expense of lsize can improve efficiency. This is because the computed L is sparser

for smaller lsize while the use of R helps maintains the quality of the preconditioner.

It is of interest to compare Figure 5.6 with Figure 5.1 (in the latter, lsize varies but rsize = 0); this

clearly highlights the effects of using R. In terms of time, increasing rsize while decreasing lsize keeps the

time for computing the incomplete factorization essentially the same, while the cost of each application of

the preconditioner reduces but, as the number of iterations increases, we found in our tests that the total

time (in our serial implementation) for tsize constant was not very sensitive to the split between lsize and

rsize.

5.6 Results for rsize > 0, with Jennings-Malik modifications

We now consider Jennings-Malik diagonal modifications used with rsize > 0. In our discussion, we refer

to line numbers within Algorithm 4.1. We present results for three strategies for dealing with the entries

of RRT , denoted by jm = 0, 1 and 2. These strategies can be also considered as a new development

motivated by Theorem 3.1. When computing column j, we gather updates to column j of L and column

j of R from the previous j − 1 columns of L and from the previous j − 1 columns of R according to the

formula LLT +RLT +LRT . We then consider gathering updates to column j of R from the previous j−1

columns of R (RRT ). We will distinguish three different cases. With jm = 0, we allow entries of RRT that

cause no further fill in LLT +RLT +LRT and discard all other entries of RRT . In this case, we do not use

the Jennings-Malik modification on the lines 19–20 (that is, we delete the lines Aj,j = Aj,j + |Ri,k ∗Rj,k|
and Ai,i = Ai,i + |Ri,k ∗ Rj,k|). This decreases the norm of the modification. With jm = 1, we use

Jennings-Malik modification for these discarded entries (that is, lines 19–20 are used). Finally, with jm

= 2, we discard all entries of RRT ; this is our limited memory variant of the Tismenetsky approach (it

deletes lines 14–22). An efficiency performance profile is presented in Figure 5.7 for lsize = rsize = 5

and 10. Note that here we do not apply Jennings-Malik modifications to the entries that are discarded
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from column j of R before it is stored and used in computing the remaining columns of L and R (only the

rsize largest entries are retained in each column of R). This corresponds to deleting lines 31–34. We see

that, considering the whole test set, there is generally little to choose between the three approaches. We

also note the very high level of reliability when allowing only a modest number of entries in L (for lsize

= 10, the only problem that was not solved with jm = 0 and jm = 2 was Oberwolfach/boneS10).

We also want to determine whether Jennings-Malik modifications for the entries that are discarded

from R is beneficial. In Figure 5.8, we compare running with and without Jennings-Malik modifications

(that is, with and without lines 31–34). We can clearly see that in terms of efficiency, time and reliability,

using modifications for the dropped entries is not, in general, beneficial.

Figure 5.7: Efficiency performance profile for lsize = rsize = 5 and 10 with jm = 0, 1, 2.

Figure 5.8: Efficiency (left) and total time (right) performance profiles with (T) and without (F) Jennings-

Malik modifications for the discarded entries (lsize = rsize = 10).

In Table 5.2, we present some more detailed results with and without Jennings-Malik modification

for the discarded entries. If Jennings-Malik modification is not used, the problems in the top part of

the table require diagonal shifts to prevent breakdown. With Jennings-Malik modification, there is no

guarantee that a shift will not be required (examples are Cylshell/s3rmt3m3 and DNVS/shipsec8) but
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fewer problems require a shift (in our test set, with and without the use of Jennings-Malik modification

the number of problems that require a shift with the chosen parameter settings is 16 and 59, respectively).

From our tests, we see that, using diagonal shifts generally results in a higher quality preconditioner than

using Jennings-Malik modification and, even allowing for the extra time needed when the factorization is

restarted, the former generally leads to a smaller total time. Note that for problem Janna/Serena, using

a diagonal shift leads to a higher quality preconditioner but, as four shifts are used, the factorization time

dominates and leads to the total time being greater than for Jennings-Malik modifications. In this case,

the initial non-zero shift α1 = 0.001 leads to a breakdown-free factorization and, as we want to use as small

a shift as possible, we decrease the shift (see [43] for full details). However, if we do not try to minimise

the shift, the total time is reduced from 69.6 to 38.9 seconds. Clearly, how sensitive the results are to the

choice of α is problem-dependent.

For the problems that are breakdown free, the preconditioner is of better quality if Jennings-Malik

modifications are not used: this is true for all of our breakdown free test problems. Our experiments

demonstarte that using modifications can lead to a substantial increase in the iteration count (see, for

example, GHS psdef/crankseg 2). Moreover, when no restarts are required, the use of modifications

increases the factorization time.

Table 5.2: A comparison of using (T) and not using (F) Jennings-Malik modifications for the discarded

entries (jm = 2, lsize = rsize = 10). The figures in parentheses are the number of diagonal shifts used

and the final shift; times are in seconds.

Problem Iterations Factor time Total time

T F T F T F

FIDAP/ex15 503 (0, 0.0) 322 (3, 1.60 ∗ 10−2) 0.022 0.033 0.184 0.135

Cylshell/s3rmt3m3 1005 (3, 2.50 ∗ 10−4) 615 (2, 2.00 ∗ 10−3) 0.066 0.034 0.495 0.299

Janna/Fault 639 300 (0, 0.0) 122 (3, 2.50 ∗ 10−4) 6.03 8.74 31.6 18.5

ND/nd24k 407 (0, 0.0) 173 (3, 2.50 ∗ 10−4) 2.56 3.71 14.2 8.59

DNVS/shipsec8 956 (4, 9.76 ∗ 10−7) 648 (3, 2.50 ∗ 10−4) 3.53 1.43 17.2 10.3

GHS psdef/audikw 1 1447 (0, 0.0) 517 (2, 2.00 ∗ 10−3) 14.1 21.1 335 106

Janna/Serena 165 (0, 0.0) 122 (4, 9.76 ∗ 10−7) 12.7 44.9 44.9 69.6

HB/bcsstk24 133 (4, 9.76 ∗ 10−7) 344 (3, 1.00 ∗ 10−3) 0.093 0.037 0.133 0.142

GHS psdef/crankseg 2 251 (0, 0.0) 49 (0, 0.0) 2.46 2.17 10.1 3.64

Schenk/AF-shell7 389 (0, 0.0) 325 (0, 0.0) 2.21 1.98 23.5 20.1

Oberwolfach/bone010 1912 (0, 0.0) 1481 (0, 0.0) 12.6 10.1 382 281

Janna/Emilia 923 147 (0, 0.0) 101 (0, 0.0) 7.09 5.45 24.3 16.7

5.7 The use of L+R

So far, we have used R in the computation of L but once the incomplete factorization has finished, we have

discarded R and used L as the preconditioner. We now consider using L + R as the preconditioner. In

Figure 5.9, we present performance profiles for L+R and L, with jm = 0 and 2. Here lsize = rsize = 10,

droptol1= 0.001, droptol2= 0.0. We see that, in terms of efficiency, using L is better than using L + R.

This is because the number of entries in L is much less than in L+R. However, L+R is a higher quality

preconditioner, requiring fewer iterations for convergence (with jm = 0 giving the best results). In terms

of total time, there is little to choose between using L+R and L.
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Figure 5.9: Efficiency (top left), iteration (top right) and total time (bottom left) performance profiles for

L+R and L with jm = 0 and 2.
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6 Conclusions

In this paper, we have focused on the use of positive semidefinite modification schemes for computing

incomplete Cholesky factorization preconditioners. We have studied in particular the methods proposed

originally by Jennings and Malik and by Tismenetsky and we have presented new theoretical results

that aim to achieve a better understanding of the relationship between them. To make the robust but

memory-expensive approach of Tismenetsky into a practical algorithm for large-scale problems, we have

incorporated the use of limited memory.

A major contribution of this paper is the inclusion of extensive numerical experiments. We are

persuaded that using a large test set drawn from a range of practical applications allows us to make general

and authoritative conclusions. The experiments emphasize the concept of the efficiency of a preconditioner

(defined by (5.2)) as a measure that can be employed to help capture preconditioner usefulness, although

we recognise that it can also be necessary to consider other statistics (such as the time and the number of

iterations).

Without the use of intermediate memory (rsize = 0), our results have shown that increasing the amount

of fill allowed within a column of L (that is, increasing lsize) does not generally improve the efficiency of the

preconditioner. The real improvement comes through following Tismenetsky and introducing intermediate

memory. In our version, we prescribe the maximum number of entries in each column of both L and R;

we also optionally allow small entries to be dropped to help further sparsify the preconditioner without

significant loss of efficiency. Our results show that this leads to a highly robust yet sparse IC preconditioner.

An interesting finding is that increasing rsize at the expense of lsize can result in a sparser preconditioner

without lose of efficiency.

Our experiments have shown that using Jennings-Malik modifications to make the Tismenetsky

approach breakdown-free is less effective than employing global diagonal shifts. We obtained the same

conclusion for a number of variations of the Jennings-Malik strategy. Provided we can catch zero or

negative pivots and then restart the factorization process using a global diagonal shift, we can handle

breakdowns. In our tests, this well-established approach was found to be the more efficient overall, that

is, it produced a higher quality preconditioner than using a Jennings-Malik scheme to modify diagonal

entries. However, we must emphasize that this conclusion relies on having appropriately prescaled the

matrix; if not, a large number of restarts can be required (adding to the computation time) and the

diagonal shift needed to guarantee a breakdown-free factorization can be so large as to make the resulting

IC preconditioner ineffective. Of course, the Jennings-Malik strategy can suffer from the same type of

drawback, namely, although the factorization is breakdown-free, the resulting preconditioner may not

be efficient (see [11]). Indeed, if many fill entries are dropped from the factorization, large diagonal

modifications may be performed, reducing the accuracy of the preconditioner.

Finally, we note that we have developed a library-quality code HSL MI28 based on the findings of this

paper (see [43] for details and for numerical comparisons with other approaches). This is a general-purpose

IC factorization code and is available as part of the HSL mathematical software library [20]. The user

specifies the maximum column counts for L and R (and thus the amount of memory to be used for the

factorization) but, importantly for non-experts, it is not necessary to perform a lot of tuning since, although

the default settings of the control parameters will clearly not always be the best choices for a given class

of problems, they have been chosen to give good results for a wide range of problems. Of course, a more

experienced user may choose to perform experiments and then to reset the controls. This “black-box”

approach is in contrast to the Tismenetsky-Kaporin-related work reported, for example, by Yamazaki et

al [54], where by restricting attention to a specific class of problems, it is possible to determine an interval

of useful drop tolerances that limit the size of the computed factor.
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