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Introductory notes

Assuming basic knowledge of algebraic iterative (Krylov space) and
direct (dense) solvers (elimination/factorization/solve)

Many techniques can be formulated for both SPD and nonsymmetric
cases with only slight algorithmic (but possibly strong theoretical)
differences. Orientation in variants of Cholesky and LU
decompositions is assumed.

We will concentrate here on purely algebraic techniques which often
serve as building blocks for more complex approaches.

Some important techniques are not mentioned at all (MG/ML
preconditioners, DD techniques, row projection techniques).

Some ideas and techniques are only mentioned (block algorithms)
Only preconditioning of real systems is considered here.
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The problem

Ax = b

Direct methods

Iterative methods

Practical boundaries between them more and more fuzzy.

But they are principially different.
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Direct methods and algebraic preconditioners

Direct methods

Direct methods: the name traditionally used for the approach based
on decomposition and subsequent substitutions

The most simple case: A → LLT or LDLT or LU
In principal = Gaussian elimination. Modern (decompositional) form
based a lot on the work of Householder (end of 1950’s)

◮ Occasionally other decompositions
◮ Most work is in the (Cholesky, indefinite, LU) decomposition.
◮ But: It is the computer model (sequential, concurrent processors,

multicore, GPU) which decides about the relative complexity of the two
steps.

The algorithms can be made more efficient/stable by the use of
additional techniques used before, after or during the decomposition.

In particular, solution can be made more precise by an auxiliary
iterative method.
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Direct methods and algebraic preconditioners

Iterative methods

Iterative method are usually accompanied by a problem
transformation based on a direct method called preconditioner.

Algebraic preconditioners are tools to convert the problem Ax = b
into the one which is easier to solve. They are typically expressed in
matrix form as a transformation like:

MAx = Mb

M can be then used to apply approximation to A−1 to vectors used
in the iterative method.

In practice, it can store approximation to A or A−1 (approximate
inverse).

The computation is often based on a relaxation of a direct method,
but not always.
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Sparsity

Sparsity: taking into account the structure of matrix nonzeros

Absolutely crucial for direct methods: complexity for generally dense
matrices, sequential case: O(n3) factorization, O(n2) substitutions

Useful for iterative methods as well: repeated multiplications

sparse matrix: its combinatorial structure of zeros and nonzeros can
be exploited

complexity in the sparse case depends on the decomposition model
(implementation, completeness/incompleteness)

Dense matrix

dim space dec time (s)

3000 4.5M 5.72

4000 8M 14.1

5000 12.5M 27.5

6000 18M 47.8

Sparse matrix

dim space dec time (s)

10000 40k 0.02

90000 0.36M 0.5

1M 4M 16.6

2M 8M 49.8
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Sparsity

SPARSITY!

Sparse decompositions

Exact (direct) decompositions A = LLT , LU (up to the
floating-point model) → Direct methods

Inexact processes able to provide approximation to A−1

◮ incomplete decompositions (A ≈ LLT , LU etc.)
◮ incomplete inverse decompositions (A−1 ≈ ZZT , WZT etc. )

→ Preconditioners
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Direct methods

Direct decomposition may fill
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Need to describe the fill-in: 1) describe it 2) avoid it

Need to exploit the fill-in structure algorithmically

Or ... we can cut the fill-in and perform an incomplete process ... later
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Direct methods

Direct methods - decomposition schemes

Left-looking schemes

Right-looking schemes

Although some techniques and theorems are more general we will deal
with the SPD systems only
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Direct methods

Fill-in description

Combinatorial structure of zeros and nonzeros → graphs
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Fill-in changes during the decomposition: dynamic description

Data structures, implementation with respect to the architecture
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Direct methods

The fill-in changes during the decomposition

Arrow matrix - original matrices
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Direct methods

The fill-in changes during the decomposition

Arrow matrix - structure after elimination
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Direct methods

The fill-in changes during the decomposition

Arrow matrix - structure after elimination
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How to describe and avoid the fill-in dynamically?
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Direct methods

Dynamic development of the fill-in
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Direct methods

Dynamic development of the fill-in
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elimination of the first row and column
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Direct methods

Dynamic development of the fill-in
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elimination of the third row and column

Formal description: sequence E of elimination matrices

How should be E captured in the graph form?

How should be E stored in the computer?
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Direct methods

Dynamic development of the fill-in: II.
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Direct methods

Dynamic development of the fill-in: III.
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Direct methods

Dynamic development of the fill-in: III.
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The elimination step induces a clique in the graph model

Storing clique instead of a subgraph → complexity?

A clique can be stored just implicitly - storing entries that caused it!
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Direct methods

Memory considerations

1st approximation: Data structures for direct methods (here we have
just the SPD case): just data structures for recursive storing of the
cliques caused by the elimination?
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{{1,3},{1,4},{1,5}, {3,4}, {3,5},{4,5}} → {1,3,4,5}

too local, no use of the row/column character of the decomposition

The final “elimination graph” is called the filled graph
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Direct methods

Global description of the fill-in

Algorithm

(Fill-in path theorem (Rose, Tarjan, Lueker, 1976)) Let n > i > j.
Then lij 6= 0 ⇔ ∃ a path xi, xp1 , . . . , xpt , xj in G(A) such that
(∀l ∈ t̂)(pl < min(i, j)).

i

j

p1
p2

Nice global description, but somewhat implicit as well. Does not seem
to be an algorithmic one.
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Direct methods

Global description of the fill-in: II.

i
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j

Graph interpretation of elimination based on the fill-in path theorem
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Direct methods

Global description of the fill-in: II.

i

j

p1
p2

p1

p2

i

j f f

We need some simple data structure enabling to control the fill-in
generation

We need a symbolic description first for setting up the data structure

The enabler is called the elimination tree
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Direct methods

The elimination tree

The elimination tree is a depth-first search tree of the filled graph
with the search started at the vertex xn.

But, what is the depth-first search tree?
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Direct methods
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Direct methods

The elimination tree: II
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Direct methods

The elimination tree: II
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Direct methods

The elimination tree: III

Elimination tree (or its variations) is the most fundamental tree
structure connected with the elimination.

Elimination tree is defined via the filled graph (the graph with all
fill-in)

But it should be computed from the original matrix A
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Direct methods

The elimination tree: IV

The construction

for i = 1 to n do
parent(i) = 0
for k such that xk ∈ adj(xi) ∧ k < i do

j = k
while (parent(j) 6= 0 ∧ parent(j) 6= i) do

j = parent(j)
end while
if parent(j) = 0 then parent(j) = i

end k
end i
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: V

The construction
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Direct methods

The elimination tree: VI
The construction of the elimination tree: improved

Problem with long dependency chains during the tree traversal

for i = 1 to n do
parent(i) = 0; ancestor(i) = 0
for k such that xk ∈ adj(xi) ∧ k < i do

j = k
while (ancestor(j) 6= 0 ∧ ancestor(j) 6= i) do

j = ancestor(j); ancestor(j) = i; j = t
end while
if ancestor(j) = 0 then parent(j) = i; ancestor(j) = i

end k
end i

Complexity O(m log2 n). Can be further reduced by other general
tree techniques up to close O(n).
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Direct methods

Let us repeat our motivation and goals

How can be the fill-in described (and avoided ... later)? How should
be data structures set up?

Row structure of L: row subtrees of the elimination tree

Lemma

For j > i we have lji 6= 0 if and only if xi is an ancestor of some xk in the
elimination tree for which ajk 6= 0.

describes fill-in in the j-th row of L, column i

some xk must be precede xi in the elimination tree

just the vertices in the row subtree rooted at xj determine nonzeros
in the row j of L
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Direct methods

Row subtrees
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Direct methods

The elimination tree: VII
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Direct methods: postordering

Labels in subtrees form intervals + parents with higher labels
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∗ ∗ f ∗
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∗ ∗ f ∗ ∗ f
∗ ∗ f ∗
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Direct methods

The elimination tree: VIII

Why do we need a postordering?
Necessary for efficient exploiting of memory hierarchies, paging
environment, crucial for multifrontal methods, efficient computation
of factor row counts etc.

1

2

5

3

4

6

7

8

6

7

8

1

Postordered tree

2

3

4 5
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Direct methods

Row counts: simple algorithm

initialize all colcounts to 1
for i = 1 to n do

rowcount(i) = 1
mark(xi) = i
for k such that k < i ∧ aik 6= 0 do

j = k
while mark(xj) 6= i do

rowcount(i) = rowcount(i) + 1
colcount(j) = colcount(j) + 1
mark(xj) = i
j = parent(j)

end while
end k

end i

i

k k’ k’’

k’’’
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Direct methods

Row counts: more sophisticated algorithm

i

k k’ k’’

k’’’

Needed: fast algorithm to determine the “junctions” of branches in
the elimination tree,

and fast algorithm to find leaves of the elimination tree.

Just by traversing the postordered elimination tree.

The complexity can be then nearly linear in m.
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Direct methods

Motivation and goals again

How can be the fill-in described (and avoided ... later)? How should
be data structures set up?

It could seem that knowing structure of L by rows is enough.

We then know the size of the factor, we can allocate the final factor
structure

and do just the factorization ...

But, what are the ways to do the factorization (repetition)?
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Direct methods

The factorization

Basically, two main ways to factorize a sparse SPD matrix efficiently:
1) Column algorithm, 2) Submatrix algorithm

j

i k

Indices i, j, k: traditional meaning for 6 possible ways to describe the
decomposition.
In the sparse setting: totally different computational aspects.
Still very different implementations possible.
Column structure important as well.
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Direct methods

It would be nice to know the column structure of L

1

2

5

3

4

6

7

8

row structure column structure

row subtrees ?
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Direct methods

Column structure of L

Lemma

Column j is updated by the columns i such that lij 6= 0.

j

i

Lemma

Struct(L∗j) = Struct(A∗j) ∪
⋃

i,lij 6=0 Struct(L∗i) \ {1, . . . , j − 1}.
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Direct methods

Column structure of L

Lemma

Struct(L∗j) = Struct(A∗j) ∪
⋃

i,lij 6=0 Struct(L∗i) \ {1, . . . , j − 1}.

*

*

*

*

**

*

*

*
*

*
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Direct methods

Column structure of L

Lemma

Struct(L∗j) {j} ⊆ Struct(L∗parent(j))

Struct(L∗j) = Struct(A∗j) ∪
⋃

i,j=parent(i)

Struct(L∗i) \ {1, . . . , j − 1}.
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Direct methods

Column structure of L: algorithm

for j = 1 to n do
list(xj) = ∅

end j
for j = 1 to n do

col(j) = adj(xj) \{x1, . . . , xj−1}
for xk ∈ list(xj) do

col(j) = col(j) ∪ col(k) \ {xj}
end xk

if col(j) 6= 0 then
p = min{i | xi ∈ col(j)}
list(xp) = list(xp) ∪ {xj}

end if
end j

end i

list(x) is nothing more than the list of the vertices y for which we
have parent(y) = x
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Direct methods

Recapitulation

Fill-in described both by rows and columns.

How to avoid it: reorderings: just keep in mind the arrow matrix
example















∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗





























∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗















But this is not enough for an efficient algorithm: we need also blocks

42 / 125



Direct methods

Avoiding fill-in: reorderings: two basic types

local reorderings: based on local greedy criterion

global reorderings: taking into account the whole graph / matrix

Local reorderings

G = G(A)
for i = 1 to n do

find v such that degG(v) = minv∈V degG(v)
G = Gv

end i
The order of found vertices induces their new renumbering

deg(v) = |Adj(v)|; graph G as a superscript determines the current
graph
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Direct methods

Local reorderings: example

v v

G G_v
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Direct methods

Global reorderings: nested dissection

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35
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Direct methods

Global reorderings: nested dissection: tree

1 2

3

4 5

6

7

8

9

10 11 13 14

12 15

16

17

18
19

20

21

22 23

24

25 26

27

28

29

30

31 32

33

34 35

36

37

38

39
40

41

42

43

44

45

46

47

48

49
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Direct methods

Classical local reorderings: shape pushers

**
**

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*

*

*
*

*
*
*
*
*
*
*

*
*
**

*
*

*

Band 6

**
**

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*

*

*
*

*
*
*
*
*
*
*

*
*
**

*
*

*

Profile 6

**
**

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*

*

*
*

*
*
*
*
*
*
*

*
*
**

*
*

*

Frontal method - dynamic band

Moving
window -
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Direct methods

Classical local reorderings: shape pushers

Band(L + LT ) = Band(A)

Profile(L + LT ) = Profile(A)
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Direct methods

Blocks

Blocks are absolutely crucial to compute efficiently on contemporary
computers: we need as much data as possible for a unit of data
transfer inside memory hierarchy.

In BLAS terminology:

z = x + αy −→ Z = X + αY

saxpy −→ dgemm

But we have sparse matrices. It is not so straightforward to split their
nonzeros into blocks.

In fact, we need to reorder them in order to get blocks.
◮ Application-based blocks in discretized systems.
◮ Graph-based strategies which can be very fast.
◮ But we need to optimize the block structure of L: supernodes.
◮ Help: again our good friend, the elimination tree.
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Direct methods

Supernodes

Definition

Let s, t ∈ {1, . . . , n} such that s + t − 1 ≤ n. Then the columns with
indices {s, s + 1, . . . , s + t − 1} form a supernode if these columns satisfy
Struct(L∗s) = Struct(L∗s+t−1) ∪ {s, . . . , s + t − 2}, and the sequence is
maximal.

* * * *
* * * *
* * * *
* * * *

s−t+1

*
*

*
*

*
*
*

*
* *

s

Can be found in a nearly optimal time by traversing the postordered
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Direct methods

Supernodes and efficient computation

the loop over rows has no indirect addressing: (dense BLAS1)
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Direct methods

Supernodes and efficient computation
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Direct methods

Supernodes and efficient computation

the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)
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Direct methods

Supernodes and efficient computation

the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)
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Direct methods

Supernodes and efficient computation

the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)

parts of the updating supernode can be used for blocks of updated
supernode (dense BLAS3)
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Direct methods

Factorization again: general strategy in the SPD case

Preprocessing

– prepares the matrix so that the fill-in would be as small as
possible

Symbolic factorization

– elimination tree, determines structures of columns of L.
Consequently, L can be allocated and used for the actual
decomposition

– the boundary between the first two steps is somewhat
blurred due to many possible enhancements

Numeric factorization

– the actual decomposition to obtain numerical values of the
factor L

Multifrontal algorithm

Block left-looking algorithm
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Direct methods: Multifrontal method
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Direct methods: Multifrontal method
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Direct methods: Multifrontal method
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Direct methods: Multifrontal method
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Direct methods: Multifrontal method
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Direct methods: Multifrontal method
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Direct methods

Multifrontal method: Properties

We do need to have the entries from the stack readily available.

→ elimination tree should be postordered

Arithmetic of dense matrices

Connection with the frontal method (later) is relatively week.

One of the most important methods for the sparse direct factorization.
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Direct methods

Postorderings and work/memory issues in factorization

5

1

2
3

4

6

7

8

9 9

1 2

3 4

5
6

7 8

First case: Maximum stack size may be 1 × 1+2 × 2+3 × 3+4 × 4

Second case: Maximum stack size may be 4 × 4

Even postorderings can be very different with respect to particular
algorithmic/architecture needs
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From direct to iterative methods

Complexity

Time dominated by time for the factorization
General dense matrices

◮ Space: O(n2)
◮ Time: O(n3)

General sparse matrices
◮ Space: η(L) = n +

∑n−1

i=1
(η(L∗i) − 1)

◮ Time in the i-th step: η(L∗i) − 1 divisions, 1/2(η(L∗i) − 1)η(L∗i)
multiple-add pairs

◮ Time totally: 1/2
∑n−1

i=1
(η(L∗i) − 1)(η(L∗i) + 2)
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From direct to iterative methods

Complexity

Band schemes (β << n)
◮ Space: O(βn)
◮ Time: O(β2n)

Band
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From direct to iterative methods

Complexity

Profile/envelope schemes
◮ Space:

∑n
i=1

βi

◮ Frontwidth: ωi(A) = |{k|k > i ∧ akl 6= 0 for some l ≤ i}|
◮ Time: 1/2

∑n−1

i=1
ωi(A)(ωi(A) + 3)

Profile (Envelope)
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From direct to iterative methods

Complexity

General sparse schemes can be analyzed in some cases
◮ Nested dissection

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35

Definition

(α, σ) separation of a graph with n vertices: each its subgraph can be
separated by a vertex separator S such that its size is of the order O(nσ)
and the separated subgraphs components have sizes ≤ αn,1/2 ≤ α < 1.

65 / 125



From direct to iterative methods

Complexity: Generalized nested dissection

Vertex separator

C_1 C_2

S

Planar graphs, 2D finite element graphs
◮ σ = 1/2, α = 2/3
◮ Space: O(n log n)
◮ Time: O(n3/2)

3D Finite element graphs
◮ σ = 2/3
◮ Space: O(n4/3)
◮ Time: O(n2)

Lipton, Rose, Tarjan (1979), Teng (1997).
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Decomposition and computer architectures: Parallelism

1. Shared memory computers

1st level of parallelism: global structure of the decomposition.

2nd level of parallelism: local node parallel enhancements.

Both may/should be coordinated.

Parallelism in the tree decreases towards its root.

Dense matrices (e.g. in the multifrontal method) are larger and larger.
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Decomposition and computer architectures: 1st level of

parallelism

Two basic possibilities for the 1st level

Dynamic task scheduling on shared memory computers

Direct static mapping: subtree to subcube

1. Dynamic task scheduling on shared memory computers

Dynamic scheduling of the tasks

Each processor selects a task

Again, problem of the elimination tree reordering

Not easy to optimize memory in the multifrontal method
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Decomposition and computer architectures: 1st level of

parallelism: II

2. Direct static mapping: subtree to subcube

Recursively map processors to the tree parts from the top
Various ways of mapping.
Note: In the SPD (non-pivoting) case we can calculate and consider
the arithmetic work
Good at localizing communication
More difficult to share the work in more complex models

1,2,3,4

1,2,3,4

1,2

1,2

3,4

3,4
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Decomposition and computer architectures: 2nd level of

parallelism

Block Cholesky/LU factorization

BLAS / parallel BLAS operations

1D partitioning

2D partitioning

1D and 2D block cyclic distribution

(Only illustrative figures for the talk!)
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Decomposition and computer architectures: Distributed

memory parallelism

Basic approaches

Fan-in
◮ Demand-driven column-based algorithm
◮ Required data are aggregated updates asked from previous columns

Fan-out
◮ Data-driven column-based algorithm
◮ Updates are broadcasted once computed and aggregated
◮ Historically the first approach; greater interprocessor communication

than fan-in

Multifrontal approach
◮ Example: MUMPS
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From direct to iterative methods: Iterative + Direct

Why complement a direct by an iterative procedure?

Improving solution accuracy after solving with easier (single)
arithmetic.
Improving solution after solver relaxation (e.g., in parallel
computational environment, cf. SuperLU)
Simple iterative procedure: iterative improvement.

B is a matrix factorization, Ax∗ = b, x is a current solution
Bx∗ = (B − A)x∗ − b
Iterative procedure: x+ = (I − B−1A)x + B−1b
ρ(I − B−1A) < 1 sufficient for the convergence

Theorem

One step of single precision iterative refinement enough for obtaining
componentwise relative backward error to the order of O(ǫ) under weak
conditions.
Strong result for the error using double precision iterative refinement. 74 / 125



From direct to iterative methods: Algebraic preconditioners

What we do not treat here

Incomplete factorizations
◮ By pattern (simple, level-based)
◮ By value
◮ Compensations

Incomplete inverse factorizations
◮ Factorized
◮ Non-factorized

Polynomial preconditioners

Algebraic multigrid

Detailed overviews, citations, etc.: see previous SNA proceedings

Here we try to see simple analyzable cases
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Algebraic preconditioners and complexity: Introduction

Only simple algebraic preconditioners can be analyzed by the standard way
via condition number estimation

We present two examples of the analysis.

1) Classical modified incomplete Cholesky MIC for a simple matrix.
◮ In particular, MIC(0).
◮ Modification consists of adding the neglected fill-in to the diagonal.

2) Combinatorial preconditioners.

Power of more complex approaches needed
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Algebraic preconditioners and complexity: MIC

The matrix

A =

































4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4

































78 / 125



Algebraic preconditioners and complexity: MIC: II

A =

































4 −1 −1
−1 4 −1 ∗ −1

−1 4 ∗ −1
−1 ∗ 4 −1 −1

−1 ∗ −1 4 −1 ∗ −1
−1 −1 4 ∗ −1

−1 ∗ 4 −1
−1 ∗ −1 4 −1

−1 −1 4

































M = LD−1LT = A + R

ri,i = −ri,i−m+1 − ri,i+m−1

Here, m = 3 (number of grid points in one dimension of 2D grid)
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Algebraic preconditioners and complexity: MIC: III

Idea: Compensate the entries of fill to sum up them to the diagonal
of M , perturb diagonal entries

Origins of MIC: Varga (1960), Dupont, Kendall, Rachford (1968)

Here: 5-point stencil.

Generalized by Gustafsson (1978 and later), analysis with similar
results for SSOR given by Axelsson (1972)

M = LD−1LT = A + R + δD̄

ri,i = −ri,i−m+1 − ri,i+m−1, δ = ch2

di = (1 + δ)aii − ri,i−m+1 − ri,i+m−1 − a2
i,i−1/di−1 − a2

i,i−m/di−m
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Algebraic preconditioners and complexity: MIC: IV

Lemma

di ≥ 2(1 + c1h), αi = 4, βi ≤ 1, γi ≤ 1

no modification: δ = 0

δ = 0 ⇒ di ≥ 2

di = 4 − 2/di−1 − 2/di−m q.e.d.

nonzero modification δ 6= 0

di ≥ 4(1 + ch2) − 2/(1 + c1h) ≡ 4(1 + ch2) − 2(1 − c1h) + O(h2)

di ≥ 2(1 + c1h) + O(h2) q.e.d.

Corollary

ri+m−1 = ai+m−1,i−1ai,i−1/di−1 ≤ 1/di−1 ≤ 1/2(1 + c1h)
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Algebraic preconditioners and complexity: MIC: V

Lemma

(Rx, x) = −
∑

i ri,i+m−1(xi+m−1 − xi)
2

(Rx, x) = −
∑

i ri,ix
2
i + 2

∑

i ri,i+m−1xi+m−1xi =
−
∑

i(ri,i−m+1 + ri,i+m−1)x2
i + 2

∑

i ri,i+m−1xi+m−1xi

(symmetrically transformed sum + zero row sums)

Since 2xi+m−1xi = x2
i+m−1 + x2

i − (xi+m−1 − xi)
2 we get

(Rx, x) = −
∑

i(ri,i+m−1 + ri,i−m+1)x2
i +

∑

i(ri,i+m−1x2
i +

ri,i+m−1x2
i+m−1) −

∑

i ri,i+m−1(xi+m−1 − xi)
2

First entries of the first two sums sum up to zero.

Second entries of the first two sums give zero (formally by
transforming sum indices). q.e.d.
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Algebraic preconditioners and complexity: MIC: VI

Lemma

−(Rx, x) ≤ 1/(1 + c1h)(Ax, x)

−(Rx, x) =
∑

i ri,i+m−1(xi+m−1 − xi)
2 ≤

∑

i 1/di−1(xi+m−1 − xi)
2

−(Rx, x) ≤
∑

i 1/2(1 + c1h)(xi+m−1 − xi)
2

◮ We have (a − b)2 ≤ 2(a − e)2 + 2(e − b)2 (can be easily shown by
considering various cases of the involved reals)

−(Rx, x) ≤
∑

i 1/(1 + c1h)[(xi+m−1 − xi−1)2 + (xi−1 − xi)
2] ≤

1/(1 + c1h)(Ax, x)
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Algebraic preconditioners and complexity: MIC: VII

Corollary

κ(M−1A) = O(h−1)

(Ax, x)/(Mx, x) = (Ax,x)

(Ax,x)+(Rx,x)+δ(D̄x,x)
≤ 1

1+(Rx,x)/(Ax,x) ≤
1

1− 1
(1+c1h)

= 1 + 1
c1h

Note that the smallest eigenvalue of A can be written as c0h2.

(Ax, x)/(Mx, x) ≥ 1/(Ax,x)

1+δ(D̄x,x)/(Ax,x)
= 1

1+ch2(x,x)/(Ax,x) ≥ 1
1+ c

c0

q.e.d.
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Combinatorial preconditioners

Lemma

Let A be symmetric, B SPD. If τB − A is positive semidefinite then
λmax(B−1A) ≤ τ for a real τ .

Proof: Let u be an eigenvector of λ ≡ λmax(B−1A): Au = λBu. If
τB − A is positive semidefinite then

0 ≤ ut(τB − A)u = (τ − λ)uT Bu.

B is SPD ⇒ τ − λ ≥ 0.
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Combinatorial preconditioners: II

Definition

Support σ(A, B) of B for A define as

min{τ | τB − A is positive semidefinite}.

Generalized support σ̄(A, B) of B for A define as

min{τ |xT (τB − A)x ≥ 0 for all x, Ax 6= 0, Bx 6= 0.}

B SPD ⇒ λmax(B−1A) ≤ σ(A, B)

A, B SPD ⇒ κ(B−1A) = λmax(B−1A)/λmin(B−1A) =
λmax(B−1A)λmax(A−1B) ≤ σ(A, B)σ(B, A)
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Combinatorial preconditioners: III

Example of the support

τ

(

0.5 −0.5
−0.5 0.5

)

−

(

1 −1
−1 1

)

to be positive semidefinite
⇓
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(

0.5 −0.5
−0.5 0.5

)

−

(

1 −1
−1 1

)

to be positive semidefinite
⇓

τ ≥ 2.
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Combinatorial preconditioners: III

Example of the support

τ

(

0.5 −0.5
−0.5 0.5

)

−

(

1 −1
−1 1

)

to be positive semidefinite
⇓

τ ≥ 2.

A = A1 ∪ . . . Ak, B = B1 ∪ . . . Bk

Let τiBi − Ai be positive semidefinite for all i, τ∗ = maxi τi. Then
τ∗B − A is positive semidefinite as well.

σ(A, B) ≤ maxi σ(Ai, Bi)

Pairs of symmetric diagonally dominant matrices → transformed to
pairs of matrices with zero row sums with equivalent support numbers.
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Combinatorial preconditioners: IV
Congestion - dilation: more automatic tools for the splitting transformation

Theorem

Let A =

















a 0 . . . −a
0 0 0 0
...

...
...

0 0 0 0
−a 0 . . . 0 a

















B =















a −a
−a a −a

. . .
−a a −a

−a a















with dimensions k + 1, a > 0. Then kB − A is positive semidefinite.

Theorem

Let A =

















a 0 . . . −a
0 0 0 0
...

...
...

0 0 0 0
−a 0 . . . 0 a

















B =















b −b
−b 2b −b

. . .
−b 2b −b

−b b















with dimensions k + 1, a, b > 0. Then (ka/b)B − A is positive
semidefinite. 88 / 125



Combinatorial preconditioners: V
Congestion - dilation: more automatic tools for the splitting transformation

Theorem

Let

A =

















a 0 . . . −a
0 0 0 0
...

...
...

0 0 0 0
−a 0 . . . 0 a

















B =















d1 −b1

−b1 d2 −b2

. . .
−bk−1 dk −bk

−bk dk+1















with dimensions k + 1, di > 0, bi > 0 for all i. Then (ka/min(bi))B − A
is positive semidefinite.

a/min(bi) is called here the congestion

k is the dilation
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Combinatorial preconditioners: VI
clique - star tool for the splitting transformation

Theorem

Let A =

















0 0 . . . 0
0 (k − 1)a −a . . . −a
0 −a (k − 1)a . . . −a
...

...
...

0 −a −a . . . (k − 1)a

















B =

















kb −b −b . . . −b
−b b 0 . . . 0
−b 0 b . . . 0
...

...
...

−b 0 0 . . . b

















with dimensions k + 1, a, b > 0. Then (ka/b)B − A is positive
semidefinite.
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Combinatorial preconditioners: VII

Let A =

















a 0 . . . −a
0 0 0 0
...

...
...

0 0 0 0
−a 0 . . . 0 a

















B =















b −b
−b 2b −b

. . .
−b 2b −b

−b b















Computation of the support numbers can be visualized via graph
embeddings.

Matrix is a generalized Laplacian for the derived graph.
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Combinatorial preconditioners: VII

Let A =

















a 0 . . . −a
0 0 0 0
...

...
...

0 0 0 0
−a 0 . . . 0 a

















B =















b −b
−b 2b −b

. . .
−b 2b −b

−b b















Computation of the support numbers can be visualized via graph
embeddings.

Matrix is a generalized Laplacian for the derived graph.

G(A)

G(B)

−a
−b

−b −b
−b

−b
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Combinatorial preconditioners: VIII

Example of decomposition

−1 −1

−1

−1 −1

−1

−2
A B
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Combinatorial preconditioners: VIII

Example of decomposition

−1 −1

−1

−2 −0.5

−0.5

−0.5

−1

−0.5

−1 −1

−1

A B

−1

−2 −1 −1
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Combinatorial preconditioners: VIII

Example of decomposition

−1 −1

−1

−2 −0.5

−0.5

−0.5

−1

−0.5

−1 −1

−1

A B

−1

−2 −1 −1

sigma(A1,B1) <= 1

sigma(A2,B2) <= 2

sigma(A4,B4) <= 2

sigma(A3,B3) <= (2/0.5)*2=8
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Combinatorial preconditioners: IX
Positive off-diagonals

Problem of edges with positive weights

Positive edges Bm+k+1, ...Bm+2k

Negative edges of B should support positive edges of B as well

τB − A = (τB1 − A1) + . . . + (τBm − Am) + (τBm+1 + τBm+k+1) +
. . . + (τBm+k + τBm+2k) should be positive semidefinite
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Combinatorial preconditioners: X

Simpler application of the support

Lemma

Let B = A − R such that A and B and R are positive semidefinite. If
σ̄(R, A) = τ ′ < 1 then σ̄(B, A)σ̄(A, B) ≤ 1/(1 − τ ′).

Let τ = 1/(1 − τ ′)

The matrix τB − A = τA − τR − A = (τ − 1)A − τR is positive
semidefinite since σ̄(R, A) = τ ′

Then σ̄(A, B) ≤ τ

Also σ̄(B, A) ≤ 1.

Cholesky decomposition of an M-matrix satisfies this assumption
(A = LLT − R, R is positive semidefinite)
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Combinatorial preconditioners: XI

Vaidya preconditioner 1

Algorithm

Construct a maximum-weight spanning tree of A and use its matrix as a
preconditioner

graph of A graph of B

m nonzeros in A ⇒ at most m/2 edges in G(A)
2/m fraction of an edge to each path
path of the maximum lengths of n − 1
σ(A, B) ≤ O(mn), σ(B, A) ≤ 1 95 / 125



Combinatorial preconditioners: XII

Vaidya preconditioner 2

Algorithm

Split the matrix graph into t components Vi, i = 1, . . . , t

Construct maximum-weight spanning trees of the components

Connect them pairwise by the edges with the heaviest weights

graph of A graph of B
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Combinatorial preconditioners: XIII

Vaidya preconditioner 2: conditioning

graph of A graph of B

assume m ≤ dn for some d (d maximum degree)

paths of lengths at most 1 + 2dn/t

each edge involved in at most d × dn/t ≡ d2n/t paths

κ(B−1A) bounded by O(n2/t2)
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Combinatorial preconditioners: XIV

Vaidya preconditioner 2: complexity

graph of A graph of B

contraction: eliminate all nodes of degrees 1 and 2: O(n) fill and work

contracted graph C: number of its internal vertices is at most
number of its (componental) leaves

total number of vertices in C: at most O(number of leaves of all Vi)

contraction+factoring of C with at most O(t) vertices → O(t6) work,
O(n+t4) nonzeros

iteration count bounded by O(
√

n2/t2) = O(n/t)

t = Θ(n0.25) ⇒ total work bounded by O(n/t)O(n + t4) = O(n1.75)
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Combinatorial preconditioners: XV

Vaidya preconditioner 2: complexity in planar case

graph of A graph of B

contracted graph C: O(t) vertices

number of edges in the planar graph: O(t) (Euler formula; degrees at
most 5)

O(t) edges altogether O(t1.5) work, O(t log t) nonzeros using nested
dissection

iteration count bounded again by O(
√

n2/t2) = O(n/t)

t = Θ(n0.8) ⇒ total work bounded by O(n/t)O(n + t log t) = O(n1.2)
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Combinatorial preconditioners: XVI

Modified incomplete factorization

−1

−1 −1

−1

−1−1

−1

−1 −1

−1
−1

−1

2D grid - 5-point stencil
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Combinatorial preconditioners: XVII

Modified incomplete factorization: MIC

−1

−1 −1

−1

−1−1

−1

−1 −1

−1
−1

−1

0.5

0.5 0.5

0.5

2D grid - 5-point stencil - fill-in with MIC
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Combinatorial preconditioners: XVIII

Modified incomplete factorization: MIC: Repeat the lemma

Lemma

Let B = A − R such that A and and B and R are positive semidefinite. If
σ̄(R, A) = τ ′ < 1 then σ̄(B, A)σ̄(A, B) ≤ 1/(1 − τ ′).

Enough to support edges of R such that σ̄(R, A) = τ ′ < 1

Sophisticated splitting of edges into paths to support R

(i,j)

(i+1,j)

(i,j+1)

(i+1,j+1)

2 sqrt(n)−i−j−1
2 sqrt(n)−3

2 sqrt(n)−3
i+j−1
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Combinatorial preconditioners: XIX

Modified incomplete factorization: MIC

(i,j)

(i+1,j)

(i,j+1)

(i+1,j+1)

2 sqrt(n)−i−j−1
2 sqrt(n)−3

2 sqrt(n)−3
i+j−1

internal weight splittings 2
√

n−i−j−1
2
√

n−3
+ i+j−2

2
√

n−3
= 1

support of fill edges: 2
√

n−i−j−1
2
√

n−3
+ i+j−1

2
√

n−3
= 2

√
n−2

2
√

n−3
= 1/τ ′

path length is 2, fill-in edge weight is 0.5

overall κ(B−1A) = 1/(1 − τ ′) = 2n0.5 − 2
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Preconditioners analyzable in this way and reality

Matrix pwtk.rsa: stiffness matrix, pressurized wind tunnel

n=217918, nz=5926171 (a triangular part)

Tested with two preconditioners

1) IC with positive semidefinite modification of the Schur complement
(Tismenetsky, 1991)

◮ Often considered as one of the most robust approaches
◮ Suffers from extensive memory demands







d lT sT

l
s

B






+







0 0

0

(

0
s

)

(

0 sT
)






→







d lT sT

l
s

B̄ ≡ B +

(

0
s

)

(

0 sT
)







2) IC based on computing both direct and inverse factors (Bru et al.,
2008)
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Preconditioners analyzable in this way and reality: II
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Direct and Inverse Factors

Basic inverse decomposition is in principle very simple

Inverse decompositions are in principle based on the generalized
concept of QR decomposition:

I = ZU

◮ U is upper triangular
◮ Z is A-orthogonal ZT AZ = I

Consequently

◮ U is the Cholesky factor of A
◮ Z is its inverse
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Direct and Inverse Factors: II

I = ZU, I = WL
T

:
Two generalized Gram-Schmidt recursions

z
(j)
i = z

(j−1)
i − z

(j−1)
j

ajz
(j−1)
i

ajz
(j−1)
j

w
(j)
i = w

(j−1)
i − w

(j−1)
j

aT
j w

(j−1)
i

aT
j w

(j−1)
j

Fully sparse operations - no relaxations like fixing band or pattern
necessary

Generalized MGS in the SPD case
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Direct and Inverse Factors: III

New recursions for Z and V T :

I = Z(WT + V
T), I = W(ZT + Ṽ

T)

zi = sei −
i−1
∑

j=1

vT
j ei

dj
zj

vi = (ai − sei)T −
i−1
∑

j=1

zT
j (ai − sei)

dj
vj
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Direct and Inverse Factors: III

New recursions for Z and V T :

I = Z(WT + V
T), I = W(ZT + Ṽ

T)

zi = sei −
i−1
∑

j=1

vT
j ei

dj
zj

vi = (ai − sei)T −
i−1
∑

j=1

zT
j (ai − sei)

dj
vj

Both U and Z contained in V T , similarly for L

(Bru, Cerdán, Marín, Mas, SISC, 2006; Bru, Marín, Mas, T., SISC, 2008;
Bru, Marín, Mas, T., SIMAX, 2010);
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Direct and Inverse Factors: III

New recursions for Z and V T :

I = Z(WT + V
T), I = W(ZT + Ṽ

T)

zi = sei −
i−1
∑

j=1

vT
j ei

dj
zj

vi = (ai − sei)T −
i−1
∑

j=1

zT
j (ai − sei)

dj
vj

Both U and Z contained in V T , similarly for L

(Bru, Cerdán, Marín, Mas, SISC, 2006; Bru, Marín, Mas, T., SISC, 2008;
Bru, Marín, Mas, T., SIMAX, 2010);

A lot of other work, e.g., Bollhöfer, Saad; 2002; Bollhöfer, 2003
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Direct and Inverse Factors: IV

I = Z(WT + V
T), I = W(ZT + Ṽ

T)

Computation of L−T , U, U−1, L is interleaved.

It uses each other’s intermediate data

Straightforward sparse, column-based algorithms

Explicit data interconnection of the recursions
◮ connected by dropping
◮ full interconnection by data exchange between direct and inverse

factors possible as well
◮ ill-conditioning in inverse factors directly detected.

Some practical limitations as well
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Direct and Inverse Factors: V
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v1:p−1 computed using fully filled areas

vp+1:n computed using dashed areas

direct and inverse factors influence each other

111 / 125



Direct and Inverse Factors: VI

Example: matrix PWTK, n=217,918, nnz=5,926,171
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Figure: Iteration counts for CG preconditioned by BIF and Tismenetsky/Kaporin112 / 125



Direct and Inverse Factors: VII
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Direct and Inverse Factors: VIII

Example: matrix PWTK, n=217,918, nnz=5,926,171

0 5 10 15

x 10
6

0

5

10

15

20

25

30

35

40

45
to

ta
l t

im
e 

(in
 s

ec
on

ds
)

size of the preconditioner (in the number of nonzeros)

 

 
BIF
 Tismenetsky/Kaporin

Figure: Preconditioner construction time for CG preconditioned by BIF and
114 / 125



Direct and Inverse Factors: IX

Example: matrix CFD2, n=123,440, nnz=1,605,669
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Direct and Inverse Factors: X

Example: matrix CFD2, n=123,440, nnz=1,605,669
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Direct and Inverse Factors: XI

Example: matrix CFD2, n=123,440, nnz=1,605,669
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Figure: Preconditioner construction time for CG preconditioned by BIF and
Tismenetsky/Kaporin IC versus preconditioner size for the matrix CFD2.
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Direct and Inverse Factors: XII

Example: matrix CHEM_MASTER, n=40,401, nnz=201,201
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Direct and Inverse Factors: XIII

Example: matrix EPB3, n=84,617, nnz=463,625
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Direct and Inverse Factors: XIV

Example: matrix POISSON3DB, n=85,623, nnz=2,374,949
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Direct and Inverse Factors: XV

Example: matrix CAGE12, n=130,228, nnz=2,032,536
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Direct and Inverse Factors: XVI

Example: matrix MAJOR, n=160,000, nnz=1,750,416
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Conclusions

Direct methods still strongly developing as stand-alone approaches. A
lot of open algorithmic/implementational questions.

124 / 125



Conclusions

Direct methods still strongly developing as stand-alone approaches. A
lot of open algorithmic/implementational questions.

Direct and iterative methods coexist together sharing some algorithms
and techniques.

124 / 125



Conclusions

Direct methods still strongly developing as stand-alone approaches. A
lot of open algorithmic/implementational questions.

Direct and iterative methods coexist together sharing some algorithms
and techniques.

Borrowing from each other may be the way for more robust solvers.
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Last but not least

Thank you for your attention!
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