
ON THE NUMERICAL STABILITY ANALYSIS OF PIPELINED KRYLOV SUBSPACE

METHODS

ERIN C. CARSON ∗, MIROSLAV ROZLOŽNÍK† , ZDENĚK STRAKOŠ ‡ , PETR TICHÝ§ , AND MIROSLAV

TŮMA¶

Abstract. Algebraic solvers based on preconditioned Krylov subspace methods are among the most powerful tools

for large scale numerical computations in applied mathematics, sciences, technology, as well as in emerging applications in

social sciences. The study of mathematical properties of Krylov subspace methods, in both the cases of exact and inexact

computations, is a very active area of research and many issues in the analytic theory of Krylov subspace methods remain

open. Numerical stability issues have been studied since the formulation of the conjugate gradient method in the middle of

the last century, with many remarkable results achieved in the years since.

Inexact computations in Krylov subspace methods, either due to floating point roundoff error or intentional action

motivated by savings in computing time or energy consumption, have two basic effects, namely, slowing down convergence

and limiting attainable accuracy. Although the methodologies for their investigation are different, these phenomena are

closely related and cannot be separated from one another.

As the name suggests, Krylov subspace methods can be viewed as a sequence of projections onto nested subspaces of

increasing dimension. They are therefore by their nature implemented as synchronized recurrences. This is the fundamental

obstacle to efficient parallel implementation. Standard approaches to overcoming this obstacle described in the literature

involve reducing the number of global synchronization points and increasing parallelism in performing arithmetic operations

within individual iterations. One such approach, employed by the so-called pipelined Krylov subspace methods, involves

overlapping the global communication needed for computing inner products with local arithmetic computations.

Recently, the issues of attainable accuracy and delayed convergence caused by inexact computations became of interest

in relation to pipelined Krylov subspace methods. In this contribution we recall the related early results and developments

in synchronization-reducing Krylov subspace methods, identify the main factors determining possible numerical instabilities,

and outline approaches needed for the analysis and understanding of pipelined Krylov subspace methods. We demonstrate

the discussed issues numerically using several algorithmic variants of the conjugate gradient method. The paper concludes

with a brief perspective on Krylov subspace methods in the forthcoming exascale era.

Key words. Krylov subspace methods, the conjugate gradient method, numerical stability, inexact computations, delay

of convergence, maximal attainable accuracy, pipelined Krylov subspace methods, exascale computations.

1. Introduction. This paper considers the problem of using Krylov subspace methods in solving

linear algebraic systems Ax = b, where A is a real N × N nonsingular matrix and b is a real vector of

length N . The restriction to real problems is for simplicity of notation and has no other role with respect

to the studied phenomena. Given an initial approximation x0 to x and initial residual r0 = b− Ax0, with

v1 = r0/‖r0‖, Krylov subspace methods construct mathematically, i.e., assuming exact computation, a

sequence of approximate solutions using the nested Krylov subspaces

K1(A, v1) ⊂ K2(A, v1) ⊂ · · · ⊂ Kn(A, v1) ⊂ · · ·

defined as

Ki(A, v1) = Ki(A, r0) = span{v1, Av1, . . . , A
i−1v1}, i = 1, 2,

The nth approximation xn ∈ x0 + Kn(A, r0) to the solution x is constructed using the orthogonality of

the nth residual to the n-dimensional constraint space Cn, i.e., rn = b − Axn ⊥ Cn, where the choice

∗ Courant Institute of Mathematical Sciences, New York University erinc@cims.nyu.edu.
† Institute of Computer Science, Academy of Sciences of the Czech Republic, (miro@cs.cas.cz). Partially supported by

the Grant Agency of the Czech Republic Project GA13-06684S
‡ Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

strakos@karlin.mff.cuni.cz. Supported by the ERC project MORE LL1202 financed by the MŠMT of the Czech

Republic
§ Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,

(ptichy@karlin.mff.cuni.cz). Partially supported by the Grant Agency of the Czech Republic Project GA13-06684S
¶ Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,

(mirektuma@karlin.mff.cuni.cz). Partially supported by the Grant Agency of the Czech Republic Project GA13-

06684S and by the ERC project MORE LL1202 financed by the MŠMT of the Czech Republic

1

of Cn along with properties of A distinguish the various Krylov subspace methods. As an example, for

symmetric positive definite (SPD) matrices and Cn = Kn(A, r0) we get the conjugate gradient method

(CG), where the orthogonality constraint rn ⊥ Kn(A, r0) is equivalent to the minimization of the energy

norm of the error over the Krylov subspaces, i.e.,

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A, (1.1)

where ‖u‖A = (u, u)
1/2
A = (Au, u)1/2 is induced by the energy inner product defined by the SPD matrix A.

For symmetric nonsingular matrices and Cn = AKn(A, r0) we get the minimal residual method (MINRES),

and for general nonsingular matrices and Cn = AKn(A, r0) we get the generalized minimal residual method

(GMRES). Both MINRES and GMRES minimize the Euclidean norm (denoted here and elsewhere in this

work by ‖ · ‖) of the residual over the Krylov subspaces, i.e.,

‖b − Axn‖ = min
z∈x0+Kn(A,r0)

‖b − Az‖.

Within the present work we restrict the discussion mostly to CG.

From the given orthogonality conditions it is clear that Krylov subspace methods are based on linear

projections onto highly nonlinear nested subspaces. They are therefore highly nonlinear in the input data

A, b defining the problem. This nonlinearity is what allows Krylov subspace methods to adapt to the

problem as the iteration proceeds, but makes analysis of the methods a challenge; see, e.g., [30] and

the references therein. In particular, such analyses must respect the relationships between the studied

phenomena, making them highly complex and unamenable to easy simplification. We will explain the

difficulty of the analysis of Krylov subspace methods in more detail in the rest of this introductory section

using the example of CG.

Consider the Lanczos process for computing an orthonormal basis of the sequence of Krylov subspaces

for a matrix A and starting vector v1 = r0/‖r0‖, which is described by the matrix equations

AVn = Vn Tn + δn+1vn+1e
T
n , Tn = V ∗

n AVn , (1.2)

where Vn = [v1, . . . , vn] is the N × n matrix storing the orthonormal basis vectors as its columns, V ∗
n

denotes the transpose of the matrix Vn, and Tn denotes the Jacobi matrix storing in its columns the

orthogonalization and normalization coefficients. The Jacobi matrix Tn depends on the 2n − 1 moments

(Aiv1, v1), i = 1, 2, . . . , 2n − 1. The CG approximation is then given by solving the projected problem

with the n× n symmetric positive definite tridiagonal matrix Tn, which determines the coefficients of the

linear combination of the Lanczos basis functions, i.e.,

Tn yn = ‖r0‖e1 , xn = x0 + Vn yn . (1.3)

Summarizing, given an initial approximation x0, the sequence of subsequent CG approximations

x1, x2, . . . , xn to the solution of the linear algebraic system Ax = b that represents the original model

is obtained by solving the sequence of reduced models (1.3) of increasing dimensionality. Again, we

emphasize that the described model reduction is highly nonlinear in the data A, b. The Jacobi matrix

Tn is related to the short recurrences characteristic of the Lanczos method, and also has connections

with orthogonal polynomials, the Stieltjes problem of moments, Gauss-Cristoffel quadrature, continued

fractions, etc.; see [13], [30, Chapter 3].

As for practical computations, Krylov subspace methods such as MINRES and GMRES are indeed

commonly implemented in a way that closely resembles the idea of a sequence of projection processes;

see, e.g., [30, Section 2.5.5] and the references therein. This is not the case for CG. The standard CG

implementation described by Hestenes and Stiefel [25] (see also [30]) uses three two-term recurrences

for updating the approximate solution xi, the direction vector pi, and the residual vector ri (which is

mathematically related to the Lanczos basis vectors by ri = (−1)i‖ri‖vi+1), as follows:

2

Algorithm 1.1. HS conjugate gradient method

Input: SPD matrix A ∈ RN×N , right-hand side vector b ∈ RN , initial approximation x0 ∈ RN , maximum

number of iterations nmax.

Output: Approximate solution xn after the algorithm has been stopped.

0. Initialization: r0 = b − Ax0, p0 = r0

1. for i = 1 : imax do

2. αi−1 =
(ri−1, ri−1)

(pi−1, Api−1)
3. xi = xi−1 + αi−1pi−1

4. ri = ri−1 − αi−1Api−1

5. evaluate the stopping criterion

6. βi =
(ri, ri)

(ri−1, ri−1)
7. pi = ri + βipi−1

8. end do

Here the choice of αi−1 ensures the minimization of ‖x − xi‖A along the line

z(α) = xi−1 + αpi−1. (1.4)

The mathematical elegance and power of CG is given by the following crucial condition. Provided that

the direction vectors are mutually orthogonal with respect to the energy inner product defined by the SPD

matrix A, i.e.,

pi ⊥A pj for i 6= j, (1.5)

the one-dimensional line minimizations at the individual steps 1 to i result in the i-dimensional

minimization over the whole shifted Krylov subspace

x0 + Ki(A, r0) = x0 + span{p0, p1, . . . , pi−1} .

Analogous to the link between the Jacobi matrix and the short recurrences mentioned above, the line

search (1.4) and the orthogonality condition (1.5) lead to short recurrences due to the symmetry of the

matrix A, or, equivalently, due to the relationship with the orthogonal polynomials that define the algebraic

residuals and search vectors.

In each iteration of HS CG (Algorithm 1.1), updating the recurrences for xi, ri, and pi requires

computing the inner-products (pi−1, Api−1) and (ri, ri) in order to form the scalars αi−1 and βi. When

Algorithm 1.1 is implemented on a parallel machine, computing each inner-product requires a global

synchronization point; i.e., the computation can not proceed until all processors have finished their local

computation and communicated the result to other processors. It is well-known that for large-scale sparse

problems on large-scale machines, the cost of synchronization between parallel processors can dominate

the run-time (see, e.g., the exascale computing report [10, pp. 28]). This limits the potential speed in

performing individual iterations attainable by an implementation of CG. Note that in this work, we will

use the term synchronization to refer to a global synchronization required to compute an inner product;

i.e., all processors must exchange data and wait for all communication to finish before proceeding with

the computation. In MPI terminology, our use of the term synchronization is synonymous with blocking

collective communication.

The goal of removing performance bottlenecks caused by synchronization has motivated work on

pipelined Krylov subspace methods (see, e.g, [16], [17]). The key feature of pipelined CG [17] (and other

pipelined Krylov subspace methods) is that computing the necessary inner products only requires a single

non-blocking communication per iteration. Furthermore, the computation of the inner products can be

overlapped with the matrix-vector product and other local computations, effectively hiding the latency of

3

global communication. This overlapping is enabled by the introduction of one or more auxiliary vectors

which are updated via additional recurrences in each iteration.

Other Krylov subspace method variants have been developed for the case where the matrix-vector

products required in each iteration dominate the run-time. One example are the so-called “inexact Krylov

subspace methods” (see, e.g., [2], [47], [48], [58], [59]) in which the accuracy of the matrix-vector product

is intentionally relaxed throughout the iterations according to a function of the residual norm. We note

that, in contrast to the terminology introduced in the works mentioned above, in this work we use the

term “inexact” in a more general sense, referring to methods in which computed quantities can deviate

from their exact mathematical counterparts due to intentional approximation or relaxation of accuracy,

or simply due to floating point roundoff error.

In exact arithmetic, the pipelined CG method produces the same sequence of approximate solutions

and residual vectors as the standard CG method. In finite precision, however, the introduction of additional

recurrences causes the numerical behavior of the standard and pipelined CG and of their implementation

variants to differ. It has indeed been observed (see, e.g., [17]) that in finite precision computations, the

convergence rate and attainable accuracy of pipelined CG can be worse than in standard CG, with the

attainable accuracy reduced by orders of magnitude in some cases. When pipelined Krylov subspace

methods are used in practical settings, these differences in numerical behavior must then be taken

into account, ideally balancing the application-specific accuracy requirements with potential performance

improvements. Analyses which provide insight into the numerical behavior of pipelined Krylov subspace

methods are thus vital to their use in practice.

In general, analyses of inexact CG computations (again, either due to roundoff error or an intentional

relaxation of accuracy in performing the most costly operations) must address the question of how

the previously-discussed relationships that hold for exact standard CG are changed in the presence of

inaccuracies. After deriving recurrences for the computed quantities, i.e., the mathematical equalities

analogous to (1.2) and to the lines in Algorithm 1.1, the inaccuracies of individual local computations

may be accounted for by adding local error terms to the lines 2.-4., 6.-7. of Algorithm 1.1 (in the

Lanczos process, to each column of (1.2)); see [37, Section 4, Theorem 4.1, and Section 5, relation (5.1)].

These local error terms and other subsequent local inaccuracies at individual iteration steps (such as the

loss of orthogonality among the consecutive residuals and direction vectors) can be small. Their effect,

however, can be drastically amplified within few iterations and can cause, e.g., a significant loss of global

orthogonality or even numerical linear independence among the computed vectors generating the associated

subspaces. The Jacobi matrices resulting from the computed data can quickly become very different from

their exact arithmetic counterparts.

Much work has been done in the area of analyzing standard CG in finite precision arithmetic. In

finite-precision CG (as well as in general inexact CG methods), the CG optimality property (1.1) does not

have a clear meaning with respect to the subspaces generated by the computed residual (or direction)

vectors. Greenbaum showed in 1989 [18] that for the finite precision Lanczos process it does have,

however, a rigorously defined meaning with respect to some particular distribution functions defined by

the original data and the rounding errors in iterations 1 to n. Greenbaum proved, using the results of

Paige on the numerical behavior of the Lanczos method published within 1971-80 [39, 40, 41, 42], that

the Jacobi matrix computed in iteration n in finite precision arithmetic can be considered a left principal

submatrix of a certain larger Jacobi matrix having all its eigenvalues close to the eigenvalues of the original

matrix A; for a summary and exposition on the consequences of this fundamental result we refer to [37,

Section 5]. Let us assume, for a moment, that the effects of rounding errors in computing yn (see (1.3))

and subsequently forming xn are negligible in comparison to the effects of rounding errors in computing

the Lanczos vectors v1, . . . , vn. Then the first n iterations of the given finite precision CG computation

using (1.3) are mathematically equivalent to evaluating exact Gauss quadrature for a certain distribution

function (that depends on n) that has tight clusters of points of increase around the original eigenvalues

of A; see, e.g., [18], [37, Section 5.2], [38], [30, Section 5.9.1]. It is clear that determining how the

convergence of the practically computed approximations to the solution x is slowed down in comparison

4

to the mathematical formulation of CG indeed represents a challenge.

Another question is related to the maximal accuracy that can be attained in practical computations,

which becomes important in solving problems for which high accuracy of the computed approximation is

required. While in exact arithmetic the exact solution x must be reached by CG at or before step N , with

inexact computations this is not the case. The basic methodology for analyzing the attainable accuracy

involves comparing the residuals r̄i, iteratively computed using, e.g. Algorithm 1.1, with the residuals

mathematically defined as b−Ax̄i, where x̄i denotes the computed quantity. The mathematical difference

r̄i − (b − Ax̄i) (1.6)

is then evaluated as a function of the increasing index i and is subsequently bounded in an appropriate

norm. Using the argument that the iteratively computed residual r̄i eventually becomes negligible (even in

finite precision computations), this gives for i large enough an estimate of the maximal attainable accuracy.

This methodology is rigorously supported by formal proofs for some special CG implementations (see, e.g.,

[19] and the surveys in [26, Section 17.1], [37, Section 5.4]). Otherwise it is based on justified heuristics and

observations. In order to avoid confusion that has appeared in literature, it should be stressed that (1.6)

represents a mathematical term where r̄i and x̄i are the outputs of inexact computations. For details of

the rounding error analysis of the classical variant HS CG we refer to the survey [37] and to the update in

[30, Chapter 5].

From the previous argument it follows that any analysis of inexact Krylov subspace methods, including

pipelined variants, as well as any potential technique for counteracting the numerical effects of inexact

computations, must very carefully consider the links between the studied phenomena. The assumptions

and simplifications used must be justified. A clear, thorough understanding of how inexact computations

affect numerical behavior is imperative in balancing the tradeoffs between accuracy and speed in high-

performance implementations; this becomes especially important for computations at the exascale level.

The following section will recall some early developments towards increasing parallel efficiency in CG

computations that preceded the formulation of pipelined CG. Section 3 then describes and numerically

illustrates how modifications of the CG implementation and the corresponding changes in the individual

sources of instabilities contribute to the overall final inaccuracy effects. Section 4 will outline one example

of how the individual sources of instabilities influence each other. We conclude with brief remarks on the

use of Krylov subspace methods for exascale-level computations.

Preconditioning represents a crucial part of any practical iterative computation, and thus the analysis

of applications of Krylov subspace methods must always include consideration of preconditioning. Here,

however, we take the luxury of formulating most of the text using unpreconditioned CG; as it turns out, the

particular preconditioning approach does not affect the description of the basic stability analysis building

blocks. As it will be mentioned in Section 2, preconditioning can easily be included in the described

framework.

2. Early developments towards parallel efficiency: History repeats. The term “standard

CG” is generally associated with the seminal paper by Hestenes and Stiefel [25] and with the HS CG

implementation described in Algorithm 1.1. Nevertheless, it is instructive to mention some other early

contributions and ideas that lead to this culmination. This approach will enable us to demonstrate that the

early development of CG contained many ideas that have been repeatedly reinvented with the emergence

of modern computing architectures.

One of the basic driving forces behind the development of CG was a careful investigation of the

connection between solving systems of linear algebraic equations and minimizing quadratic functionals.

As stated by Hestenes [24], ideas of this type had been pursued previously by many authors. In the middle

of the previous century, these ideas where considered in relation to the state-of-the-art relaxation methods

of the time. A general framework of the related class of the so-called n-step methods can be found in the

paper by Stiefel [51] (they should not be confused with the s-step Krylov subspace methods mentioned

below). Investigation of theoretical properties of the n-step methods as well as connections to the steepest

gradient method in Stiefel [52] reveals another important concept.

5

2.1. Three-term recurrence variants. The ST method (or, shortly, ST CG), shown in

Algorithm 2.1, is based on three-term recurrences for updating the approximate solutions and corresponding

residuals. Its derivation was motivated by the relation to three-term recurrences for orthogonal polynomials

with a specific choice of density function [57, Chapter 3]. The algorithm is often attributed to Rutishauser

[12]; see, e.g., [43]. As mentioned above, it was actually developed much earlier, around the same time as

HS CG; see also Rosser [44] that attributes the described results to the joint work with Forsythe, Hestenes,

Lanczos, Motzkin and Paige.

ST CG is mathematically equivalent to HS CG given in Algorithm 1.1, but ST CG and HS CG exhibit

rather different behavior in finite precision arithmetic. We will return to this point in Section 3.

Algorithm 2.1. ST (three-term) conjugate gradient method

Input: SPD matrix A ∈ RN×N , right-hand side vector b ∈ RN , initial approximation x0 ∈ RN , maximum

number of iterations nmax.

Output: Approximate solution xn after the algorithm has been stopped.

0. Initialization: r0 = b − Ax0, p0 = r0, x−1 = x0, r−1 = r0, e−1 = 0

1. for i = 1 : nmax do

2. qi−1 =
(ri−1, Ari−1)

(ri−1, ri−1)
− ei−2

3. xi = xi−1 + 1
qi−1

[ri−1 + ei−2(xi−1 − xi−2)] ≡ xi−1 + 1
qi−1

[ri−1 + ei−2∆xi−1]

4. ri = ri−1 + 1
qi−1

[−Ari−1 + ei−2(ri−1 − ri−2)] = ri−1 + 1
qi−1

[−Ari−1 + ei−2∆ri−1]

5. evaluate the stopping criterion

6. ei−1 = qi−1
(ri, ri)

(ri−1, ri−1)
7. end do

While the mathematical equivalence of ST CG and HS CG is well-known, we will state this relationship

formally to point out the mutually equivalent quantities used in these algorithms and show relations among

ei, qi, αi, and βi.We do this in Observation 2.1.

Observation 2.1. Algorithms 1.1 and 2.1 produce the same sequences of iterates xi and residuals ri,

respectively, for i = 0, 1, Moreover, we have qi = 1/αi and ei = qiβi+1 for i = 0, 1,

Proof. Let us first relate the scalar coefficients of the two considered algorithms. Consider qi and ei

from Algorithm 2.1. Clearly, q0 = 1/α0 and e0 = β1q0. Consider i > 1. Using notation from Algorithm

1.1, basic orthogonality relations between the exact quantities and the induction assumption, we get

qi−1 =
(ri−1, Ari−1)

(ri−1, ri−1)
− ei−2 =

(pi−1, Api−1)

(ri−1, ri−1)
+

(βi−1pi−2, βi−1Api−2)

(ri−1, ri−1)
− qi−2βi−1

=
1

αi−1
+

β2
i−1

βi−1αi−2
− qi−2βi−1 =

1

αi−1
.

The three-term recurrences from Algorithm 2.1 then easily follow. Consider, for example, the recursion for

approximate residuals. From Algorithm 1.1 we have ri = ri−1 − αi−1Api−1. Observing that the direction

vector update provides Api = Ari + βiApi−1, clearly,

ri = ri−1 − αi−1Api−1

= ri−1 − αi−1Ari−1 − αi−1βi−1Api−2

= ri−1 − αi−1Ari−1 + αi−1βi−1/αi−2(ri−1 − ri−2)

= ri−1 − 1/qi−1Ari−1 + 1/qi−1ei−2(ri−1 − ri−2).

The three-term update for the approximate solution can be obtained analogously.

The fact that a method using three-term recurrences can behave in finite precision arithmetic very

differently from Algorithm 1.1 has been shown by Gutknecht and Strakoš in [22], see also [35, Chapters 6

and 7]. Nevertheless, it should be noted that the authors analyzed a slightly different algorithm and thus

the detailed floating-point analysis of Algorithm 2.1 is still to be done. The same is true for other possible

mathematically equivalent approaches.

6

2.2. Early approaches to reducing synchronization in Krylov subspace methods. A

renewed interest in the numerical properties of different variants of CG and other Krylov subspace

methods came with the advent of modern massively parallel computer architectures. Several modifications

of the basic algorithms have been proposed in order to deal with the problem of communication cost.

Chronopoulos and Gear proposed in [7], [6] the so-called s-step extensions of Krylov subspace methods. A

couple of substantial further developments along this line followed; see, e.g., the Ph.D. Theses by Hoemmen

[27], Ballard [1], and Carson [4]. The main idea of the s-step methods is to enable more parallelism by

relaxing the sequential construction of the basis of the Krylov subspace in Algorithm 1.1 and computing

more direction vectors simultaneously. For further information on the state-of-the-art and open questions

we refer to [4].

As mentioned in the Introduction, the effort toward improving parallel efficiency in individual CG

iterations by reducing the synchronization cost has recently led to the creation of pipelined Krylov subspace

methods [16], [17]. Analogous ideas were presented in numerous early works. The recent approaches to

reducing the number of synchronization points in fact represent a variation of the three-term recurrences

given in Algorithm 2.1 that dates back to the 1950’s. Before returning to more recent work, we recall some

other early approaches.

An idea independently given by Johnson [28], [29], van Rosendale [63] (see also [14]) and Saad [45] is

based on the identity that in the notation of Algorithm 1.1 reads

||ri||
2 + ||ri−1||

2 = α2
i−1||Api−1||

2. (2.1)

This enables the computation of βi from αi−1 and Api−1 as well as the computation of the vectors xi, ri

and pi in one block. As demonstrated by Saad in [46], this approach is unstable and cannot be used in

a straightforward way. Despite this, based on the proposal of Meurant (see [34], [33], [5]), it is possible

to use the value of ||ri||
2 computed via (2.1) in updating the direction vector. The quantity βi may be

recomputed once the corresponding residual vector ri is available at the expense of an additional inner

product. Meurant claims in [34] that this worked well in all his test examples. This idea might deserve

further investigation. A similar approach has been proposed in [32] where the computation is based on

the formula

||ri||
2 = ||ri−1||

2 + α2
i−1||Api−1||

2 + 2αi−1ri−1Api−1, (2.2)

although this work lacks a supporting numerical stability analysis.

Another strategy for computing the inner products using only one synchronization point is to derive

αi from βi−1 using the relation

αi =
(ri, ri)

(Ari, ri) − (βi−1/αi−1)(ri, ri)
. (2.3)

Observation 2.1 implies that Algorithm 2.1 does exactly this. Probably the first attempt to use Algorithm

2.1 to reduce the number of synchronization points in CG implemented on parallel computers has been

published in [55], see also [54]. Since then, the idea to compute αi based on βi−1 has been reinvented a

couple of times in parallel computing, sometimes cited as an alternative approach, and often complemented

by additional modifications motivated by particular computer architectures. Many later variants slightly

differ in the details of the computation of both the scalar quantities and the vector updates, which may

influence their actual numerical behavior; see Section 3. In order to make precise our terminology, we

introduce the following definition.

Definition 2.1. We use three-term CG to refer to any CG implementation mathematically equivalent

to Algorithm 2.1 that computes αi based on βi−1 using (2.3), where this computation can be accomplished

by a single synchronization point per iteration.

Chronopoulos and Gear in [7] in fact reintroduced in their Algorithm 2.2 a three-term CG very closely

related to ST CG (Algorithm 2.1). They in addition use recursive computation of the products Api

7

according to the formula

Api = Ari + βi−1Api−1; (2.4)

see the following algorithm.

Algorithm 2.2. ChG conjugate gradient method

Input: SPD matrix A ∈ RN×N , right-hand side vector b ∈ RN , initial approximation x0 ∈ RN , maximum

number of iterations nmax.

Output: Approximate solution xn after the algorithm has been stopped.

0. Initialization: r0 = b − Ax0, p0 = r0, s0 = Ap0, α0 =
(r0, r0)

(p0, s0)
1. for i = 1 : nmax do

2. xi = xi−1 + αi−1pi−1,

3. ri = ri−1 − αi−1si−1

4. evaluate the stopping criterion

5. wi = Ari

6. βi =
(ri, ri)

(ri−1, ri−1)

7. αi =
(ri, ri)

(wi, ri) − (βi/αi−1)(ri, ri)
8. pi = ri + βipi−1

9. si = wi + βisi−1

10. end do

Although the recurrences in Algorithm 2.2 look quite similar to the two-term recurrences used in

Algorithm 1.1, this is only a formal resemblance. Substitution of the rows 8 and 9 into the solution

and residual updates on the rows 2 and 3 immediately reveals that Algorithm 2.2 is based on three-term

recurrences as Algorithm 2.1. Moreover, using notation in Algorithms 2.1 and 2.2, we have

qi =
1

αi
=

(wi, ri)

(ri, ri)
−

βi(ri, ri)

αi−1(ri, ri)
=

(wi, ri)

(ri, ri)
− qi−1βi =

(wi, ri)

(ri, ri)
− ei−1. (2.5)

Algorithm 2.2 uses the additional recurrence (2.4) for the A-multiple of the direction vector, si = Api.

This may bring in an additional source of instability in ChG CG (Algorithm 2.2) in comparison to ST CG

(Algorithm 2.1).

There were some other works related to the original contribution by Stiefel [51], [52]. The idea of

computing αi based on βi−1 has been used by D’Azevedo and Romine [8]; see also [9] (the connection to

the work of Stiefel has not been noticed).

2.3. Recent work in pipelined Krylov subspace methods. An algorithm that combines

reducing the number of synchronization points and overlapping inner products with other computations

has been developed by Ghysels and Vanroose [17] under the name pipelined conjugate gradient. We present

here its unpreconditioned version.

Algorithm 2.3. GV (pipelined) conjugate gradient method

Input: SPD matrix A ∈ RN×N , right-hand side vector b ∈ RN , initial approximation x0 ∈ RN , maximum

number of iterations nmax.

Output: Approximate solution xn after the algorithm has been stopped.

0. Initialization: r0 = b − Ax0, p0 = r0, s0 = Ap0, w0 = Ar0, z0 = Aw0, α0 =
(r0, r0)

(p0, s0)
1. for i = 1 : nmax do

2. xi = xi−1 + αi−1pi−1,

3. ri = ri−1 − αi−1si−1

8

4. wi = wi−1 − αi−1zi−1

5. evaluate the stopping criterion

6. qi = Awi

7. βi =
(ri, ri)

(ri−1, ri−1)

8. αi =
(ri, ri)

(wi, ri) − (βi/αi−1)(ri, ri)
9. pi = ri + βipi−1

10. si = wi + βisi−1

11. zi = qi + βizi−1

12. end do

Comparing pipelined CG, denoted here as GV CG (Algorithm 2.3), with ChG CG (Algorithm 2.2),

we can see that both use the same computation of scalars αi and the same computation of Api. In

addition, GV CG introduces a recurrence for computing Ari iteratively. The auxiliary recurrences that

enable overlapping the inner product with the matrix-vector multiplication do not explicitly enforce close

local orthogonality among the computed vectors by recomputing the associated recurrence coefficients.

Consequently, a substantial source of potential numerical instability is introduced.

Another recent approach called asynchronous CG has been proposed by Gropp [21]; see also [17]. In

its preconditioned form, asynchronous CG keeps the two synchronization points as in HS CG, but uses

additional recurrences to compute the preconditioned residual M−1ri and the vector Api. Here substantial

numerical instabilities may again arise from the additional recursively computed quantities.

Let us emphasize here the role of preconditioning mentioned at the end of the previous section.

Some approaches mentioned above that use overlapping of operations conveniently involve preconditioning

in balancing the associated computation load. In pipelined CG, preconditioning is implemented at the

expense of an additional recursion. This inevitably influences finite precision computations. From a

methodological point of view, preconditioning presents no obstacle to performing numerical stability

analysis.

The idea of overlapping the computation of inner products with other local computations at the price

of auxiliary vector updates (ideas that were used in earlier Krylov subspace method implementations)

has not been, to our knowledge, widely publicized prior to [16], [17]. In [55], overlapping was not used

because of computer architecture limitations. An example of such overlapping can be found, e.g., in the

preconditioned HS algorithm proposed by van der Vorst [60]. Here the preconditioning operation is split

into forward and backward solves using the incomplete Cholesky factorization combined with delaying the

update of the approximate solution.

The pipelined CG method and other pipelined Krylov subspace methods have attracted recent

attention for their potential use in high-performance computing. A large number of subsequent papers

and reports emphasize various features of these methods with respect to parallel performance. It is not

our task to list them here. Our goal is to point out the need for a thorough rigorous numerical stability

analysis and to outline the way towards doing this.

3. Pipelined Krylov subspace methods and individual sources of instabilities. In this

section we identify individual sources of instability and use simple examples to demonstrate their effect on

numerical behavior. Using the notation standard in numerical stability analysis, the quantities computed in

finite precision arithmetic will be decorated with bars. The residual vectors computed using the recurrence

ri = ri−1 − αi−1Api−1 satisfy

r̄i = r̄i−1 − ᾱi−1Ap̄i−1 + δri,

where r̄i−1, r̄i and p̄i−1 are the computed vectors, ᾱi−1 is the computed coefficient, and δri is a vector

that accounts for local roundoff errors. We will now recall the basic methodology for numerical stability

analysis of CG through the example of investigating the maximal attainable accuracy.

9

It is well known that there exists a limit on the accuracy of approximate solutions x̄i computed in finite

precision arithmetic. There is always a gap (1.6) between the true residual b − Ax̄i and the recursively

updated vectors r̄i (often called updated residuals). We denote this gap by fi, i.e., fi ≡ r̄i − (b − Ax̄i).

While the norm of the recursively updated residual r̄i eventually decreases beyond the level of unit roundoff

(see the Introduction for more details and references), the norm of the true residual b−Ax̄i for i sufficiently

large stagnates, and the size of fi determines the maximal attainable accuracy (measured by the norm of

the true residual).

It is important to investigate the maximal attainable accuracy of iterative methods and to use some

measure for improving it, if needed. The effects of rounding errors, however, go beyond affecting only the

maximal attainable accuracy. In particular, rounding errors can cause a significant delay of convergence

that is of primary importance in challenging real world problems, where computations are in most cases

stopped much before the maximal attainable accuracy is reached. Moreover, measures taken for improving

maximal attainable accuracy can negatively affect delay of convergence; this is discussed further in

Section 3.5.

3.1. Coupled two-term recurrences. Let us demonstrate how ‖fi‖ can be bounded in the HS CG

(Algorithm 1.1). Given an initial approximation x̄0, the computed vectors satisfy:

p̄0 = r̄0 = b − Ax̄0 + f0,

and

x̄i = x̄i−1 + ᾱi−1p̄i−1 + δxi, (3.1)

r̄i = r̄i−1 − ᾱi−1Ap̄i−1 + δri, (3.2)

p̄i = r̄i + β̄ip̄i−1 + δpi, (3.3)

where the individual δ-terms account for the local roundoff errors. Assume the standard model of floating

point arithmetic with machine precision ǫ, see, e.g. [26, relations (2.4)]. Then the vectors of local roundoff

errors can be bounded in terms of the dimension N of the problem, machine precision ǫ, the norm of A,

and the norms of the associated vectors. To simplify the notation we give these bounds in the form

‖δxi‖ ≤ O(ǫ)max{‖x̄i−1‖, ‖x̄i‖},

‖δri‖ ≤ O(ǫ)max{‖r̄i−1‖, ‖ᾱi−1Ap̄i−1‖},

‖δpi‖ ≤ O(ǫ)max{‖r̄i‖, ‖β̄ip̄i−1‖},

where O(ǫ) denotes a term that can be bounded by ǫ and a low degree polynomial in N . The details can

be found, e.g., in [53].

Combining (3.1) and (3.2) we can express the gap fi in terms of the gap fi−1 and the local roundoff

errors:

fi = r̄i − (b − Ax̄i)

= r̄i−1 − ᾱi−1Ap̄i−1 + δri − (b − A(x̄i−1 + ᾱi−1p̄i−1 + δxi))

= fi−1 + δri + Aδxi. (3.4)

Hence by induction it can be shown that

fn = f0 +
n

∑

i=1

δri + A
n

∑

i=1

δxi. (3.5)

The maximal attainable accuracy of the coupled two-term recurrences was analyzed, e.g., by Sleijpen, van

der Vorst, and Fokkema [50], and Greenbaum [19]. In these works the gap fi is analyzed in terms of the

local errors associated with the two-term recurrences and it is shown that in this case the local errors

simply accumulate. In particular, the authors of [50] prove that

‖fn‖ ≤ O(ǫ)‖|A|‖ max
i=0,...,n

‖x − x̄i‖, (3.6)

10

and in [19] it is shown that

‖fn‖ ≤ O(ǫ)‖A‖

(

‖x‖ + max
i=0,...,n

‖x̄i‖

)

. (3.7)

The delay of convergence of CG in finite precision arithmetic has been analyzed, e.g., in papers Greenbaum

[18], Strakoš [56], Greenbaum and Strakoš [20], Gergelits and Strakoš [15]; for more detailed comments

and references see the Introduction.

We now turn our attention to other variants of CG and investigate the individual sources of instabilities.

In other words, we are interested in the question of how the attainable accuracy and delay of convergence

are affected by various modifications to Algorithm 1.1. To illustrate the numerical effects, throughout this

section we use the example of the linear system Ax = b with the matrix bcsstk03 from set BCSSTRUC1

(BCS Structural Engineering Matrices), from the Harwell-Boeing collection [11], of order N = 112. We set

x0 to be the zero vector. The right-hand side b has been chosen such that b has equal components in the

eigenvector basis, and such that ‖b‖ = 1. The minimal and maximal eigenvalues of A are λmin ≈ 2.9e+e04

and λmax ≈ 2.0e + e11 respectively, so that κ(A) ≈ 6.9e + 06. Since large outlying eigenvalues are present

in the spectrum, one can expect a significant delay of convergence of CG in finite precision arithmetic; for

more details, see, e.g., [56, 53, 15].

Although the investigation of maximal attainable accuracy is formulated in terms of residuals and

their norms, in our experiments we purposely plot the A-norm of the error rather than the Euclidean

norm of the residuals. The reason is twofold. First, the convergence behavior viewed in terms of the

Euclidean norm of the residual can be oscillatory. Second, and even more importantly, as stated clearly in

the seminal paper by Hestenes and Stiefel [25], the Euclidean norm of the residual is not an appropriate

indicator of convergence for problems where κ(A) is substantially larger than one.

3.2. Three-term recurrences. Before considering the implementation using three-term

recurrences, we present the following numerical illustration. Consider Algorithm 1.1, and replace the

recurrence for updating the direction vector

pi = ri + βipi−1, (3.8)

by the recurrence

pi = ri +
βi

αi−1
(xi − xi−1). (3.9)

At first glance, this looks like a benign change that should not cause any trouble since xi is computed

using the recurrence xi = xi−1 + αi−1pi−1. However, as we can observe in Figure 3.1, replacing (3.8) by

(3.9) can have a substantial influence on the behavior of the algorithm in finite precision arithmetic, both

with respect to the rate of convergence and the attained accuracy. This example shows that a seemingly

trivial change can lead to substantially different numerical behavior. We also include in Figure 3.1 the

result of exact HS CG computation (simulated via double reorthogonalization of the residual vectors). It

shows that in the problem used for our illustration the effect of roundoff error is indeed substantial even

for HS CG.

The coupled two-term recurrences used in Algorithm 1.1 can, in mathematical abstraction, be

considered to be equivalent to the three-term recurrences (see Section 2)

xi = αi−1ri−1 + xi−1 +
αi−1βi−1

αi−2
(xi−1 − xi−2) , (3.10)

ri = −αi−1Ari−1 + ri−1 +
αi−1βi−1

αi−2
(ri−1 − ri−2) . (3.11)

Various three-term CG implementations differ in the way the coefficients are computed in (3.10)-(3.11).

The ST CG (see Algorithm 2.1) updates αi−1 using the relation,

1

αi−1
=

rT
i−1Ari−1

‖ri−1‖2
−

βi−1

αi−2
. (3.12)

11

0 200 400 600 800 1000 1200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

HS
HS exact
HS with modification

Fig. 3.1. Replacing (3.8) by (3.9) in Algorithm 1.1 can significantly change behavior in finite precision arithmetic.

0 200 400 600 800 1000 1200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

HS
ST
HY

Fig. 3.2. HS CG (Algorithm 1.1), ST CG (Algorithm 2.1), and Hageman-Young (HY) [23, p. 143] implementations.

Once αi−1 is known, one can compute ri and evaluate βi as in Algorithm 1.1. This is probably the most

straightforward way of determining the coefficients in (3.10)-(3.11). Note that the implementation by

Hageman and Young [23, p. 143] also uses (3.12) (in a scaled form) to derive the updating formula for the

coefficient

ρi−1 = 1 +
αi−1βi−1

αi−2
.

This results in more complicated updating formulas. It appears that the Hageman-Young implementation

can be more affected by rounding errors than ST CG; see Figure 3.2.

The gap fi between the recursively updated residual r̄i and the true residual b − Ax̄i in three-term

recurrence implementations of CG was analyzed by Gutknecht and Strakoš [22]. They showed that the

local roundoff errors incurred using (3.10)-(3.11) can be significantly amplified as they propagate through

the recurrences. The amplification factors can be essentially expressed in terms of the coefficients in

the recurrences (3.10)-(3.11) that can be related to the coefficients in (3.1)-(3.3), which can exhibit, in

general, rather irregular behavior. It is therefore shown that using two three-term recurrences can lead to

worse maximal attainable accuracy than using three two-term recurrences (Algorithm 1.1). In addition,

numerical experiments indicate that using three-term recurrences can also significantly delay convergence

in comparison to coupled two-term recurrences; see Figure 3.2.

12

3.3. Adding auxiliary recurrences. One can also use the updating formula (3.12) to compute the

coefficients αi in HS CG. This allows the computations to be rearranged in a way that reduces the number

of synchronization points to one. However, in HS CG, the vectors Ari−1 are not available. So, either we

have to perform two matrix-vectors products per iteration, or we need to use the additional recurrence for

updating the vectors Api,

Api = Ari + βiApi−1, i.e. si = Ari + βisi−1, (3.13)

cf. also Algorithm 2.2. A CG variant that uses the latter option is shown in Algorithm 3.1.

Algorithm 3.1. Conjugate Gradient method with the recursively updated images of

direction vectors

Input: SPD matrix A ∈ RN×N , right-hand side vector b ∈ RN , initial approximation x0 ∈ RN , maximum

number of iterations nmax.

Output: Approximate solution xn after the algorithm has been stopped.

0. Initialization: r0 = b − Ax0, p0 = r0, s0 = Ap0

1. for i = 1 : imax do

2. αi−1 =
(ri−1, ri−1)

(pi−1, si−1)
3. xi = xi−1 + αi−1pi−1

4. ri = ri−1 − αi−1si−1

5. evaluate the stopping criterion

6. βi =
(ri, ri)

(ri−1, ri−1)
7. pi = ri + βipi−1

8. si = Ari + βisi−1

9. end do

Adding a new recurrence without recomputing the recurrence coefficient βi so that the computed

vectors satisfy local orthogonality relations can negatively affect the numerical behavior of the resulting

algorithm. Algorithm 3.1 is closely related to ChG CG (Algorithm 2.2), the only difference being in the

way the coefficient αi−1 is computed which will be discussed in the next subsection. Note that other CG

implementations that allow more parallelism than Algorithm 3.1 like GV CG (Algorithm 2.3) use even

more auxiliary recurrences. In particular, Algorithm 2.3 updates the vectors si = Api, zi = A2pi, wi = Ari,

and qi = A2ri. In problems sensitive to changes in the underlying distribution function that enlarge its

support (see [38]), this can lead to a numerical disaster both with respect to delay of convergence and

maximal attainable accuracy; see Figure 3.3. It should be noted that the sensitive problems mentioned

above are in particular those with large outlying eigenvalues; for detailed discussion see [15].

3.4. Recurrence coefficients. As mentioned above, the recurrence coefficients in two-term as well

as in three-term variants of CG can be computed in many different ways. We will illustrate the effects of

changing the computation of the recurrence coefficients using a modified version of Algorithm 1.1 where

the formula for updating αi−1 is replaced by (3.12) without adding an auxiliary recurrence for Ari−1 (the

vectors Ari−1, Api−1 are computed by explicit matrix-vector multiplication). This variant is shown in

Algorithm 3.2

Algorithm 3.2. Conjugate Gradient method with modified coefficient computation

Input: SPD matrix A ∈ RN×N , right-hand side vector b ∈ RN , initial approximation x0 ∈ RN , maximum

number of iterations nmax.

Output: Approximate solution xn after the algorithm has been stopped.

0. Initialization: r0 = b − Ax0, p0 = r0

1. for i = 1 : imax do

2. αi−1 =

(

rT
i−1Ari−1

‖ri−1‖2
−

βi−1

αi−2

)−1

3. xi = xi−1 + αi−1pi−1

13

0 200 400 600 800 1000 1200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

HS
modified HS
GV

Fig. 3.3. HS CG (Algorithm 1.1), modified HS CG with the recursive update (3.13) (Algorithm 3.1), and GV CG

(Algorithm 2.3).

0 200 400 600 800 1000 1200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

HS
HS updated α

Fig. 3.4. HS CG (Algorithm 1.1), and the modified HS CG with explicit matrix-vectors multiplications Ari−1, Api−1

and the formula (3.12) for updating αi−1; see Algorithm 3.2.

4. ri = ri−1 − αi−1Api−1

5. evaluate the stopping criterion

6. βi =
(ri, ri)

(ri−1, ri−1)
7. pi = ri + βipi−1

9. end do

Notice that in this case, (3.4) still holds, so the gap fi can be bounded analogously to (3.7). In fact,

(3.4) will hold regardless of how αi−1 is computed as long as the same αi−1 is used in updating both the

recurrence for xi and for ri; this has been pointed out by, e.g., Greenbaum [19]. In Figure 3.4 we observe

a significant delay of convergence of Algorithm 3.2 in comparison to HS CG. The maximal attainable

accuracy seems to be similar for both algorithms.

3.5. Residual replacement strategy. To attain a higher accuracy in terms of the norm of the

residual vector, several authors suggest to synchronize the recursively computed residual r̄i and the true

residual b − Ax̄i by replacing r̄i by a direct computation of b −Ax̄i in some iterations; see, e.g., [49], [62],

[61], [3].

Since the direct computation of b − Ax̄i is rather expensive, the residual replacement should occur

14

0 200 400 600 800 1000 1200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

iteration number

A
−

no
rm

 o
f t

he
 e

rr
or

HS exact
HS
HS replac. at 10, 30, 50
HS replac. at 400, 450, 500
HS full residual replacement

Fig. 3.5. The HS CG implementation and the modified CG implementations with residual replacement.

only at a few iteration steps. As also emphasized in [62], these steps should be selected so that the residual

replacement does not have an effect on the rate of convergence. Based on that the authors in [62] develop

an updating strategy where they set a threshold and carry out the residual replacement when a certain

quantity containing the terms O(ε)(‖A||‖x̄i‖ + ‖r̄i‖) reaches the given threshold. The justification of the

proposed heuristics assumes that the matrix composed of the computed residual vectors is of full column

rank, which may not hold in practical computations.

In Figure 3.5 we plot the A-norm of the error in the exact computation using HS CG simulated as

above (see Figure 3.1). The orthogonality and numerical linear independence among the computed residual

vectors is lost in HS CG (solid line) very quickly, which results in a significant delay of convergence. Here,

just to illustrate the possible effects of the residual replacement on the rate of convergence, we first carry

out three residual replacements at steps n = 10, n = 30, and n = 50 before the linear independence of

the computed residual vectors is lost. In this case, we indeed do not observe a significant difference in

the convergence rate (see the red dashed line in Figure 3.5). However, three replacements after the loss

of linear independence (at steps n = 400, n = 450, and n = 500) cause a significant delay of convergence

in comparison to HS CG due to the introduction of large perturbations (relative to the residual norm

at these steps) in the recurrence relations; see the blue dashed line. In Figure 3.5 we also plot the A-

norm of the error in the algorithm with full residual replacement, in which r̄i is replaced by the direct

computation of b − Ax̄i in each iteration step. This costly strategy keeps the gap between the true and

updated residuals on the level O(ε)‖A‖(‖x̄i‖+ ‖x‖). As expected based on the results in [62], this causes

a significant deterioration of convergence rate. Similar behavior in terms of the delay of convergence

when using various residual replacement strategies has also been observed by Meurant [36, Section 6.4],

who suggests an optional residual replacement heuristic. Residual replacement strategies deserve further

attention and thorough analysis.

We point out that for this chosen test problem, HS CG already attains an accurate approximate

solution, and therefore we do not see in Figure 3.5 further improvement from the use of residual

replacement.

4. Example numerical stability analysis. In the following we give an example of a numerical

stability analysis for one particular CG implementation. We will focus on the coupled two-term recurrence

version extended by the recurrence (3.13) for the vectors si = Api; see Algorithm 3.1. The purpose is

to show through this simple and artificial example the methodology that can be used, with appropriate

extensions, to perform full-scale analysis of algorithms like GV CG. Such full-scale analysis is out of

the scope of this paper. We will show that the maximal attainable accuracy of Algorithm 3.1 can be

significantly worse than in HS CG (Algorithm 1.1). It is worth pointing out that in Figure 3.3, this

15

difference is not substantial, which underlines the need for extensive experiments in order to gather reliable

numerical evidence about the behavior of any implementation. Introducing the notation

Pn = (p0, . . . , pn−1), Rn = (r0, . . . , rn−1) and Sn = (s0, . . . , sn−1),

the recurrences (3.8) and (3.13) (lines 7 and 8 in Algorithm 3.1) for i = 1, . . . , n − 1 can be written

Rn = PnUn, ARn = SnUn, (4.1)

where Un is the n-by-n unit upper bidiagonal matrix of the form

Un =













1 −β1 0 0

0 1
. . . 0

...
. . . 1 −βn−1

0 . . . 0 1













. (4.2)

The quantities computed in finite precision arithmetic (denoted here with bars1) satisfy

x̄i = x̄i−1 + ᾱi−1p̄i−1 + δxi, ‖δxi‖ ≤ O(ǫ)max{‖x̄i−1‖, ‖x̄i‖}, (4.3)

r̄i = r̄i−1 − ᾱi−1s̄i−1 + δri, ‖δri‖ ≤ O(ǫ)max{‖r̄i−1‖, ‖ᾱi−1s̄i−1‖}, (4.4)

p̄i = r̄i + β̄ip̄i−1 + δpi, ‖δpi‖ ≤ O(ǫ)max{‖r̄i‖, ‖β̄ip̄i−1‖}, (4.5)

s̄i = Ar̄i + β̄is̄i−1 + δsi, ‖δsi‖ ≤ O(ǫ)max{‖A‖‖r̄i‖, ‖β̄is̄i−1‖}, (4.6)

where i = 1, . . . , n − 1. Similarly to (4.1), the recurrences (4.5) and (4.6) for i = 1, . . . , n − 1 can be

rewritten into

R̄n = P̄nŪn − ∆Pn, AR̄n = S̄nŪn − ∆Sn, (4.7)

where ∆Pn = (δp0, . . . , δpn−1) and ∆Sn = (δs0, . . . , δsn−1). It is clear from (4.5) and (4.6) that

‖δpi‖ ≤ O(ǫ)(‖r̄i‖ + ‖β̄ip̄i−1‖) ≤ O(ǫ)(‖R̄n‖ + ‖P̄n‖‖Ūn‖),

‖δsi‖ ≤ O(ǫ)(‖A‖‖r̄i‖ + ‖β̄is̄i−1‖) ≤ O(ǫ)(‖A‖‖R̄n‖ + ‖S̄n‖‖Ūn‖),

for each i = 0, . . . , n − 1. Since ‖∆Pn‖ ≤ ‖∆Pn‖F and ‖∆Sn‖ ≤ ‖∆Sn‖F , we obtain the bounds

‖∆Pn‖ ≤ O(ǫ)(‖R̄n‖ + ‖P̄n‖‖Ūn‖),

‖∆Sn‖ ≤ O(ǫ)(‖A‖‖R̄n‖ + ‖S̄n‖‖Ūn‖).

The gap fn between the recursively updated residual r̄n and the true residual b−Ax̄n can be written

in the form

fi = r̄i − (b − Ax̄i)

= r̄i−1 − ᾱi−1s̄i−1 + δri − (b − A(x̄i−1 + ᾱi−1p̄i−1 + δxi))

= fi−1 − ᾱi−1gi−1 + δri + Aδxi, (4.8)

where

gi−1 = s̄i−1 − Ap̄i−1

1Mathematically (assuming exact arithmetic), si = Api. In finite precision computations, however, s̄i computed via

(3.13) can no longer be identified with the multiplication Ap̄i. This point is very important. Examples of confusion mixing

mathematically equivalent but computationally different quantities can be seen in recently published literature.

16

denotes the gap between the recursively computed vector s̄i−1 and the computed direction vector p̄i−1

multiplied by A. Hence, by induction,

fn = f0 −
n−1
∑

i=0

ᾱigi +
n

∑

i=1

δri + A
n

∑

i=1

δxi. (4.9)

We see from (4.9) that fn is a superposition of the effects of local errors δxi and δri and the differences

gi multiplied by the coefficients ᾱi throughout all iteration steps i = 0, . . . , n − 1. We will show that the

sizes of gi may play a decisive role in the maximum attainable accuracy of Algorithm 3.1. Introducing the

notation Gn = (g0, . . . , gn−1) and dn = (ᾱ0, . . . , ᾱn−1)
T , the formula (4.9) can be written as

fn = f0 +
n

∑

i=1

(δri + Aδxi) − Gndn. (4.10)

We will show that the size of gi can be significantly larger than the error in the floating point computation

fl(Ap̄i), i.e.,

‖fl(Ap̄i) − Ap̄i‖ ≤ O(ǫ)‖A‖‖p̄i‖.

From (4.7) we have

Gn = S̄n − AP̄n = (∆Sn − A∆Pn)Ū−1
n .

Taking the norms and assuming that the matrix Ūn is numerically nonsingular with O(ǫ)κ(Ūn) < 1, we

get

‖Gn‖ ≤ (‖∆Sn‖ + ‖A‖‖∆Pn‖) ‖Ū
−1
n ‖

≤ O(ǫ)
[

(‖S̄n‖ + ‖A‖‖P̄n‖)‖Ūn‖ + ‖A‖‖R̄n‖
]

‖Ū−1
n ‖

≤ O(ǫ)
[

(‖Gn‖ + 2‖A‖‖P̄n‖)‖Ūn‖ + ‖A‖‖R̄n‖
]

‖Ū−1
n ‖

≤
O(ǫ)

1 −O(ǫ)
[κ(Ūn)‖A‖‖P̄n‖ + ‖A‖‖R̄n‖‖Ū

−1
n ‖]. (4.11)

The first term in the bound (4.11) is larger than O(ǫ)‖A‖‖P̄n‖ by a factor of κ(Ūn) and it suggests that the

local errors at the individual steps contributing to the size of the difference fn = r̄n − (b − Ax̄n) in (4.10)

can potentially be amplified by the entries in Ū−1
n . Since the matrix Ūn is unit upper bidiagonal, the

entries of its inverse can be expressed in terms of the products of the coefficients β̄i, for i = 1, . . . , n − 1,

i.e.,

Ū−1
n =



















1 β̄1 β̄1β̄2 . . . β̄n−1

0 1 β̄2 . . . β̄2 . . . β̄n−1

...
. . .

. . .
. . .

...
...

. . . 1 β̄n−1

0 0 1



















. (4.12)

In exact arithmetic, the coefficient βi in Algorithm 3.1 is equal to βi = ‖ri‖
2/‖ri−1‖

2 and the multiplicative

factors βiβi+1 . . . βj are equal to

βiβi+1 . . . βj =
‖rj‖

2

‖ri−1‖2
, i < j.

Consequently, due to possible oscillations of the CG residual norms, the factors ‖rj‖
2/‖ri−1‖

2 can for

some i < j be rather large. Similar reasoning can also be applied to the norm of the updated residuals

‖r̄ℓ‖, leading potentially to large products of the computed coefficients β̄iβ̄i+1 . . . β̄j in (4.12) and to the

17

ill-conditioned matrix Ūn. Consequently, a dramatic amplification of the local errors can be expected and

the maximum attainable accuracy in computations using Algorithm 3.1 can be significantly worse than

when the standard Algorithm 1.1 is used.

This analysis resembles the results for the three-term CG implementations presented in [22]. It

demonstrates that a seemingly innocuous change in the CG implementation can turn the two-term

recurrence CG into a three-term recurrence CG with substantially different (and often worse) numerical

behavior.

5. Conclusions. As mentioned in the Introduction, Krylov subspace methods are highly nonlinear

in the input data A,b. This makes them incredibly powerful methods in terms of being efficient solvers,

but also makes them inherently difficult to analyze and understand. In this work, we have studied the

effects of various modifications to the standard CG method on convergence rate and attainable accuracy

for an example problem. The modifications studied include using 3-term recurrences, adding auxiliary

recurrences, changing the way in which the recurrence coefficients are computed, and using residual

replacement. As an example, we outline a way to perform stability analysis for a particular CG variant that

uses an additional auxiliary recurrence for the product Api. This demonstrates how one might perform a

numerical stability analysis for more complex pipelined CG variants such as GV CG.

As we as a community push toward the goal of exascale-level computational science, it is important

that we not forget the bigger picture of what we want to accomplish: enabling scientific insight, analysis,

and discovery through the use of computation. Too often it is the case that new variants of Krylov

subspace methods are derived with the goal of optimizing performance, and only speed per iteration is

reported as a performance metric. This fails to capture the whole picture of the method’s effectiveness

within the context of a scientific application. If the modifications to the method cause a convergence

delay with a greater effect than the per-iteration performance improvement, the modified method may

actually be slower than the standard approach in a practical setting. If the modifications to the method

cause a significant decrease in attainable accuracy, then the method may have no use in some scientific

applications, making any gains in iteration speed for naught.

It is clear then that in the landscape of high-performance computing, the design and implementation

of iterative solvers requires a holistic approach. In selecting the right method and parameters to use

for a given problem, we must consider the expected time per iteration as well as the numerical stability

and convergence properties, which we have seen depend heavily on the particular recurrences used in the

method as well as numerical properties of the input data. We must also consider the performance and use

of the Krylov subspace method within the context of the overall scientific application.

Related to that, it is very rare that Krylov subspace methods can be used in practice without some

transformation of the problem, generally called preconditioning. Technically, this involves introducing

additional matrix-vector operations within each iteration step (typically solving a linear algebraic system

with the matrix representing the preconditioner). In numerical stability analysis, preconditioning

can be included using the standard methodology developed for the unpreconditioned methods. Since

preconditioning is closely linked with discretization (see, e.g., [31]), high-performance computing efficiency

may stimulate new developments that will consider this link instead of elaborating only on the level of the

algebraic system arising from the separated discretization step.

In light of this, we can give a few recommendations on what must be done when deriving a new

variant of a Krylov subspace method (or a new technique to be used together with an existing variant, e.g.,

residual replacement). When deriving a new Krylov subspace method variant, one must analyze the effects

on attainable accuracy and convergence rate. Ideally, this should be done both by deriving theoretical

results and by performing a thorough experimental evaluation of the method. We stress that theoretical

results on convergence rate assuming exact computation cannot be applied to inexact computations unless

such application is rigorously justified by a thorough analysis (this point is of particular importance for

methods using short recurrences). An experimental study should include problems of various sizes and

numerical properties, as well as tests for those problems on various computing platforms. It is also worth

investigating whether the new variant is fundamentally different than other variants previously studied in

18

the literature, or whether such differences are only superficial. For example, as we have shown in Section

3.3, certain modified variants of the coupled 2-term recurrence version of CG very closely resemble the

3-term recurrence method ST CG.

We stress that we remain optimistic that pipelined Krylov subspace methods and other

synchronization-reducing variants can certainly be useful in achieving practical speedups for certain

problems in a number of application domains; there are likely many problems for which the convergence

delay in methods like GV CG does not negate the savings from reduced synchronization, and for which the

resulting attainable accuracy is acceptable. However, as numerical analysts, it is our task to identify how

significant these effects can be in finite precision, to identify classes of problems for which such methods

can be used, and to improve our overall understanding of the tradeoffs between reducing synchronization

and maintaining the numerical properties of the method. As we work toward enabling computational

science at the exascale level, it is our hope that this manuscript helps guide the way toward the future

design and analysis of efficient Krylov subspace methods.

REFERENCES

[1] G. M. Ballard, Avoiding Communication in Dense Linear Algebra, ProQuest LLC, Ann Arbor, MI, 2013. Thesis

(Ph.D.)–University of California, Berkeley.

[2] A. Bouras and V. Frayssé, Inexact matrix-vector products in Krylov methods for solving linear systems: a relaxation

strategy, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 660–678.

[3] E. Carson and J. Demmel, A residual replacement strategy for improving the maximum attainable accuracy of s-step

Krylov subspace methods, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 22–43.

[4] E. C. Carson, Communication-Avoiding Krylov Subspace Methods in Theory and Practice, ProQuest LLC, Ann Arbor,

MI, 2015. Thesis (Ph.D.)–University of California, Berkeley.

[5] Y. Chauvet and G. Meurant, Multitasking on the CRAY X-MP, The Journal of Systems and Software, 2 (1986),

pp. 17–20.

[6] A. T. Chronopoulos and C. W. Gear, On the efficient implementation of preconditioned s-step conjugate gradient

methods on multiprocessors with memory hierarchy, Parallel Comput., 11 (1989), pp. 37–53.

[7] , s-step iterative methods for symmetric linear systems, J. Comput. Appl. Math., 25 (1989), pp. 153–168.

[8] E. D’Azevedo, V. Eijkhout, and C. Romine, Reducing communication costs in the conjugate gradient algorithm on

distributed memory multiprocessors, Technical Report ORNL TM/12192, Oak Ridge National Laboratory, 1992.

[9] , Lapack working note 56: Reducing communication costs in the conjugate gradient algorithm on distributed

memory multiprocessors, Technical Report, University of Tennessee, Knoxville, TN, USA, 1993.

[10] J. Dongarra et al., The international exascale software project roadmap, Int. J. High Perform. Comput. Appl., 25

(2011), pp. 3–60.

[11] I. Duff, R. Grimes, and J. Lewis, Users’ guide for the Harwell-Boeing sparse matrix collection (release I), 1992.

[12] M. Engeli, Th. Ginsburg, H. Rutishauser, and E. Stiefel, Refined iterative methods for computation of the solution

and the eigenvalues of self-adjoint boundary value problems, Mitt. Inst. Angew. Math. Zürich. No., 8 (1959), p. 107.

[13] B. Fischer, Polynomial based iteration methods for symmetric linear systems, Wiley-Teubner Series Advances in

Numerical Mathematics, John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1996.

[14] D. Gannon and J. van Rosendale, Parallel architectures for iterative methods on adaptive, block structured grids, in

Elliptic problem solvers, II (Monterey, Calif., 1983), Academic Press, Orlando, FL, 1984, pp. 93–104.

[15] T. Gergelits and Z. Strakoš, Composite convergence bounds based on Chebyshev polynomials and finite precision

conjugate gradient computations, Numer. Algorithms, 65 (2014), pp. 759–782.

[16] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose, Hiding global communication latency in the GMRES

algorithm on massively parallel machines, SIAM J. Sci. Comput., 35 (2013), pp. C48–C71.

[17] P. Ghysels and W. Vanroose, Hiding global synchronization latency in the preconditioned conjugate gradient

algorithm, Parallel Comput., 40 (2014), pp. 224–238.

[18] A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences, Linear Algebra Appl., 113

(1989), pp. 7–63.

[19] , Estimating the attainable accuracy of recursively computed residual methods, SIAM J. Matrix Anal. Appl., 18

(1997), pp. 535–551.

[20] A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and conjugate gradient

computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.

[21] W. Gropp, Update on libraries for blue waters, a presentation on the third workshop of the

INRIA-Illinois joint-laboratory on petascale computing, June 21-24, 2010, Bordeaux, France,

http://jointlab-pc.ncsa.illinois.edu/events/workshop3/agenda.html.

[22] M. H. Gutknecht and Z. Strakoš, Accuracy of two three-term and three two-term recurrences for Krylov space

solvers, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 213–229 (electronic).

19

[23] L. A. Hageman and D. M. Young, Applied iterative methods, Academic Press, Inc. [Harcourt Brace Jovanovich,

Publishers], New York-London, 1981. Computer Science and Applied Mathematics.

[24] M. R. Hestenes, Iterative methods for solving linear equations, Report 52-9, NAML, 1951. Reprinted in Journal of

Opeimization Theory and Applications, Volume 11, pp. 323–334, 1973.

[25] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. of Research of the

National Bureau of Standards, 49 (1952), pp. 409–435.

[26] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, second ed., 2002.

[27] M. Hoemmen, Communication-avoiding Krylov subspace methods, ProQuest LLC, Ann Arbor, MI, 2010. Thesis

(Ph.D.)–University of California, Berkeley.

[28] L. Johnsson, Highly concurrent algorithms for solving linear systems of equations, Tech. Report 5079-TR-83, California

Institute of Technology, 1983.

[29] , Highly concurrent algorithms for solving linear systems of equations, in Elliptic problem solvers, II (Monterey,

Calif., 1983), Academic Press, Orlando, FL, 1984, pp. 105–126.

[30] J. Liesen and Z. Strakoš, Krylov Subspace Methods: Principles and Analysis, Oxford University Press, 2013.

[31] J. Málek and Z. Strakoš, Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs,

SIAM Spotlight Series, SIAM, Philadelphia, 2015.

[32] K. McManus, S. Johnson, and M. Cross, Communication latency hiding in a parallel conjugate gradient method,

in Eleventh International Conference on Domain Decomposition Methods (London, 1998), DDM.org, Augsburg,

1999, pp. 306–313 (electronic).

[33] G. Meurant, Numerical experiments for the preconditioned conjugate gradient method on the Cray-X-MP/2, tech.

report, University of California, Berkeley, CA, 1984.

[34] , Multitasking the conjugate gradient method on the CRAY X-MP/48, Parallel Comput., 5 (1987), pp. 267–280.

[35] , Computer Solution of Large Linear Systems, Elsevier, Amsterdam – Lausanne – New York – Oxford – Shannon

– Singapore – Tokyo, 1999.

[36] , The Lanczos and conjugate gradient algorithms, vol. 19 of Software, Environments, and Tools, Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. From theory to finite precision computations.

[37] G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms in finite precision arithmetic, Acta

Numer., 15 (2006), pp. 471–542.

[38] D. P. O’Leary, Z. Strakoš, and P. Tichý, On sensitivity of Gauss-Christoffel quadrature, Numer. Math., 107 (2007),

pp. 147–174.

[39] C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, PhD thesis, London

University, London, UK, 1971.

[40] , Computational variants of the Lanczos method for the eigenproblem, IMA J. Appl. Math., 10 (1972), pp. 373–

381.

[41] , Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, IMA J. Appl. Math., 18

(1976), pp. 341–349.

[42] , Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem, Linear Algebra Appl., 34

(1980), pp. 235–258.

[43] J. K. Reid, On the method of conjugate gradients for the solution of large sparse systems of linear equations, in Large

sparse sets of linear equations (Proc. Conf., St. Catherine’s Coll., Oxford, 1970), Academic Press, London, 1971,

pp. 231–254.

[44] J. B. Rosser, Rapidly converging iterative methods for solving linear equations, in Simultaneous linear equations and

the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series, No. 29, (Proceedings

of a symposium held August 23-25, 1951, in Los Angeles, California), U.S. Government Printing Office, Washington,

D. C., 1953, pp. 59–64.

[45] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM J. on Scientific and

Statistical Computing, 6 (1985), pp. 865–881.

[46] , Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1200–1232. Sparse

matrix algorithms on supercomputers.

[47] V. Simoncini and D. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing,

SIAM J. Sci. Comput., 25 (2003), pp. 454–477.

[48] , On the occurrence of superlinear convergence of exact and inexact Krylov subspace methods, SIAM Review, 47

(2005), pp. 247–272.

[49] G. L. G. Sleijpen and H. A. van der Vorst, Reliable updated residuals in hybrid Bi-CG methods, Computing, 56

(1996), pp. 141–163.

[50] G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema, BiCGstab(l) and other hybrid Bi-CG methods, Numer.

Algorithms, 7 (1994), pp. 75–109.

[51] E. Stiefel, Ausgleichung ohne Aufstellung der Gaußschen Normalgleichungen, Wiss. Z. Technische Hochschule

Dresden, 2 (1952/53), pp. 441–442.

[52] , Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme, Commentarii Mathematici

Helvetici, 29 (1955), pp. 157–179.

[53] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why it works in finite precision

computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–80 (electronic).

20

[54] Z. Strakoš, Performance of the EC 2345 array processor, Computers and Artificial Intelligence, 4 (3) (1985), pp. 273–

284.

[55] , Effectivity and optimizing of algorithms and programs on the host-computer/array-processor system, Parallel

Computing, 4 (2) (1987), pp. 189–207.

[56] , On the real convergence rate of the conjugate gradient method, Linear Algebra Appl., 154/156 (1991), pp. 535–

549.

[57] G. Szegö, Orthogonal polynomials, Colloquium Publications Colloquium Publications Amer Mathematical Soc,

American Mathematical Society, 4th ed., 1939.

[58] J. van den Eshof, Nested Iteration methods for Nonlinear Matrix Problems, PhD thesis, Sept. 2003.

[59] J. van den Eshof and G. Sleijpen, Inexact Krylov subspace methods for linear systems, SIAM J. Matrix Anal. Appl.,

26 (2004), pp. 125–153.

[60] H. van der Vorst, Parallel iterative solution methods for linear systems arising from discretized PDE’s, special

course on parallel computing in CFD, Tech. Report URN:NBN:NL:UI:10-1874-1640, France Workshop Lecture

Notes, http://dspace.library.uu.nl/handle/1874/1640, Utrecht University, 2001.

[61] H. A. van der Vorst, Iterative Krylov methods for large linear systems, vol. 13 of Cambridge Monographs on Applied

and Computational Mathematics, Cambridge University Press, Cambridge, 2003.

[62] H. A. van der Vorst and Q. Ye, Residual replacement strategies for Krylov subspace iterative methods for the

convergence of true residuals, SIAM J. Sci. Comput., 22 (2000), pp. 835–852 (electronic).

[63] J. van Rosendale, Minimizing inner product data dependencies in conjugate gradient iteration, Tech. Report 172178,

ICASE-NASA, 1983.

21

