
Preconditioner Updates Applied to CFD Model Problems

Philipp Birken, Jurjen Duintjer Tebbens, Andreas Meister and Miroslav Tůma

October 8, 2007

The work of the first and third author is supported by the German Science Founda-
tion as part of the Sonderforschungsbereich SFB/TR TRR 30 ,,Prozessintegrierte Herstel-
lung funktional gradierter Strukturen auf der Grundlage thermo-mechanisch gekoppelter
Phänomene”, project C2. The work of the second and fourth author is supported by the
Program Information Society under project 1ET400300415. The work of the second author
is also supported by project number KJB100300703 of the Grant Agency of the Academy
of Sciences of the Czech Republic.

1

Abstract

This paper deals with solving sequences of nonsymmetric linear systems with a block
structure arising from compressible flow problems. The systems are solved by a pre-
conditioned iterative method. We attempt to improve the overall solution process by
sharing a part of the computational effort throughout the sequence. Our approach is
fully algebraic and it is based on updating preconditioners by a block triangular update.
A particular update is computed in a black-box fashion from the known preconditioner
of some of the previous matrices, and from the difference of involved matrices. Results
of our test compressible flow problems show, that the strategy speeds up the entire com-
putation. The acceleration is particularly important in phases of instationary behavior
where we saved about half of the computational time in the supersonic and moderate
Mach number cases. In the low Mach number case the updated decompositions were
similarly effective as the frozen preconditioners.

Keywords: Finite volume methods; Update preconditioning; Krylov subspace methods;
Euler equations; Conservation laws

1 Introduction

Finite volume methods are standard discretization schemes for both stationary and insta-
tionary problems in aerodynamics. As the CFL condition puts a severe restriction on the
time step of explicit methods, time integration is often done implicitly. Using Newton’s
method for the appearing nonlinear equation systems, the problem of solving a partial dif-
ferential equation numerically is transformed into the problem of solving a sequence of linear
equation systems. In general, up to 80% of the CPU time for a flow solver is spent solving
the linear systems. Thus, the major bottleneck in numerical simulation is the solution of the
sequence of linear systems and there is a continuous demand to improve upon the existing
methods.

Popular methods used in solving the large and sparse linear systems involved here include
multigrid methods and Krylov subspace methods. Multigrid methods use multiple dis-
cretization levels and combine several techniques on the different levels (see, e.g. [26]). For
some important classes of problems they are asymptotically optimal, but they can also be
sensitive to changes of the problem [11]. Krylov subspace methods are based on projecting
the large linear system to subspaces of small dimension (see, e.g. [24]). The subspaces are
generated through multiplication of vectors by the system matrix, thus enabling exploita-
tion of sparsity. In favorable cases, dominant properties become apparent at an early stage
of computation and a satisfactory approximation to the solution can be obtained in a rela-
tively small number of iterations. In practice, one often combines multigrid methods with
Krylov subspace methods by using a method of one class as a preconditioner for a method
of the other class (see, e.g. [29]). We will consider here Krylov subspace methods, but the
techniques we describe may also be applied to other solvers. For the non-normal linear sys-
tems that we have to solve, basically two classes of Krylov subspace methods may be used.
In the first class, whose main representative is the GMRES method [25], we find methods
that reduce residual norms in every iteration, but that must be restarted for reasons of

2

storage and computational costs. The second class contains methods like BiCGSTAB [27],
working with short recurrences but without guarantee that the process does not start to
oscillate or does not break down. Often more important than the choice of the specific
Krylov subspace method used is the choice of the preconditioner for the linear systems. For
our problems, incomplete factorizations lead to good results that are in many cases hard to
improve.

In order to speed up the solution process of the linear systems arising in CFD problems,
we will not search for new and even more sophisticated linear solvers or preconditioners
in this paper. Instead, we will try to accelerate the existing methods by considering the
whole sequence of linear systems and by trying to share some of the computational effort
throughout the sequence. In stationary and instationary problems linear systems are often
close during many subsequent iterations of the nonlinear process. A well-known way to
exploit this is by skipping some evaluations of the Jacobian in Newton’s method, changing
only the right hand sides. Unfortunately, this leads to weaker convergence of the nonlinear
process. Concerning preconditioning, closeness of system matrices has been taken advantage
of only in a rather naive way. Very often, a preconditioner is recomputed periodically with
some heuristic choice of period, and at a certain point it may be completely frozen [18].

In recent years, a few attempts to update preconditioners for large sparse systems have
been made in the numerical linear algebra community. The main idea is to derive efficient
preconditioners from previous systems of the sequence in a cheap way, thus avoiding the
expensive computation of a new preconditioner. For instance, in case of a sequence of linear
systems from a quasi-Newton method, straightforward approximate small rank updates can
be useful (this is shown in the SPD case in [20], [6]). SPD matrices and updates of incom-
plete Cholesky preconditioners are considered in [19]. In [3, 7] approximate diagonal and
tridiagonal preconditioner updates were introduced for sequences of parametric complex
symmetric linear systems. This technique was generalized to approximate (possibly per-
muted) triangular updates for nonsymmetric sequences in [10]. Finally, recycling of Krylov
subspaces by using adaptive information generated during previous runs has been used to
update both preconditioners and Krylov subspace iterations (see [22], [15], [21] and [2]).
Note that from the mentioned techniques only the last two are designed for sequences of
nonsymmetric linear systems.

In this paper we investigate the effect of updating preconditioners on the speed of the
solution process for some model problems from CFD. These are chosen from a broad range
of Mach numbers to represent different wellknown types of problems. The model problems
lead to nonsymmetric linear systems and we will update the corresponding preconditioners
based on the technique proposed in [10]. To our knowledge, this kind of strategy is applied to
the CFD model problems for the first time. We will describe how we adapted the original
technique in order to be used for the model problems. Then we demonstrate that the
technique is able to speed up the solution of the involved linear systems, with an acceleration
being particularly significant in phases with important changes between subsequent system
matrices. In the next section we address the governing equations and the discretization we
used for the numerical solution process. In Section 3 we say some words about solving the
linear systems in general and then concentrate on the update technique. Among others, we
present some new theoretical results and a detailed overview of the modifications for block

3

systems. In Section 4 we display and discuss the results of numerical experiments with the
model problems. Unless otherwise stated, ‖ · ‖ denotes an arbitrary matrix norm.

2 Governing Equations and Finite Volume Discretization

2.1 The Euler Equations

The equations governing our model problems are the 2D Euler equations. These consist
of the conservation laws of mass, momentum and energy, closed by an equation of state.
Given an open domain D ⊂ R2, the equations can be expressed as

∂tu +
2∑

j=1

∂xj fj(u) = 0 in D × R+,

where u = (ρ, m1,m2, ρE)T represents the vector of conserved variables. The flux functions
fj are given by

fj(u) =




mj

mjv1 + δ1jp
mjv2 + δ2jp

Hmj


 , j = 1, 2,

with δij denoting the Kronecker symbol. The quantities ρ, v = (v1, v2)T , m = (m1,m2)T ,
E and H = E + p

ρ describe the density, velocity, momentum per unit volume, total energy
per unit mass and total enthalpy per unit mass, respectively. The pressure is defined by
the equation of state for a perfect gas p = (γ − 1)ρ(E − 1

2 |v|2), where γ denotes the ratio
of specific heats, taken as 1.4 for air.

2.2 The Finite Volume Method

We will use here a finite volume discretization. As this approach is covered extensively in
the literature [14], [17] we will give only a short summary of the specific concepts used.
Our spatial discretization of the time independent physical domain into control volumes or
cells σi is constructed as a secondary mesh from an underlying Delaunay-triangularization,
see figure 1 (left). For a control volume σi with volume |σi|, let N(i) denote the set of
its neighbors. Then integration of the Euler equations over σi and the divergence theorem
results in (see figure 1 (right) for the notation)

d

dt
ui(t) = − 1

|σi|
∑

j∈N(i)

2∑

k=1

∫

lkij

2∑

`=1

f`(u)nk
ij,` ds. (1)

We now consider the mean value ui(t) := 1
|σi|

∫
σi

u dx in each cell. The line integrals
are computed using a second order Gaussian quadrature rule with Gauss point xk

ij and a

4

��
��

��

��
��

xj
xi�ixm xkij �j

�m xs l1ijl2ij n1ijn2ijxi
xj

xkxs liljlk
Figure 1: Triangularization and boxes (left). Geometry between boxes (right)

numerical flux function H, which we have chosen to be AUSMDV from [28] or for low Mach
numbers a Lax-Friedrichs-type flux developed for these cases [16]. Then, we obtain the
following evolution equation for the cell averages on σi:

d

dt
ui(t) = − 1

|σi|
∑

j∈N(i)

2∑

k=1

|lkij |H(ui(t),uj(t);nk
ij). (2)

To obtain higher order, we use a linear reconstruction technique, combined with the Barth-
Jespersen-limiter to reduce the order where necessary.

Implicit time stepping schemes inherently fulfill the CFL stability condition, since the nu-
merical domain of dependence always covers the physical one. In the numerical experiments
we will consider the computation of steady states via timestepping with large time steps.
Therefore, we employ the implicit Euler scheme and obtain the nonlinear system

Ωun+1 = Ωun + ∆tH(un+1),

where u is the vector of the conservative variables from all cells. Correspondingly, H(u)
denotes an evaluation of the numerical flux function on the whole grid. Ω is the diagonal
matrix of the volumes of the cells, corresponding to the variables in u. This equation is
solved approximately using one step of Newton’s method, which is sufficient for steady
state problems. For unsteady problems more steps are often required and the extension of
the method is straightforward. The starting value here is un and the corresponding linear
system of equations can be written as (see (2))

A∆u = rhs(un), whereA =
[
Ω + ∆t

∂H(u)
∂u

]

un

, (3)

with the update un+1 = un + ∆u. The matrix A = (Aij) has a block structure, where
each element Aij ∈ R4×4 vanishes if the corresponding control volumes σi and σj are not
adjacent. Clearly, A represents a large and sparse matrix. As the involved grid is in
general unstructured, so is the sparsity pattern of A. Note that the sparsity pattern of

5

these matrices remains the same during all time steps. Whereas in some cases at least the
pattern is symmetric, usually the matrix itself is nonsymmetric. From (3) we can deduce
that the matrix is close to a block diagonal matrix for small time steps and small derivatives
of H(u). Diagonal dominance implies some attractive properties of preconditioners and
iterative solvers; however, in our problems the dominance is too weak to take advantage of.

3 Iterative Solution of the Involved Systems

3.1 Preconditioned Krylov Subspace Methods

As we mentioned in the introduction, we will solve the linear systems from (3) with Krylov
subspace methods. For simplicity of notation, we denote linear systems from (3) by Ax = b.
For the nonsymmetric matrices we have here, the choices of robust Krylov subspace methods
are somewhat limited. A popular and efficient method with low demands on storage costs is
the BiCGSTAB method [27]. Whereas the similarly popular GMRES method [25] has some
other advantages that we explained in the introduction, we concentrate here on BiCGSTAB
because for our finite volume scheme it has turned out to be slightly faster than GMRES.
Of major importance for the performance of Krylov subspace methods is the choice of the
preconditioner. From experience, right preconditioning seems to be the better choice in the
context of compressible flows. Therefore, from now on we assume M is a right preconditioner
approximating A which is applied as

AM−1xP = b, x = M−1xP .

An overview of preconditioners with special emphasis on application in flow problems can
be found in [18] and [8]. In our context, the most appropriate class of preconditioners
is that of incomplete LU (ILU) decompositions. Here we focus on ILU(0), which has no
additional level of fill beyond the sparsity pattern of the original matrix A. This has
the obvious advantage that it enables straightforward a priori allocation, and its memory
demands are more predictable than for some other incomplete decompositions. Though
ILU(0) may not be powerful enough for some difficult problems, for an important number
of applications from CFD, including our model problems, it is efficient. In fact, as most
problems have a block structure, the used preconditioner is a block ILU(0) decomposition
(BILU(0)) where pointwise operations are replaced by blockwise operations in the Gaussian
elimination process. In our model problems, the blocks correspond to the 4 × 4 units the
Jacobian consists of (see (3)). For the involved BILU(0) decompositions we use the following
notation. We assume they are computed rowwise, hence the result is a block lower triangular
factor denoted by L with 4 × 4 identity matrices on the main diagonal and a block upper
triangular factor UD with arbitrary nonsingular 4 × 4 matrices on the main diagonal. In
addition, we denote by D the block diagonal part of UD and let U be the matrix UD scaled
by D−1, i.e. U = D−1UD. Then U has, like L, 4×4 identity matrices on its main diagonal.

The main focus of this paper is efficient preconditioning of the sequences of linear systems
arising from the scheme described above. Some strategies to share part of the computational
effort throughout a sequence were mentioned in the introduction. The two tools we will use

6

here are periodic recomputation of preconditioners combined with approximate updating.
The idea of periodic recomputation is clear: Computing the preconditioner for every new
linear system is time-consuming and unnecessary when the system matrices change slowly.
Therefore, we will freeze preconditioners while solving several subsequent systems. Here
we will not consider the problem of finding optimal recomputation periods or sophisticated
strategies to adapt periods dynamically. This decision is supported by a set of experiments
in which we failed to improve a fixed period for recomputation of the frozen preconditioner
by simple adaptation guided by a reference number of iterations. The reason was that by
simple adaptation to the iteration counts of our preconditioned iterative method we may fail
to distinguish what are small/large numbers of iterations with respect to different phases
of the problem. Different phases, which may be induced not only by the physics, but also
by other adaptive procedures (e.g. for timestepping) may have completely different conver-
gence properties. Therefore, dynamic strategies for preconditioner recomputations should
be rather sophisticated. Instead, we will use periodically recomputed frozen preconditioners,
which we found to perform rather well.

Our contribution concentrates on a way to update the frozen preconditioners to enhance
their power. We believe that our strategy is easy to implement, parameter-free and with
a small overhead. The technique we base our updates on is described in [10]. In the next
section we have reformulated this strategy for the type of decomposition used here. We
present several theoretical statements on the efficiency of the updates for the BILU(0) pre-
conditioning. Furthermore, we give a detailed description of some implementation aspects
which are relevant when applying the updates to our applications.

3.2 Preconditioner Updates

In addition to a system Ax = b with preconditioner M = LUD = LDU, let A+x+ = b+

be a system of the same dimension arising later in the sequence and denote the difference
matrix A−A+ by B . We search for an updated preconditioner M+ for A+x+ = b+. We
have

‖A−M‖ = ‖A+ − (M−B)‖,
hence the level of accuracy of M+ ≡ M−B for A+ is the same, in the chosen norm, as that
of M for A. The update techniques from [10] are based on the ideal updated preconditioner
M+ = M−B. If we would use it as a preconditioner, we would need to solve systems with
M−B as system matrix in every iteration of the linear solver. Clearly, for general difference
matrices B the ideal updated preconditioner cannot be used in practice since the systems
would be too hard to solve. We will consider cheap approximations of M−B instead.

If M−B is nonsingular, we approximate its inverse by a product of factors which are easier
to invert. The approximation consists of two steps. First, we approximate M−B as

M−B = L(UD − L−1B) ≈ L(UD −B), (4)

or by
M−B = (LD−BU−1)U ≈ (LD−B)U. (5)

7

Next we replace UD −B or LD−B by a nonsingular and easily invertible approximation.
In [10] several options are proposed. We have here modified the first option in order to
apply it to BILU(0) preconditioners and will approximate as

UD −B ≈ btriu(UD −B),

or as
LD−B ≈ btril(LD−B),

where btriu and btril denote the block upper and block lower triangular parts (including
the main diagonal), respectively. Putting the two approximation steps together, we obtain
updated preconditioners in the form

M+ = L(UD−btriu(B)) (6)

and
M+ = (LD−btril(B))U. (7)

They can be obtained very cheaply. They ask only for subtracting block triangular parts
of A and A+ (and for saving the corresponding block triangular part of A). In addition,
as the sparsity patterns of the factors from the BILU(0) factorization and from the block
triangular parts of A (and A+) are identical, both backward and forward substitution with
the updated preconditioners are as cheap as with the frozen preconditioner LUD = LDU.

It is clear from the two approximations we make, that the distance of the proposed updated
preconditioners (6) and (7) to the ideal preconditioner is mainly influenced by the following
two properties. The first is closeness of L or U to the identity. If matrices have a strong
diagonal, the diagonal dominance is in general inherited by the factors L and U [5, 3],
yielding reasonable approximations of the identity. The second property that helps in
approximating the ideal preconditioner is a block triangular part containing significantly
more relevant information than the other part. In one of our model problems we emphasize
one triangular part by using a numbering of grid cells corresponding to the direction of
the flow characteristics. Summarizing, one may expect updates of the form (6) or (7) to
be accurate whenever btril(B) or btriu(B) is a useful approximation of B and when the
factor L or U is close to the identity matrix. The following lemma suggests that under
the mentioned circumstances, the updates have the potential to be more accurate than the
frozen or any other (possibly recomputed) preconditioner for A+.

Lemma 1 Let ||A−LDU|| = ε||A|| < ||B|| for some ε > 0. Then the preconditioner from
(7) satisfies

||A+ −M+|| ≤ ‖U‖ ‖bstriu(B)‖+ ||U− I|| ‖B‖+ ε||A||
||B|| − ε||A|| · ||A+ − LDU||, (8)

where bstriu denotes the block strict upper triangular part.

This result is a straightforward modification of Lemma 2.1 in [10]; a similar statement can
be obtained for updates of the form (6). Having a reference preconditioner LDU which is
not too weak we may assume that ε||A|| is small. Then the multiplication factor before

8

||A+−LDU|| in (8) is dominated by the expression ‖U‖ ‖bstriu(B)‖
‖(B)‖ + ||U− I|| , which may

become smaller than one when btril(B) contains most of B and when U is close to the
identity matrix. It is possible to show that also the stability of the updates benefits from
situations where btril(B) contains most of B and where U is close to identity. In our
context, the stability is measured by the distance of the preconditioned matrix to identity.
This conforms to the treatment of the stability in [9]. Note that the problem of stability in
ILU-type of preconditioners was introduced in the classical paper [12]. It was shown in [4]
how this problem can be alleviated by some matrix reorderings. Theorem 2.2 in [10], which
addresses this stability, can easily be adopted for our case with preconditioning from the
right instead of from the left and with block-wise factorization.

The next result is more specific to the situation we are interested in here. It presents a simple
sufficient condition for superiority of the update in the case where the frozen preconditioner
is a BILU(0) factorization. The result exploits the fact that the BILU(0) preconditioner
is an exact decomposition with the sparsity pattern of the matrix it preconditions. It is
formulated here for the update (6), but has, of course, an analogue for (7). The matrix E
denotes the error E ≡ A − LDU of the BILU(0) preconditioner and ‖ · ‖F stays for the
Frobenius norm.

Lemma 2 If √
‖E‖2

F + ‖bstril(B)‖2
F <

1− ‖I− L‖2
F

2‖I− L‖F
‖btriu(B)‖F , (9)

where bstril denotes the block strict lower triangular part of a matrix, then the accuracy of
the updated preconditioner ‖A+ − L(DU− btriu(B))‖F is higher than the accuracy
‖A+ − LDU‖F of the frozen preconditioner.

P r o o f : We have

‖A+ − L(DU− btriu(B))‖2
F = ‖A− LDU−B + L · btriu(B)‖2

F =
‖E− bstril(B)− (I− L)btriu(B)‖2

F ≤
(‖E− bstril(B)‖F + ‖(I− L)btriu(B)‖F)2 =

‖E− bstril(B)‖2
F + 2‖E− bstril(B)‖F ‖(I− L)btriu(B)‖F + ‖(I− L)btriu(B)‖2

F .

Note that the sparsity patterns of A and E are disjoint. Hence, with the assumption (9),

‖E− bstril(B)‖2
F + 2‖E− bstril(B)‖F ‖(I− L)btriu(B)‖F + ‖(I− L)btriu(B)‖2

F ≤
‖E− bstril(B)‖2

F + 2‖E− bstril(B)‖F ‖(I− L)‖F ‖btriu(B)‖F + ‖(I− L)‖2
F ‖btriu(B)‖2

F <

‖E− bstril(B)‖2
F + (1− ‖I− L‖2F)‖btriu(B)‖2

F + ‖(I− L)‖2
F ‖btriu(B)‖2

F <

‖E− bstril(B)‖2
F + ‖btriu(B)‖2

F =
‖A+ − LDU‖ − ‖btriu(B)‖2

F + ‖btriu(B)‖2
F = ‖A+ − LDU‖.

¤

Lemmas 1 and 2 may be used in practice to predict what type of update, (6) or (7), will
perform better. For example, one may compare the multiplication factor before ||A+ −

9

LDU|| in (8) when using (6) or (7) or compare the differences between the left and right
hand side in (9) for the choice (6) and the choice (7). However, inequality (9) cannot be
satisfied when the numerator is negative, which is very probable in large dimensions. Also,
our experience is that the factor before ||A+ − LDU|| in (8) is larger than one in many
cases.

Because of this we present a result which is based on the same idea as (9) but it is stronger.
The price for getting a significantly tighter bound is using a less transparent assumption.
The result also reveals that the quality of the updates is influenced by further, and more
subtle properties than only by closeness of triangular factors to the identity matrix and by
the dominance of one triangular part of B.

Lemma 3 Let

ρ =
‖btril(B)(I−U)‖F (2 · ‖E− bstriu(B)‖F + ‖btril(B)(I−U)‖F)

‖btril(B)‖2
F

< 1.

Then the accuracy ‖A+ − (LD−btril(B))U‖F of the updated preconditioner (7) is higher
than the accuracy of the frozen preconditioner ‖A+ − LDU‖2

F with

‖A+ − (LD−btril(B))U‖F ≤
√
‖A+ − LDU‖2

F − (1− ρ)‖btril(B)‖2
F . (10)

P r o o f : We have, by assumption,

‖A+ − (LD−btril(B))U‖2
F = ‖A− LDU−B+btril(B)U‖2

F

= ‖E−bstriu(B) + btril(B)(I−U)‖2
F

≤ (‖E− bstriu(B)‖F + ‖btril(B)(I−U)‖F)2

= ‖E− bstriu(B)‖2
F + ρ‖btril(B)‖2

F .

Because the sparsity patterns of A and E are disjoint,

‖E− bstriu(B)‖2
F + ‖btril(B)‖2

F = ‖E‖2
F + ‖B‖2

F = ‖E−B‖2
F = ‖A+ − LDU‖2

F .

Hence

‖E−bstriu(B)‖2
F + ρ‖btril(B)‖2

F = ‖A+ − LDU‖2
F − (1− ρ)‖btril(B)‖2

F .

¤

With (10), the value of ρ may be considered a measure for the superiority of the updated
preconditioner over the frozen preconditioner. However, interpretation of the value of ρ is
not straightforward. We may write ρ as

ρ =
(‖btril(B)(I−U)‖F

‖btril(B)‖F

)2

+ 2
‖E− bstriu(B)‖F

‖btril(B)‖2
F

, (11)

where the ratio ‖btril(B)(I−U)‖F

‖btril(B)‖F
(12)

10

shows an interesting dependence of ρ on the extent to which btril(B) is reduced after its
postmultiplication by (I−U). This is something slightly different from the dependence of
the quality of the update on the closeness of U to identity. In general, also the second term
in (11) should be taken into account; only when the lower triangular part clearly dominates
and when LDU is a powerful factorization, one may concentrate on (12). Computation of
ρ is not feasible in practice because of the expensive product in ‖btril(B)(I−U)‖F but it
offers some insight in what really influences the quality of the update. As the proof of the
lemma uses only one inequality, one may expect (10) to be a tight bound. We confirm this
in the section with numerical experiments.

We will now describe how we exploit updated preconditioners of the form (6) and (7) in
the solution process of the problems introduced in the previous section. A first issue is the
choice between (6) and (7). We can use some of the previous lemmas to make this choice
but we prefer simpler strategies. Just as the ideal preconditioner is approximated in two
steps, there are basically two types of simple criteria that can be used. The first criterion
compares the closeness of the factors to identity, namely the norms ‖L − I‖ and ‖U − I‖.
If the former norm is smaller, then we may expect the approximation made in (4) is better
than the one in (5) and we prefer to update the upper triangular part of the decomposition
as given in (6); if, on the contrary, U is closer to identity in some norm, we update the lower
triangular part according to (7). Note that a factor close to identity also leads to stable back
or forward substitution with the factor. Therefore, an important consequence of choosing
the factor which is closest to identity is that we keep, in the update, the more stable part
of the initial decomposition. Due to the lack of diagonal dominance in our applications,
stability of the factors is a relevant issue. We call this criterion the stable update criterion.
On the other hand, it is clear that the quality of the approximation UD − btriu(B) of
UD −B (or LD− btril(B) of LD−B) may have a decisive influence on the power of the
preconditioner. The second criterion consists of comparing of ‖btril(B)‖ and ‖btriu(B)‖.
We assume the most important information is contained in the dominating block triangular
part and therefore we update with (6) if btriu(B) dominates btriu(B) in an appropriate
norm. Otherwise, (7) is used. This rule is denoted by information flow criterion. Note that
in our implementation we always used the Frobenius norm to evaluate the criteria.

Our model problems lead to systems with a block structure and for efficiency reasons, this
block structure should be exploited whenever possible. In order to solve linear systems
blockwise and, in particular, work with BILU(0) decompositions, we have adapted the
original updating technique to updates of the form (6) and (7). Blockwise decompositions,
however, make the switch between (6) and (7) a slightly more complicated than in the case
of classical pointwise decompositions. Using the update (6) is straightforward but note that
in order to obtain U and to apply (7) we need to scale UD by D−1, as we explained in
Section 3.1. Scaling with inverse block diagonal matrices does have, in contrast with inverse
diagonal matrices, some influence on overall performance and should be avoided as much
as possible. Note that our stable update criterion compares ‖L − I‖ with ‖U − I‖ where
both factors L and U have a block diagonal consisting of identity blocks. This means that
in order to use the criterion we need to scale UD, even if the criterion decides for (6) and
scaling would not have been necessary. We may circumvent this possible inefficiency by
considering UD and LD instead of U and L . More precisely, we would compare ‖D−UD‖
with ‖LD−D‖. We call this third criterion the unscaled stable update criterion.

11

A related issue is the frequency of deciding about the update type based on the chosen
criterion. On one hand, there may be important differences in the performance of (6) and
(7); on the other hand, switching between the two types implies some additional costs
like, for instance, storage of both triangular parts of B. Consequently, we believe that
the criterion query should not be repeated too often. We adopted the following strategy.
After every recomputation of the BILU(0) decomposition, which takes place periodically,
we perform one query and then use the chosen type of update throughout the whole period.
With the information flow criterion we compare ‖btril(B)‖ with ‖btriu(B)‖ for the first
difference matrix B generated after recomputation, i.e. just before solving the system
following the system for which we used a new BILU(0) decomposition. For the two stable
update criteria we may decide immediately which update type should be used for the next
couple of iterations as soon as the new BILU(0) decomposition was computed. Note that
as soon as the update type is chosen, we need to store only one triangular part of the old
reference matrix A (and two triangular factors of the reference decomposition).

Another property of the applications we are interested in here, is that the solution process
typically contains heavily instationary phases followed by long nearly stationary phases.
This is reflected by parts of the sequence of linear systems with large entries in the difference
matrices and other parts where system matrices are very close. Obviously, in the latter parts
we may expect a frozen preconditioner to be powerful for many subsequent systems. Our
experiments confirm this: In stationary phases we typically observe a deterioration of only
2 to 5 iterations with respect to the iterations needed to solve the system for which the
frozen preconditioner was used. Updating the frozen preconditioner in these cases would be
counterproductive; it would add some overhead which cannot be compensated by the few
savings of iterations. In fact, in these cases there is even a risk that updates produce more
iterations, especially when the frozen preconditioner is particularly stable. We therefore
apply a very simple technique to avoid unnecessary updating. We start every period by
freezing the preconditioner. Denote the number of iterations of the linear solver needed to
solve the first system of the period by iter0 . If for the (j + 1)st system the corresponding
number of iterations iterj satisfies

iterj > iter0 + k, (13)

with some threshold k ∈ N , then we use updates for all remaining systems of the period. In
accordance with our observations, we used k = 3 . To get a clearer impression of the code
decisions to be made we have added a flow diagram. Here, p denotes the recomputation
period and m = 0, 1, 2,

4 Numerical Experiments

In this section we demonstrate the behavior of the update technique on some well known
steady state test cases. The corresponding linear equation systems are solved until the initial
residual has dropped by a factor of 107. We always compare periodic refactorization without
updating to periodic refactorization with updating, where also the three criteria for deciding
whether to use upper or lower updating are compared. The total number of BiCGSTAB
iterations as well as the total CPU time for the whole run are recorded. Our primary indi-

12

Flow diagram — preconditioner update decisions after every recomputation

Compute a block ILU decomposition LUD of A(mp) , set type = frozen

If a stable update criterion is used

Perform criterion query, scale UD if updates of the form (7) are to be used

Solve A(mp)x(mp) = b(mp) with type preconditioner in iter0 iterations

If the information flow criterion is used

Perform criterion query, scale UD if updates of the form (7) are to be used

For i = 1, 2, . . . , p− 1

Solve A(mp+i)x(mp+i) = b(mp+i) with type preconditioner in iteri iterarions

If type = frozen

If iteri > iter0 + k

Set type = updated

cator to evaluate performance is the CPU time, as a small number of BiCGSTAB iterations
may be due to the block preconditioner that takes tremendous amount of computational
time. All computations were performed on a Pentium IV with 2.4 GHz.

4.1 Supersonic flow past a cylinder

The first model problem is frontal flow at Mach 10 around a cylinder, which leads to a
steady state. 3000 steps of the implicit Euler method are performed. The grid consists
of 20994 points, whereby only a quarter of the domain is discretized, and system matrices
are of dimension 83976. The number of nonzeroes is about 1.33·106 for all matrices of the
sequence. For the initial data, freestream conditions are used. Thus, in the beginning, a
strong shock detaches from the cylinder, which then slowly moves backward through the
domain until reaching the steady state position. Therefore, the linear systems are changing
only very slowly during the last 2500 time steps and all important changes take place in
the initial phase of 500 time steps. The initial CFL number is 5, which is increased up to
7 during the iteration. The solution is shown in figure 2.

As the flow is supersonic, the characteristics point mostly in one direction. The performance
of the linear equation solver can be improved by choosing a numbering of the grid cells that
respects the direction of the flow, thereby making the matrix more triangular in nature. This
is achieved by numbering first the cells from the inflow boundary, then the cells in direction
of the characteristics and by continuing in this manner repeatedly, see [18]. Renumbering
reduces the total number of BiCGSTAB iterations by about thirty percent. Furthermore,

13

0 100 200 300 400 500
Timestep

0

10

20

30

40

50

B
iC

G
S

T
A

B
 It

er
at

io
n

s

No Updating
Updating

Figure 2: Pressure Isolines (left) and BiCGSTAB iterations per time step (right) for the
Cylinder problem

i ‖A(i) − LDU‖F ‖A(i) −M (i)‖F Bound from (10) ρ from (10)
2 37.454 34.277 36.172 0.571
3 37.815 34.475 36.411 0.551
4 42.096 34.959 36.938 0.245
5 50.965 35.517 37.557 0.104
6 55.902 36.118 38.308 0.083

Table 1: Accuracy of the preconditioners and theoretical bounds

dominance of one of the two triangular parts is exactly the situation in which we expect the
update technique to work well. Recall that Lemmas 1, 2 and 3 all suggest that the updated
preconditioner is favorably influenced by matrices with a dominating triangular part. In
figure 2 excellent performance of the updates is shown for the initial unsteady phase of the
first 500 time steps. As subsequent linear systems change heavily, frozen preconditioners
produce rapidly deteriorating numbers of BiCGSTAB iterations (with decreasing peaks
demonstrating the convergence to steady state). Updating, on the other hand, yields a
nearly constant number of iterations per time step. The recomputing period here is thirty
and the criterion used is the stable update criterion but other periods and criteria give a
similar result. With freezing, 5380 BiCGSTAB iterations are performed in this part of the
solution process, while the same computation with updating needs only 2611 iterations.

In Table 1 we explain the superior performance of the updates with the quantities from
Lemma 3 for the very first time steps; they demonstrate the general trend for the whole
instationary phase. Here, M (i) denotes the update (7) for the ith linear system. As the
upper bound (10) on the accuracy of the updates is very tight, we conclude that in this
problem the power of the updates is essentially due to the small values of ρ.

In Table 2 we display the performance of the updates for the whole sequence. To evaluate

14

No updating Stable update Unscaled stable update Information flow
Period Iter. CPU in s Iter. CPU in s Iter. CPU in s Iter. CPU in s

10 10683 7020 11782 7284 11782 7443 11782 7309
20 12294 6340 12147 6163 12147 6300 12147 6276
30 13787 7119 12503 5886 12503 5894 12503 5991
40 15165 6356 12916 5866 12916 5835 12916 5856
50 16569 6709 13139 5786 13139 5715 13139 5740

Table 2: Total iterations and CPU times for supersonic flow example

the results, first note that the reduction of the BiCGSTAB iterations happens primarily
in the first 500 time steps. After 500 time steps, freezing is a very efficient strategy and
actually gains again on updating. Thus the visual success of updating is somewhat damped
by the long stationary tail of this model problem. The different updating strategies lead to
nearly identical results, whereby the stable update criterion is the best, except for the last
two periods. As expected, the update criterions all choose to update the lower triangular
part according to (7), as the upper triangular part is close to identity due to the numbering
of the unknowns and the high Mach number. Therefore, they all obtain the same iteration
numbers. Updating is clearly better than freezing if the recomputing period is at least 20.
For recomputing periods of 30 or greater, the performance of the updating strategy does
not much depend on the period. The CPU time is decreased by about 10 % in general;
with the recomputing period 50 it reaches up to 20 %. For longer recomputing periods,
the number of iterations is reduced by even more than 20 %. For the period 10 the frozen
preconditioner does not deteriorate very much during the periods and achieves lower overall
numbers of iterations (and timings) than any updates. This must be caused by the fact
that the frozen preconditioner is more stable than the updates. However, the recomputing
period 10 is easily beaten by longer periods. If the BILU(0) decomposition would have been
recomputed in every step, only 11099 BiCGSTAB iterations would be needed, but 28583
seconds of CPU time.

4.2 Flow past a NACA0012 airfoil

The second model problem corresponds to the NACA0012 profile at an angle of attack
of two degrees on a grid with 4605 cells at different Mach numbers. System matrices are
of dimension 18420 and the number of non-zeroes is about 5·105 for all matrices of the
sequence. For the initial data, freestream conditions are used.

At first we consider a reference Mach number of M = 0.8. 1000 steps of the implicit Euler
method are performed. The initial CFL number is 5, which is increased up to 30 during the
process. For the solution, see figure 3 (left). Transition to steady state is such that after
the shock on the airfoil has formed, the rate of convergence slows down, even though the
CFL number is increased. Similarly as in the supersonic model, the equation systems differ
much from step to step at first, but are very close towards the end. In fact, this behavior
is here even more extreme: With decisions based on (13), updating is applied during the

15

0 10 20 30 40 50
Timestep

0

2

4

6

8

10

12

14

B
iC

G
S

T
A

B
 It

er
at

io
n

s

No Updating
Updating

Figure 3: Pressure Isolines and grid (left) and BiCGSTAB iterations per time step (right)
for NACA profile with Mach 0.8

No updating Stable update Unscaled stable update Information flow
Period Iter. CPU in s Iter. CPU in s Iter. CPU in s Iter. CPU in s

10 5375 543 5336 498 5336 494 5336 483
20 5454 497 5364 469 5364 468 5364 459
30 5526 491 5379 464 5379 467 5379 453
40 5558 491 5411 456 5411 462 5411 452
50 5643 525 5413 466 5413 470 5413 448

Table 3: Total iterations and CPU times for transonic flow example

very first period only. To illustrate this, figure 3 (right) compares, for recomputation with a
period of 30 time steps, classical freezing with our strategy. Clearly, increasing BiCGSTAB
iteration numbers of the frozen preconditioner can be corrected with the updates. But after
the first period, there is no need to correct anymore.

The entire process is shown in Table 3. As we can see, the number of iterations decreases if
the recomputation period is shortened. This is not true for the CPU time, as recomputations
are costly. For the strategy without updating, the CPU time decreases at first, but increases
again, as the benefit of fewer recomputations is balanced by the increase in BiCGSTAB
iterations. As for the different updating strategies, all lead to both fewer iterations and
shorter computing times. As we explained before, the reduction of iterations must be solely
due to the very first time steps where updates are applied. The information flow criterion
provides the fastest results, whereas the stable update criterion and the unscaled stable
update criterion lead to somewhat higher total timings, but still faster than without any
updates. All three criterions lead to an identical number of BiCGSTAB iterations, because
they always choose the same triangular part to update. If the BILU(0) decomposition would
have been recomputed in every step, only 5333 BiCGSTAB-iterations would be needed, but
964 seconds of CPU time. Thus the number of iterations with updating often comes close to

16

the number with refactorization in every single step. The differences in CPU time come from
the cost of selecting the appropriate triangular part and all in all, the computation of the
steady state is improved up by about 7 to 15%. Note that again, the CPU time depends less
on the choice of the recomputation period with updates than is the case without updating.

Figure 4: Pressure Isolines and Grid for NACA profile at Mach 0.001.

In the last test case we use a Mach number of M = 0.001. This problem is much more
stiff than the transonic problem. Consequently, the linear systems are harder to solve.
Furthermore, for the same CFL number, the time steps should be much smaller due to
the larger maximum eigenvalues of the involved matrices. We computed 750 time steps,
starting with the CFL number of 0.5, which was increased to its final value equal to two.
For the solution, see figure 4, for the comparison of updating techniques see Table 4. In
this case, the linear systems do not differ very much among the time steps, not even in
the beginning. Thus, the freezing strategy works well and the number of iterations needed
increases very slowly in one recomputation cycle. Therefore, even if updating is used,
the criterion (13) is seldom fulfilled and the updating strategy has only a small effect in
decreasing the iteration numbers, but essentially none on the CPU time. Nevertheless, it is
not worse than the classic strategy, which is mainly due to the inclusion of criterion (13):
Otherwise, the method would compute an update in every step to no effect. Note that if
the BILU(0) decomposition would have been recomputed in every step, 19609 BiCGSTAB-
iterations would be needed, but 1437 seconds of CPU time.

5 Conclusions

We employed an updating method for block ILU preconditioners for sequences of non-
symmetric linear systems in the context of compressible flow. The updating method was
motivated by the need to improve frozen preconditioners in order to obtain preconditioners
similarly powerful as if they would have been recomputed. For the model problems con-
sidered here we showed that as soon as the frozen preconditioners yield high numbers of

17

No updating Stable update Unscaled stable update Information flow
Period Iter. CPU in s Iter. CPU in s Iter. CPU in s Iter. CPU in s

10 19444 1189 19288 1158 19398 1121 19289 1129
20 19584 1105 19492 1135 19451 1117 19375 1094
30 19641 1144 19412 1122 19531 1158 19544 1112
40 19622 1104 19521 1112 19594 1114 19523 1107
50 19622 1127 19265 1129 19339 1086 19396 1139

Table 4: Total iterations and CPU times for low Mach flow example

iterations of the linear solver, the updates indeed succeed in reducing the number to the
normal level. Whereas the derivation of the updates assumes diagonal dominance of system
matrices, the present experiments imply the technique is efficient with rather poor diagonal
dominance as well. Note that the success of the new strategy may be significantly enhanced
if the time for recomputations becomes prohibitive, which was not our case.

Based on the number of Krylov subspace method iterations, our implementation decides
whether updating is necessary. In this way we obtained a preconditioning strategy that is
faster than the standard strategy of periodic recomputing for well-known test cases and it
is even close to recomputing in every step with respect to iteration numbers. In contrast
to periodic recomputations without updates, our method is rather insensitive to the chosen
recomputation period.

The method is particularly successful in the phases where the solution process exhibits some
kind of instationary behavior and thus it is promising for the computation of instationary
flows. In our tables we willingly chose to display results for the whole solution process
including long stationary phases of the problems. If we would restrict ourselves to the
phases where the updates were actually applied, the results would be even more convincing.

References

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge,
1994.

[2] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel, Adaptively precondi-
tioned GMRES algorithms, SIAM J. Sci. Comput., 20 (1998), pp. 243–269.

[3] M. Benzi and D. Bertaccini, Approximate inverse preconditioning for shifted linear
systems, BIT, 43 (2003), pp. 231–244.

[4] M. Benzi, D. B. Szyld and A. van Duin, Orderings for incomplete factorization
preconditioners of nonsymmetric problems, SIAM J. Sci. Comput., 20 (1999), pp. 1652-
1670.

[5] M. Benzi and M. Tůma, Orderings for factorized sparse approximate inverse pre-
conditioners, SIAM J. Sci. Comput., 21 (2000), pp. 1851–1868.

18

[6] L. Bergamaschi, R. Bru, A. Mart́ınez, and M. Putti, Quasi-Newton precondi-
tioners for the inexact Newton method, ETNA, 23 (2006), pp. 76–87.

[7] D. Bertaccini, Efficient preconditioning for sequences of parametric complex sym-
metric linear systems, Electronic Transactions on Numerical Mathematics, 18 (2004),
pp. 49–64.

[8] A. Chapman, Y. Saad, and W. L., High-order ILU preconditioners for CFD prob-
lems, Int. J. Numer. Methods Fluids, 33 (2000), pp. 767–788.

[9] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite
matrices, J. Comp. Appl. Math., 86 (1997), pp. 387-414.

[10] J. Duintjer Tebbens and M. Tůma, Efficient preconditioning of sequences of non-
symmetric linear systems, SIAM J. Sci. Comput., to appear (2007).

[11] H. C. Elman and A. Ramage, Fourier analysis of multigrid for the two-dimensional
convection-diffusion equation, BIT Numer. Math., online version (May, 2006).

[12] H. C. Elman, A Stability Analysis of Incomplete LU Factorization, Mathematics of
Computation, 47 (1986), pp. 191–218.

[13] J. Frank and C. Vuik, On the construction of deflation-based preconditioners, SIAM
J. Sci. Comput., 23 (2001), pp. 442–462.

[14] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in
Applied Mathematics, Cambridge University Press, Cambridge, 2002.

[15] D. Loghin, D. Ruiz, and A. Touhami, Adaptive preconditioners for nonlinear sys-
tems of equations, J. Comput. Appl. Math., 189 (2006), pp. 326–374.

[16] , Asymptotic based preconditioning technique for low mach number flows, Z.
Angew. Math. Mech., 83 (2003), pp. 3–25.

[17] A. Meister and T. Sonar, Finite-volume schemes for compressible fluid flow, Sur-
veys Math. Indust., 8 (1998), pp. 1–36.

[18] A. Meister and C. Vömel, Efficient preconditioning of linear systems arising from
the discretization of hyperbolic conservation laws, Adv. Comput. Math., 14 (2001),
pp. 49–73.

[19] G. Meurant, On the incomplete Cholesky decomposition of a class of perturbed ma-
trices, SIAM J. Sci. Comput., 23 (2001), pp. 419–429.

[20] J. Morales and J. Nocedal, Automatic preconditioning by limited-memory quasi-
Newton updates, SIAM J. Opt., 10 (2000), pp. 1079–1096.

[21] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, Re-
cycling Krylov subspaces for sequences of linear systems, Technical Report UIUCDCS-
R-2004-2421, University of Illinois, 2004.

[22] , Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Com-
put., 28 (2006), pp. 1651–1674.

19

[23] Y. Saad, ILUT: a dual threshold incomplete LU factorization, Numer. Linear Algebra
Appl., 1 (1994), pp. 387–402.

[24] , Iterative methods for sparse linear systems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, second ed., 2003.

[25] Y. Saad and M. H. Schulz, GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, 7 (1986), pp. 856–869.

[26] V. V. Shăıdurov, Multigrid methods for finite elements, vol. 318 of Mathematics and
its Applications, Kluwer Academic Publishers Group, Dordrecht, 1995. Translated
from the 1989 Russian original by N. B. Urusova and revised by the author.

[27] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of non-symmetric linear systems, SIAM J. Sci. Stat. Comput., 12
(1992), pp. 631–644.

[28] Y. Wada and M.-S. Liou, A flux splitting scheme with high-resolution and robustness
for discontinuities, AIAA Paper, 94-0083 (1994).

[29] C.-T. Wu and H. C. Elman, Analysis and comparison of geometric and alge-
braic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 28 (2006),
pp. 2208–2228.

20

